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Abstract 
 

The recent successes of emerging photovoltaics (PV) such as organic and perovskite solar cells 

are largely driven by innovations in material science. However, closing the gap to commercialization 

still requires significant innovation to match contradicting requirements such as performance, 

longevity and recyclability. The rate of innovation, as of today, is limited by a lack of design principles 

linking chemical motifs to functional microscopic structures, and by an incapacity to experimentally 

access microscopic structures from investigating macroscopic device properties. Both limitations in 

turn are caused by an individualist approach to learning, not being able to produce consistent datasets 



large enough to find patterns and physical laws leading us to breakthrough innovations. In this work, 

we envision a layout of a Digital Twin for PV materials aimed at removing both limitations. 

The layout combines machine learning approaches, as performed in materials acceleration platforms 

(MAPs), with mathematical models derived from the underlying physics and digital twin concepts from 

the engineering world. This layout will allow using high-throughput (HT) experimentation in MAPs to 

improve the parametrization of quantum chemical and solid-state models. In turn, the improved and 

generalized models can be used to obtain the crucial structural parameters from HT data. HT 

experimentation will thus yield a detailed understanding of generally valid structure-property 

relationships, enabling inverse molecular design, that is, predicting the optimal chemical structure and 

process conditions to build PV devices satisfying a multitude of requirements at the same time. After 

motivating our proposed layout of the digital twin with causal relationships in material science, we 

discuss the current state of the enabling technologies such as model-based inference of hidden 

parameters, already being able to yield insight from HT data today. However, we identify the 

multiscale nature of PV materials and the needed volume and diversity of data as main challenges. 

This requires the development of novel methods for scale bridging fast surrogates based on physical 

models, which in turn requires novel optimization methods being able to handle continuous 

optimization and discrete decisions in large instances under uncertainty. We mention promising 

approaches to address these challenges. 
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Introduction 
 

Emerging photovoltaics (PV) technologies such as organic and perovskite solar cells (OSC and PSC, 

respectively) have seen a rapid increase of efficiencies over the last decade, which was largely driven 

by material science.  The power conversion efficiency (PCE) of single-junction organic solar cells has 

been pushed beyond 19% [1-3]. Large area modules have also demonstrated PCEs of over 12% [4-6]. 

These values are however not yet sufficient for volume markets. Moreover, important issues regarding 

operational stability [7-13] and up-scaling [14,15] still prevail. Although there is progress [16-18], it is 

too slow to attract venture capital to bridge the gap between lab scale and industry scale production, 

given the presence of a very competitive established technology today (Silicon PV) and the promise of 

quasi-infinite energy availability at the horizon (nuclear fusion). 

These points can be quantitatively demonstrated by the so-called learning rate (LR), which tracks 

€/Wp as a function of accumulated production volume. We know that silicon (Si) and cadmium 

telluride (CdTe) PV technologies have a LR of 20% – 25% (see Figure 1a) [19]. Therefore, any emerging 

PV technology, depending on its starting point which is usually reported at the MW scale level, must 

have a faster LR to catch up with the Si and CdTe PV technologies in terms of cost competitiveness. As 

one example to underline the importance of acceleration, we plotted the cost evolution for a 

presumably carbon-based PV technology, assuming a doubling of the LR. Figure 1a shows that a 

learning rate of 50 % would reduce the required cumulative production volume for becoming a mass 



market-ready PV technology by about a factor of 1000, that is, from about 100 GW to only 100 MW. 

This means that the first serious production line would be cost competitive from the beginning.  

The learning rate is increased by scaling effects coming from industrial volume production, but also by 

innovation and discovery coming from R&D. To speed up discovery in material science, so-called 

Materials Acceleration Platforms (MAP) [20] are gaining momentum. In MAP, design-of experiment is 

performed by strategically dividing the quasi-infinite experimental space in hierarchically connected 

subspaces, in which optimization and knowledge generation is performed by screening or active 

learning (see Figure 1b). The hierarchy is given by the scales of the underlying physical principles: on 

the (supra)molecular scale, the connection between chemical structure and molecular properties such 

as energies, vibronic coupling (“Energy gap law”, Marcus-Levich-Jortner transfer rates), and inter-

molecular energy level alignment (excitons, charge transport) can be predicted by quantum chemistry 

more quickly than measured experimentally. One can therefore screen large numbers of candidate 

molecules virtually [21], and, by assessing in parallel the resulting molecular quantities experimentally 

for only a small fraction, will assist to improve the calculated results until a small number of optimal 

candidate molecules are found. These molecules pass to the next stage, in which the physics of the 

mesoscopic scale is optimized. Currently, this stage is largely experimental because prediction of 

microstructure formation and phase separation [22] as well as simulation of photoexcitation dynamics 

therein [23, 24] is slower than actually performing the experiment. Using fast proxy experiments for 

device performance [25] or stability [26], large numbers of single layers can be screened in shortest 

time, resulting in recipes for optimal layer formulations. These can pass to the final stage, in which the 

physics of the macroscopic scale is optimized. In this stage, the interplay of the layers is optimized to 

maximize the final performance indicators. 

