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It has been recently shown that the presence of topological frustration, induced by periodic bound-
ary conditions in an antiferromagnetic XY chain made of an odd number of spins, prevents the
realization of a perfectly staggered local order. Starting from this result and exploiting a recently
introduced approach which enables the direct calculation of the expectation value of any operator
with support over a finite range of lattice sites, in this work we investigate the possible fates of
local orders. We show that, regardless of the variety of possible situations, they can be all arranged
in two different cases. A system admits a finite local order only if the ground state is degenerate,
with at least two elements whose momenta differ, in the thermodynamic limit, by π, and this order
breaks translational symmetry. In all other cases, any local order decays to zero, algebraically (or
faster) in the chain length. Moreover, we show that, in some cases, which of the two possibilities
is realized, may depend on the sequence of chain lengths with which the thermodynamic limit is
reached. These results are established both analytically and by exact diagonalization and illustrated
through examples.

1. INTRODUCTION

Frustration arises as a competition between terms pro-
moting incompatible arrangements. Although this defi-
nition applies also to quantum Hamiltonians with un-
frustrated counterpart [1–3], it is usually meant in its
classical origin, known as geometrical frustration [4, 5].
Usually, in frustrated systems, one can identify several
frustrated loops, either induced by competing long-range
terms or just because of the lattice geometry. In such
cases, the amount of frustration scales with the sys-
tem’s size and the interplay between local interactions,
quantum effects, and the non-local nature of geometri-
cal frustration renders the study of these systems very
challenging. On the other side, their phenomenology is
very rich, displaying algebraic decays of correlation func-
tions not associated to criticality [6, 7], localized zero
energy modes [8–11], non-zero entropy at near-zero tem-
perature [12, 13], etc. Due to this fact, they are also
platforms to realize interesting emergent properties, such
as artificial electromagnetism [6, 7] monopoles and Dirac
strings [14]. Moreover, magnetic frustrated systems are
among the best candidates to host the elusive spin liquid
phase [15].

However, differently from what was expected, it has
been recently realized that even simple systems, with a
much weaker degree of frustration, namely with a num-
ber of frustrated loops that does not scale with the sys-
tem size, can host surprises. This is the case of systems
with a short-range antiferromagnetic interaction in which
a staggered arrangement is made impossible by the as-
sumption of Frustrated Boundary Conditions (FBC), i.e.
periodic boundary conditions applied on a chain made of
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an odd number of sites. Classically, such frustration pro-
duces a massive degeneracy in the lowest energy state,
because each such state develops a domain wall defect,
which can be located at any site of the chain. Quan-
tum interactions lift this degeneracy to a band of states,
which can largely be characterized as states with a single
traveling excitation. While these aspects have been un-
derstood qualitatively a long time ago, only lately their
quantitative appraisal revealed their deep consequences.

First, it has been found that the antiferromagnetic sys-
tems with FBC are gapless, with non-relativistic gapless
excitations [16–19]. Then, it has been established that
perfect FBC constitute a quantum phase transition point
with respect to different boundary conditions [20], that
the spin-correlation functions at large distances develop
unusual algebraic corrections [21], and that the entangle-
ment entropy in the ground state indeed carries the sig-
nature of a single excitation over the ground state [22].
More importantly, it has been shown in [23, 24] that the
topological frustration that characterizes such systems
can destroy the order parameter. The traditional or-
der is staggered and quantum interactions resolve the
conflict between it and the FBC with an interference
pattern that effectively cancels the magnetization, leav-
ing only a mesoscopic ferromagnetic order at finite sizes,
that vanishes algebraically with the chain length. This
phenomenology has later been enriched. Indeed, it was
found [25] that a different interference pattern, allowed
by an enlarged ground state manifold degeneracy, can
also admit an incommensurate antiferromagnet, charac-
terized by a magnetization profile that varies in space
with an incommensurate pattern. This type of order has
later been shown to be stable against antiferromagnetic
(AFM) defects [26]. Moreover, the boundary between the
mesoscopic ferromagnetic order and the incommensurate
AFM one is a first-order quantum phase transition, which
exists only in presence of FBC [25]. All these results have
established that, contrary to standard expectations, the
boundary conditions can indeed affect the local, bulk be-
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havior of a system, or, at least, that this is the case in
presence of frustration, opening a gateway to connect
the physics of simply frustrated chains to that of generic
frustrated systems.

It should, however, be remarked that the results dis-
cussed above have been found in specific (integrable)
models and one should wonder about their general rele-
vance. In this work, we address the question of whether
topological frustration generically destroys local order or
creates a modulated AFM order with a site-dependent
magnetization. As it is well known, local order param-
eters are central elements in Ginzburg-Landau theory.
They are expectation values of local operators, with sup-
port over a finite range of lattice sites, which, given the
symmetries of the system, should vanish and which, when
they assume a value other than zero, signal the sponta-
neous breaking of the symmetry and the establishment
of a macroscopic order. We consider general spin-1/2
models with a dominant short-range antiferromagnetic
interaction, subject only to the symmetry constraint that
their Hamiltonians do not change under spatial transla-
tion and commute with the parity operators in all three
spin directions. As a matter of fact, these assumptions
apply to a wide class of systems without external fields
and defects, including ones with short- and long-range
two-body Ising-like interactions, cluster terms etc. When
the lattice has an odd number of sites, the property
to commutativity with the parity operators ensures the
presence of an exact (Kramers) degeneracy in the ground
state manifold, which is always spanned by an even num-
ber of states. This allows for the direct evaluation, even
in a finite-size system, of the expectation values for all
local operators, i.e. operators with support over a finite
range of lattice sites [23, 25]. One can then follow the
behavior of these observables toward the thermodynamic
limit.

In this way, we show that two main pictures can be
realized:

• If the model has at least a four fold degener-
ate ground state manifold with two ground-states
whose momenta differ by π in the thermodynamic
limit, an incommensurate AFM order like that
found in [25] can emerge. This solution can be
interpreted as a distortion of the normal antifer-
romagnetic order created by the system in order to
adapt to the FBC. Indeed, in this way the system
preserves a semblance of the usual order but with
a modulation over the whole chain, which sponta-
neously breaks translational invariance. ;

• On the contrary, if there are not two ground states
whose momenta differ by π in the thermodynamic
limit, then any expectation value that can play the
role of local order parameter decays algebraically
(or faster) to zero with the system size. This case
can be separated in two sub-cases. If the system ad-
mits a two-fold degenerate ground-state, each one
of them has a zero momentum and the only possible

local order is a mesoscopic non-staggered ferromag-
netic order [23]. On the contrary, if the ground-
state manifold has a dimension greater than two
then the system can show both ferromagnetic and
incommensurate-staggered mesoscopic magnetiza-
tion patterns [27].

In particular, these results imply that, when the
boundary conditions kill the order parameter connected
to the dominant interaction (namely, the magnetization),
these systems are unable to develop any other type of
order with support over a finite range of lattice sites, re-
gardless of the type and nature of the other interactions
in the Hamiltonian.

To determine the ground state properties and analyze
the local order in generic systems, we will take advantage
of the Hilbert space structure at a classical point (with
simple domain wall as lowest energy states) and use a
highly degenerate perturbation theory. This will allow us
to classify whether in a finite neighborhood of the classi-
cal point any order vanishes in the thermodynamic limit
or if a finite incommensurate order can emerge. While
the amplitude of any order generally depends on the mi-
croscopic details of the model, its finiteness is a property
of the given phase and thus to establish its existence (or
lack thereof) it is sufficient just to consider a small fi-
nite parameter region. We will also corroborate these
findings through the exact numerical diagonalization of
a few examples, as well as the analytical solution of a
series of Cluster-Ising models that showcase various phe-
nomenologies.

The paper is organized as following: we start by lying
the foundations and notations for our analysis in Sec. 2
and 3, by discussing the importance and implications of
the symmetries that lead to the Kramers degeneracy and
the general structure of the ground states for the models
we consider. Then, in Sec. 4 we present our main results
in the form of two theorems that provide bounds on the
matrix elements of local operators. These results are used
in Sec. 5 to explain what types of order are possible in
chains with FBC, while Sec. 6 contains a few relevant
examples to clarify our analysis: in Sec. 6 6.1 chains with
pure 2-body interactions (even beyond nearest neighbor)
are considered, while in Sec. 6 6.2 we also allow for cluster
interactions. All examples are corroborated by numerical
results based on exact diagonalization. Finally, Sec. 7
collects our concluding remarks. We moved the technical
aspects of the proofs of the two theorems in App. A and
B, while App. C contains a details analysis of generic
Cluster-Ising chains with FBC and proves their peculiar
ground state degeneracy structure.

