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We study the behavior of the mutual information (MI) in various quadratic fermionic chains, with and without
pairing terms and both with short- and long-range hoppings. The models considered include the short-range limit
and long-range versions of the Kitaev model as well, and also cases in which the area law for the entanglement
entropy is—logarithmically or nonlogarithmically—violated. In all cases surveyed, when the area law is violated
at most logarithmically, the MI is a monotonically increasing function of the conformal four-point ratio x. Where
nonlogarithmic violations of the area law are present, nonmonotonic features can be observed in the MI, and the
four-point ratio, as well as other natural combinations of the parameters, is found not to be sufficient to capture
the whole structure of the MI with a collapse onto a single curve. We interpret this behavior as a sign that
the structure of peaks is related to a nonuniversal spatial configuration of Bell pairs. For the model exhibiting
a perfect volume law, the MI vanishes identically. For the Kitaev model the MI is vanishing for x → 0 and it
remains zero up to a finite x in the gapped case. In general, a larger range of the pairing corresponds to a reduction
of the MI at small x. A discussion of the comparison with the results obtained by the anti–de Sitter/conformal
field theory correspondence in the strong-coupling limit is presented.
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I. INTRODUCTION

Over the years, information theory has provided valuable
tools to analyze and interpret many-body quantum systems.
The entanglement entropy (EE), as measured by the von
Neumann and Rényi entropies, has quickly established itself
as a standard benchmark that allows to discriminate dif-
ferent phases of matter and properties escaping traditional
paradigms. EE provides relevant knowledge such as how
much classical information is necessary for a faithful repre-
sentation of a quantum system or as an efficient witness of
critical behavior [1,2].

The EEs are bipartite measures, since they assess how
much information is shared between two complementary sub-
systems of a system in a pure state (that is, with no intrinsic
entropy as a whole). This information cannot be accessed
by measurements on one part alone, as it reflects corre-
lations between the two subsystems. Since correlations lie
mostly on the boundaries between the subsystems, the area
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law, at most with logarithmic corrections, is typically obeyed
[3].

To access additional information on the structure of mul-
tipartite entanglement and quantum correlations, multipartite
measures have also been introduced. One such measure, al-
though not an entanglement estimator, is the so-called mutual
information (MI). The MI is typically tripartite. Starting with a
system in a pure state, one indeed divides the system into two
(nonoverlapping) subsystems A and B and their complement
C ≡ A ∪ B. The MI measures how much information on A
we can obtain by measuring B (or vice versa). Thus, the MI
can be considered as a kind of two-point function, while,
from this point of view, the EEs are essentially one-point
functions. Note, however, that an alternative point of view is
to start with a system made only of A and B in a mixed state
obtained by tracing out C and then to calculate the MI between
A and its complement B = A. Comparing the two points of
view, the latter can be considered as the result of removing
C and letting A and B be “immersed” in the bath constituted
by C.

Taking this into account, in this work we will take the
former approach and only consider pure tripartite systems,
initializing the system under consideration in its (pure) ground
state:

ρ = |ψ0〉 〈ψ0| . (1)
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We then divide the lattice in the three disjoint parts A, B, and
their complement C = A ∪ B. The reduced density matrix of
each subsystem is given by ρA = trB∪C{ρ}, ρB = trA∪C{ρ},
ρAB = trC{ρ}, and ρC = trA∪B{ρ}, respectively. Starting from
the von Neumann entropy of subsystem j, defined as

S j = − tr{ρ j ln ρ j} (2)

(where ρ j is the reduced density matrix of subsystem j), the
MI between A and B, denoted by I(A,B), is given by

I(A,B) = SA + SB − SAB. (3)

The MI is positive and symmetric in A and B. If A and B
are complementary (that is, A ∪ B equals the entire system)
and the whole system is prepared into a pure state, then SAB ≡
SA∪B = 0 and I(A,B) = 2SA = 2SB, and thus the MI reduces to
the von Neumann entropy. The MI satisfies an area law [4] and
provides an upper bound to any two-point correlation function
computed between A and B:

I(A,B) �
(〈OA ⊗ OB〉 − 〈OA〉〈OB〉)2

2|OA|2|OB|2 . (4)

Thus, the MI vanishes when no correlation exists between A
and B.

In the general case, I(A,B) is independent from UV cutoff
parameters (since the divergences of the individual regions
cancel over those of their union) and this is one of the
properties that renders it more flexible over the entanglement
entropy, for which it is sometime complicated to disentangle
the physical from the cutoff contributions. Another limitation
of the EE is that it makes sense as a measure only if the system
is prepared in a pure state, while, as we remarked, the MI
applies also to mixed-state systems.

The MI can be considered as a kind of two-point function,
since it depends on the relative position of regions A and B.
The MI is not a proper entanglement measure. However, it is
a measure of correlation between subsystems of a quantum
system, and it quantifies the amount of information shared
between the two regions, providing a quantum counterpart of
the Shannon MI, which in general quantifies in suitable units
the amount of information obtained about a random variable
via the measurement of another random variable [5].

The MI has been studied in several prototypical settings,
starting from the Ising model [6,7] and critical chains [8–10],
in systems at finite temperature [11–15] and out of equilibrium
[16–21]. Moreover, it has been used as a test for several phe-
nomena, for instance, in disordered systems [22–24] and in
the presence of spontaneous symmetry breaking [25], and as
well in the holographic settings [26–29]. In one-dimensional
(1D) systems described by a conformal field theory (CFT),
several results have been obtained for the MI calculated with
respect to the Shannon entropies (that is, basis-dependent
entropies) [8–10], while exact results in lattice systems have
been obtained only in special cases [30]. We refer to [31] for
a review on the EE in free quantum field theory with disjoint
intervals.