Although these MAPs have shown progress against the state of the art, breakthrough innovations have 

so far not been presented. Figure 1b exposes the main bottleneck to disruptive discovery in the 

current design of MAPs, namely the lack of insight in the mesoscopic stage. It is hard to assess 

structural details from high throughput capable characterization techniques. As long as the middle 

stage is of black box nature, communication with the adjacent stages will be lossy: neither can we 

encounter the nexus between molecular structure and mesoscopic structure, nor can we find fast 

proxy experiments for mesoscopic structure formation, which would allow us to predict the 

performance of the single layers in the device stack. As a consequence, sub-optimal molecules may 

pass the first gate because we are not able to predict their mesoscopic structure, and wrongly 

optimized layers will pass into device formulation because they were characterized by proxy 

experiments insufficiently predicting the crucial parameters for macroscopic device functionality. 

Although it may in principle be possible to skip the second stage using recently developed generative 

models for inverse molecular design, the required amount of training data will be unmanageable, as 

the latent space will be of much higher dimensionality for predicting complete devices than for 

predicting details on a mesoscopic structure level. 



 

Figure 1 a) Learning rate in silicon (Si-)PV technology (green symbols & black line; exponential fit 

given by red line yielding 25% price reduction every time the installed capacity doubles, data from 

Fraunhofer ISE); the blue dashed lines shows a prospective learning rate of OPV of 50% (LR50). b) 

Operation principle of Material Acceleration platforms, together with the relevant length scales, 

physical principles and available models.  

 



Disruptive discovery is intimately linked to the ability to attain control over principles with opposite 

effects on the desired targets. In disordered solids, which are the basis of emerging-PV technologies, 

this quest for control leads to specific challenges, spanning across all length scales, from single 

molecules to PV modules: 

Time and energy management of electronic states. Optoelectronics relies on an interplay of different 

materials, and thus the respective driving forces for the desired transfer phenomena must be at their 

optimum values to suppress omnipresent loss processes [27]. This is particularly important in the field 

of multiphoton processes for PV (photon up-conversion or singlet fission [28]), where the optical 

absorption bandgaps, emission energies, ionization potentials and electron affinities all must match 

to exploit their potential to go beyond the detailed balance limit for single junction solar cells. Not 

only the state energies, but also their coupling must be managed, minimizing internal conversion to 

ground states (beyond the energy gap law [29]) but maximizing desired transfer rates. On the 

supramolecular scale, this requires control of intermolecular or inter-chain alignment. 

Microstructure control. Maximizing optoelectronic performance in disordered semiconductors 

requires judicious management of nano- to microscopic arrangements, for example by creation of 

nanofibrils allowing swift conduction along the stack while at the same time maximizing charge 

generation orthogonal to it [30]. The formation of such kind of highly advantageous nanostructures 

can currently not be predicted from molecular structures or process conditions, often because these 

are metastable states. The same holds for phase composition (vertical gradients, dual phase 

acceptors).  

Device stability. On the macroscopic level, environmental stability is key to commercial success but 

also to live up to the promise of sustainability – materials of different roles (electron transport, 

absorber, etc) may react with each other, radicals may autocatalyze degradation. Design principles for 

long term stability must be understood in much greater detail, given the multi-objective nature of the 

requirements for commercialization. 

In this perspective, we argue that in order to achieve breakthrough innovations in PV material science, 

we need generic predictive power to address all challenges, including microstructure, so as to make 

contradicting principles act in concert. We present the layout of a Digital Twin in PV materials, able to 

accelerate the learning of microscopic structure property relationships in a combined data- and 

model- driven approach. High-throughput experimentation is used to improve the parametrization of 

simulation methods, and the improved simulations are in turn used to obtain the crucial structural 

parameters and drive high-throughput experiments. In this way, deeper understanding for the 

selection of particular molecular motifs can be acquired. This understanding can in turn lead to new 

optimisation designs and the establishment of new regions of interest for analysis both in modelling 

and the HT approaches.  Hence,  Collecting a vast library of molecular structures and corresponding 

features of mesoscopic structure, the Digital Twin will accelerate the discovery of molecular structures 

conducive to any of the crucial structural aspects at larger scales, compared to a purely data driven 

approach If any structural aspect can be individually optimized at will, we will have achieved molecular 

inverse design capacity, allowing to discover optimal molecules satisfying all requirements at once. 

Subsequently, processes for their production can be optimised. 

In the following, we will first introduce into predictive models and their limits. Based on these findings 

we will discuss the proposed layout of the Digital Twin for PV materials, which will be followed by a 

detailed look at the current state of the enabling technologies. 

 



 

 

 

 

 

1 Forward and Inverse Design 

 

Figure 2: Use of predictive models for the prediction of VOC in PM6:Y6 OPV devices. Color codes in the 

matrices show the explanation of variance for relevant and non-redundant predictors, obtained by 

mRMR-GPR, from the dataset published in [31]. Predictors are across columns, targets across rows. 