2. ANTICOMMUTING PARITY SYMMETRIES

All along our work we focus on one-dimensional trans-
lational invariant spin-1/2 systems which Hamiltonians
show a dominant antiferromagnetic Ising interaction in
one direction, which, without loos of generality, we set to
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be x. Together with such dominant term, the Hamiltoni-
ans are also characterized by one or more sub-dominant
spatially-invariant terms so that all Hamiltonians can be
written as

H =

N∑
j=1

σxj σ
x
j+1 + λ

N∑
j=1

Hj . (1)

Here σαj , for α = x, y, z, are Pauli spin operators, the
terms Hj describe the sub-dominant interactions (the in-
dex j is shifted to ensure translational invariance), λ
is the relative weight of the sub-dominant term and,
since the Ising term is the dominant one, we assume
that |λ| < 1. We assume that H commutes with all
three parity operators Πα ≡

⊗N
j=1 σ

α
j ([H,Πα] = 0 for

α = x, y, z), so that the whole Hamiltonian becomes in-
variant under transformations σαj → −σαj ∀j. Let us
now consider that our system holds FBC, i.e. it has
periodic boundary conditions (σαj = σαj+N ) and it is
made by an odd number N of spins. On a system made
of an odd number of sites N , the three parity opera-
tors Πα do not commute. Instead, they anticommute
(
{

Πα,Πβ
}

= 2δα,β) and realize a non-local SU(2) alge-
bra (

[
Πα,Πβ

]
= ı εα,β,γ2(−1)

N−1
2 Πγ). Since the Hamil-

tonian (1) commutes with all Πα, its ground state man-
ifold is at-least two-fold degenerate [23, 25] (which is an
instance of Kramers degeneracy), and any ground state
breaks at least one of the parity symmetries. Thus, in
such a setting, to study the behavior of the order pa-
rameters in the thermodynamic limits we can explicitly
evaluate it at fixed N and then let N diverge, avoiding
the complications of the usual procedure of applying a
symmetry-breaking field and removing it only after the
thermodynamic limit.

Moreover, the same structure also allows for the direct
computation of matrix elements between states with dif-
ferent parities, whose calculation usually either requires
extremely cumbersome expressions of limited practical
use or is achieved indirectly from certain expectation val-
ues by invoking the cluster decomposition property. In
particular, let |g〉 be an eigenstate of H and, simulta-
neously, an eigenstate of Πx with eigenvalue equal to
one, i.e. Πx |g〉 = |g〉. Since the parity operators mu-
tually anticommute ({Πα,Πβ} = 2δα,β), it follows that
the state Πz |g〉 has the same energy but opposite par-
ity with respect to Πx, i.e. ΠxΠz |g〉 = −Πz |g〉. States
with different parities can be constructed through su-
perpositions of states above and thus it is possible to
calculate the ground state expectation value of opera-
tors O breaking one symmetry of the Hamiltonian by
choosing a suitable ground state. For instance, for an
eigenstate |g〉 of Πx, the magnetization in the x di-
rection can be calculated as 〈g|σxj |g〉. On the other
hand, the magnetization in the z direction can be eval-
uated on the state |g̃〉 = 1√

2
(1 + Πz) |g〉 and is equal to

〈g̃|σzj |g̃〉 = 〈g|σzjΠz |g〉.

3. TRANSLATIONAL SYMMETRY AND THE
GROUND-STATES STRUCTURE

Let us examine the structure of the ground-states of
the studied systems on the basis of general arguments.
At the classical point λ = 0 the topological frustration
does not allow for every spin to point oppositely to its
nearest neighbors. Instead, the ground space is 2N -fold
degenerate, spanned by the "kink states", which have a
single ferromagnetic bond (two spins aligned in the same
direction), i.e. the "kink", and N − 1 antiferromagnetic
bonds (spins aligned in opposite directions). We denote
by |j〉 the kink state in which the ferromagnetic bond
is between sites j and j + 1, with 〈j|σxj |j〉 = 1, while
the kink state that we obtain flipping all the spins, i.e.
Πz |j〉, has 〈j|Πzσxj Πz |j〉 = −1. Above the states with a
single kink there is an energy gap of order one separating
them from the states with three kinks (due to odd N an
even number of kinks is not allowed). At higher energies,
one finds bands with a progressively growing number of
kinks separated by gaps of the same order as the first.

By turning on a small coupling λ in eq. (1), the de-
generate states typically split in energy. For small λ
(much smaller than the gap between the two lowest en-
ergy bands), the ground state will be described accu-
rately within the single kink subspace. Assuming, thus,
|λ| � 1 and neglecting, for the moment, the states with
more kinks, because of translational invariance we write
the ground states as

|sp〉≡
1√
N

N∑
j=1

eıpj |j〉 , Πz |sp〉=
1√
N

N∑
j=1

eıpjΠz |j〉. (2)

Here p = 2πk/N , with k running over integers from 0 to
N − 1, is the lattice momentum, whose quantization is a
result of periodic boundary conditions.

Increasing λ, the ground state will acquire contribu-
tions from states with more kinks but, because of trans-
lational invariance, the states can still be labeled by their
momentum p. To describe the structure of such states let
us introduce the translation operator T , a unitary oper-
ator that shifts cyclically the spins by one lattice site,
i.e. T †σαj T = σαj+1, for α = x, y, z. The eigenvalues eıp
of the translation operator fall on the unit circle, where
the angle p defines the momentum of the state. Now, for
any eigenstate of the model with momentum p, ground
state in particular, the contributions coming from the
subspaces with different number of kinks can be sepa-
rated. To show this fact let us define the state |β〉 as the
tensor product, on all the spins of the chain, of one of
the two eigenstates of σxj , i.e. |β〉 ≡

⊗N
j=1 |βj〉, where

|βj〉 ∈ {|+〉 , |−〉}. Given a fixed |β〉, we can construct
the translational invariant state

|β, p〉 =
1√
N

N−1∑
j=0

e−ıpjT j |β〉 , (3)

which is an eigenstate of the operator T with momentum
p. For instance, the states |sp〉 in eq. (2) can be obtained
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by setting |β〉 = |+−+− . . .+−+〉 = |N〉 and consid-
ering that |j〉 = (T †)j |N〉. We can write then any ground
state |gp〉 of H with momentum p as

|gp〉 =
∑
β

cβ |β, p〉 , (4)

where the sum is over all the different, and not equivalent
by translation, states |β〉, and the normalization implies∑

β |cβ|2 = 1. Here we say that two states, |β1〉 and
|β2〉, are not equivalent by translation if |β1〉 6= T k |β2〉
for any integer k. For instance, the states |sp〉 in (2) are
given by cβ = 1 for |β〉 = |+−+− . . .+−+〉 = |N〉 and
cβ = 0 for states |β〉 with more than one kink.

For a small λ compared to the energy gap at the clas-
sical point, i.e. for |λ| � 1, in the ground state (4) the
contribution of the states |β, p〉, and therefore the over-
lap cβ, is expected to decrease fast with the number of
kinks in the state |β〉.

4. MATRIX ELEMENTS OF LOCAL
OPERATORS

To discuss local order we study the possible values of
matrix elements of local operators between different con-
tributions in the ground state decomposition (4). For the
sake of simplicity, at first, we will completely neglect the
contributions from the states with more than one kink
and focus on the one-kink subspace only. Afterwards,
we shall generalize our results to ground states that are
made by combinations of an arbitrary finite number of
kinks.

Before starting, let us point out that by local opera-
tors we mean all operators having support over a finite
range of lattice sites, not scaling with N . Due to transla-
tion invariance, without losing generality we can assume
that the operator has support over the first L sites (for
some fixed integer L). Moreover, taking into account
that Pauli spin operators together with the unit opera-
tor provide a basis at a single site, we have that any local
operator can always be written as a linear combination
of a finite number of monomials in the Pauli operators
σα1

1 σα2
2 . . . σαL

L , where α1, α2, . . . , αL ∈ {0, x, y, z} and
σ0
j = 11j. Thus, we can focus only on monomials in Pauli

operators, that either commute or anticommute with a
given parity operator. The following theorem holds:
Theorem 1. Let A ≡ σα1

1 σα2
2 . . . σαL

L be a product of
Pauli operators, for some integer L. Let us consider
two states (not necessarily different) of the form as in
eq. (2), |sp1〉 and |sp2〉, and let us consider arbitrary su-
perpositions |gj〉 = (uj1+ vjΠ

z) |spj 〉, for j = 1, 2, where
|uj |2 + |vj |2 = 1. We have:

a) if A is such that αj ∈ {0, x} for all sites j ∈
{1, 2, . . . , L}, with αj = x for an odd number of
sites j, then

| 〈g1|A |g2〉 | ≤
C1

N | cos p1−p22 |
. (5)

b) if in A there is at least one site j ∈ {1, 2 . . . , L} for
which αj ∈ {y, z}, then

| 〈g1|A |g2〉 | ≤
C2

N
. (6)

Here C1 and C2 are positive constants independent of N .

Note that the first term in (5) is well defined, since, by
the quantization of the momenta, with N being odd and
finite, we cannot have p1 − p2 = ±π. A formal proof of
the theorem is provided in the Appendix A, but its basic
argument lays on the fact that for any single-kink-state,
apart from the two spins that are aligned (the kink), there
is a perfect alternation of eigenstates of σx.

In case a), the operatorA commutes with Πx and hence
the evaluation of 〈g1|A |g2〉 reduces to the evaluation of
〈sp1 |A |sp2〉. Moreover, by construction, the kink states
are also eigenstates of any σxj , and hence also of A in this
case. Thus only matrix elements between the same kink
state are different from zero and we have

〈sp1 |A |sp2〉 =
1

N

N∑
j=1

e−ı(p1−p2)j 〈j|A |j〉 . (7)

For j > L, it is easy to see that 〈j|A |j〉 = c(−1)j , for
some constant c ∈ {−1, 1}. The result in eq. (5) comes
from inserting the above expectation in eq. (7) for the
whole sum, and bounding the correction due to the first
L elements in the sum differing from the rest.