A general prediction for the behavior of the MI comes from
the anti–de Sitter (AdS)/CFT correspondence, in the strong-
coupling (large conformal charge c) limit, where the MI has

been found to behave as [26,27]

I(A,B)(x) =
{

0, x < 1/2
c
3 log x

1−x , x � 1/2,
(5)

as a function of the conformal four-point ratio x, defined as

x = l2

(l + d )2 , (6)

where l is the length (i.e., the number of sites) of the two
subsystems A and B (taken to be the same size) and assuming
A and B both simply connected. In Eq. (6) d is a distance
between the two subsystems, being the minimum number of
sites between two points belonging to A and B. The four-point
ratio is the traditional quantity used in CFT analysis [32] to
encode the position of the four edges of the two subsystems.

Most of the studies of MI have focused so far mostly on
systems with short-range couplings and/or interactions. In
this respect it would be interesting to compare results for
long-range systems with the corresponding short-range find-
ings, as motivated by recent results for quantum systems with
long-range couplings where the effects of long-rangedness on
critical properties, quantum dynamics, and quantum entangle-
ment properties have been studied [33–42]. One of the models
in which the features induced by long-range terms have been
compared with their short-range counterparts that has been a
subject of considerable effect is the long-range Kitaev model
[43–53], where the pairing term present in the short-range
chain ∼�c†

i c†
i+1 [54] has the form ∼�i jc

†
i c†

j .
Our goal in the present paper is fourfold: (i) to compare

the short-range Kitaev model with the tight-binding chain to
highlight the effect of the pairing term on the MI; (ii) to
study how short-range results for the MI get modified in the
presence of long-range terms, analyzing the MI in several
prototypical 1D chains with long-range hoppings and pair-
ings; (iii) to discuss the dependence of the MI on the physical
parameters, and in particular on the conformal four-point ratio
x, in the various models, including the Kitaev model; ad (iv) to
probe the, possibly different, behavior of the MI for systems
displaying area law or its (nonlogarithmic) violation for the
EE. We will consider quadratic and translationally invariant
fermionic chains, allowing for the study of the MI for large
system sizes [55]. Before moving on with the presentation
we observe that in general the conformal four-point ratio is
not necessarily the correct quantity to use in the study of
the MI, especially in gapped systems. It is anyway a useful
combination of parameters that can be employed to compactly
express the obtained results. In the following we will use x, as
well as other parameters such as l/d according to what we
find more convenient in the different cases, commenting on
other possible choices of combinations.

Regarding points (i) and (iii), we observe that although the
models considered are not in the regime of validity for the
AdS/CFT result (5), we aim at testing whether at least there
is a qualitative agreement with it. We will show that, when
the area law is violated more than logarithmically, the MI
develops nonmonotonic features, with peaks for small x, in
contrast with Eqs. (5). We will also argue that the four-point
ratio is not sufficient to capture the structure of MI for systems
with volume law of EE, indicating an incompatibility of these
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cases with the assumption of conformal invariance and, thus,
the failure of both the CFT and holographic predictions.

The plan of the paper is the following. In Sec. II we
introduce the models we are going to consider, which com-
prise short and long range, with and without pairing terms.
Section III is devoted to the short-range models, with the
tight-binding model considered in Sec. III A and the Kitaev
chain in Sec. III B. Long-range models are considered in
Secs. III A and V: in the former the long-range terms are
the hopping ones, while in the latter we study the effect of
long-range pairing terms. In Sec. III A we consider different
forms of hoppings, which are known to generate different
phenomenologies in the EE scaling: hoppings decaying as
a power-law exhibiting area law for the EE are considered
in Sec. III A, while the MI for model with fractal Fermi
surface having a scaling of EE intermediate between area
and volume laws is discussed in Sec. IV A. Models featuring
EE volume law are studied in Sec. IV B, where we consider
both a long-range power-law model with a space-dependent
phase in the hopping in Sec. IV B 1 and models with selective
hoppings in Sec. IV B 2. Here the hopping is chosen in a way
to reproduce a state with the maximum number of Bell pairs,
therefore giving EE volume law. We focus in particular on the
model in which each site is coupled by a hopping term to the
most distant site, a model introduced in [56] and to which we
refer as the “antipodal” model. Deviations from the antipo-
dal model are as well investigated. Section V considers the
case of long-range pairings, both with short-range hoppings
(Sec. V A) and long-range hoppings (Sec. V B). The use of MI
to detect quantum phase transitions in such models is studied.
Final comments and conclusions drawn from our results are
collected in Sec. VI.

II. THE MODELS

In this paper, we consider 1D fermionic models of the form

H = HH + HP, (7)

where HH is the hopping part and HP the pairing part of
the Hamiltonian. Sites are labeled by indices i, j = 1, . . . , NS

and NS is the number of sites. The fermionic operators cre-
ating and destroying a fermion on site i are denoted by ci

and c†
i , respectively. The filling f , which is also the number

of particles per site, is defined as f = NT /NS , where NT =∑NS
i=1 c†

i ci is the total particle number operator. As usual,
the filling can be fixed directly or via the introduction of
a chemical potential μ, amounting to fixing the number of
fermions from the Hamiltonian H − μNT . We will consider as
well translationally invariant models, where, unless explicitly
stated, periodic boundary conditions (PBCs) are imposed (an-
tiperiodic boundary conditions will be instead imposed when
long-range pairing terms will be considered):

ci+NS ≡ ci. (8)

The hopping part HH of the Hamiltonian (7) reads in gen-
eral

HH = −
NS∑

i, j=1

ti, jc
†
i c j + H.c., (9)

where ti, j is the hopping amplitude among sites i and j. Sev-
eral forms of ti, j will be considered: (a) nearest neighbor, with
ti, j 	= 0 for j = i ± 1 and vanishing otherwise; (b) selective
hopping, with ti, j constant and nonvanishing if the distance
between i and j is in an assigned interval of values [for in-
stance, the antipodal model has ti, j 	= 0 only if |i − j| = NS/2
(with NS even)]; and (c) long range with

ti, j ∝ 1

|i − j|αp
, (10)

where the distance | · |p, due to PBCs, is defined as

|i − j|p = min (|i − j|, NS − |i − j|). (11)

Notice that while in Secs. III A and III A the prefactor not
written in Eq. (10) is considered real, in the model discussed
in Sec. IV B 1 is complex.