The predictors are explained in the text. 

 

In the following, we take a Bayesian perspective for the layout of a Digital Twin as a natural approach 

in this context and start from the establishment of a fully data-based context from which we aim at 

generating knowledge. We will however also aim at integrating knowledge from structural and from 

physical insights. Through experimentation, we seek to learn quantitative structure-property 

relationships (QSPR) of general validity. These can be expressed by predictive models of the form of 

conditional probability distributions 𝑝(𝐁|𝐀) for the occurrence of a certain target B given a vector of 

features (predictors) A. These predictive models correspond to the underlying deterministic functions 

B=f(A), imposed by laws of physics. Materials acceleration platforms (MAP), as discussed in the 

introduction, are ideally suited for this task because they allow collecting large amounts of data under 

controlled variation of process variables P, keeping variation of other (hidden) process variablesto a 

minimum. Using our automated platform for the processing and characterization of organic solar cells 

(AMANDA Line One), we have obtained predictive models for electrical performance and even 

operational stability for the donor-acceptor system PM6:Y6 [31]. To this end, we varied the active 

layer annealing temperature (TA) and time (tA), the acceptor molar fraction (XA), the spinning speed of 

the spin coater (vsp), and the annealing time of the electron transport layer (tAE), among others. To 

demonstrate the construction of predictive models, we have re-examined the dataset from [31] using 

a feature selection technique (minimum Redundancy Maximum Relevance [32]) embedded in 

Gaussian Process Regression (GPR). Figure 2a shows the predictive model 𝑝(VOC|P), where the active 

layer annealing temperature TA has a very strong influence on the open circuit voltage VOC, explaining 



more than 80% of the variance in VOC of the dataset. Other parameters such as vsp and XA add less than 

20% of additional explanation of variance, and the two annealing times tA and tAE do not seem to play 

a significant role for VOC in the actual dataset. 

Inverse design, in a probabilistic definition, is the inverse function of a predictive model, namely 

𝑝(𝐀|𝐁), the conditional probability of a feature given the desired value of B [33]. In the example of 

Figure 2a, the inverse design function would be 𝑝(𝑇𝐴|𝑉𝑂𝐶), meaning that we are able to adjust the 

annealing temperature of the active layer in order to fine tune a desired open circuit voltage of the 

final device, for example to match the requirements of an internet of things (IoT) application. Although 

this is useful, it will work only for active layers composed of PM6:Y6, and only for the specific way by 

which AMANDA Line One processes devices.  

We have shown in [31] that by adding physics to models trained from data, we can improve their 

generalization. Using the exciton theory and the Spano model of weak H aggregates [34], we have 

obtained morphology sensitive features for the active layer from modelling of UV-Vis spectra, taken 

before electrode deposition. The predictive model for VOC in Figure 2b, right, shows that VOC is 

determined of observable features O like the acceptor energy level cA, the total absorption of acceptor 

molecules Atot, and the amount of amorphous phase in the donor phase (XamD). The predictive model 

𝑝(T|O), obtained by adding models obtained from laws of physics, is more general than the purely 

data driven model 𝑝(T|P) from Figure 1a, because the former relates morphological features to the 

target property, irrespective by which processing method they have been obtained. The predictive 

model 𝑝(T|O), should therefore, under certain conditions, be transferrable to different processing 

methods, while 𝑝(T|P) is not. 

In spite of the improved generalization, physics-aware predictive models as the ones in Figure 2b still 

do not lend themselves to breakthrough innovations. This is due to the well-known inverse problem: 

varying materials and process conditions, there are infinitely many possibilities to produce a certain 

value of cA, but generally they will produce very different values of VOC and vice versa. The high 

correlation between cA and VOC in the present dataset stems from the fact that we varied only the 

process conditions but not the chemical structure of the materials in the active layer. This is shown in 

the ESI, Figure S1, as red arrow identifying the non-causal pathway (correlation) between cA and VOC. 

In fact, one of the breakthrough innovations sought after by the OPV community is breaking the 

correlation between the charge transfer energy level represented by cA for hybrid interfaces and VOC, 

by discovering materials with lower non-radiative voltage losses. To achieve this by inverse design, 

knowledge of structural details is mandatory, but is not provided by the simple predictor cA in Figure 

2b. 

Figure 3 shows the causal relationships in material science yielding the observed predictive models, 

utilizing ideas published in [35]. Process conditions P allow us to interact with matter in a controlled 

way, such that chemical structure (C) is formed and organized into a system S. The system S comprises 

the complete geometrical, energetic and dynamic structure across all scales of our asset, which can 

be a thin film, a single research device, or a complete array of PV modules connected to the grid. All 

aspects of the structure of the asset together determine the desired target properties T, such as the 

electrical performance, the longevity of the device or the purity of the recycled products. 