The case b) splits in two different sub-cases. If the
number of sites with αj ∈ {y, z} is even, the operator
A still commutes with Πx and thus the evaluation of
〈g1|A |g2〉 reduces to the evaluation of 〈sp1 |A |sp2〉. How-
ever, now, differently from a) the kink states are no more
eigenstates of the operator A. On the contrary, since the
operator A flips some spins, it maps a kink state to a
different one and hence the matrix elements between the
same kink state vanish. Moreover, if the kink is outside
the support of A, the matrix elements 〈j|A |l〉 also vanish
because of orthogonality. Thus, we have

〈sp1 |A |sp2〉 =
1

N

N∑
j,l=1

e−ı(p1j−p2l) 〈j|A |l〉 , (8)

where the terms with L < j, l < N vanish and, hence,
we are left with, at most, (L + 1) terms of order one,
suppressed by the overall factor 1/N .

On the other hand, if the number of sites with αj ∈
{y, z} is odd, the operator A anticommutes with Πx and
hence the evaluation of 〈g1|A |g2〉 reduces to the evalua-
tion of 〈sp1 |AΠz |sp2〉. Analogously to the previous case
we recognize that in the sum

〈sp1 |AΠz |sp2〉 =
1

N

N∑
j,l=1

e−ı(p1j−p2l) 〈j|AΠz |l〉 , (9)
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there is at most (L + 1) non-vanishing terms, which are
of order one and are suppressed by an overall factor that
scales with the length of the ring.

The theorem can be generalized straightforwardly to
the states with more kinks as follows.

Theorem 2. Let A ≡ σα1
1 σα2

2 . . . σαL

L be a product of
Pauli operators, for some integer L. Let us consider two
states of the type as in eq. (3), |β1, p1〉 and |β2, p2〉, with
momentum p1 and p2 respectively.

a) Let A be such that αj ∈ {0, x} for all sites j ∈
{1, 2, . . . , L}, with αj = x for an odd number of
sites j. If |β1〉 and |β2〉 are different, and not
equivalent by translation, then

〈β1, p1|A |β2, p2〉 = 0. (10)

If |β1〉 = |β2〉 then

| 〈β1, p1|A |β2, p2〉 | ≤
C1

N | cos p1−p22 |
. (11)

b) Let A be such that there is at least one site j ∈
{1, 2 . . . , L} for which αj ∈ {y, z}. Then

| 〈β1, p1|A |β2, p2〉 | ≤
C2

N
. (12)

Here C1 and C2 are positive constants independent of N ,
that depend only on L and the number of ferromagnetic
bonds in the states |β1〉 and |β2〉.

The proof of Theorem 2 is similar to the one of Theo-
rem 1, but more involved. The details are also given in
the Appendices B.

5. LOCAL ORDER IN THE GROUND STATE

Based on the previous theorems, we can now move to
discuss the local order in the ground state, depending on
the ground state momenta. The various ground states,
labeled by momentum and parity, can be followed from
the classical point λ = 0 to a finite λ, and represented in
terms of states with a progressively growing number of
domain wall states. With generic boundary conditions,
at some critical point λc 6= 0 the system will undergo
a quantum phase transition, characterized by a change
in the ground state properties, as well as by the non-
analytic behavior of the ground state energy (density) in
the thermodynamic limit [28]. Since this quantity is not
sensitive to the choice of boundary conditions or the odd
number of lattice sites, the phase transition point can-
not be moved by applying FBC. However, a system can
also cross smaller, non-extensive, discontinuities (bound-
ary phase transitions), such as the one discussed in [25],
due to a ground-state level crossing, which also mark a

change in the ground state order. In any case, the or-
der, or lack thereof, being a characteristic property of a
phase between critical points, it is sufficient to study it
in a small finite interval of λ to determine the nature of
a given phase.

We make a natural assumption that in the regime
|λ| � 1 the behavior of the local order is captured within
the subspace spanned by states with a finite, bounded,
although arbitrary, number of kinks. We note, for ex-
ample, that the properties of the magnetization in the
exactly solvable quantum XY chain can be captured al-
ready within the one-kink subspace [23, 25]. We discuss
also the contribution of the states with more kinks, since
some interactions can involve preferably such states, and
show that they do not change the obtained picture about
the relation between the ground state momenta and local
order.

If the system’s ground space is only two-fold degener-
ate, i.e. if there exist only a particular momentum p(N)
(allowing for system size dependence), with the associ-
ated ground states |gp(N)〉 and Πz |gp(N)〉, the theorems
imply that the expectation values of local operators that
break a Hamiltonian symmetry are O(N−1). In particu-
lar, they vanish in the thermodynamic limit.

There is a simple intuitive explanation for this result if
we look at the expectation value of σxj . The states |gp(N)〉
and Πz |gp(N)〉 have the same eigenvalue of the transla-
tion operator T . If the ground space is only two-fold de-
generate, the consequence is that the expectation value of
σxj = (T †)jσxNT

j is independent of j in any ground state.
The leading interaction in the model being antiferromag-
netic, the ferromagnetic order should not survive in the
thermodynamic limit, so it vanishes.

The situation becomes more complex if the system ad-
mits a larger ground state degeneracy. Let us say that the
system has 2d-fold degenerate ground space and denote
the ground state momenta by p1(N), p2(N), . . . pd(N),
whose value depends on the system size, and by
p∗1, p

∗
2, . . . , p

∗
d the values at which they tend in the ther-

modynamic limit. Then, unless p∗n − p∗m = π for some
n and m, the theorems imply again that there is no lo-
cal parameters. On the other hand, if it is the case that
p∗n − p∗m = π for some n and m, then we can construct a
ground state such as

|g(N)〉 =
1√
2

(|gpn(N)〉+ eıθ |gpm(N)〉), (13)

for some phase θ, which exhibits a non-zero order pa-
rameter. To explain this it is sufficient to focus on the
one-kink subspace, where |gp(N)〉 = |sp(N)〉. Applying
the procedure as in the proof of the Theorem 1 we find
the site-dependent magnetization

〈g(N)|σxj |g(N)〉= cos[(pm(N)−pn(N))j+θ′]

N | cos pn(N)−pm(N)
2 |

+O(N−1) (14)

where the phase θ′ is related to θ, but its explicit expres-
sion is not needed. Since pn(N)−pm(N) = π+O(N−1),
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in the denominator the correction compensates the fac-
tor N and produces a nonvanishing value of the mag-
netization in the thermodynamic limit. Moreover, in
the numerator it forces a slowly varying magnetization
profile. In fact, while for neighboring sites the magne-
tization is almost perfectly staggered, over the whole
chain the 1/N correction adds up so that the ampli-
tude of the order parameter varies and even locally van-
ishes at some points. Thus, the one in eq. (14) is not
a standard AFM order and the phase θ′ (θ) allows to
select the site on which the minimum of the magneti-
zation (or the maximum) is reached. A nice example
of this phenomenology was discussed for the quantum
XY chain with two AFM interactions in [25]. There,
the model exhibits a four-fold degenerate ground space,
with p1(N) = −p2(N) = π

2 (1 + 1
N (−1)(N+1)/2) so from

(14) we get approximately the magnetization 〈g|σxj |g〉 =
2
π (−1)j cos

(
π
N j + θ′′

)
, which was termed incommensu-

rate antiferromagnetic order.
Finally, we should also remark that it is possible for

the ground state degeneracy to depend on the system
size and that a finite order parameter can be reached
only through a precise sequence of system sizes. This
is a peculiar phenomenon in the topologically frustrated
models that has no counterpart in the unfrustrated ones.

6. APPLICATIONS ON A FEW EXAMPLES

6.1. Models with two-body interactions

Let us consider models with only two-body interac-
tions, both nearest-neighbor and beyond. The Hamil-
tonian of such models has to commute with Πα for
α = x, y, z, and the term Hj in eq. (1) can be written in
the form

Hj =

r∑
l=1

∑
α=x,y,z

µαl σ
α
j σ

α
j+l . (15)

Here r is the maximal distance between directly inter-
acting spins, µαl is the relative strength of each term and
considering that the short range Ising term along x is
already accounted we assume µxl = 0. Also, since the
nearest-neighbor term along the x direction has to be
the dominant one, we further set |µαl | ≤ 1.

To begin, let us assume that r = 1 and |λ| � 1. Under
the latter assumption we can diagonalize the Hamiltonian
within the one-kink subspace, i.e. we perform the low-
est order-perturbation theory, and determine the ground
state momentum. It is easy to see that in the one-kink
subspace the nearest neighbor interactions act by trans-
lating the kink by two sites, i.e.

N∑
j=1

σαj σ
α
j+1 = T 2 + (T †)2, α = y, z. (16)
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FIG. 1: Main Figure: Behavior of the magnetization
along the x spin direction at one site for the short-range
two-body models, as a function of the inverse of the

ring length N . The data are obtained setting µy1 = 1/3
and µz1 = 1/2, and λ = 2/3 (red empty circles) and

λ = −2/3 (Black empty square). Inset: Dependence of
the ground-state momenta, in unit of π, as function of

the ring length N for µy1 = 1/3 and µz1 = 1/2 and
λ = 2/3 (red empty circles) and λ = −2/3 (Black empty

square).

