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We analyze the propagation of excitons in a d-dimensional lattice with power-law hopping ∝ 1/rα

in the presence of dephasing, described by a generalized Haken-Strobl-Reineker model. We show
that in the strong dephasing (quantum Zeno) regime the dynamics is described by a classical master
equation for an exclusion process with long jumps. In this limit, we analytically compute the spatial
distribution, whose shape changes at a critical value of the decay exponent αcr = (d + 2)/2. The
exciton always diffuses anomalously: a superdiffusive motion is associated to a Lévy stable distribu-
tion with long-range algebraic tails for α ≤ αcr, while for α > αcr the distribution corresponds to a
surprising mixed Gaussian profile with long-range algebraic tails, leading to the coexistence of short-
range diffusion and long-range Lévy-flights. In the many-exciton case, we demonstrate that, starting
from a domain-wall exciton profile, algebraic tails appear in the distributions for any α, which af-
fects thermalization: the longer the hopping range, the faster equilibrium is reached. Our results
are directly relevant to experiments with cold trapped ions, Rydberg atoms and supramolecular dye
aggregates. They provide a way to realize an exclusion process with long jumps experimentally.

Introduction. Energy transport is of fundamental im-
portance in biological, chemical, and physical systems.
In light-harvesting setups, for example, solar energy is
converted into excitons that are transported to a re-
action center or to the interface between two different
semiconductors, which often relies on long-range dipolar
couplings between the excitons [1–3]. Transport then re-
sults from a competition between coherent hopping that
tends to delocalize the wavefunctions and local couplings
to vibrational, motional degrees of freedom and disorder
potentials, which lead to the localization of carriers [4–
7], limiting the conversion efficiency of optoelectronic de-
vices [8]. Theory has mostly focused on short-range cou-
plings among quantum emitters, as they allow simple an-
alytical approaches. For instance, the interplay between
short-range hopping and local dephasing, which can be
induced by, e.g., thermal noise or vibrational coupling [9],
is captured by the Haken–Strobl–Reineker (HSR) model:
for large enough dephasing, a transition from ballistic to
diffusive motion occurs at time t ∼ 1/γ [10–12], with
γ the local dephasing rate. Diffusion taking place for
t ≫ 1/γ is standard, i.e., an initially localized exciton
spreads as a Gaussian distribution exp(−r2/4Dt), with
a diffusion coefficient D = 2J2/γ (J is the nearest neigh-
bor hopping rate). While the HSR model with nearest-
neighbor hopping has been extensively analyzed and even
solved exactly [10–14], the interplay of power-law long-
range hopping and dephasing is more challenging and has
not been analytically treated. Power-law hopping stems
from the ∼ 1/r3 dipolar coupling in molecular aggre-
gates [1–3] or nanocrystals [15–17], for instance, where
large dephasing is naturally present [18–21]. More gen-
eral power-law-type couplings with arbitrary spatial de-
cay can be engineered in artificial systems such as cold
trapped ions [22, 23] or Rydberg gases [24, 25].

In this work, we investigate the HSR model with cou-
pling between quantum emitters that decays with dis-
tance r as a power-law ∼ 1/rα, with variable power α
and for a generic dimension d. In the presence of strong
dephasing – in the quantum Zeno regime [26] – we map
the system to a classical master equation (CME) that
captures the long-time dynamics t ≫ 1/γ, which we solve
exactly by analytical and numerical means.

We find that excitons always diffuse anomalously: in
the single-exciton limit, the CME is the one of a discrete
random walk with long jumps, or discrete Lévy flight [27–
29], and for any finite α the exciton density profile al-
ways decays algebraically at long distances, in contrast
to the standard diffusion obtained from the HSR model
with nearest-neighbor hopping. The interaction range
α determines whether the variance of the distribution
converges or not: based on this, we define the critical
exponent αcr = (d + 2)/2. For α ≤ αcr, the dynamics
is superdiffusive and the exciton density at sufficiently
long distance is always a Lévy stable distribution [28–
31] characterized by a long-range algebraic tail ∼ 1/r2α.
For α > αcr and small enough time, the exciton density is
also solely characterized by an algebraic tail, while at long
time it exhibits a surprising mixed profile corresponding
to a Gaussian distribution at short distance and an al-
gebraic tail at large distance (Fig. 1a). The Gaussian
part of the distribution mimics the standard diffusion in
the HSR model. However, remarkably, also this Gaussian
contribution is non-standard as the diffusion coefficient
depends on α and is enhanced by the long range character
of the hopping. We show that this finding is relevant to
long-range exciton diffusion in light-harvesting systems
such as nanocrystal quantum dots, where discrepancies
between experimental observations and theory have been
reported.
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FIG. 1. Single-exciton regime for d = 1: time evolution of
an exciton initially located at site 0. The exciton density
profile nj(t) is characterized by a power-law (PL) at long dis-
tance and a Gaussian (G) at short distance (a). The bound-
ary between the two regions (red dashed line for κt = 1 and
green dashed-dotted line for κt = 3) corresponds to ξα,t [see
Eqs. (10)]. The quantum to classical crossover is illustrated
through the time evolution of the exciton variance (b), ob-
tained by numerically solving Eq. (1) for α = 3 and γ = 10J .
Red solid line: exact solution Eq. (3), black dashed line: clas-
sical approximation for γt ≫ 1 [Eq. (4)]. A pure power-law
density profile for α = 1 < αcr (c) and mixed Gaussian–
power-law for α = 2 > αcr (d) are obtained by numerically
solving Eq. (7) for N = 1000 and γ = 10J . Solid lines: ap-
proximation Eq. (10), thick red dashed line: Gaussian term in
Eq. (10b), thin dashed lines: ξα,t. The diffusion enhancement
with respect to the case α → ∞ [n(0)

j (t)] is shown in the inset.

We find that in the case of many excitons our model
is equivalent to a long-jump symmetric exclusion pro-
cess [32–34], with a Markov matrix identical to the
Hamiltonian of a long-range ferromagnetic Heisenberg
model. Long-range hopping enhances exciton propaga-
tion so that equilibrium is reached faster as α is de-
creased. We capture the equilibration dynamics analyti-
cally via a continuous diffusion equation with fractional
laplacian that qualitatively reproduces the numerical re-
sults for all α.