Furthermore, the structure also determines the observable response (O) if we interrogate the asset 

by spectroscopy, microscopy, or electrodynamics. Hence, if P is known, then both C and S can be 

predicted. In turn, if S is known, both O and T can be predicted, explaining our predictive model 𝑝(T|O) 

from Figure 2 as a non-causal pathway involving S, see bold red arrow in Figure 3. We note that these 

considerations are valid only in the ensemble approximation where large numbers of quantum objects 

yield deterministic expectation values (correspondence principle, e.g., mapping statistical mechanics 



onto thermodynamics in Fig. 3) and where the expectation values can be deterministically captured 

(ideal experiment). Both conditions hold only approximately, and the uncertainty that comes along 

with it must be quantified. 

The problem for inverse design is the quasi-infinite dimensionality of P, C, and S, making the general 

prediction of T from O intractable. If we cannot generalize the learned models, we are bound to what 

we already know, which permits only small improvements but no breakthrough innovations. On the 

other hand, the quasi-infinite dimensionality of P, C, and S holds also a promise, namely the high 

probability that there exist a combination of S leading to unseen T, that is, to match opposing 

requirements, crucial to overcome the challenges mentioned in the introduction. Likewise, we expect 

a high probability for the existence a combination of P and C to yield said S. 

 

 
 
Figure 3. Acyclic directed graph showing the causal relationships needed to achieve quantitative and 

generalized predictive capacity, allowing to perform molecular inverse design 
 
For our layout of a Digital Twin for PV materials, we propose to obtain 𝑝(P,C|T) in two sequential 
steps: on the one hand, we encounter the inverse design function 𝑝(S|T) from experimental data, 
where we develop fast surrogates to access microscopic system parameters. On the other hand, we 
develop integrated model-based and machine learning (ML)-enhanced simulations to learn the 
inverse design function 𝑝(P,C|S), that is, to predict microscopic and mesoscopic structure from 
chemical structure. In this way, a high dimensional problem is converted into two lower dimensional 
problems, which guarantees an increase of the learning rate compared to the pure data driven 
approach; generality is not lost, as all causal pathways connecting P,C and T run via S. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
3 Layout of a Digital Twin for PV Materials 

   

 

 
Figure 4: Definition of a digital twin in material science. White area: physical asset, with causal 

pathways as described in Figure 3. Light blue area: Physical models and essential features; dark blue 
area: algorithms that autonomously interact with models and data, improving predictive capacity. 

  
  
In Figure 4, we present a layout for an adaptive Digital Twin for photovoltaic materials, derived from 
the general Digital Twin Structure Model (DTSM,[36]). We define it as an ensemble of models and 
solution algorithms autonomously interacting with simulations and experimental interrogations of the 
physical asset, which represents the full value-added chain of photovoltaics from molecules to PV 
systems in society, enabling forward and inverse design. The latter can then be enhanced by 
optimization approaches for corresponding process design. This layout has the goal to address the 
challenges to PV material science by a community-driven approach to achieve breakthrough 
innovations that have the potential to bring novel PV materials into volume markets.  
 
The layout in Figure 4 is aimed at enabling a decisive acceleration over current MAP implementations. 
First, as mentioned before, the high dimensional problem of predicting function from chemical 
structure is achieved in two sequential steps of lower dimensionality. Second, a further dimensionality 
reduction of both S and P is achieved by encountering the essential features able to “describe the 
asset well enough to make predictions about its present and future state” [34]. Thus, “featurization of 
structure” is achieved by an optimized procedure matching experimental data with predictions from 



fast surrogates that are derived by a detailed and fundamental structural understanding of the 
underlying physics. And third, an ontology driven approach allows data sharing according to the 
principles of FAIR data management, allowing massive experimental evidence to build the 
featurization of structure.  
 
Figure 4 shows the interrelation between the physical asset (lower region with white background) and 
the Digital Twin (light and dark blue shaded areas). The descriptive layer (light blue region) contains 
models obtained both from data as well as from physical laws and the parameters they depend upon. 
As T is defined by S, and S is defined by P and C, we can learn the featurization of structure 
independently from chemical structure, by finding the function 𝑻 =  𝑓𝑇(𝒒𝑺), where qS is a vector of 
model input quantities (essential structural features) to yield T. The essential structural features are 
first handcrafted (domain anisotropy, tortuosity etc.) and then extended by agents in a dynamic top-
down approach, in which first macroscopic features are inferred from comparing the predictive 
models 𝑝(T|O) with macroscopic device simulations (see chapter 4b). When the data basis is solid 
enough, which is captured by uncertainty quantification (UQ), then mesoscopic and finally microscopic 
quantities are inferred. At this point, 𝑓𝑇 and qS will hold general predictive capacity for T from S, 
meaning that whenever we synthesize chemical structures C and apply process conditions P that yield 
S, we will – within the known uncertainty limits from UQ – observe T. Furthermore, Figure 4 shows 
that the set of essential structural features qS not only determines T but also O, via the function 𝑶 =
𝑓𝑂(𝒒𝑺). In chapter 4b, we will exploit this fact by building fast proxy experiments which pave the way 
to a large and varied dataset to develop fast surrogates to the computational expensive models  𝑓𝑇 
and 𝑓𝑂. The last step could be done by implementing different training strategies, but it could also be 
based on physical modelling. 
 