It follows then that the energy of the translationally
invariant states |sp〉, Πz |sp〉, is

Ep = −(N − 2) + 2λ(µy1 + µz1) cos(2p). (17)

If λ(µy1 +µz1) < 0, the minimum of Ep is reached for p = 0
and the ground state manifold is two fold degenerate (one
state for each sector of a parity operator). Hence, apply-
ing Theorem 1, we obtain that there is no local order
in the thermodynamic limit. On the other hand, for
λ(µy1 + µz1) > 0 the minimum of the energy is reached
at p = π/2. However, as we have already noted, due to
the quantization rules, π/2 is not an admissible value of
the momentum for any finite length of the chain. As a
consequence, for each parity the momenta of the ground
states are p1(N) = −p2(N) = π

2 (1 + 1
N (−1)(N+1)/2) and

the system exhibits the incommensurate AFM order, dis-
cussed above.

Even if such a picture was obtained in the limit of
|λ| � 1, it stands also when finite values of λ are consid-
ered, as it can be appreciated in Fig. 1, where we show
results obtained within an exact numerical diagonaliza-
tion approach.

Going beyond the short-range models, the situation be-
comes more complex. Roughly speaking, after we have
analyzed more than 10.000 realizations of the Hamilto-
nian in eq. (15) with different values of the couplings,
we can arrange the various models in two classes. The
first of these classes is made of models that violate the
Quantum Toulouse conditions [2, 3] for an amount that
does not scale with the length of the chain, i.e. mod-
els in which there is no other source of frustration other
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than the Topological one induced by FBC. In such cases,
we have that the ground-state manifold is either made by
two different elements, and hence no macroscopic order is
allowed, or it is four-fold degenerate, and the dependence
of the momenta follows the same law of the short-range
models, hence allowing for a macroscopic incommensu-
rate order. On the contrary, if the Quantum Toulouse
conditions are violated for an amount that increases with
N , other ground-state manifolds are possible, as the one
in which the number of independent ground-states de-
pends on the size of the chain, or four-fold degenerate
manifolds unable to provide a macroscopic incommensu-
rate order [27].

6.2. Cluster-Ising models

To provide a specific example of a system where the ex-
istence of local order depends on the particular sequence
of (odd) system sizes followed towards the thermody-
namic limit, we consider the exactly solvable one dimen-
sional n-Cluster-Ising models, defined by the Hamilto-
nian

H=

N∑
j=1

σxj σ
x
j+1+λ

N∑
j=1

σyj (σzj+1σ
z
j+2 . . . σ

z
j+n)σyj+n+1, (18)

with n an even number (in order to commute with all
the parity operators). While the solution of such mod-
els, obtained using an exact mapping to free fermions,
is known for a few years [29–34], under FBC a few sub-
tleties have to be taken into account and are presented
in the Supplementary Material.

With FBC, we find that the ground state degeneracy of
the n-Cluster-Ising models depends on the greatest com-
mon divisor (gcd) between the system size N and the
size n + 2 of the cluster in the many-body interactions.
In particular, denoting g ≡ gcd(N,n + 2), for λ ∈ (0, 1)
there are 4g ground states, while for λ ∈ (−1, 0) the
degeneracy is halved (at λ = 0 there is a level cross-
ing, analogous to the one in the XY chain [25]). The
ground state degeneracy of the topologically frustrated
n-Cluster-Ising models is thus another example [35–37]
how the question of divisibility of numbers can appear in
quantum mechanics.

A detailed proof of this peculiar behavior of the degen-
eracy of the ground state manifold can be found in the
Appendix C. Here we limit ourselves to a simple and in-
tuitive explanation based on the symmetry of the model.
At the beginning we observe that the Hamiltonian in (18)
can be rewritten as H =

∑
j Rj where the operators Rj

are

Rj ≡ σxj−1σ
x
j + λσyj

(
σzj+1σ

z
j+2 . . . σ

z
j+n

)
σyj+n+1. (19)

The Rj operators can be arranged in g terms so that

H =
∑g
k=1H

(k), where each single H(k) is

H(k) =

m∑
j=1

R(j−1)g+k (20)

with m = N/g. The different Hamiltonians H(k) mutu-
ally commute ([H(k), H(l)] = 0) and they are invariant
under translations by g lattice sites([H(k), T g] = 0). Due
to frustration, the ground state of H cannot minimize
the energy of all H(k). On the other hand, it can be
chosen as a ground state of g− 1 Hamiltonians H(k) and
the first excited state of the remaining one. Due to g
possible choices of the excited one, the ground state de-
generacy of H is at least g-fold. Since the Hamiltonians
H(k) commute with T g it can be shown that this degen-
eracy allows for the shift of the momentum by 2π/g in
the ground space: If p is the ground state momentum,
so is p + 2π/g. Furthemore, the mirror symmetry of H
(the symmetry under the transformation σαj → σα−j for
α = x, y, z and all j) implies that for each ground state
with momentum p there is a ground state with momen-
tum −p.

Now, there are two-possible cases. The first one is that
for any ground state momentum p the momentum −p can
be obtained by adding a certain number of increments
2π/g to p. The second case is that this is not possible.
In the first case the mirror symmetry does not bring any-
thing new so there are g distinct ground state momenta,
while in the second there are 2g distinct ground state
momenta. Taking into account also the parity symme-
tries, it follows that the ground state degeneracy is 2g in
the first case, and 4g in the second. It requires the exact
solution to see that the first case happens for λ < 0, and
the second for λ > 0.

Thus, for n = 0, 2 there are 2 ground states for negative
λ and 4 for positive one, for all odd N . However, these
two case are extremely different. In fact, assuming λ > 0,
while for n = 0 the 2 distinct ground state momenta
tend, in the thermodynamic limit, to ±π2 , hence induc-
ing an incommensurate magnetization in the system, for
n = 2 they tend to ±π4 or ± 3π

4 in the thermodynamic
limit. As a result, for n = 2 there is no incommensu-
rate anti-ferromagnetic macroscopic order [27], as can be
appreciated in Fig 2.

Before to go further, it is worth noticing that the same
dependence on the momenta from the chain size that
characterize the cluster Ising model with n = 2 can be
obtained in systems in which Hj obeys to eq. (15) and
that violate the quantum Toulouse conditions [2]. In-
deed, in Fig. 3, we show the behavior of both the mag-
netization and the ground-state momenta for the model
with µz1 = µy2 = 1/4 and µy1 = −µx2 = µz2 = −1/2. For
positive values of λ such model shows a four-dimensional
ground-state-manifold in which, at each fixed parity, the
momenta of the ground-states obey the same rule of the
2-Cluster-Ising-model. As a consequence the magnetic
order parameters vanish, in the thermodynamic limit,
in both systems. This fact strongly suggests that, even
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FIG. 2: Main Figure: Behavior of the magnetization
along the x spin direction at one site for the cluster

model, as function of the inverse of the ring length N .
The data are obtained with the analytic approach based

on Jordan-Wigner diagonalization for n = 2 and
λ = 0.6. Inset: Dependence of the ground-state

momenta, in unit of π, as function of the ring length N
for n = 2 and λ = 0.6.
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FIG. 3: Main Figure: Behavior of the magnetization
along the x spin direction at one site for a model with

next and next-to-near neighbors interactions, as
function of the inverse of the ring length N . The data

are obtained setting λ = 0.8, µz1 = µy2 = 1/4 and
µy1 = −µx2 = µz2 = −1/2. Inset: Dependence of the

ground-state momenta, in unit of π, as function of the
ring length N for the same model.

if the Quantum Toulouse conditions does not apply to
models with cluster interactions, these last represent a
further source of frustration, that scales with the size of
the chain.

The situation changes abruptly if we consider n = 4.
Let us focus on λ > 0 and take into account separately
two chain length sequences, N = 6M+3 and N = 6M±1
for any positive integer M . Assuming N = 6M ± 1 the
ground space is 4-fold degenerate and the momenta are
p1(N) = π

6

(
1∓ 1

N

)
and, due to the mirror symmetry,
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FIG. 4: Main Figure: Behavior of the magnetization
along the x spin direction at one site for the cluster

model, as function of the inverse of the ring length N .
The data, obtained with the analytic approach based on
Jordan-Wigner diagonalization for n = 4 and λ = 0.6,
are splitted in two sets: the first for length N=9+6M
(empty black squares) and the second for all other odd

N (empty red circles). Inset: Dependence of the
ground-state momenta, in unit of π, as function of the
ring length N for or n = 4 and λ = 0.6. Also in this
case the data are splitted in two sets: the first for

length N=9+6M (empty black squares) and the second
for all other odd N (empty red circles).

p2(N) = −p1(N). Letting M → ∞ we have p∗1 − p∗2 =
π
3 6= π and thus there is no finite local order parameters
in the thermodynamic limit for these chain lengths. On
the other hand, for N = 6M + 3 the ground space is
12-fold degenerate, with momenta pj(N) = (2j + 1)π6 −
(−1)j π

2N for j = 1, 2, . . . , 6. In this case we have, for
instance, p∗4 − p∗1 = π so the system can exhibit a non-
zero magnetization. From (14) we find the magnetization
〈σxj 〉 = 2

π (−1)j cos
(
π
N j + θ

)
, where the phase factor θ

depends on the ground state choice, see Fig 4.