The power-law exponent α in Eq. (10) is such that for α →
∞ the short-range limit is retrieved. Moreover, if α > d = 1
(more in general α larger than the dimension d of the lattice)
then the energy is extensive [57]. When α > 1, in statistical
mechanics models one can find a value of α, often denoted
by α∗, such that for α > α∗ the critical behavior is the one of
the short-range model [58], although of course nonuniversal
quantities may depend on α (see a review in [59]). One refers
often to the range α � 1 as the “strong” long-range region and
to 1 < α < α∗ = 2 (for 1D chains) as the “weak” long-range
region, but in this paper, not being crucially focused on critical
properties, we will not make such distinction, making generic
reference to the law (10) as a long-range, power-law decay. An
important point emerging in the study of lattice models with
long-range interactions is that critical properties change with
the exponent α at a fixed dimension of the lattice in which
interactions are long range [59]. So, from this point of view,
changing the dimension of the lattice [e.g., considering two-
dimensional lattices], although interesting, is expected not to
qualitatively change the properties we are going to discuss.

Since we are adopting PBCs, the eigenfunctions of the
matrix −ti, j are plane waves ψk ( j) ∝ eik j , with k = 2π

NS
nk

and nk = −NS/2, . . . , NS/2 − 1, again assuming NS even (the
lattice spacing is set for simplicity ≡ 1). Therefore, the hop-
ping Hamiltonian (9) can be readily diagonalized as HH =∑

k εkc†
kck , with ck the Fourier transform of ci and εk depend-

ing of course on the specific form of the ti, j . In Sec. IV A
a model with fractal Fermi surface is studied, and there the
form of εk will be directly given without explicitly assigning
the hoppings ti, j .

For the hopping Hamiltonian (9) the EE of subsystem A
having l sites is given by [55]

SA = −
l∑

γ=1

[(1 − Cγ ) ln (1 − Cγ ) + Cγ ln Cγ ]. (12)

In Eq. (12) the Cγ are the l eigenvalues of the correlation
matrix

Ci j = 〈	|c†
i c j |	〉, (13)

with i, j = 1, . . . , l being the sites belonging to A and 	 the
ground state of the fermionic system.

To calculate the MI, we calculate the EE of two systems A
and B having each l sites, then the EE of A ∪ B, and finally
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the MI using Eqs. (5). In this way we can readily calculate
and analyze the MI, and express it in term of the four-point
ratio where d is the (minimal) distance between A and B. The
results we are going to present in the following are obtained
using PBCs, in order to treat a larger number of sites; however,
we have also checked that open boundary conditions do not
qualitatively alter the outcomes.

Let us now discuss the pairing term HP in the total Hamil-
tonian (7):

HP =
NS∑

i, j=1

�i, jc
†
i c†

j + H.c. (14)

When both the pairing term �i, j and the hopping term are
nearest neighbor (	= 0 only if j = i ± 1 and zero otherwise),
then one has the Kitaev model [54]. Long range in the pairings
will be as well introduced:

�i, j ∝ 1

|i − j|αp
, (15)

both with short-range and long-range hopping ti, j . The full
Hamiltonian, being quadratic, can be readily diagonalized
[60], and we denote again by εk the corresponding eigenval-
ues. The EE of subsystems can be calculated from the matrices
ti, j and �i, j , extending the result (12), valid when �i, j = 0.
In the presence of pairings, indeed, the von Neumann entropy
between two subsystems A and B, required to calculate the MI,
has to be derived in a different way with respect to the case
�i, j = 0 when one uses Eq. (12). With �i, j 	= 0 the correla-
tions 〈c jcl〉 and 〈c†

j c
†
l 〉 do not vanish in general. We thus need

to enlarge the correlation matrix to double its size in order to
account for the additional terms. To do so, one defines a ma-
trix Mp,q ≡ 〈(a2p−1, a2p)(a2q−1, a2q )〉, where a2q−1 ≡ cq + c†

q

and a2q ≡ i (cq − c†
q ) are Majorana fermions, and the indices

p, q = 1, . . . , l run over the l sites of subsystem A. The matrix
M has l pairs of eigenvalues 1 ± vn, in terms of which the EE
is straightforwardly expressed as in Eq. (12). We refer to [55]
for a presentation of the calculation of the EE for a generic
quadratic form of fermions and for more references on the
subject.

III. SHORT-RANGE MODELS

In this section we consider short-range models, with
nearest-neighbor hopping and �i, j = 0 (Sec. III A) or �i, j

nearest neighbor as well (Sec. III B).

A. Tight-binding chain

The usual tight-binding chain Hamiltonian reads

H = −t
NS∑
i=1

c†
i ci+1 + H.c., (16)

with the PBC (8), so that cNS+1 = c1. We will consider its
generalization in Eq. (9), with a hopping term of the form

ti, j = t

|i − j|αp
, (17)
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FIG. 1. Plot of the MI as a function of the conformal four-point
ratio (6) for the hopping ti, j = t/|i − j|αp in the Hamiltonian (9) and
two different values of α: α = 2 and α = 10. As discussed in the
text, checked numerically, and seen in the figure, the MI does not
depend on α, and it is the same for the short-range limit (16). The plot
refers to a chain of length NS = 2004, with PBCs and filling fraction
f = 0.25. The four-point ratio is calculated varying the distance
between two subsystems of the same length l = 10. Inset: The two
corresponding dispersion relations εk (in units of t) for α = 2 and
α = 10, depicted together with their Fermi level. One sees that, even
if the Fermi energies are different, the filled states are the same and,
as a consequence, the MI is the same.

the nearest-neighbor case (16) being obtained in the limit
α → ∞.