Excitons are modelled as spin-1/2 operators S. We
start with the single-exciton case and study the dynam-
ics in the presence of dephasing governed by the HSR
quantum master equation

ρ̇ = −i[H, ρ] + γ
∑

j

(
LjρL

†
j −

1

2
{L†

jLj , ρ}
)

= L̂ρ. (1)

In our case, the coherent dynamics is described by the

power-law hopping Hamiltonian

H =
1

2

∑

j

∑

r ̸=0

J

rα

(
S+
j S−

j+r + S−
j S+

j+r

)
, (2)

with ρ the density matrix, j ∈ Zd the position in a d-
dimensional lattice, r = |r|, and Lj = L†

j = Sz
j the local

dephasing operators, in the Lindblad formalism [35, 36].
For d = 1 and when a single exciton is initially present on
a given site, it is known that the variance of the exciton
evolves in time as [10]

⟨|j − ⟨j⟩ |2⟩ = 2
∑

r

r2H2
r

γ2

(
γt+ e−γt − 1

)
, (3)

with Hr = ⟨G|S−
j HS+

j+r |G⟩ and |G⟩ the ground state
with all the spins down. The short- and long-time ap-
proximations of Eq. (3) read

⟨|j − ⟨j⟩ |2⟩ ≈





∑
r r

2H2
rt

2 for γt ≪ 1

2
∑

r

r2H2
r

γ
t for γt ≫ 1,

(4)

and reveal a crossover in the dynamics: while a coherent
quantum dynamics dominates for short time, a classical
diffusive-like behaviour emerges for t ≫ 1/γ. This is
illustrated in Fig. 1b, where the exciton variance is ob-
tained by numerically solving the quantum master equa-
tion (1) for different system sizes N , and compared to the
analytical solutions Eqs. (3) and (4). The crossover from
ballistic to diffusive regime is clearly visible. Interest-
ingly, the transition to the classical regime always occurs
at t ∼ 1/γ, independently of N and α [37]. This is be-
cause in Eq. (4), the same multiplicative factor

∑
r r

2H2
r

governs both the short- and late-time behaviors, so the
crossover time scale is independent of the details of the
Hamiltonian. In Fig. 1b we see that for γt ≳ 10, the
quantum dissipative evolution is indistinguishable from
the long-time asymptotics in Eq. (4).

Importantly, Eq. (3) implies that the late-time
diffusive-like regime is always reached, for any dephasing
strength γ. This can also be seen from the QME (1). In-
deed, for any dephasing, we observe numerically that for
large system size and long time (t ≫ 1/γ) the coherences
in the single-particle density matrix, Gj,m = Tr[ρS+

j S−
m],

with j ̸= m, become negligible with respect to the pop-
ulation density nj = Gj,j . However, in the limit of weak
dephasing, this effect cannot simply be explained from
perturbation theory in γ, as the long-time dynamics is
determined by a non-perturbative branch of eigenmodes
of the Liouvillian L̂ [Eq. (1)] [37]. An analogous effect
has been observed in the case of nearest-neighbors hop-
ping with dephasing and more sophisticated techniques
should be used [14]. We leave this for future work. Next
we turn to the strong dephasing limit, which can be han-
dled analytically more easily.
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Strong dephasing: mapping to classical Markov pro-
cess. Following Refs. [38, 39], we use a second-order per-
turbative analysis, deriving an effective Liouvillian L̂eff

in the limit γ ≫ J (for similar treatments of the strong
dissipative limit, see also [40, 41] for soft-core bosons and
nearest-neighbor hopping, or [42, 43] for atom losses in-
stead of dephasing). We split the Liouvillian Eq. (1) into
two contributions, a term L̂0ρ = γ

∑
j(S

z
jρS

z
j −ρ/4), and

a perturbation L̂1ρ = −i[H, ρ]. We find [37] that the ef-
fective dynamics ρ̇ = Leffρ is governed by a CME for the
probability distribution

ṗ(σ) = −
∑

σ′

⟨σ|R |σ′⟩ p(σ′), (5)

with |σ⟩ the eigenstates of the Sz
j operators, and p(σ)

the probability distribution defined by the diagonal en-
tries of the density matrix ρ =

∑
σ p(σ) |σ⟩ ⟨σ|. The

generator of the CME (5) is that of an exclusion pro-
cess with long jumps, which turns out to be identical to
the following Hamiltonian of a long-range ferromagnetic
Heisenberg model

R = −
∑

j;r ̸=0

2J2

γr2α

[
1

2
(S+

j S−
j+r + S−

j S+
j+r)

+ Sz
jS

z
j+r − 1

4

]
. (6)

A similar observation was made in Refs. [38, 39] for
strictly short-range models, whose strong-dephasing limit
corresponds to a ferromagnetic Heisenberg model with
short-range couplings; here we extend this result to long-
range hopping. We note that, interestingly, the case
α = d = 1 in Eq. (6) corresponds to the Haldane-Shastry
Hamiltonian [44], a famous quantum integrable model.
For any exciton number, the associated exclusion pro-
cess should then be exactly solvable by Bethe Ansatz
techniques, which we will investigate in a future work.

Anomalous diffusion of single exciton. We first focus
on the classical dynamics dictated by Eq. (5) for the case
of a single exciton. Equation (6) provides the evolution
of the population density

ṅj =
∑

r ̸=0

κ

r2α
(nj+r − nj), (7)

with the effective Zeno-like rate κ = 2J2/γ. An alter-
native derivation of Eq. (7) is obtained by adiabatically
eliminating the coherences of the single-exciton density
matrix Gj,m [10, 26, 37]. Notice that Eq. (7) is well
defined in the thermodynamic limit only if α > d/2 so
that

∑
r ̸=0 r

−2α is finite. In order to solve Eq. (7) for an
exciton initially at the origin, nj(t = 0) = δj,0, we intro-
duce the characteristic function K(q, t) =

∑
j nj(t)e

iq·j ,
where q ∈ Rd. Using Eq. (7), we find that the character-
istic function at time t then reads