7. CONCLUSIONS

In conclusions, we have studied generic Hamiltonians
commuting with the three parity operators and exam-
ined the expectation values of local operators breaking
a Hamiltonian (parity) symmetry. With a dominant an-
tiferromagnetic Ising interaction and in a setting that
induces topological frustration we have shown that there
are two possibilities: a) The expectation values of all
such local operators decay algebraically, or faster, with
the system size and vanish in the thermodynamic limit;
b) there is a ground state choice that admits a finite
magnetic order, but at the price of breaking the transla-
tional invariance. Limiting ourselves to models in which
the only source of frustration is the topological one in-
duced by boundary conditions, the algebraic decay of
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the order parameter is associated with the presence of
a two-fold degenerate ground state while the presence
of an incommensurate order parameter always charac-
terize the four dimensional ground state manifold. On
the contrary, if other source of frustrations are in the
systems, i.e. if the quantum Toulouse conditions are vio-
lated for an amount that scales with the system size, we
can have other situations, with ground-state vectors with
momenta which are incompatible with the existence of a
finite incommensurate order parameter. In this picture
cluster terms, acting simultaneously on an even number
of spins, can be seen as a further source of frustration
even if quantum Toulouse conditions cannot be applied.
Which of the two possibilities is realized can also depend
on the choice of the subsequence of (odd) chain lengths
followed towards infinity, as our analysis of the Cluster-
Ising models demonstrate. We conclude that FBC are
special for generic systems: since a perfect AFM order is
not compatible with them, either the system disorders or
it spontaneously breaks translational symmetry. While
these findings are probably not robust against a single
ferromagnetic defect, we should stress once more that
in [26] it was shown that the standard AFM order does
not reappear in presence of at least one AFM defect, be-
cause, following also [20], FBC are at the verge of a phase
transition and an AFM defect pushes the system into a
phase that is either disordered or incommensurate.

These results are intuitive from one side, but very sur-
prising from the point of view that the onset of local order
is supposed to be independent from the applied boundary
conditions and show once more that frustrated systems
(even weakly frustrated ones) belong to a different class
of systems altogether.
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A. PROOF OF THEOREM 1

For any A = σα1
1 σα2

2 . . . σαL

L we have

〈g1|A |g2〉 = u∗1u2 〈sp1 |A |sp2〉+ u∗1v2 〈sp1 |AΠz |sp2〉
+v∗1u2 〈sp1 |ΠzA |sp2〉
+v∗1v2 〈sp1 |ΠzAΠz |sp2〉 . (21)

Now, since the kink states |j〉 are eigenstates of Πx, with
the eigenvalue (−1)(N−1)/2, the states |sp〉 are also eigen-

states of Πx, with the same eigenvalue. From this fact
and the property that A either commutes or anticom-
mutes with Πx we have that two out of four terms in (21)
necessarily vanish. If A commutes with Πx ([A,Πx] = 0)
then the second and the third term in (21) vanish. Using
the Cauchy-Schwarz inequality we get

| 〈g1|A |g2〉 | ≤ | 〈sp1 |A |sp2〉 |. (22)

Similarly, if A anticommutes with Πx ({A,Πx} = 0) then
the first and the fourth term vanish and we have

| 〈g1|A |g2〉 | ≤ | 〈sp1 |AΠz |sp2〉 |. (23)

Thus we focus our analysis on elements 〈sp1 |A |sp2〉 and
〈sp1 |AΠz |sp2〉. In terms of kink states they read

〈sp1 |A |sp2〉 =
1

N

N∑
j,l=1

e−ı(p1j−p2l) 〈j|A |l〉 , (24)

〈sp1 |AΠz |sp2〉 =
1

N

N∑
j,l=1

e−ı(p1j−p2l) 〈j|AΠz |l〉 . (25)

a. Case a): In case a), A commutes with Πx so (22)
holds. Moreover, A acts only as a phase factor on the
kink states, so 〈j|A |l〉 = 0 for j 6= l. Since far from the
kink we have simply staggered antiferromagnetic order
(see Figure 5) we conclude that for all j ≥ L we have

〈j|A |j〉 = c(−1)j for some constant c ∈ {−1, 1}.
(26)

Putting this into (24) we get

〈sp1 |A |sp2〉 =
c

N

N∑
j=1

(−1)je−ı(p1−p2)j + ξN , (27)

where ξN is a correction coming from the terms 1 ≤ j < L
in (24) for which (26) does not have to hold. It is equal
to

ξN =
1

N

L−1∑
j=1

e−ı(p1−p2)j
[
〈j|A |j〉 − c(−1)j

]
(28)

and, clearly, satisfies

|ξN | ≤
2(L− 1)

N
. (29)

Performing the sum in (27) we are left with

〈sp1 |A |sp2〉 = −ce−ı(p1−p2)/2 1

N cos p1−p22

+ ξN . (30)

Taking the absolute value we get

| 〈sp1 |A |sp2〉 | ≤
1

N | cos p1−p22 |
+

2(L− 1)

N
. (31)

Using (22) proves this part of the theorem. We can take
for the theorem the constant C1 = 1+ 2(L−1) = 2L−1.
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FIG. 5: Graphical representation of a kink state |j〉, where the kink is far on the right. Far from the kink, there is
the standard antiferromagnetic order. Let the blue rectangle represent the portion of the lattice where A has the

support. Flipping any state in the rectangle will necessarily create a second kink.

b. Case b): The case b) is even simpler. Here A
does not act only as a phase on the kink states, but it
flips some spins. Flipping any state far from the kink will
necessarily create a second kink (see Figure 5), so all the
elements 〈j|A |l〉 and 〈j|AΠz |l〉 vanish for L < j < N
or L < l < N . There are thus at most (L + 1)2 non-
zero elements in the sums (24) and (25). In fact, it’s not
difficult to give a stronger bound: A kink state A |l〉, or
AΠz |l〉, can have a non-zero overlap with only one kink-
state |j〉, so there are at most (L+ 1) non-zero elements
in the sum. It follows

| 〈sp1 |A |sp2〉 | ≤
L+ 1

N
, | 〈sp1 |AΠz |sp2〉 | ≤

L+ 1

N
.

(32)
Now, using (22) and (23) proves this part of the theorem.

B. PROOF OF THEOREM 2

To prove the theorem it is convenient to we write the
matrix elements of interest as

〈β1, p1|A |β2, p2〉 =

=
1

N

N−1∑
j,l=0

e−ı(p1j−p2l) 〈β1| (T †)jAT l |β2〉 . (33)

It is also convenient to introduce a symbolical represen-
tation of the structure of the states |β〉, in terms of white
and shaded regions, as in Figure 6. We define the shaded
regions to consist of all spins participating in a ferro-
magnetic bond (kink) with some of its neighbors, and
the white regions to consists of the remaining spins, that
participate only in antiferromagnetic bonds. Clearly, the
number of white regions in a state |β〉 is equal to the
number of shaded regions. Let us denote the number of
shaded regions in |β1〉 and |β2〉 by Ñ1 and Ñ2 respec-
tively. Let us denote the number of kinks by N1 and
N2 respectively. We have then, clearly, Ñ1 ≤ N1 and
Ñ2 ≤ N2. Let us also introduce the concept of the size
of a region. We will say that a particular region is of size
R if there are R spins inside. For example, in the part a)
of Figure 6 there are two shaded regions, of size R1 = 3
and R2 = 2.
a. Case a): In case a) the matrix elements

〈β1| (T †)jAT l |β2〉 can be non-zero only if β1 = β2 and
j = l, since A acts then only as a phase factor on the

eigenstates of σxj . For β1 6= β2 the elements (33) are
thus zero, while for β1 = β2 we are left with

〈β1, p1|A |β1, p2〉

=
1

N

N−1∑
j=0

e−ı(p1−p2)j 〈β1| (T †)jAT j |β1〉 . (34)

Let us focus now on a particular white region in |β1〉,
exhibiting Néel order, and suppose it extends from site
j = r to site j = r+R−1. This region has a contribution

S ≡ 1

N

r+R−1∑
j=r

e−ı(p1−p2)j 〈β1| (T †)jAT j |β1〉 (35)

in the sum (33). If R > L then we have necessarily the
staggered dependence

〈β1| (T †)jAT j |β1〉 = c(−1)j (36)

for r ≤ j ≤ r + R − L, i.e. before the support of
(T †)jAT j starts overlapping with the next shaded re-
gion, and with the constant c ∈ {−1, 1} given explicitly
by c = (−1)r 〈β1| (T †)rAT r |β1〉. We have thus

S =
1

N

r+R−1∑
j=r

e−ı(p1−p2)jc(−1)j + ξ, (37)

where the correction is given by

ξ = =
1

N

r+R−1∑
j=r+R−L+1

e−ı(p1−p2)j · (38)

·
[
〈β1| (T †)jAT j |β1〉 − c(−1)j

]
.