Availability of predictive models for T from microscopic and mesoscopic structure simplifies the main 
task of the Digital Twin, namely inverse molecular design, to encounter structural motifs qC that cause 
microscopic and mesoscopic structure S (see chapter 4c). To train the model 𝑺 = 𝑓𝑆(𝒒𝑪), we will need 
to calculate and validate microscopic structure from chemical structure, for which fast and reliable 
methods are not yet available. Based on recent achievements in ML-enhanced modelling, phase field 
simulation and optimisation, the Digital Twin will allow to advance the existing QM/MM tools to 
handle disordered materials in the solid state.  
 
Finally, we will achieve a featurization of processes by finding the function 𝑪 = 𝑓𝐶(𝒒𝑷) able to predict 
chemical reactions from essential features qP describing process conditions. The resulting predictive 
models will thus yield changes of C (due to reactions) with concomitant changes in S and therefore T, 
allowing to predict degradation. 
 
In the executive layer (dark blue region in Figure 4), autonomous agents enable the Digital Twin to 
interact with the physical asset and with the community of researchers. Agents are algorithms for 
specific tasks, autonomously learning under uncertainty to improve performance [38,39], see also 
[62]. For engineering Digital Twins, building blocks for the executive layer are known and functional 
[36, 37] and a general model foundation for autonomously attaining predictive capacity has been 
presented [35]. The algorithms presented in Figure 4, however, must go beyond these known 
implementations because in PV material science we cannot only rely on existing purely data-based or 
purely physics-based models. Instead we will need the executive layer to build integrated models for 
us, by enabling existing solid state models to access relevant scales which in turn requires novel 
optimization methods to be developed (see chapter 4b).  

The tasks of the agents are to autonomously interact with the connected MAP to maximize knowledge 
gain from new evidence (exploration) and to direct experimentation towards the desired T 
(exploitation). Importantly, out-of-distribution (OOD) samples are autonomously detected by 
comparison with existing data and decisions are taken whether to disregard the evidence or whether 



to run dedicated experimental campaigns to encounter new physics. The agents also propel the 
featurization of structure by optimization of a growing set of essential features against a growing pool 
of evidence from observations. This is also the point where human experience enters the procedure, 
using visualization to allow validating newly encountered features, in the sense of building extension 
models to existing models [36]. 

The executive layer of the Digital Twin also performs knowledge encapsulation.  The hierarchy of 
microscopic, mesoscopic, and macroscopic structural features (see Figure 3) naturally forms an 
ontology which can be streamlined by collaboration with national or international initiatives for FAIR 
(“findable, accessible, interoperable, reusable”) data management. 
 

 

4 Empowering a Digital Twin in PV materials 

When discussing the experimental results in Figure 2, we found that we can expect PV materials with 

radically improved properties if we are able to discover molecules and processing conditions that 

make opposing structural motifs act in concert. In principle, discovery of such molecules can proceed 

entirely in a black box fashion: generative models and graph neural networks are able to encounter 

structure-property relationships directly from learning device performance from molecular structure. 

If successful, the ”latent space” of these models will necessarily contain information about the 

structural motifs that these molecules cause under the given process conditions, because generative 

models, as any knowledge creation process, are bound to the causal relationships given in Figure 3. 

However, without prior knowledge about the existence of these opposing structural motifs, the 

generative models would have to learn them “from scratch”, which would involve a huge amount of 

device data using different molecules of vast structural variation. No research group can provide these 

data on its own, so the generative models would be confronted with uncertainties about subtle 

differences in processing methods and ambient conditions in the different labs. These sources of 

uncertainty, and the sheer amount of device data needed together with the resulting long running 

time for training, will severely hamper the ability of generative models to attain molecular inverse 

design capacity. 

The acceleration potential of the Digital Twin, in the structure proposed in Figure 3, comes from 

identifying opposing structural motifs with decisive influence on target properties. This allows the  ML 

methods to be trained directly on the opposing structural motifs, rather than the final target property. 

Therefore, the ML methods can learn more rapidly to individually optimize opposing requirements, 

following the idea of known operator learning [45, 48]. In order to identify these opposing structural 

motifs, the Digital Twin will learn fast proxy experiments to deduce mesoscopic structure from simple 

to measure optical probes, so that MAPs can create large amounts of varied datasets, reducing the 

need for formulation of complete devices with concomitant uncertainties. In addition, insights 

obtained from the ruling physics will significantly increase the quality and secure convergence of the 

obtained generative models. 