K(q, t) = e(A2α,d(q)−A2α,d(0))t, (8)

with the initial condition K(q, 0) = 1, and A2α,d(q) =
κ
∑

r ̸=0 r
−2αe−iq·r. Equation (8) provides the time evo-

lution of the mean position ⟨j⟩ = −i∇qK(0, t) = 0 and
of the variance ⟨|j|2⟩ = −∆qK(0, t) = 2Dαt. The diffu-
sion coefficient Dα = 1

2A2α−2,d(0) provides a first insight
into the character of the dynamics for different α (how-
ever, see also discussion below): diffusive-like spreading
of excitons takes place when Dα converges in the ther-
modynamic limit, which is ensured when α > αcr [37].
This corresponds to the quantum master equation so-
lution in the regime γt ≫ 1, shown in Eq. (4) and
Fig. 1b. On the other hand, for α ≤ αcr, Dα diverges
and the dynamics is superdiffusive. Equation (8) further
allows one to determine the exciton density profile nj(t)
for all α and times t. Since the long-distance behav-
ior of nj(t) is determined by the singularity of K(q, t)
when q ≡ |q| → 0, we analyze A2α,d(q) in that limit.
We find A2α,d(q) ≈ A2α,d(0) − Cαq

2α−d if α ≤ αcr,
and A2α,d(q) ≈ A2α,d(0) − A2α−2,d(0)

2 q2 − Cαq
2α−d if

α > αcr [37], with Cα = −κπ
d
2 2d−2αΓ

(
d
2 −α

)
/Γ
(
α
)
. The

expression of Cα depends on the boundary conditions:
here we have assumed translational invariance. Inserting
these expressions into Eq. (8), the characteristic function
finally reads

K(q, t) ≃
q→0

{
e−Cαq2α−dt α ≤ αcr

e−Dαq2t e−Cαq2α−dt α > αcr.
(9)

For α ≤ αcr, this is the characteristic function of a Lévy
stable distribution [28–31], which is characterized by a
long-range algebraic tail. Such a distribution corresponds
to large but infrequent steps, the so-called rare events
or big jumps relevant to a large variety of phenomena
including motion of cold atoms in laser cooling, transport
in turbulent flow, and neural transmission [45]. For α >
αcr, instead, the characteristic function has a peculiar
mixed nature: it is the product of a Gaussian and of the
Lévy flight factor.

From the inverse Fourier transform of K(q, t) we ob-
tain the population nj(t). For α ≤ αcr the asymptotic
behavior nj(t) depends on j as

nj(t) ≃
|j|≫1

κt/|j|2α, (10a)

while for α > αcr we obtain the following mixed Gaussian
and power-law behavior with increasing |j|

nj(t) ≃





exp(−|j|2/4Dαt)

(4πDαt)d/2
|j| ≲ ξα,t

κt/|j|2α |j| ≫ ξα,t,

(10b)

which is one of the main results of this work. In
Eq. (10b), ξα,t is the length scale at which the be-
havior crosses over from Gaussian to power-law. For
large enough time, ξα,t is well approximated by ξα,t ≈√
4Dαt log[4ααπ−d/2κ−1Dα(4Dαt)α−αcr ] [37]. The ex-

act expression of ξα,t exhibits a minimum as a function
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FIG. 2. Speedup of the relaxation dynamics for d = 1. Start-
ing from a domain-wall exciton profile, the occupation pro-
file nj(t) is computed numerically from Eq. (5) for N = 100
and κt = 0.5 (a), and exhibits power-law tails showing that
equilibrium is reached faster as α is decreased. The contin-
uous line corresponds to nearest-neighbour hopping, and the
dashed lines to the approximate solution Eq. (11). b Time
evolution of the deviation from equilibrium χ2(t) for differ-
ent α and N . The circles and squares are for N = 100 and
N = 1000, respectively. The dashed lines are the best fit
∝ exp(−t/τ), with τ given by Eq. (12).

of α, and a discontinuity at α = αcr [Fig. 1a]. For large
α, ξα,t increases with α as ξα,t ∼

√
4Dαtα logα, and we

ultimately recover a standard diffusive (Gaussian) behav-
ior for α → ∞. For α → α+

cr, Dα diverges and therefore
ξα,t does too. For small enough time, the power-law be-
havior takes over for all α. We emphasize that since ξα,t
grows with time, the Gaussian dynamics ultimately dom-
inates at long times for α > αcr, and thus we expect the
algebraic tail to particularly affect transient phenomena.

This behavior is illustrated in Fig. 1c,d for d = 1,
where we show a numerical solution of the CME (7)
together with the asymptotic behavior Eq. (10). For
α < αcr, the distribution is only characterized by a
power-law decay with amplitude growing linearly with
time and independent of the lattice dimension d [Fig. 1c].
The scaling with the distance 1/|j|2α turns out to be
the same as the hopping rate. While the decay of the
distribution still goes as ∼ 1/|j|2α at long distances for
α > αcr, diffusion dominates at short distances showing a
Gaussian profile [Fig. 1d], but with an enhanced diffusion
coefficient Dα as compared to the nearest-neighbor case
(inset). In the usual dipolar coupling case α = d = 3, for
instance, we find that Dα is enhanced by a factor ≈ 2.8
as compared to standard diffusion with nearest-neighbor
hopping. Interestingly, we find that those power-law tails
have a profound effect on the dynamics in the presence of
strong dephasing for all α, which is surprising for α > αcr

where a simple diffusive behavior is expected from short-
range models [14]. In the following, we illustrate this
effect for the case of many excitons following a quench.

Many excitons: speedup of relaxation. We consider
the dynamics in the many-exciton sector of Eq. (5) on a

d = 1 lattice, starting from a “domain-wall” initial condi-
tion, where the leftmost N/2 sites are all occupied, while
the other sites are empty, in analogy with a Joule expan-
sion. We analyze the occupation profile at time t, i.e.
nj(t) = Tr[ρ(t)S+

j S−
j ], where ρ(t) is the density matrix

solving Eq. (5). Both for α < αcr and for α > αcr, a
flat equilibrium solution is reached at large t [37], such
that n̄ = limt→∞ nj(t) = 0.5 ∀j. Interestingly here, the
equilibrium is reached for any hopping range α, which
is in contrast to the purely quantum case, where long-
range interactions can break ergodicity in the absence of
disorder [46–48].