Clearly, the correction satisfies

|ξ| ≤ 2(L− 1)

N
. (39)

Performing the sum in in (37) we are left with

S = ceı(p2−p1)(r− 1
2 ) (−1)R+1eı(p2−p1)R + 1

2N cos p1−p22

+ ξ. (40)

Taking the absolute value we get

|S| ≤ 1

N | cos p1−p22 |
+

2(L− 1)

N
. (41)



11

|β〉 = | 〉+ + + + + + + + + +− − − − − − −( )( )

Néel Néel
(a)

|β〉 = | 〉+ + + + + + + + +− − − − − − − −( ) ( ) ( )

(b)

FIG. 6: Examples of the first excited states of H at the classical point λ = 0, and their symbolical representation.
The white regions represent the Néel order, while the shaded ones include spins that participate in ferromagnetic

bonds (kinks).

In the other case, R ≤ L, this bound holds trivially. To
obtain the bound for the total contribution of the white
regions we have to multiply (41) by the number of white
regions in |β1〉, which is not greater than the number of
kinks N1.

We have thus obtained the bound for the contribution
of white regions. We can obtain the bound for the con-
tribution of the shaded regions in (34) by recognizing
that the total number of spins in the shaded regions is
not greater than 2N1, where N1 is the number of kinks.
Altogether, we get

| 〈β1, p1|A |β1, p2〉 | ≤
N1

N | cos p1−p22 |
+

2(L− 1)N1

N
+

2N1

N
,

(42)
so we can take for the theorem the constant

C1 = 3N1 + 2(L− 1)N1. (43)

b. Case b): We examine the elements
〈β1| (T †)jAT l |β2〉 and what are the necessary con-
ditions for them to be nonzero. Let us suppose, without
loss of generality, that Ñ1 ≤ Ñ2, i.e. the number of
shaded regions in |β2〉 is greater than or equal to the
number of shaded regions in |β1〉.

First we notice that all the states AT l |β2〉 where l is
such that A creates a new shaded region have necessarily
zero product with the states T j |β1〉, for all j, because of
a strictly greater number of shaded regions in AT l |β2〉
in that case. Thus, first we bound the number of states
T l |β2〉 in which A does not create a new shaded region.
The only states for which this is is a possibility are the
states in which the shaded regions overlap or border the
range 1 ≤ j ≤ L, where the support of A is placed, since
A creates kinks when acting on a white region. These
states are represented in Figure 7.

For a particular shaded region in |β2〉, of size R, there
is at most R+L+1 states T l |β2〉 which place the shaded
region to overlap or border with the the range 1 ≤ j ≤ L
(see Figure 7). Denoting the sizes of different shaded
regions in |β2〉 by R1, R2, . . . , RÑ2

we have that there is

at most

(R1 +L+ 1) + (R2 +L+ 1) + . . .+ (RÑ2
+L+ 1) (44)

such states. Recognizing that the total size of the shaded
regions is bounded as

R1 +R2 + . . .+RÑ2
≤ 2N2, (45)

where N2 is the number of kinks in |β2〉, and that Ñ2 ≤
N2, we can bound (44) by the number N2(L+ 3). Thus,
there is at most N2(L+ 3) different values of l for which
the product of AT l |β2〉 with T j |β1〉 is nonzero for some
j.

The next step is to bound the number of states
T j |β1〉 which have a nonzero product with a given state
AT l |β2〉, for fixed l. There are two cases to consider.
The first one is if there is a shaded region in T l |β2〉 that
is outside the range 1 ≤ j ≤ L, or at least a part of size 2
of the shaded region. In this case the necessary condition
for a nonzero value of the elements 〈β1| (T †)jAT l |β2〉 is
that some shaded region of T j |β1〉 coincides exactly with
the aforementioned shaded region of T l |β2〉. There is at
most one such state T j |β1〉 for each shaded region of
|β1〉. Thus the number of states T j |β1〉 which have a
nonzero product with a given state AT l |β2〉 is at most
Ñ1 in this case. The second case is if in T l |β2〉 there is
no shaded region, or a part of size 2, outside the range
1 ≤ j ≤ L. In this case there is at most L + 1 states
T j |β1〉 that give a nonzero product, since the transla-
tion of any state by L + 1 sites will necessarily create a
shaded region outside the support of A. We can include
both cases by taking the sum of the bounds from each
one, i.e. the number L+ 1 + Ñ1.

Therefore, there is at most N2(L + 3) values of l for
which give a nonzero product of AT l |β2〉 with some of
the states T j |β1〉 and each of these N2(L+ 3) states has
a nonzero product with at most L+1+Ñ1 states T j |β1〉.
We conclude

| 〈β1, p1|A |β2, p2〉 | ≤
(L+ 1 + Ñ1)(L+ 3)N2

N
. (46)
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,. . . . . .

R1 = 3

. . . . . . , . . . . . . ,

. . . . . . , . . . . . . , . . . , . . . . . .

FIG. 7: The states T l |β2〉 for different values of l, where we focus on one shaded region of |β2〉 and its translations.
The blue rectangle represents the sites 1 ≤ j ≤ L, where the support of A is found. All values of l for which the

range 1 ≤ j ≤ L either borders or overlaps the shaded region are represented. See the proof of case b) of Theorem 2.

We prefer to express the bound in terms of the number
of kinks N1, which satisfies N1 ≥ Ñ1, so we can take for
the theorem the constant

C2 = (L+ 1 +N1)(L+ 3)N2. (47)

C. EXAMPLE: CLUSTER-ISING MODELS

To illustrate our results we consider the exactly solv-
able n-Cluster-Ising models, that describe a system made
of spin- 1

2 in which a short-range two-body Ising interac-
tion competes with a cluster term, i.e. an interaction af-
fecting simultaneously (n+2) contiguous spins of the sys-
tem. On a one-dimensional lattice with periodic bound-
ary conditions, and taking the Ising interaction to fa-
vor an AFM alignment, the Hamiltonian of these models
reads

H =

N∑
j=1

σxj σ
x
j+1 + λ

N∑
j=1

σyj
(
σzj+1σ

z
j+2 . . . σ

z
j+n

)
σyj+n+1,

(48)
where σαj+N = σαj , for α = x, y, z. It is known [29, 33]
that the models described by Hamiltonian (48) can be
solved through an exact mapping to a system of free
fermions, employing the same techniques as in the di-
agonalization of the quantum XY chain [38, 39], which
can be considered the special case n = 0. The Clus-
ter Ising models with an even number n belong to the
symmetry class considered in this work so we focus on
them. Moreover, to study topological frustration, as in
the main text, we take the system size to be an odd num-
ber N = 2M + 1, and we focus on the parameter region
λ ∈ (−1, 1), where the Ising coupling is larger than (and
dominating over) the cluster one.

C.1. Diagonalization of the n-Cluster-Ising models

We are now diagonalizing Hamiltonian (48), when n is
an even number. Let us note that the procedure works for

odd n as well, the difference being in the expression for
the energy of the π-mode in (57) later. The Hamiltonian
commutes with Πz and we split the diagonalization in
two sectors of Πz,

H =
1 + Πz

2
H+ 1 + Πz

2
+

1−Πz

2
H−

1−Πz

2
. (49)

In each sector the Hamiltonian is quadratic in terms of
Jordan-Wigner fermions

cj =
( j−1⊗
l=1

σzl

)σxj + ıσyj
2

, c†j =
( j−1⊗
l=1

σzl

)σxj − ıσyj
2

.

(50)
It reads

H± = −
N∑
j=1

(cjcj+1 + cjc
†
j+1 + h.c.)

+λ

N∑
j=1

(cjcj+n+1 − cjc†j+n+1 + h.c.) , (51)

where cj+N = ∓cj in the sector Πz = ±1.
The Hamiltonian in each sector is quadratic so it can

be brought to a form of free fermions. To achieve this,
first H± are written in terms of the Fourier transformed
Jordan-Wigner fermions,

bq =
1√
N

N∑
j=1

cj e
−ıqj , b†q =

1√
N

N∑
j=1

c†j e
ıqj , (52)

for q ∈ Γ±, where the two sets of quasi-momenta are
given by Γ− = {2πk/N} and Γ+ = {2π(k + 1

2 )/N} with
k running over all integers between 0 and N − 1. The
Bogoliubov rotation

aq = cos θq bq + ı sin θq b
†
−q, q 6= 0, π

aq = bq, q = 0, π
(53)

with the Bogoliubov angle

θq = arctan
|1 + λ eı(n+2)q| − λ cos

[
(n+ 1)q

]
− cos q

−λ sin
[
(n+ 1)q

]
+ sin q

(54)
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then brings H± to a free fermionic form. The Bogoliubov
angle also satisfies

eı2θq = eıq
1 + λ e−ı(n+2)q

|1 + λ e−ı(n+2)q|
. (55)

After these sets of transformations, the original Hamil-
tonian is mapped into

H± =
∑
q∈Γ±

εq

(
a†qaq −

1

2

)
, (56)

where the quasi-particle energies are given by

εq = 2|1 + λ eı(n+2)q (57)

= 2
√

1 + λ2 + 2λ cos
[
(n+ 2)q

]
∀ q 6= 0, π,

ε0 = 2(1 + λ) q = 0 ∈ Γ−,

επ = −2(1 + λ) q = π ∈ Γ+.