4a Featurization of structure: identifying decisive structural motifs 

Although there are fundamental microscopic (e.g. visible light absorption) and macroscopic (Kirchhoff 

rules) boundary conditions for PV systems, it is the mesoscopic structure which decides whether 

opposing requirements are met and thus maximum performance is reached. A prominent example is 

the formation of nanofibril networks in non-fullerene acceptors yielding PCE values of the 

corresponding OPV cells close to 20% [30]. Nanofibrils solve the opposing requirements of maximum 

charge generation (requiring large interfacial area) and maximum charge extraction (requiring small 



interfacial area) by providing extreme anisotropy of acceptor domains thus orthogonalizing charge 

generation and extraction. Currently, there is lack of knowledge which molecules tend to form 

nanofibrils under which conditions, how the performance increase is related to the network shape 

and its relation to the contacts, and whether these nanofibrils are stable under operational conditions. 

Investigations into these problems are extremely tedious. On the experimental side, electron 

microscopy and grazing incidence wide angle X-ray spectroscopy (GIWAXS) are required, techniques 

which yield exact geometries but at too slow a pace to collect a large and varied dataset of different 

molecules and process conditions. On the theoretical side, the current parametrization of quantum 

mechanical and mesoscopic modelling levels of theory is not exact enough to predict the mesoscopic 

structure formed by a molecule, or if formed, will deteriorate under operational conditions. These 

considerations hold also for all other kinds of structural motifs, whether known or yet to be 

discovered. 

The Digital Twin, as formulated in Figure 3, can address these challenges on both the experimental 

and theoretical sides. On the experimental side, it enables the creation of fast proxy experiments on 

the fly, in order to allow characterization of structural features in a high throughput workflow. Some 

example workflows are shown in Figure 5. Figure 5a shows the so-called “multi-fidelity” approach, by 

which a fast proxy experiment is trained by an offline high-fidelity experiment [25]. We can control P 

to obtain a meaningful variation of S and then perform a fast but low-fidelity experiment yielding O, 

and a slow but high-fidelity experiment directly yielding the essential features qS that can be used as 

input parameters to the model 𝑓𝑇 which yields T, see Figure 4. In this setting, predictive models are 

obtained by machine learning methods. If experimental data is scarce, data augmentation schemes 

can be used by generating both O and qS using inexpensive low fidelity models, exhaustively sampling 

the vicinity of the available data, for example by assuming a Gaussian distribution (blue path in Fig. 

5a). In a purely data-driven approach, Bash et al. [25] have used graph-based regression to learn to 

predict electrical conductivity in P3HT-CNT composites from a series of easy to measure probes. Deep 

learning workflows for multi-fidelity experiments have been successfully deployed in fields beyond 

disordered semiconductors, for example to extract mechanical material properties from instrumented 

indentation [41], and to predict the characteristics of human movement from wearable sensors [43] 

Another approach to building a fast proxy experiment is parameter extraction by optimizing the 

outcome from simulations against experimental data, shown in Figure 5b. This approach is chosen if 

the quantity of interest is experimentally inaccessible at reasonable cost. Model-based parameter 

inference is prominent in Life Sciences, where intrusive measurements of important body parameters 

is a burden and can only be done infrequently or not at all, while proxy experiments would allow 

continuous monitoring. But also in the context of engineering digital twins, parameter inference by 

matching sensor data to models has been mentioned as method to “estimate what you can’t measure” 

[49]. Model simulations in soft matter (whether body tissue or disordered semiconductors) are often 

numerical solutions of partial differential equations (PDE). PDE optimization is a large research area 

where algorithms have been designed and applied with large success, for example in the design of 

particulate products, see [63]. For restricted settings, analytic solutions can be derived. For example, 

when ignoring nonlinear and non-local effects in the synthesis of nanoparticles, the process can be 

described by a linear population balance equation that can be solved analytically. Furthermore, 

maximizing the obtained yield such that quality guarantees in the particle sizes are met even under 

uncertain growth rates can be performed by solving an algorithmically tractable convex optimization 

problem. The price of robustness, i.e., the cost of robust protection against uncertainties, is negligible 

[61].  As an example in PV technology, efficient sampling methods such as Markov chain Monte Carlo 

have been combined with emulation of the posterior distribution using Gaussian Processes to keep 

the amount of PDE evaluations low, while still enabling uncertainty quantification [48]. 



As another example, fast surrogates for PDEs have been described using Gaussian Processes [51] and 

Bayesian Physics-Informed Neural Networks (B-PINNs, [52]), see Figure 5c. Methods for physics-

informed deep learning solving inverse problems with hidden physics, have been reviewed recently 

[53]. Furthermore, Graph Network based simulators are proposed to efficiently tackle complex physics 

[54], and feature selection methods for structure – functionality mapping in PV have been compared 

[46, 47]. At the current stage, these methods are typically not apt for real-time applications when 

many scales need to be bridged. Therefore,  novel approaches need to be developed both from AI and 

the physics side.  

 

 

Figure 5. Encounter of essential features qS from a) multi-fidelity experimentation under physics 

constraints, b) fast parameter extraction using multi-objective optimization and efficient sampling for 

obtaining model parameters 𝜒𝑂,𝐹 c) using physics-informed methods. 