For short time κt ≪ N2α, the distribution away from
the origin is dominated by single exciton hopping events,
and we find that the profile has power-law tails [37]

nj(t) ∝ κt

∫ 0

−N/2

(j + r)−2αdr ≈ κt/j2α−1, (11)

as shown in Fig. 2a. As a consequence, the exciton
spreads faster as α is decreased. To quantify how fast the
equilibrium profile is reached, we compute the normalized
chi-squared χ2(t)/N =

∑
j [nj(t)− n̄]2/(Nn̄) between the

profile at time t and the equilibrium one. Figure 2b shows
that the equilibrium regime is reached exponentially in
time for any α, χ2(t)/N ∝ exp(−t/τ). Note that this
scaling can be recovered by analyzing the gap of the Liou-
villian, Eq. (5), which follows from the spinon dispersion
of the ferromagnetic Heisenberg model [49]. We observe
that the half-time of the exponential increases with a
power of the system size N as

τ =
Nβ

2πβbα
with β =

{
2α− 1 α < αcr

2 α > αcr

, (12)

for some constant bα, while τ = N2 logN
2π2bα

in the critical
case α = αcr = 3/2. Notice that the scaling (12) is
precisely what is expected from the continuous diffusion
equation with (fractional) Laplacian,

∂n(x, t)

∂t
= bα∆

β/2n(x, t). (13)

Indeed, the solution to this evolution equation with an
initial domain-wall density profile has the Fourier decom-
position n(x, t) = 1

2 +
∑

m∈N cm(t) cos(πmx/N) with co-
efficients decaying as cm(t) ∝ exp(−bα(mπ/N)βt), thus
χ2(t) ∝ N [n(x, t)− 1/2]2 ∝ exp(−2πβbαt/N

β).
The fact that the large-scale evolution of our system

should be captured by a continuous diffusion equation
with fractional Laplacian (13) follows from the form of
the generator of the CME (6), which is SU(2) symmetric.
Indeed, exploiting the SU(2) symmetry, one can switch
from one ‘magnetization sector’ to another —i.e. from
one exciton number to another— without changing its
spectrum. This suggests that the equation governing the
evolution of the density profile for many excitons at large
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scales should be the same as for a single exciton. In par-
ticular, the constant bα in Eq. (12) is expected to match
the diffusion constant of a single exciton, i.e. bα = Dα

for α > αcr and bα = Cα for α < αcr. From the data in
Fig. 2, we find the numerical values bα/κ ≃ 1.93, 1.62, 1.1
for α = 1, 2, 3, to be compared with the analytical result
C1/κ = 3.14, D2/κ = 1.64, D3/κ = 1.08. The agreement
is very good for α > αcr, however the values differ in the
long-range case α < αcr: this discrepancy is due to the
different boundary conditions between the numerics in
Fig. 2 (open boundary conditions) and in the analytical
derivation of Cα (which assumes translational invariance,
i.e. periodic boundary conditions). We also emphasize
that β decreases with α for α < αcr, which implies that
the equilibrium is reached faster (for large N) as the in-
teraction range increases.

Outlook. Our results provide a way to experimentally
realize an exclusion process with long jumps [32–34], and
are highly relevant to nanocrystal quantum dots that are
attracting more and more interest for solar cell applica-
tions [20]. In particular, discrepancies between the ex-
citon diffusion length measured experimentally and the
values predicted by standard diffusion theory applied to
Förster energy transfer (α = 3) have been recently re-
ported [15, 50]. We argue in the supplemental mate-
rial that such discrepancies would typically be reduced
by a factor of ∼ 2 upon properly including the long
range character of the hopping in the diffusion coeffi-
cient, which is not the case in standard diffusion models
assuming nearest-neighbor hopping [8]. Our model is also
relevant to molecular aggregates that play an important
role in photosynthetic complexes and optoelectronic de-
vices [51]. Dye monomers interacting via dipole-dipole
coupling (α = 3) can indeed form highly-ordered assem-
blies [52]. Supramolecular chemistry offers the possibil-
ity to control the mutual arrangement of monomers to
achieve a nearest-neighbor hopping J < 3 THz, while
the typical dephasing rate can exceed 14 THz at room
temperature [18, 19]. Our model could also be realized
with ions in linear Paul traps, with J ≈ 100 − 1000 Hz
and the possibility to tune the hopping range within
0 < α < 3 [23, 53, 54]. Controlled dephasing can be
realized via detuned lasers that induce time-dependent
ac-Stark shifts [55], allowing to reach the large dephas-
ing regime with γ > 10J [26]. A similar implementation
could also be achieved with Rydberg atoms [56], where
the γ ≫ J regime can be reached for large atom densities.
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In this supplemental material we provide an alternative derivation of the CME Eq. (7), and the full derivation of:
the moments ⟨j(t)⟩ and ⟨|j|2(t)⟩, the critical exponent αcr, the approximate function A2α,d(q), the exciton density
profile nj(t), the length scale ξα,t, the effective Liouvillian Eq. (6), and the approximate occupation profile nj(t) in
the many-body case. We also provide a treatment of the weak dephasing regime.

I. THE SINGLE-PARTICLE PROBLEM

A. From the quantum master equation (QME) to the classical master equation (CME): alternative
derivation

We consider a long-range spin- 12 model on a d-dimensional hypercubic lattice Zd in presence of pure dephasing
through the Lindblad QME

ρ̇ = −i[H, ρ] + γ
∑

j

(
L†
jρLj −

1

2
{LjL

†
j , ρ}

)
, (S1)

with Lj = Sz
j , and the Hamiltonian given by

H =
J

2

∑

j

∑

r ̸=0

|r|−α(S+
j S−

j+r + h.c.). (S2)

In particular, we study the evolution of the two-point correlation functions Gj,m = Tr[ρS+
j S−

m]. We focus on the
single particle subspace, spanned by the states {|j⟩} representing a configuration in which all spins are down but at
the lattice site j.