Before proceeding, let us note one technical subtlety in
the diagonalization of the model. The Bogoliubov angle
θq, defined by (54) can become undefined for some modes
q 6= 0, π also point-wise, by fine–tuning of the parameters
n, N , and λ. This problem can be circumvented by using
(55) to define the Bogoliubov angle and such points can
be neglected.

C.2. Eigenstates construction for the
n-Cluster-Ising models

The eigenstates of H are formed by applying Bogoli-
ubov fermions creation operators on the vacuum states
|0±〉, which satisfy aq |0±〉 = 0 for q ∈ Γ± and taking care
of the parity requirements in (49). The vacuum states are
given by

|0±〉 =
∏

0<q<π, q∈Γ±

(
cos θq − ı sin θq b†qb

†
−q
)
|0〉 , (58)

where |0〉 = |↑↑ ... ↑〉 is the state of all spin up and the
vacuum for Jordan-Wigner fermions, satisfying cj |0〉 =
0. The vacuum states |0+〉 and |0−〉 both have, by con-
struction, parity Πz = +1. The parity requirements in
(49) imply that the eigenstates of H belonging to the
Πz = −1 sector are of the form a†q1a

†
q2 ...a

†
qm |0

−〉 with
qi ∈ Γ− and m odd, while Πz = +1 eigenstates are of
the same form but with qi ∈ Γ+, m even and the vacuum
|0+〉 used. It is important to stress that the total quasi-
momentum of these Hamiltonian eigenstates is also the
momentum of the states that generates lattice transla-
tions, i.e. the action of translation operator T on these
states acts as a phase factor

T = exp
(
ı
∑
q∈Γ±

qa†qaq
)
. (59)

This follows from Theorem 1 in the Supplementary Ma-
terial of [25]. The identification of the quasi-momentum
from the exact solution with the momentum allows us
to draw a connection between the general results of this
work and the exactly solvable cluster models.

Because of the anticommuting parity symmetries of
the model, having constructed the states of one sector,
say Πz = −1, the states of the other sector can be con-
structed also by applying the parity operator Πx (or Πy),
as in [23, 25] and as discussed in the main text. Namely,
if |ψ〉 is the eigenstate of H with Πz = −1 then Πx |ψ〉
is also the eigenstate, with the same energy, but with
Πz = +1.

From our construction of the eigenstates we see, in
particular, that the ground states of the model (48) are
the states a†q |0−〉 and Πxa†q |0−〉 for all momenta q ∈ Γ−

that minimize the energy (57). Note that in the studied
parameter region λ ∈ (−1, 1) the energy of every mode
q ∈ Γ− is positive. A consequence of this fact is that the
system is gapless, with the energy gap above the ground
state closing as 1/N2, a phenomenology analogous to that
of Refs. [21–23, 25].

Determining the ground states, their momenta and the
ground state degeneracy becomes, thus, a matter of find-
ing the modes q ∈ Γ− with minimal energy. From (57)
we see that the modes q ∈ Γ− with minimal energy
are, for λ ∈ (0, 1), those that minimize cos[(n + 2)q],
and, for λ ∈ (−1, 0), those that maximize cos[(n + 2)q].
The number of such momenta is given by the theorem
which is the subject of the next section. Denoting by
g = gcd(N,n+ 2) the greatest common divisor of N and
n + 2, from the theorem it follows that the number of
modes minimizing the energy is 2g and g for λ ∈ (0, 1)
and λ ∈ (−1, 0) respectively. Taking into account the
two-fold degeneracy between different parity sectors, we
conclude that the ground state degeneracy is 4g and 2g
for λ ∈ (0, 1) and λ ∈ (−1, 0) respectively.

Let us determine explicitly some of the ground state
momenta. We are going to focus on the example pre-
sented in the main text, given by n = 4 and λ ∈ (0, 1).
From part b) of the theorem in the next section we see
that the ground state momenta q ∈ Γ− are those that
satisfy

cos(6q) = − cos
(
π
g

N

)
, (60)

where g = gcd(N, 6). We are going to focus on the cases
N mod 12 = 1 and N mod 12 = 3, that illustrate our
points in the main text, while the other cases can be
treated in an analogous way. In the case N mod 12 = 1
we have g = 1 so the ground space is four-fold degenerate
(corresponding to two different momenta). It is easy to
see that momenta

q =
2π

N

N − 1

12
,

2π

N

11N + 1

12
(61)

indeed belong to Γ− and satisfy the relation (60), and are
thus the ground state momenta. In the case N mod 12 =
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3 we have, on the other hand, g = 3 so the ground space
is 12-fold degenerate (corresponding to six different mo-
menta). The ground state momenta are in this case

q =
2π

N

N − 3

12
,

2π

N

3N + 3

12
,

2π

N

5N − 3

12
,

2π

N

7N + 3

12
,

2π

N

9N − 3

12
,

2π

N

11N + 3

12
. (62)

C.3. Extremization of the energy spectrum for the
n-Cluster-Ising models

In this section we prove the following theorem, that
enables to find the ground state degeneracy of the n-
Cluster-Ising model setting m = n+ 2.

Theorem 3. Let m and N be positive integers, such
that m < N and N is odd. Let us denote their greatest
common divisor by g = gcd(N,m). Consider the function
f(j) = cos

(
2πm
N j

)
defined for j ∈ {0, 1, . . . N − 1}.

(a) The function f has g maxima on the set
{0, 1, . . . N − 1}, where the function reaches value
1.

(b) The function f has 2g minima on the set
{0, 1, . . . N − 1}, where the function reaches value
− cos(πg/N).

For the proof we will use the concept of a multiset,
i.e. a set in which elements can repeat. Two multisets
are equal if they contain the same elements, with the
same multiplicities. We define the multiplication of the
multiset of numbers by a constant: If A = {α : α ∈ A}
is a multiset of (complex) numbers and c a (complex)
number we define the multiplication in the obvious way,
by multiplying each element of the multiset by c,

cA = {cα : α ∈ A}. (63)

We also introduce the distance of a number from a set,
or a multiset, of numbers. Let β be a (complex) number
and A a set, or a multiset. Then the distance of β from
A is

d(β;A) = min{|α− β| : α ∈ A}. (64)

More generally inf should be used instead of min, of
course, but for our purposes it is going to be the same.

Now we introduce a definition about modular arith-
metic and multisets. Suppose we have two multisets of
integers, A and B, and let m also be an integer. We say
that A = B (mod m) if

{α mod m : α ∈ A} = {β mod m : β ∈ B}, (65)

i.e. if looking at equalities modulo m the elements and
multiplicities are the same.

With these notions introduced we can prove the theo-
rem.

Proof. (a) If we expand the domain j ∈ {0, 1, . . . N −
1} of function f to real values j ∈ R then it is
easy to see that the function is maximized for j ∈
N
mZ, with value f(j) = 1. Within our restricted
domain of integers, the elements j that minimize
the function f(j) are simply those that satisfy both
j ∈ {0, 1, . . . N − 1} and j ∈ N

mZ, i.e. those j ∈
{0, 1, . . . N − 1} satisfying

d
(
j;
N

m
Z
)

= 0. (66)

Since 0 ≤ j ≤ N−1 the condition (66) is equivalent
to

d
(
j;
N

m
{0, 1, 2 . . . ,m− 1}

)
= 0. (67)

Clearly, there are as many minimizing values j as
there are integers in the set

N

m
{0, 1, 2 . . . ,m− 1}, (68)

and this number is, further, equal to the number of
zeroes in the multiset

A ≡
{
Nl mod m : l = {0, 1, 2, . . .m− 1}

}
. (69)

We proceed by exploring the properties of the mul-
tiset A. Bringing N out of the multiset we get

A = N{0, 1, 2 . . . ,m− 1} (mod m). (70)

Introducing the greatest common divisor of N and
m, denoted by g = gcd(N,m), and defining

B = g{0, 1, 2, . . .m− 1} (71)

we can write

A =
N

g
B (mod m). (72)

The first step is to show that B consists of repeating
blocks, if we look at equalities (mod m). Multiply-
ing with g in (71) we get trivially

B = {0, g, 2g . . . , (m− 1)g} (mod m). (73)

But notice

g(m− 1)
(mod m)

= m− g =
(m
g
− 1
)
g. (74)

This means that the multiset B consists mod m of
repeating blocks

0, g, 2g, . . . ,
(m
g
− 1
)
g. (75)

We know that the number of elements in the multi-
set is m, while we see that the number of elements
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in the block is m/g. We conclude that the total
number of blocks that form the multiset B must be
g.

The next step is to examine each block as a multiset
and show that it is unaffected by multiplication by
N/g, i.e. that

N

g
{0, g, 2g, . . .

(m
g
− 1
)
g} = (76)

= {0, g, 2g, . . .
(m
g
− 1
)
g} (mod m).