 

4b Using big data to improve parametrization of multi-scale models 

On the theoretical side, the steady and organized stream of experimental data will allow the Digital 

Twin to featurize the experiments [55,56] to extract parametrizations of simulations and models 

obtained from structural insights and physical laws at various scales from the evolution of features. 

As a vision, this will enable the field of modelling, simulation, and optimization (MSO), to deal with 

previously inaccessible time and length scales at unprecedented levels of accuracy and generalisation, 

while addressing uncertainties or unknown information on different scales. In turn, the Digital Twin 

will benefit from fast and precise forward simulations across scales, greatly alleviating the challenges 

mentioned in the previous chapter with respect to optimization under uncertainty. 

Matter simulations involve typically approximate constitutive equations including Hamilton operators; 

therefore precise potentials, associated rates or momenta, as appropriate for the underlying model, 

are of utmost importance. Unfortunately, even ab initio methods require approximations entailing 

hyperparameters that depend on material classes and thus reduce generalisation, on the other hand, 

allowing for necessary upscaling.  Each restriction in the parameter space, required to accommodate 



many-body correlations, larger electronic systems or longer time scales, is paid for by further 

approximations and loss of generality. However, if the models are not general, we cannot use currently 

existing simulations for automated inverse molecular design, because we need to use it precisely to 

take us to the unknown where no parametrizations exist. Given the quasi-infinite chemical space, 

there is no chance to achieve a true generalization of model simulations by whatever means. One 

possible solution may be to reparametrize the models as we move, which is closer to the concept of 

transfer learning than a true generalization. Such a transfer learning can be very efficiently done by a 

Digital Twin being driven by self-learning agents deciding on the next experiment or simulation 

carrying the highest new evidence given prior information.  

A particularly relevant example of the use of machine learning to improve modelling comes from DFT, 

which is a highly active field of research [57]. It has been shown that by adaptive sampling of sparse 

data regions, the time scale of multiconfigurational photodynamics simulations of a small molecular 

model system can be extended to 10 ns at high accuracy [40]. Such calculations have the potential to 

predict photochemical stability, the current Achilles heel of OPV systems. Predicting the excited states 

in complex environments and morphological stability requires very precise ground state potentials 

[42] or derived rates [58], which can be parametrized by high-throughput data of D:A systems under 

varying process conditions via the intermolecular couplings and rate constants the resulting 

alignments would produce according to DFT calculations, using the methods shown in Fig. 5b. DFT 

calculations themselves can improve their predictive capacity using high throughput data where little 

evidence is available today, for example with respect to energies and elementary rate constants at 

buried interfaces, or with respect to the quenching of triplet states in the solid state, indirectly yielding 

triplet energies. Together with the fast surrogate replacements of PDE calculations shown in Fig. 5c, 

we have the perspective for a simulation of a PV system across all length and time scales, with 

production relevant accuracies and response times. 

Optimizations of the kind shown in Figure 5b can be performed as isolated high throughput research 

projects. In the context of a Digital Twin, they can be executed much more efficiently because a rich 

and varied dataset will be available for optimization. However, this large variety, accompanied by large 

variations of veracity, makes learning more difficult because contradicting datasets may wash out 

patterns that could have been observed in an isolated project. In addition, this knowledge obtained 

from data needs to be integrated with knowledge from analyzing the underlying physics into the 

optimization. Addressing the fact that the Digital Twin is prone to measurement errors and insufficient 

knowledge, it is important to protect the optimized processes and resulting consequences against 

uncertainties so that reliable results are obtained. including the macroscopic scale into the 

optimization, binary variables such as the decision between bulk heterojunction or bilayer 

morphologies, add to the optimization. which is furthermore constrained by physical (solvent 

orthogonality) or engineering (number of coating stages) constraints. Problems under uncertainty 

where both binary (or more generally discrete) as well as continuous decisions have to be taken, 

together with nonlinear functions that represent the underlying physics, belong to the most difficult 

optimization problems. Typically, they are both difficult in theory and in practice, and solution 

approaches with quality guarantees have been actively researched in the last decades, see also [64]. 

Still, challenges consist in the ability to solve large instances quickly. Recently, an optimization 

approach was presented for discrete-continuous optimization where in addition knowledge learned 

from data was represented by decision trees. The method has then been applied for the layout of 

direct current electricity networks [59]. In [62], a data-driven optimization framework was established 

that can learn the uncertainty together with optimal decisions over time, whenever relevant new data 

becomes available in an online fashion. Research challenges abound for the layout of the Digital Twin 

in a tight integration of optimization frameworks with knowledge learned from data over all scales. 



For example, they consist in the design of practically efficient algorithms that can optimize under 

uncertainty or insufficient knowledge, in the ability to integrate new knowledge whenever additional 

relevant data becomes available, and in the ability of being able to take discrete as well as continuous 

optimized decisions quickly.   