Within this subspace the two-point correlation functions evolve according to

Ġj,m = iJ
∑

r ̸=0

(Gj+r,m −Gj,m+r)|r|−α − γGj,m, (S3)

Ġj,j = iJ
∑

r ̸=0

(Gj+r,j −Gj,j+r)|r|−α. (S4)

Following the idea of [1], assuming Ġj,m ≪ γGj,m, i.e. that the phase relations are destroyed very rapidly, we can
neglect the time derivative in (S3). Moreover, considering only time intervals larger than the decay time of the phase,
we may also neglect non-diagonal terms w.r.t. to diagonal ones. Then, we obtain an expression for Gj,m in terms of
the diagonal elements:

Gj,m =
iJ

γ
(Gm,m −Gj,j)|j −m|−α. (S5)

We can substitute the latter expression into (S4), and arrive to the following equation for the diagonal elements

Ġj,j =
2J2

γ

∑

r ̸=0

(Gj+r,j+r −Gj,j)|r|−2α. (S6)
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FIG. S1. Variance of the excitation as a function of time, for a d = 1 array of N emitters, determined by numerically solving
the QME (1). In all panels γ = 10J , the red continuous lines represent Eq. (3), while the black dashed lines are the classical
approximations, see Eq. (4). As discussed in the text, the variance is normalized in a (α = 1 < αcr) and b (α = αcr = 3/2) in
order to avoid its divergence in the N → ∞ limit.

The latter expression can be recognized as the classical master equation (CME) (7) for a random walker in a d-
dimensional hypercubic lattice with long-range hopping. In particular, with hopping rate from site j to site m given
by κ|j −m|−2α, then the CME for the probability nj(t) of finding the walker at site j at time t reads

ṅj = κ
∑

r ̸=0

(nj+r − nj)|r|−2α, (S7)

where the classical rate κ is related to the parameters entering the quantum master equation by

κ =
2J2

γ
. (S8)

The quantum-to-classical transition is illustrated in Fig. 1b of the main text, where the variance of an initially
localized excitation is plotted as a function of time, for d = 1 and α > αcr. Here, in Fig. S1a,b, we report the results
for α ≤ αcr, where we normalize the variance in such a way that the term

∑
r r

2H2
r in Eq. (3) does not diverge. In

Fig. S1c we show an additional case with α > αcr, similar to Fig. 1b of the main text, where no normalization is
required. Interestingly, the transition to the CME happens at t ∼ 1/γ independently of the hopping range α.

B. Moments of the distribution

The moments of the distribution nj(t) can be obtained from the derivatives of the generating function K. This can
be easily understood from its definition

K(q, t) =
∑

j

nj(t)e
iq·j . (S9)

Indeed, on a lattice of dimension d, we have that

∂K

∂qα
(0, t) = i

∑

j

jαnj(t) = i⟨jα⟩, (α = 1, . . . , d) (S10)

∂2K

∂qα∂qβ
(0, t) = −

∑

j

jαjβnj(t) = −⟨jαjβ⟩ (α, β = 1, . . . , d). (S11)

Therefore, we have that

∇qK(0, t) = i⟨j⟩, (S12)
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and

∆qK(0, t) = −⟨|j|2⟩, (S13)

and similarly, considering higher order derivatives we can compute higher order moments.
As an example, let us compute explicitly the first two moments of the distribution. The derivatives of K can be

evaluated starting from Eq. (8) of the main text, yielding

⟨j⟩ = 0, (S14)

⟨|j|2⟩ = A2α−2,d(0)t = 2Dαt. (S15)

C. The critical exponent

In (S15) can we see that the variance of the distribution depends explicitly on the exponent of the power-law
hopping α and on the dimensionality d of the lattice through the function A. In particular, we have that

As,d(0) = κ
∑

r ̸=0

|r|−s. (S16)

Since the general term appearing in the series in (S16) is a positive and decreasing function of its argument, then we
may study its convergence by studying the convergence of the associated integral. In particular, we would have to
check the convergence of

∫ ∞

1

r−s+d−1dr ∝
[
r−s+d

]∞
1
, (S17)

which is convergent for s > d. Therefore, comparing this result with (S15), we have that the variance is finite if and
only if

α > αcr =
d+ 2

2
. (S18)

D. Analytical properties of A2α,d(q)

As stated in the main text, in order to establish the analytical properties of nj(t) for different values of α, we have
to study the behaviour of the function A2α,d around q = 0.

For d = 1 we have that

A2α,1(q) = 2κRe(Li2α(e
iq)), (S19)

where Liβ(z) denotes the polylogarithm function of order β and argument z.
For α ̸= 1

2 , 1,
3
2 , 2, . . . we can use the expansion about q = 0 given in [2]

A2α,1(q) = −Cα|q|2α−1 + 2κ
∞∑

j=0

ζ2α−2j(−1)j
q2j

(2j)!
, (S20)

with Cα = −2κΓ(1− 2α) sin(απ), Γ(z) =
∫∞
0

tz−1e−zdz being the gamma function and ζs =
∑∞

k=1 k
−s the Riemann

zeta function.
For all the other values of α, i.e those corresponding to 2α ∈ N, we can derive an expansion about q = 0 by exploiting
some properties of the polylogarithm functions. In particular, considering that

∂z Liβ(z) = z−1 Liβ−1(z), (S21)

and introducing the function Gβ(q) = 2iκ Im(Liβ(e
iq)), we can see that

{
∂qAβ,1(q) = iGβ−1(q)

∂qGβ(q) = iAβ−1,1(q)
, (S22)
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⇒ ∂2
qAβ,1(q) = −Aβ−2,1(q). (S23)

The boundary conditions for these equations are given by the properties of the functions G and A at q = 0, which
can be easily understood by their definition:

Aβ,1(0) = 2κζβ , ∂qAβ,1(0) = iGβ−1(0) = 0 . (S24)

The starting point will be the expression of A and G for β = 1, which are given by
{
A1,1(q) = −2κ log 2− 2κ log

∣∣ sin
(
q
2

)∣∣
G1(q) = −iκq + iπκσ(q)

, (S25)

where we denoted the sign function of q by σ(q). Let us start our analysis from β = 2α with α ∈ N. The following
identities will be useful for our procedure:

∫
σ(q)q2jdq =

|q|2j+1

2j + 1
,

∫
|q|2j−1 = σ(q)

q2j

2j
. (S26)

With them in mind, it is easy to derive A2,1 upon integration of G1:

A2,1(q) = κ

(
q2

2
− π|q|+ 2ζ2

)
. (S27)

Similarly, integrating A2,1 twice we get

A4,1(q) = κ

(
−q4

4!
+ π

|q|3
3!