The reason for considering Eq. (17) is twofold: (i) the
short-range behavior is in general expected to be retrieved for
large, finite α; (ii) as discussed in [56], the EE of a subsystem
does not depend on the exponent α. Indeed, the correlation
matrix (13) can be written as Ci, j = ∑NT

l=1 ψ∗
l (i)ψl ( j), where

the ψα are the eigenfunctions of the matrix ti, j . In the con-
sidered translationally invariant case, the quantum number l
becomes the wave vector k and the eigenfunctions ψl simply
plane waves. So, if the dispersion relation εk has a purely
monotonous behavior for k either positive or negative, then
the correlation matrix is the same (since one has to sum
on the same eigenfunctions). Thus, also the eigenvalues of
the correlation matrix Ci, j are equal and so are the EE and,
therefore, the MI as well.

Since for any α in Eq. (17) the dispersion relation is indeed
monotonous for k either positive or negative, as seen in the
inset of Fig. 1, the MI does not depend on α. The main
findings, valid therefore for any positive α in Eq. (17) and in
particular for the short-range hopping model (16), are shown
in Figs. 1 and 2. In Fig. 1 we plot the MI as a function of x.
We see that the MI has a linear behavior for small x and it is a
monotonously increasing function of x.

In Fig. 2 the MI is reported for different values of the
subsystem sizes l at fixed NS and the same behavior appears
for the considered cases. As supported also from simulations
where the total length of the chain is varied, it is seen that the
curves tend to converge to a monotonic function.

These results can be compared with the analytical values
of the EE for disjoint subsystems of Dirac fermions (see [31]
and the references therein). This is done again in Fig. 2: the
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FIG. 2. Top: MI for the chain (9) with hopping (17) with α = 2
and NS = 2004 for several values of the subsystem size l . Bottom:
Scaling of MI with the number of sites, NS , for l = 10. The blue
continuous line represents the analytical prediction in Eq. (18).

analytical values, given by

I = 1

3
log

(
1

1 − x

)
, (18)

are represented by the blue continuous line. We find a strongly
improving agreement between numerics and analytics as l
increases. Moreover, for fixed l , a very good stability of the
data is achieved for Ns ∼ 1000.

Further analytical results would be desirable to determine
the MI as a function of x for intermediate and large values of
NS , l , and d at fixed filling to discuss finite-size corrections;
however, from the results presented here it emerges that x is
the good quantity to use, the MI being a monotonic function
of x. The prediction (5) is clearly not verified, as expected.

B. Kitaev chain

We consider in this section the Kitaev Hamiltonian

H = −t
NS∑
i=1

(c†
i ci+1 + H.c.) + �

2

NS∑
i, j=1

1

|i − j|αp
(c†

j c
†
i + cic j ),

(19)

focusing on the limit α → ∞. In this limit, one recovers the
short-range Kitaev chain [54], that in turn can be mapped via
Jordan-Wigner transformations to the Ising model in trans-
verse field [61].

For the model (19), it is convenient to work with antiperi-
odic boundary conditions [43]. To fix the average number of
particles, we introduce a chemical potential by adding the
term −μ

∑NS
j=1(c†

j c j − 1
2 ) to Hamiltonian (19). To compare

with previous results, without loss of generality, we will set
� = 2t = 1, since different choices can be absorbed in a
redefinition of μ, therefore measuring the energies in units of
2t [43,44].

Presenting the results also for finite α, the spectrum of
excitations is obtained via a Bogoliubov transformation and
it results in

εk =
√

(μ − cos k)2 + f 2
α (k + π ), (20)

where k = −π + 2π
NS

(n + 1
2 ) (0 � n < NS) and

fα (k) ≡
NS−1∑
m=1

sin(mk)

|m|αp
. (21)

The functions fα (k) become, in the thermodynamic limit
[44,47], a polylogarithmic function [62–64]. The ground state
of Eq. (19) is given by

|
〉 =
NS/2−1∏

n=0

(cos θkn − i sin θkn c†
kn

c†
−kn

)|0〉, (22)

where tan(2θkn ) = − fα (kn+π )
μ−cos kn

and it is even under the Z2

fermionic number parity of the Hamiltonian [65,66].
The spectrum in Eq. (20) displays a critical line at μ = 1

for every α and a critical semiline μ = −1 for α > 1 (and
therefore in the short-range Kitaev model α → ∞ as well).

We report in Fig. 3 the MI as a function of the conformal
four-point ratio x for α = 1000, practically indistinguishable
from the short-range Kitaev model at α → ∞, NS = 1000,
and μ = 1.5. In the inset of Fig. 3, we plot the corresponding
spectrum εk for the Bogoliubov quasiparticles. In Fig. 3 we
plot also MI as a function of l/d for different values of l ,
and the comparison of the two panels shows that MI tends
to be vanishing for small values of x or l/d , or better up to
certain value of them, and that collapse of data is not observed.
In the considered ranges for the Hamiltonian parameters, the
model satisfies an area law for the EE, and correspondingly
the MI appears to vanish for x < 1/2. However, the region
in which MI vanished increases beyond 1/2 approaching the
thermodynamic limit.

Finally, studying the MI on the massless line μ = 1, one
finds a monotonic growth of the MI with x, qualitatively equal
to those in Figs. 1 and 2, and corresponding to a logarithmic
violation of the area law by the von Neumann entropy. For
completeness, in Fig. 3 we also report the MI close to the
critical line (choosing μ = 1.05). There, a comparison with
the predictions of the Dirac theory [31], similarly as in the
previous section, would require a huge fine tuning of the Dirac
mass.

IV. LONG-RANGE HOPPING

In this section we consider several models with long-range
hopping.
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FIG. 3. Top: Bogoliubov quasiparticle spectrum (inset) and MI
as a function of the four-point ratio x for the Kitaev chain (19)
with α = 1000, using the parameters NS = 2004 and μ = 1.5 (cor-
responding to the filling f = 0.5567). Middle: Same, but now as a
function of l/d . Bottom: Same as the upper panel, but for μ = 1.05.