For this purpose, it is sufficient to show that all
elements on the left are different. It is simple to
see that this is the case by assuming the contrary
and reducing to contradiction. We assume, thus,
that there are two elements which are equal,

N

g
(l1g) =

N

g
(l2g) (mod m), (77)

for some l1, l2 ∈ {0, 1, . . . ,m/g − 1} such that l1 <
l2. The assumed equality implies

N(l2 − l1) = 0 (mod m), (78)

so that N(l2 − l1) is divisible by m, and (l2 −
l1)N/g is divisible by m/g. But since l2 − l1 ∈
{0, 1, . . .m/g− 1} we have that l2− l1 is not divisi-
ble bym/g. It follows that N/g must have common
divisors with m/g, which is in contradiction with
the property of g being the greatest common divi-
sor of N and m. Thus, we have shown that each
block is unaffected by multiplication by N/g.

The last step is to conclude from (72) that the set
A consists of g repeating blocks (75). In particular,
A contains g zeroes, which proves part (a) of the
theorem.

(b) If we expand the domain j ∈ {0, 1, . . . N − 1} of
function f to real values j ∈ R then it is easy to
see that f(j) is minimized for j = N

2m (2l+1), l ∈ Z,
with value f(j) = −1. However, since for odd N
these values of j are never integers, they do not co-
incide with our restricted domain j ∈ {0, 1, . . . , N−
1}, and we have to find how close to these values
we can get. The minimum of f is achieved by those
values j ∈ {0, 1, . . . , N − 1} that minimize the dis-
tance

d
(
j;
N

2m
{2l + 1 : l ∈ Z}

)
= (79)

= d
(
j;
N

2m
{2l + 1 : l ∈ {0, 1, . . . ,m− 1}

)
,

where the equality holds since 0 ≤ j ≤ N − 1.
To count all j that minimize the distance we take
the following approach. Let us denote the minimal

distance by dmin. We first count how many values
of l ∈ {0, 1, . . . ,m− 1} have

d
( N

2m
(2l + 1); {0, 1, . . . , N − 1}

)
= dmin, (80)

and then for each such minimizing l we count all
j ∈ {0, 1, . . . , N − 1} with∣∣∣ N

2m
(2l + 1)− j

∣∣∣ = dmin, (81)

To each such l there can be associated one or two
values of j, depending on whether dmin < 1/2 or
dmin = 1/2 respectively. It is easy to see that, since
m < N , the same value of j cannot be associated
to different values of l.
We will now use a similar procedure as in part (a)
and explore the multiset

C ≡
{
N(2l + 1) mod (2m) :

l = {0, 1, 2, . . .m− 1}
}
, (82)

which determines the distances of interest. Bring-
ing N out we have

C = N{1, 3, . . . 2m− 1} (mod 2m). (83)

Now we introduce the greatest common divisor g =
gcd(N,m) = gcd(N, 2m), where the last equality
holds since N is odd, and define the multiset

D = g{1, 3, . . . , 2m− 1}. (84)

Then we can write

C =
N

g
D (mod 2m). (85)

The first step is to show thatD consists of repeating
blocks, if we look at equalities (mod 2m). Multi-
plying with g in (84) we get trivially

B = {g, 3g . . . , (2m− 1)g} (mod 2m). (86)

But notice

g(2m− 1)
(mod 2m)

= 2m− g =
(

2
m

g
− 1
)
g. (87)

This means that the multiset D consists (mod 2m)
of repeating blocks

g, 3g, . . . ,
(

2
m

g
− 1
)
g. (88)

We know that the number of elements in the multi-
set is m, while we see that the number of elements
in the block is m/g. We conclude that the total
number of blocks that forms the multiset D must
be g.



16

The next step is to examine each block as a multiset
and show that it is unaffected by multiplication by
N/g, i.e. that

N

g
{g, 3g, . . .

(
2
m

g
− 1
)
g} = (89)

= {g, 3g, . . .
(

2
m

g
− 1
)
g} (mod 2m).

SinceN/g is odd, for this it is sufficient to show that
all elements on the left are different. It is simple to
see that this is the case by assuming the contrary
and reducing to contradiction. We assume, thus,
that there are two elements which are equal,

N

g
(2l1 + 1)g =

N

g
(2l2 + 1)g (mod 2m), (90)

for some l1, l2 ∈ {0, 1, . . . ,m/g − 1} such that l1 <
l2. The assumed equality implies (77), and by the
same argument as in part (a) we conclude there
is a contradiction. Thus, blocks are unaffected by
multiplication by N/g. It follows that C consists
of g repeating blocks (88)

The last step is to conclude from the block struc-
ture of C about the number of minima. We look
separately at two cases, g = m and g < m. In the
first case, g = m, we have 2m− g = g so C consists
only of elements g = m, implying the distance

d
( N

2m
(2l + 1); {0, 1, . . . , N − 1}

)
=

1

2
. (91)

for all l ∈ {0, 1, . . .m − 1}. For each l there is
necessarily j ∈ {0, 1 . . . , N − 1} such that∣∣∣ N

2m
(2l + 1)− j

∣∣∣ = (92)

=
∣∣∣ N
2m

(2l + 1)− (j + 1)
∣∣∣ =

1

2
.

Counting all corresponding j and j + 1 it follows
that f has 2g minima on the set {0, 1, . . . N − 1}.
In the second case, g < m, the values l with

N(2l + 1)
(mod 2m)

= g and

N(2l + 1)
(mod 2m)

= 2m− g (93)

minimize the distance (80), with

dmin =
g

2m
(94)

Since dmin < 1/2 in this case, for each such l there
is only one value j ∈ {0, 1, . . . , N − 1} with∣∣∣ N

2m
(2l + 1)− j

∣∣∣ = dmin. (95)

Due to block structure of C, there is g values of l
satisfying the first and g values satisfying the sec-
ond equation in (93). It follows that the number of
minima of f is again 2g. Both in the case m = g
and m < g the value of the minimum is

cos

[
2πm

N

(
N(2l + 1)

2m
± g

2m

)]
=

= − cos
(πg
N

)
. (96)

In fact, in the proof of part (a) of the Theorem the
property of N being odd was nowhere used, and the same
statement holds for the case of even N . The part (b)
would be different in the case of even N , since then, in
general, N(2l+ 1)/(2m) could achieve integer values and
belong to the domain {0, 1, . . . , N − 1}.

C.4. Ground state degeneracy from the symmetries

Here we explain the ground state degeneracy of the n-
Cluster-Ising chain based on the symmetries, in details.
We denote g ≡ gcd(N,n+2). Let us introduce the short-
hand notation

Rj ≡ σxj−1σ
x
j + λσyj

(
σzj+1σ

z
j+2 . . . σ

z
j+n

)
σyj+n+1 (97)

so that H =
∑N
j=1Rj . The Hamiltonian can then be

decomposed as

H =

g∑
k=1

H(k), (98)

where

H(g) = Rg +R2g +R3g + . . .+RN (99)

and

H(k) =
(
T †
)k
H(g)T k (100)

for k = 1, 2, . . . , g − 1. All the Hamiltonians H(k) com-
mute with T g. Crucially, we find that all these Hamil-
tonians mutually commute ([H(k), H(l)] = 0). Since dif-
ferent cluster terms, i.e. σyj

(
σzj+1σ

z
j+2 . . . σ

z
j+n

)
σyj+n+1

for different j, mutually commute, to show the lat-
ter it is sufficient to show that all the terms σxj−1σ

x
j

appearing in H(k) for k 6= g commute with all the
cluster terms σyj

(
σzj+1σ

z
j+2 . . . σ

z
j+n

)
σyj+n+1 appearing in

H(g). This follows simply from the observation that
σy0
(
σz1σ

z
2 . . . σ

z
n

)
σyn+1 commutes with σxj−1σ

x
j for j ∈

{0, 1, 2, . . . , n+2}−{0, g, 2g, . . . , n+2}, where the minus
sign stands for the exclusion.

Thus, different Hamiltonians H(k) mutually commute
and they commute with the total Hamiltonian H. More-
over all these operators commute with T g. Since all these
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operators mutually commute they can be diagonalized si-
multaneously. Suppose then that the state |ψ〉 is a com-
mon eigenstate of H, T g and H(k) for k = 0, 1, . . . g − 1.
Due to topological frustration the ground state of H does
not coincide with the ground state of H(k) for all k, but it
is the first excited state for a particular k and the ground
state for the other (it is easy to see for λ = 0, while for
general λ ∈ (−1, 1) this can be seen in the fermionic pic-
ture of the exact solution). This implies that the states
T k |ψ〉 for k = 0, 1, . . . g− 1 are mutually orthogonal and
that the ground state manifold is at least g-fold degener-
ate.

We can relate this degeneracy to the momentum shift.
Suppose that |ψ〉 is an eigenstate of T g with the eigen-

value eıgp for some momentum p ∈ 2π
N Z. Any eigenvalue

of T g can be written in this form. It follows that the
(normalized) state

1
√
g

[
1 + e−ıpT +

(
e−ıpT

)2
+ . . .+

(
e−ıpT

)g−1
]
|ψ〉

(101)
is an eigenstate of T with the eigenvalue eıp. However,
since the transformation p → p + 2π/g does not change
the value of eıgp, the state obtained from (101) by this
transformation is also an eigenstate of T . Thus, if there is
a ground state with momentum p, there is also a ground
state with momentum p+ 2π/g.

The ground state degeneracy of the model, 2g or 4g,
now follows from the parity symmetry and the mirror
symmetry, as discussed in the main text.
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