− 2ζ2
q2

2!
+ 2ζ4

)
.

Therefore, it sounds reasonable to assume that we have

A2α,1(q) =(−1)α
π

(2α− 1)!
κ|q|2α−1 + 2κ

α∑

j=0

(−1)jζ2α−2j
q2j

(2j)!
, (S28)

∀α ∈ N, with ζ0 = − 1
2 . This cleary holds for α = 1, and as well for α+1, as we can easily check upon substitution of

(S28) in (S23) and integrating, yielding to

A2α+2,1(q) =(−1)α+1 π

(2α+ 1)!
κ|q|2α+1 + 2κ

α+1∑

j=0

(−1)jζ2α+2−2j
q2j

(2j)!
,

which proves the validity of (S28) by induction.
Finally, let us study the Aβ,1 functions with odd integer index, i.e. for β = 2s− 1, for s ∈ N. Of course, it would be
wonderful to proceed as for the case of even indices, but this is hard to do since already A1,1 can’t be integrated in
terms of elementary functions. Therefore, we will limit ourselves to studying the behaviour of these functions close
to q = 0, where they present a logarithmic non-analyticity. In particular, we can see that

A1,1(q) ≈ −κ log q2. (S29)

Upon integration, we thus get

A3,1(q) ≈ κ

(
q2

2
log q2 + 2ζ3 −

3

2
q2
)
, (S30)

A5,1(q) ≈ κ

(
−q4

4!
log q2 + 2ζ5 − ζ3q

2

)
+O(q4), (S31)

and, more in general, we have that

A2s+1,1(q) ≈κ

[
(−1)s+1 q2s

(2s)!
log q2 + 2ζ2s+1 − ζ2s−1q

2

]
+O(q4), (S32)
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for s = 2, 3, 4, . . . . The results in (S20),(S28),(S32) fully characterize the behaviour of A close to the origin in one
dimension, for any value of the exponent α.

Determining the behaviour of A2α,d for d > 1 is a bit more involved. In order to understand its properties, we
will introduce a fixed, small but finite, lattice constant λ, and approximate the sum appearing in the definition of A
with an integral, i.e.

∑
r ̸=0 ≈ λ2α−d

∫ 2π

0
dθ
(∏d−2

k=1

∫ π

0
sind−1−k ϕkdϕk

) ∫∞
λ

rd−1dr. In this way, upon further changing
variable to z = r

λ , we obtain that

A2α,d ≈ νdκ

∫ ∞

1

dz

∫ π

0

dϕ1z
d−2α−1 sind−2 ϕ1e

−iqz cos(ϕ1), (S33)

where q = |q| and νd = 2π
d−1
2 /Γ

(
d−1
2

)
is a constant which only depends on the dimension d of the space. The integral

in (S33) has to be computed differently for d = 2 and d > 2, but after the calculation we are able to write the following
expansion about q = 0 for A ∀d ≥ 2:

A2α,d(q) ≈ A2α,d(0) + π
d
2 2d−2αΓ

(
d
2 − α

)

Γ
(
α
) κ|q|2α−d, (S34)

for α ≤ αcr, and

A2α,d(q) ≈ A2α,d(0)−
A2α−2,d(0)

2
|q|2 + π

d
2 2d−2αΓ

(
d
2 − α

)

Γ
(
α
) κ|q|2α−d, (S35)

for α > αcr.

E. Asymptotic properties of nj(t): d = 1

Let us start by considering α < αcr =
3
2 . In this case, for α ̸= 1, we can take the inverse Fourier transform of (S20)

obtaining, to leading order in q,

nj(t) ≈
1

2π

∫ π

−π

e−ijqe−tCα|q|2α−1

dq.

Changing variable to y = jq we thus get

nj(t) ≈
1

2πj

∫ jπ

−jπ

e−iye−tCα|y|2α−1/n2α−1

dy.

Expanding the j−dependent exponential in series we therefore have

nj(t) ≈
∞∑

l=0

(−1)l

2πj2αl+1−l

(tCα)
l

l!

∫ jπ

−jπ

|y|2αl−le−iydy.

For large values of j we can approximate the region of integration with the whole real axis, and to leading order in j
we hence obtain that

nj(t) ≈ − t

j2α
Cα

2π

∫ ∞

−∞
|y|2α−1e−iydy =

κt

j2α
. (S36)

The case α = 1 can be solved exactly since we have an exact expression for A2,1 in (S27). In this case we have that

nj(t) =
e−κtπ2/2

π

∫ π

0

cos(jq)eκt(q−π)2/2dq =
e−κtπ2/2

π
(−1)j

∫ π

0

cos(jy)eκty
2/2dy,

⇒ nj(t) =
1√

2κtπ2

[
DF

(
ij + πκt√

2κt

)
−DF

(
ij − πκt√

2κt

)]
, (S37)
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where DF (z) = e−z2 ∫ z

0
eu

2

du is the Dawson integral. One can check that the asymptotic behaviour for large values
of j is

nj(t) ≈
κt

j2
, (S38)

which agrees with (S36).
Next, we shall consider the case α = 3

2 , corresponding to the critical point of the model for d = 1. In such case we
find, using the same logic as above, that to leading order

nj(t) ≈
1

2π

∫ π

−π

e−ijqe
κt
2 q2 log q2dq ≈ κt

2πj3

∫ ∞

−∞
y2e−iy log |y|dy ≈ κt

j3
, (S39)

which again agrees with the power-law tail predicted in (S36).
Above the critical point, when α is neither integer or half-integer, we again take the inverse Fourier transform of

(S20). This time, the leading order in q brings a quadratic Gaussian contribution, while the power with fractional
exponent will produce the power-law tail of the distribution:

nj(t) ≈
1

2π

∫ π

−π

e−ijqe−tCα|q|2α−1−κtζ2α−2q
2

dq.