For the model (9), without pairing terms (�i, j = 0) and
long-range hopping (17) given by ti, j = t/|i − j|αp, one can
readily determine the energy spectrum as

εk = −2t �α (k), (23)

where k = 2πnk/NS belongs to the first Brillouin zone (nk =
−NS/2, . . . , NS/2 − 1) and

�α (k) =
∞∑

n=1

cos (nk)

nα
. (24)
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FIG. 4. Plot of the MI as a function of the conformal four-point
ratio x for the chain with dispersion (25) and γ = 1, f = 0.25, and
NS = 1004. The four-point ratio is calculated varying the distance be-
tween two subsystems of the same length l = 10. In the top left inset
the small-x region is enlarged. In the bottom right inset dispersion is
plotted with the Fermi level (dotted line).

As commented in Sec. III A, the dispersion relation (23)
is monotonous in k as in the short range (see the inset of
Fig. 1). The long-range hopping (17) only changes the values
of the single-particle energies, and the MI is exactly the same
as in the short-range model, as discussed in Sec. III A and
illustrated in Figs. 1 and 2. We conclude that long-rangedness
is not enough to change the MI properties: one also needs
(if pairing terms are absent) to change the behavior of the
single-particle spectrum and, in particular, the Fermi surface.
This is discussed in the next section.

A. Fractal Fermi surface

We assume here that the Hamiltonian is such that the
single-particle energy spectrum has the form

εk = −t sin

(
1

kγ

)
, (25)

where γ is a positive odd integer. Hamiltonian (25) is written
in momentum space, and when written in real space the hop-
ping ti j assumes a complicated and oscillating-in-sign form,
having as a first approximation a power-law envelope. As
shown in [56], at certain fillings, the Fermi surface of this
model has a fractal topology. For instance, at half filling
f = 0.5, the Fermi energy is zero, with the point k = 0 being
an accumulation point (see the bottom right inset of Fig. 4).
The Fermi surface has box counting dimension dbox = γ

γ+1 ,
so that dbox = 1/2 for γ = 1. From finite size numerical data
one sees that the EE violates the area law as SA ∼ Lβ , where
β = dbox [56].

Our results for the MI are reported in Figs. 4–6. The ob-
served behavior differs from the previous models considered
and displays very peculiar and unique features at small x. In
Fig. 4 the MI as a function of x is shown at a fixed value
of γ . It is seen that the nonlogarithmic violation of the area
law makes the MI nonmonotonous at small x. In Fig. 5 we
plot the results obtained for different sizes of the subsystem
size l: the MI does not seem to be dependent solely on the
conformal four-point ratio x, since, in this model, varying the
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FIG. 5. MI vs x for the chain with dispersion (25) and γ =
1, f = 0.25, and NS = 1004. The four-point ratio is calculated
varying the distance between two subsystems of the same length
l = 10, 20, 50.

subsystems’ length produces different outcomes. Moreover,
a nonlogarithmic violation of the area law violates the basic
assumption of holography and thus we cannot expect Eq. (5)
to apply here, since both conformal invariance and AdS/CFT
duality are not respected. Our numerical results support this
conclusion. In Fig. 6, the MI is plotted for different values of
γ , and thus of exponent β, defined after Eq. (25), which quan-
tifies the deviation from the area law. We considered other
combinations of system parameters different from x such as
l/d , but we found that they did not introduce a simplification
of the obtained results and thus we do not presents plots of
such results. It is found that the larger is the deviation from the
area law, the more nonmonotonic the MI is. Figure 6 also indi-
cates that the Bell pairs responsible for the EE have a specific
distribution in space also at very large distances. Although
an analytical determination of the peak positions in Figs. 4
and 5 is a very nontrivial task, we can qualitatively comment
on their difference compared to the long-range model with a
phase which we study in Sec. IV B 1. In the latter case, the EE
follows a volume law, while here the deviation from the area
law is weaker and the fractal Fermi surface selects values of
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FIG. 6. MI vs x for the chain with dispersion (25) and f = 0.25,
NS = 1004 for different values of γ . The four-point ratio is calculated
varying the distance between two subsystems of the same length
l = 10. In the top left inset the small-x region is enlarged.
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FIG. 7. MI for the long-range model (9) with the phase-
modulated hopping (26) with two values of the phase φ = 0.1, 0.4
and parameters NS = 1004, α = 0.3, l = 10, and f = 0.25. Left
inset: MI behavior for small x. Right inset: Energy spectrum for the
two values of φ.

the momentum k that do not necessarily alternate [56]. Thus,
the Bell pairs form not only close to antipodal sites but also
between closer sites resulting in the complicated peak patterns
observed in Figs. 4 and 5.

B. Other models with nonlogarithmic violations of the area law

Other models exhibiting nonlogarithmic violations of the
area law are considered in the Secs. IV B 1 and IV B 2. In both
cases the pairing terms are absent, their effect being studied in
Sec. V.

1. Long-range power-law model with a phase

A possible way to modify the structure of the Fermi surface
is to introduce a space-dependent phase in the hopping matrix,

ti, j =
{

0, i = j
teiφd (i− j)

|i− j|αp , i 	= j, (26)

where φ = 2π
NS

� (with � a constant) and d (m) is the oriented
distance, defined as

d (m) ≡
{

m, |m| � NS − |m|
−NS + |m| otherwise. (27)

The energy spectrum is found to be εk = −2t�α (k) with

�α (k, φ; NS ) =
NS/2∑
n=1

cos [n(k + φ)]

nα
. (28)

While for φ = 0 this function is monotonic for k ∈ [0, π ],
for nonzero φ there is a critical value of αc(φ) < 1 such that
for α < αc(φ), at half filling f = 1/2, the energies (28) are
rapidly oscillating and the momenta k are occupied in an
alternating way between even and odd quantum numbers, as
depicted in the right panel of Fig. 7. As a consequence, a
Bell-paired-like ground state is obtained, with a volume law
EE [56]. We notice that for α � 1 the ground-state energy in
the thermodynamic limit diverges. Nonetheless, one can make
the energy extensive by the so-called Kac rescaling [57]. As
reported in Fig. 7, the MI shows a nonmonotonic behavior
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FIG. 8. MI for the long-range model (9) with the phase-
modulated hopping (26) for NS = 1004, α = 0.3, f = 0.25, φ = 0.1,
and different values of l .