 

4c) Chemical structure: generative networks 

Linking chemical structure with microscopic parameters remains the last step to achieve molecular 

inverse design. We refer to the review by B. Sanchez-Lengeling and A. Aspuru-Guzik [50] showing the 

achievements that have been made using generative deep learning models. In short, two approaches 

are prominent, both relying on randomization to efficiently sample the high dimensional search space. 

In the case of variational autoencoders (VAE), an encoder-decoder architecture is used that generates 

a latent space in which the essential information (and thus, the physics) is retained to reproduce the 

encoded entity. To use randomization, chemical structure is represented as probability distribution in 

the latent space, which allows application of a variational method to find similarity patterns for 

structures leading to properties. The other approach is generative adversarial networks (GAN), in 

which a generator produces structure and property from noise, and a detector learns to distinguish 

fake data from real data. In this way, the latent space is in the generation, and it is getting better the 

more difficult it gets for the discriminator to tell fake from true. In order to train on experimental 

properties, the method is combined with reinforcement learning. Challenges consist in the high 

amount of training data and the difficulties of exploiting and boosting human knowledge because it is 

difficult to interpret the latent space of the generative models. 

In a recent review [60], the potential of graph neural networks (GNN) has been explored for molecular 

inverse design. It was highlighted that GNN can accommodate environmental effects in the solid state 

when learning microscopic quantities such as HOMO/LUMO levels from molecular structure; thus, 

they may be able to address the bottleneck we mentioned in discussing Figure 1b, namely yielding a 

more efficient transfer of molecule from the microscopic to the mesoscopic stage.  

 

Conclusions: 

In this work, we have derived the concept of a Digital Twin for photovoltaic materials that can resolve 

the long-time fundamental challenges in emerging-PV technologies. The Digital Twin concept was split 

into several building blocks to reduce dimensionality, and causal pathways were distinguished from 

non-causal relations. The layout is based on existing concepts for digital twins in engineering, and on 

the current state of the art in materials acceleration platforms (MAP). We motivate the need for a 

Digital Twin by the need for an increase of the learning curve against an existing and very competitive 

technique (Si-PV), which however has limits in terms of efficiency and sustainability. The Digital Twin 

aims at attaining inverse molecular design capacity to discover new materials with unseen properties, 

matching currently contradicting requirements (interconversion versus deactivation, stability versus 

processability and recyclability). We propose to approach molecular inverse design in two sequential 

steps with reduced dimensionality: we first attain predictive capacity for the desired target properties 

from structure. To this end, the Digital Twin will allow to exploit high throughput capable fast proxy 

experiments, using cascading surrogates to predict properties across scales. These surrogates 

integrate models and respective solution approaches obtained from data with those obtained from 

structural insights taking the underlying physics into account. This will give us access to mesoscopic 

and microscopic structure, which will reduce the dimensionality of the second problem, finding an 



ensemble of molecular structures together with optimized process conditions yielding the desired 

structural properties. 

In our opinion, lack of knowledge of mesoscopic and molecular structural parameters is our current 

bottleneck to the learning rate in PV material science. Our proposed approach is under a big data 

paradigm. We believe that the needed volume and variability of data cannot be accomplished by a 

single stakeholder. The ontology-based approach, dictated primarily by the need to accommodate 

unknown structural and processing features as the data basis evolves, will also enable data sharing 

following FAIR principles by the entire community, thus creating a vast library of essential structural 

features with associated process condition. This is the basis for the final goal of achieving full 

molecular inverse design capacity.  

We find that already some of the enabling technologies for our proposed Digital Twin layout are 

available; however, we point to existing large research gaps. From our point of view, neither the 

bottom-up modelling nor the data driven approach alone will lead to an efficient Digital Twin with 

which inverse design and optimized processes for PV material are efficiently possible. Otherwise, 

either abstract models risk not contain all necessary ingredients, or data-based approaches require 

too much data or will only show a too limited view on the problem. Instead, we claim that it will always 

be necessary to truly integrate physics- and data-driven approaches efficiently and along all scales. 

Then it will be possible to integrate the advantages of both worlds, namely a clear description based 

on fundamental science for which practically efficient algorithms can be determined, together with 

data that is able to describe features that may not be contained in a model.  Therefore, further 

research will be necessary for the establishment of approximative chemistry, physics and materials 

science approaches with data-based integration for surrogates and large-scale mixed integer 

optimizations, addressing and protecting against uncertainties on all levels. This will allow the Digital 

Twin to operate at the large scale needed to accomplish its goals. 
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A Causal relationships for the prediction of Voc from process conditions 

 



Figure S1: Causal relationships linking process parameters and chemical structure to mesoscopic and 

macroscopic structure, and macroscopic structure to observables and target quantities, explaining 

the observed correlations in Figure 2 of main text. The causal relationships are developed from the 

formula for the quasi-Fermi Level splitting, shown in the left part of the figure. The graph structure 

shows that inverse design capacity strictly requires knowledge of mesoscopic structure. 