Changing variable to y = jq and expanding the exponential with the faster decaying exponent for large values of n,
we get, to leading order, that

nj(t) ≈
1

2πj

∫ ∞

−∞
e−iy−Dαty2j−2

dy − tCα

2πj2α

∫ ∞

−∞
|y|2α−1e−iydy,

where Dα = κζ2α−2. The above steps give the following asymptotic result for nj :

nj(t) ≈
e−

j2

4Dαt

√
4πDαt

+
κt

j2α
. (S40)

The case of integer α ∈ N is analogous since, as we can see in (S28), the type of singularity at q = 0 is the same as in
the case we have just treated. Hence, we would find once again (S40).
Finally, let us consider the case α half integer. In such case, we find that

nj(t) ≈
1

2π

∫ π

−π

e−ijqe
(−1)

α+1
2 κt

(2α−1)!
q2α−1 log q2−Dαtq2dq.

Therefore, we have that to leading order in n

nj(t) ≈
1

2πj

∫ ∞

−∞
e−iy−Dαty2j−2

dy +
(−1)α+

1
2κt

Γ(2α)πj2α

∫ ∞

−∞
y2α−1e−iy log |y|dy,

resulting once again in

nj(t) ≈
e−

j2

4Dαt

√
4πDαt

+
κt

j2α
,

i.e. again (S40).

F. Asymptotic properties of nj(t): d > 1

The procedure for the higher dimensional case is a straightforward generalization of what was done in d = 1, using
the power-law expansions (S34),(S35). The final result is the same behaviour observed in one dimension, i.e.

nj(t) ≈





κt

|j|2α α ≤ d+ 2

2

e−
|j|2
4Dαt

(4πDαt)d/2
+

κt

|j|2α α >
d+ 2

2
.

(S41)
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FIG. S2. Re-scaled excitation profile at different times t obtained from the CME (7) for arrays of dimension d = 2 (a,b with
N = 1002) and d = 3 (c,d with N = 303, respectively. In all panels γ = 10J and the continuous lines correspond to Eq. (10)
of the main text. The vertical dotted lines correspond to the function ξα,t entering Eq. (10b) of the main text. The initial
excitation is set on an edge.

G. Length scale for the crossover between the Gaussian and the power-law profiles

Here we derive, for α > αcr, the length scale ξα,t beyond which the excitation profile changes from Gaussian to
power-law. This length scale is determined by the crossing point between the Gaussian and the power-law profile, i.e.

e−ξ2α,t/4Dαt

(4πDαt)d/2
=

κt

ξ2αα,t
. (S42)

We define here x = ξ2α,t/4Dαt and b = (4Dαt)
αcr−απd/2κ/4Dα so that we have

xαe−x = b , (S43)

which can be solved by means of the Lambert W function. Specifically, our problem is equivalent to yey = −b1/α/α,
where y = −x/α. The Lambert W function is defined by its inverse, i.e. W (yey) = y. In our case, since y is negative,
there are two possible solutions (the “0” and the “−1” branch of the W function), corresponding to the two intersections
between a power law and a Gaussian. Since we are interested in the largest length scale, we choose the “−1” branch,
so that we have y = W−1(−b1/α/α). Upon substituting the definition of y we have x = −αW−1(−b1/α/α), and
recovering the definitions of x and b, we have finally

ξα,t =

√√√√−4αDαtW−1

(
− 1

α

(
πd/2κ

4Dα
(4Dαt)αcr−α

)1/α
)

. (S44)

Note that ξα,t exists only within the domain of the W function, that is for

t ≥ tcr =
1

4Dα

[
πd/2κeα

4Dααα

]1/(α−αcr)

. (S45)

Eq. (S44) is exact, but not very illuminating about the dependence of ξα,t on α and t. Anyway, for very large t, the
argument of the W function tends to 0−, and it can be approximated as W−1(y) ≈ log(−y). In this way we obtain

ξα,t ≈
√
4Dαt log

(
4ααDα

πd/2κ
(4Dαt)α−αcr

)
, (S46)

which is the length scale reported in the main text.
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H. Diffusion-enhancement in the case of Förster energy transfer

The square of the exciton diffusion length (in units of the lattice parameter) corresponds to the variance of the
exciton distribution:

L2
α = ⟨|j|2⟩(τ) =

∑

r ̸=0

r2κ(r)τ, (S47)

with τ the exciton lifetime, and

κ(r) ∝
∑

r ̸=0

|Hr|2
∫

dωFD(ω)σA(ω) (S48)

the transfer rate between the sites j (donor) and j + r (acceptor), separated by the distance r. Here, Hr =
⟨G|S−

j HS+
j+r |G⟩ are the matrix elements of the Hamiltonian Eq. (2) connecting the two states involved in the

energy transfer, and |G⟩ is the ground state with all spins down. The functions

FD(ω) = σA(ω) =
1

π

γ

(ω − ω0)2 + γ2
(S49)

entering the overlap integral denote the normalized donor emission spectrum and acceptor absorption spectrum. Here
we assume that all spins have the same energy ω0, or equivalently that the energy difference between two sites is
negligible compared to the FWHM γ (corresponding to the dephasing rate). One thus finds L2

α ∝ κτA2α−2,d(0)/2,
with A2α,d(0) =

∑
r ̸=0 r

−2α and κ = 2J2/γ, as defined in the main text. Our diffusion length Lα including the
contribution of the long-range tail can be compared with that of the standard theory of diffusion assuming nearest-
neighbor hopping (α = ∞). The latter reads L2

∞ ∝ κτd (with d the dimension). For Förster energy transfer (α = 3)
at play in nanocrystal films, the ratio between the square diffusion lengths in the long-range and nearest-neighbor
cases is

L2
3

L2∞
≈
{
2.8 for d = 3

1.5 for d = 2
(S50)

We emphasize that this factor ∼ 2 depending on the dimensionality of the energy transfer (the latter can neither be
considered as fully 2D nor fully 3D in Refs. [3, 4]) accounts for part of the discrepancy between the exciton diffusion
length measured experimentally and the values predicted by standard (nearest-neighbor) diffusion theory applied to
Förster energy transfer [3, 4].