with x, emerging at small x (see left inset), where peaks
develop. One also sees a clear peak at x → 0. We attribute the
presence of such nonmonotonicity and peaks to the formation
of Bell pairs, which are the reason for the (nonlogarithmic)
deviation from the area law. This will be more evident in
the models studied in Sec. IV B 2. Notice that by plotting MI
as a function of l/d we obtain similar results. Also for the
long-range power-law model with a phase, as for the model of
Sec. IV A, the four-point ratio x is found to be not sufficient
to capture the whole structure of the MI, since, as illustrated
in Fig. 8, results with different values of l but the same x
exhibit different results for the MI. However, nonmonotonous
behavior and the increase for x → 0 are seen.

2. Selective hopping

We study in this section the “antipodal” model in which
each site is connected via a hopping term to the more distant
site in the chain (at the antipodes). This model has a maxi-
mally entangled ground state with the maximum number of
Bell pairs, and it exhibits perfect, maximal volume law [56].
As such, as we will shortly show, the MI vanishes identically,
due to the monogamy of entanglement. To understand the
role of deviations from a maximal volume law, we consider
a chain with supplementary selective long-range hoppings,
where the particle can only hop between sites centered around
two distances, denoted by s1,2, in a window of 2r + 1 sites (r
being an integer). The Hamiltonian reads

H = −
NS∑
j=1

r∑
q=−r

(t1c†
j c j+s1+q + t2c†

j c j+s2+q + H.c.), (29)

where PBCs are implied. This model is readily diagonalized
in Fourier space, with energies

εk = −2[t1 cos (ks1) + t2 cos (ks2)] cos (kr)

[
1 + tan (kr)

tan (k/2)

]
.

(30)

We now look at the MI for three specific cases.
Antipodal hopping: s1 = NS/2, t2 = 0 (t1 = t ). Let us first

set r = 0 (pure antipodal hopping). This means that we allow
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FIG. 9. MI for the antipodal hopping model (29), with s1 = NS/2
and s2 = 0. Top: MI for NS = 1000 and r = 1, 3, 10. Inset: Energy
spectrum for r = 1. Bottom: MI for NS = 1000, 2000, 4000 and
r = 1.

particles to hop only between the antipodal points and back
(again, we take NS to be an even number). The single-particle
spectrum reduces to

εk = −2t cos

(
kNS

2

)
= −2t (−1)nk , k = 2π

NS
nk, (31)

which shows that there are two branches in the flat dispersion,
with positive (negative) energy for odd (even) wave numbers.
At half filling, we thus have an alternating Fermi surface and
an EE ruled by a perfect, maximal volume law. In fact, this
choice of parameters creates a long-range Bell-paired state of
maximal EE, since each particle is delocalized between two
sites a half system apart. Remarkably, we find that such high
entanglement content does not translate into the MI, which
is in fact vanishing for any distance. This can be explained
as a reflection of the entanglement monogamy [67,68] of the
model. Thus, one needs systems with a lower bipartite EE.

Allowing for r 	= 0 reduces the EE. For r = 1 one has

εk = −2t (−1)nk

[
1 + 2 cos

(
2π

NS
nk

)]
. (32)

Figure 9 displays the MI for this case. Notice that here, and
in Figs. 10 and 11, we prefer to plot MI not as a function
of x, but of a scaled distance d between the intervals. We
see that the reduction in EE corresponds to a peak of MI
close to d = NS

2 − l , almost vanishing otherwise. Oscillations
in Fig. 9 are really small and correspond to small variation of
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FIG. 10. MI for the selected hopping model (29) with t2 = 0,
f = 0.5, r = 0, and different values s = NS/4, NS/5, NS/10. We
consider different chain lengths NS = 900 (top) and 1500 (bottom).

the entanglement due to longer hopping paths connecting the
two partitions. The length of this path, and so the period T
of the oscillations, decreases with increasing r. It appears that
T ∝ 1/r.

Single hopping with s1 = s, t2 = 0 (t1 = t ). Here we have
the dispersion relation

εk = −2t cos
2πs nk

NS
(33)
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FIG. 11. MI for the selected hopping model (29) from any site
only to two distant sites (r = 0, l = 10, and f = 0.5) s1 = NS/4 and
s2 = NS/5.
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FIG. 12. MI for the model (29) with hopping from any site only
to the two sites surrounding the antipodal point (s1,2 = NS/2 ± 1),
with the right panel zooming the small-x behavior.

with r = 0, and

εk = −2t cos

(
2πs nk

NS

)[
1 + tan

( 2πr nk
NS

)
tan

(
πnk
NS

)
]

cos

(
2πr nk

NS

)
(34)

for general r, from which the Fermi surfaces can be worked
out. The EE violates the area law and the MI is plotted for
different values of s in Fig. 10 for r = 0. Similar results are
found for other values of r (not reported). One sees that there
is a main peak corresponding to the Bell pair at the given s
where the maximum amount of Bell pairs is expected. Other
secondary peaks appear at distances that are a multiple of s.

Hopping exactly to two distant sites with r = 0. With hop-
ping allowed only between sites with distances s1 and s2, one
has

εk = −2

[
t1 cos

(
2πs1 nk

NS

)
+ t2 cos

(
2πs2 nk

NS

)]
. (35)

For s1 = NS/2 and s2 = NS/4 at half filling f = 1/2, the
single-particle spectrum is following a zigzag behavior, with
odd wavenumber states filled in the ground state. As for the
case of Fig. 9, this is a maximal EE case, where two particles
are delocalized over four sites (NS/4 apart), and the MI van-
ishes. In Fig. 11 we show the MI for s1 = NS/4 and s2 = NS/5
at half filling f = 1/2. The EE is lowered, but the MI shows
peaks for d = s1, d = s2, and multiple distances related to the
corresponding Bell pairs.

We also considered the case s1 = NS/2 − 1, s2 = NS/2 + 1
(t1 = t2 = t) with r = 0, i.e.,

H = −t
∑

j

(c†
j c j+ N

2 +1 + c†
j c j+ N

2 −1 + H.c.), (36)

with single-particle spectrum

εk = −4t (−1)nk cos
2π

N
nk . (37)

The MI is depicted in Fig. 12 and shows similarities with the
case in Fig. 7, where one has indeed a volume law, but not the
perfect (i.e., maximal) volume law.
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FIG. 13. MI as a function of the four-point ratio x for the long-
range Kitaev model with α = 0.5 and short-range hopping, with
NS = 1000, μ = 1.5 (corresponding to an average occupation filling
f = 0.5567). Inset: Bogoliubov quasiparticle spectrum.

V. LONG-RANGE KITAEV CHAINS

We consider in this section the effect of a long-range coun-
terpart of the fermionic pairing as given in Eq. (14), both in the
presence of short-range (Sec. V A) and long-range (Sec. V B)
hopping.

A. Short-range hopping and long-range pairing

Let us consider here long-range pairing (�i, j = �
2|i− j|αp | )

and nearest-neighbor hopping (ti, j = t only if i = j ± 1 and
zero otherwise). The MI for the limit α → ∞ has been
discussed in Sec. III B, where we also reported the energy
spectrum for finite α in Eq. (20). As in Sec. III B we consider
� = 2t .

We remind that the spectrum (20) displays a critical line at
μ = 1 for every α and a critical semiline μ = −1 for α > 1.
Moreover, if μ 	= −1 the velocity of a quasiparticle with
k = ±π diverges if α � 3

2 , while it diverges at α � 2 if μ =
−1 [43]. Below α = 1 and at every value of μ, new phases
occur [43,69,70]. There, the area law for the EE is logarith-
mically violated [69,71]. Moreover, the boundary Majorana
modes, present above α = 1 if |μ| < 1, become massive and
disappear. Notably, this transition to the new phases at α = 1
occurs without any mass gap closure, as a consequence of the
large space correlations induced by the long-range pairing.
This transition is signaled by the ground-state fidelity [70].

Also for the MI, qualitatively different results are found
passing through the line α = 1. We report in Fig. 13 the MI, as
a function of the conformal four-point ratio x for α = 0.5, for
a closed chain with length NS = 1000 and μ = 1.5. In the in-
set, we plot the Bogoliubov spectrum εk . For α � 1, the model
satisfies an area law for the EE and the MI is qualitatively
similar to that of Fig. 3: it appears to be vanishing for small
x. Instead, for α � 1, the EE is logarithmically violated, and
the MI increases monotonically with x, qualitatively similar
to that in Eq. (13). This is not due to the fact the model
is gapless (see the inset), but rather to the fact that it has
such a long-ranged pairing that the correlation functions are
power-law decaying. This makes the MI of the system similar
to the tight-binding model studied in Secs. III A and III A.
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FIG. 14. MI at x = 0.484 for the long-range Kitaev model as a
function of the decay exponent α for the pairing terms and short-
range hopping, with NS = 200 and μ = 1.5.

Around the line a = 1, the change in behavior is smooth at
finite size Ns, similarly to the EE [43]. This behavior is shown
in Fig. 14, where MI is reported as a function of α for a value
of x close to 1/2. Finally, on the massless line μ = 1, also at
α < 1, we find again a monotonic growth of the MI with x,
similar to the short-range Kitaev chain.

In Fig. 13 a comparison is made against the analytical
values of the MI, derived from the EE for disjoint subsystems
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FIG. 15. MI as a function of the chemical potential μ for the
Kitaev chain with long-range pairing and short-range hopping with
α = 10 (top) and α = 0.5 (bottom) and NS = 2000, l = 16, and
d = 4 sites.
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FIG. 16. MI as a function of the power of long-range decay α of
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d = 4 sites.

of Dirac fermions. We find that the agreement is rather poor.
However, this mismatch is of course expected, since a Dirac
structure does not hold for α < 2, not even around the mass-
less (semi)lines at μ = ±1, where conformal invariance is
broken by the long-range coupling [47]. We recall that instead
the same Dirac structure holds around μ = ±1 and for α > 2
[65].

The MI can be used to detect quantum phase transitions.
To show this, we keep the four-point ratio fixed and swipe for
the phase-diagram parameters μ and α. In Fig. 15 we show
in the top panel the MI as a function of μ for a chain with
length NS = 1000, l = 16, d = 4, and α = 10. Two peaks are
observed at μ = ±1, in correspondence to the two critical
points. Similarly, in the bottom panel we report the MI vs μ

for α = 0.5 and the same choices for the other parameters. We
observe a single peak, in correspondence to the unique critical
point at μ = 1.

In Fig. 16 we plot the MI vs α for μ = 0.5 and μ = 2.5,
and the other parameters as before. We observe a substantial
increase for the MI for α � 1, where the area law for the von
Neumann entropy is logarithmically violated [43,69]. These
properties are characteristic of phases at α < 1 that are not
connected with those at α > 1 [69]. For instance, they can host
gapped edge modes, which are absent at α > 1. Moreover,
these phases are not included in the standard classification of
the (short-range) topological insulators and superconductors,
due to the singularities in the Brillouin zone from the long-
range couplings (see, e.g., [72]).

Finally, for completeness we report in Fig. 17 the filling vs
the chemical potential for different values of α.

B. Long-range hopping and pairing

Finally, we consider the long-range paired Kitaev model
with also long-range hopping:

H = −
NS∑

i, j=1

t

|i − j|βp
(c†

i c j + H.c.)

−
NS∑

i, j=1

�

2|i − j|αp
(c†

j c
†
i + cic j ), (38)
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FIG. 17. Filling vs chemical potential for different values of α.

where we denote by β (α) the power-law decay exponent of
the hopping (pairing) term.

We plot in Figs. 18 and 19 the MI as a function of x
for two different values of the pair α, β (with NS = 1000
and μ = 1.5). In the insets of both figures, the corresponding
energy spectrum is plotted. In Fig. 18 we consider α = 100
and β = 0.5, corresponding to a choice of short-range pairing
and long-range hopping. In this case, it is seen that the spec-
trum of the Bogoliubov quasiparticles is regular, not fractal or
“zigzag” like the ones studied in Secs. IV A and IV B. The
MI is vanishing for small x, paralleling the fulfillment of
the EE area law, and conforming to the results obtained for the
short-range Kitaev model. Instead, the case α = β = 0.5, with
both long-range hopping and long-range pairing, is considered
in Fig. 19. In this case, there are logarithmic violations for the
EE area law and, correspondingly, we find that the MI is a
monotonously increasing function of the conformal four-point
ratio x, similar to the behaviors on massless semi(lines) μ ± 1,
or in the regime α < 1, of the model in Eq. (19).

VI. CONCLUSIONS

We have studied the mutual information (MI) for several
quadratic fermionic chains with a variety of different long-
range hoppings and superconductive pairings, including the
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FIG. 18. MI vs x for the Kitaev chain (38) with nonlocal hopping
and pairing. The parameters α = 100 and β = 0.5, with NS = 1000
and μ = 1.5, are used. Inset: Bogoliubov quasiparticle spectrum.
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FIG. 19. Same as in Fig. 18, but here α = β = 0.5.

Kitaev model with short- and long-range pairings and the an-
tipodal model in which the hoppings connect the most distant
sites of the chain. The MI has been plotted as a function of
the conformal four-point ratio x and of other combinations
of the physical parameters, such l/d where l and d are re-
spectively the length of and the distance between the two
subsystems.

The conclusions emerging from the considered examples
are the following:

(1) When the area law is obeyed with at most logarithmic
corrections, the MI is a monotonically increasing function of
x, going to zero for x → 0.

(2) x appears as a convenient variable for the critical
short-range Kitaev model and the noncritical long-range Ki-
taev model with small values of the exponent α (where
the correlations have a power-law tail), in the sense that
different values for the sizes of the system, of the sub-
systems, and their distance with the same x produces for
large chains the same MI. However, x is not in general a
variable for which MI data collapse, especially for not crit-
ical cases, and, as a rule of thumb, when x is not a good
variable, other combinations of parameters we tried are not
either.

(3) When there are nonlogarithmic violation of the area
law, the behavior of MI vs x is no longer monotonic and peaks
appear, with the exception of the antipodal model in which
MI vanishes identically, corresponding to a perfect, maximal
volume law for the bipartite EE.

(4) In these nonmonotonic cases, x does not capture the
structure of the MI, since parameters with the same x do not
have the same MI (even though a similar qualitative behavior
is found).

The short-range Kitaev model in the massive regime ex-
hibits a behavior such that the MI is vanishing for small
values of x, noticing, however, that we are outside of the
range of validity for the AdS/CFT prediction (5). This result is
actually independent from the short- or long-range nature of
the hopping. When the pairing becomes strongly long range
(α < 1), then the MI is no longer vanishing for small x due to
the power-law nature of the correlations induced by the long-
range pairings. We point out that, as expected, for the Kitaev
model we did not find a good agreement between our re-
sults for larger values of x (say, x � 1/2) and the AdS/CFT

prediction (5), since the latter is valid in the strong-coupling
limit. However, in both cases there is an overall monotonic
growth of the MI as a function of the conformal four-point
ratio x. For the considered Kitaev models, we showed the
possibility to locate phase transitions using MI. Keeping the
four-point ratio constant and sweeping the phase diagram,
the MI displays distinct peaks at the closings of the gap, as
shown in Figs. 15 and 16.

We also analyzed the MI behavior in systems with volume-
like violations of the area law. We observed the emergence
of peaks, and in particular for x � 0, reflecting the structure
of shared Bell pairs between the subsystems. In fact, viola-
tions of the area law imply the formation of Bell pairs at
arbitrary distances, growing with the thermodynamic limit.
From this point of view we can then expect that in the infinite
chain length limit, these peaks get squeezed toward x → 0
(see Fig. 10). To analyze this behavior we considered models
with a controllable deviation from the perfect (i.e., maximal)
volume law exhibited by the antipodal model. For the case
of maximal volume law EE we found a vanishing MI (which
can also be interpreted as a sign of entanglement monogamy)
when the EE decreases the MI increases and peaks appear.
The distribution of the latter is related to the formation of
Bell-paired states at different distances, as it happens in the
model with selective hopping considered in Sec. IV B 2. A
nonmonotonic behavior of the MI is observed, with features
not being universal in terms of the four-point ratio. We can
qualitatively explain this by the fact that a specific spatial
distribution of Bell pairs cannot be simply captured by con-
formally invariant quantities.

The presented results show that the MI, even though not
a proper entanglement measure, can be used to extract im-
portant information about the entanglement and quantum
correlation properties and the phases of a quantum system.
The peculiar role of long-range terms, as intertwined with the
possible occurrence of violations of the area law, has been
investigated and shown to produce a variety of interesting
features. It would be certainly very interesting both to find
analytical results for the behavior of MI as a function of the
conformal four-point ratio for some of the models considered
here and to extend the analysis of the MI to interacting,
nonquadratic models. Indeed, our results show that already
for systems that can be mapped to free fermions the MI is
not always captured by the existing analytical expressions.
An interesting generalization and application of our study can
be the use of MI as a scrambling quantifier (for dynamics
under entangling unitary controls), for both open and closed
quantum systems, in condensed matter (spin chains) as well as
in high-energy physics. This possibility has been highlighted
recently in [73,74].
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