II. THE MANY-PARTICLE PROBLEM

A. Derivation of the effective Liouvillian

Here we look at the many-body case starting from the long-range Hamiltonian (2) and following the idea of [5],
which is to study the large-dephasing limit of the model through a second-order perturbative analysis, deriving an
effective Liouvillian L̂eff in the limit γ ≫ J . Therefore, we split the original Liouvillian, Eq. (1), into two contributions,
an unperturbed term L̂0ρ = γ

∑
j(S

z
jρS

z
j − ρ/4), and a perturbation L̂1ρ = −i[H, ρ]. The steady states of L̂0 are

given by |σ⟩ ⟨σ| where the |σ⟩ are eigenstates of the {Sz
j } operators, i.e. Sz

j |σ⟩ = szj |σ⟩, with szj = ± 1
2 . Following

Ref. [5], the effective Liouvillian projected onto the diagonal subspace generated by the |σ⟩ ⟨σ| reads

L̂eff = P̂L̂1
1

λ0 − L̂0

L̂1P̂, (S51)

where P̂ is the projector onto this subspace.
At this point, we need to evaluate L̂0(L̂1 |σ⟩ ⟨σ|). Using the notation hjr = S+

j S−
j+r + S−

j S+
j+r, we have that

L̂1 |σ⟩ ⟨σ| = −i
J

2

∑

j;r ̸=0

[hjr, |σ⟩ ⟨σ|]|r|−α. (S52)
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The commutator in (S52) is given by

[hjr, |σ⟩ ⟨σ|] = δszj+r,−szj
(|σ′, jr⟩ ⟨σ| − h. c.), (S53)

where |σ′, jr⟩ = |. . .− szj . . .− szj+r . . .⟩. Substituting into (S52), we obtain

L̂1 |σ⟩ ⟨σ| = −i
J

2

∑

j;r ̸=0

δszj+r,−szj

|r|α (|σ′, jr⟩ ⟨σ| − h. c.). (S54)

Here, if we apply L̂0 to an element of the sum of (S54), we obtain

L̂0 |σ′, jr⟩ ⟨σ| = γ

4

∑

j

(4s′zj s
z
j − 1) |σ′, jr⟩ ⟨σ| = −γ |σ′, jr⟩ ⟨σ| , (S55)

therefore yielding to

L̂0(L̂1 |σ⟩ ⟨σ|) = −γL̂1 |σ⟩ ⟨σ| . (S56)

Now, considering also that λ0 = 0 for the steady states, the effective Liouvillian (S51) is reduced to

L̂eff |σ⟩ ⟨σ| = 1

γ
P̂L̂1L̂1 |σ⟩ ⟨σ| = − 1

γ
P̂[H, [H, |σ⟩ ⟨σ|]]

= −J2

4γ

∑

j;r ̸=0

∑

m;r′ ̸=0

|r|−α|r′|−αP̂(hjrhmr′ |σ⟩ ⟨σ|+ |σ⟩ ⟨σ|hjrhmr′ − 2hjr |σ⟩ ⟨σ|hmr′), (S57)

with hjr = S+
j S−

j+r + S−
j S+

j+r. On applying the projector P̂, the only non-vanishing terms have hmr′ = hjr, and for
each hjr we have two such terms: (m = j; r′ = r) and (m = j + r; r′ = −r). Therefore we drop the sum over m; r′

and multiply by a factor of 2, obtaining

L̂eff |σ⟩ ⟨σ| = −J2

2γ

∑

j;r ̸=0

|r|−2α(h2
jr |σ⟩ ⟨σ|+ |σ⟩ ⟨σ|h2

jr − 2hjr |σ⟩ ⟨σ|hjr). (S58)

Following Ref. [5], we note that h2
jr = 2

(
1
4 − Sz

jS
z
j+r

)
. Therefore, we obtain the CME (5) with generator (6) reported

in the main text.

B. Occupation probability for the 1D symmetric exclusion process with long-jumps

To give some quantitative analysis of the many-particle case we decided to consider the case of a one dimensional
lattice of N sites indexed by {j}N/2−1

−N/2 , with open boundary conditions. We take as initial state the configuration
where the N/2 sites on the left of the origin are all occupied, while the remaining sites are empty. We are interested
in understanding how the occupation probability nj(t) at site j evolves. In particular, considering the flow in and out
of each lattice site, we can write the following discrete time evolution for nj(t):

nj(t+∆t)− nj(t) = [1− nj(t)]

N/2−1∑

l=−N/2,l ̸=j

[nl(t)n
(sp)
l−j (∆t)]− nj(t)

N/2−1∑

l=−N/2,l ̸=j

[1− nl(t)]n
(sp)
l−j (∆t), (S59)

⇒ nj(t+∆t)− nj(t) =

N/2−1∑

l=−N/2,l ̸=j

[nl(t)− nj(t)]n
(sp)
l−j (∆t), (S60)

where n
(sp)
j (∆t) denotes the single-particle hopping probabilities on the lattice. To estimate them, we can look at the

short time solution of their master equation, which we derived in the first section of this manuscript

ṅ
(sp)
j = κ

N/2−1−j∑

r=−N/2−j,r ̸=0

(n
(sp)
j+r − n

(sp)
j )|r|−2α, (S61)
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with initial condition n
(sp)
j (0) = δj,0. Therefore, for short times and j ̸= 0 we get

n
(sp)
j (∆t) ≈ κ∆t

j2α
. (S62)

Inserting (S62) in (S60) we thus obtain

ṅj = κ

N/2−1∑

l=−N/2,l ̸=j

(nl − nj)|l − j|−2α, (S63)

which we will have to solve with the initial condition nj(0) = 1−Θ[j], where Θ is the discrete Heaviside step function.
Since we used a short-time approximation to derive (S63), it makes sense to solve it in the same approximation.
Therefore, for j ≥ 0 we would have

nj(∆t) ≈ κ∆t

N/2−1∑

l=−N/2,l ̸=j

(1−Θ[l])|l − j|−2α, (S64)

⇒ nj(∆t) ≈ κ∆t

−1∑

l=−N/2

|l − j|−2α = κ∆t

N/2+j∑

r=j+1

|r|−2α. (S65)

This has a really simple physical interpretation. Indeed, it amounts to say that the probability that a site j ≫ 0 is
occupied after a short time t corresponds to the independent probabilities that at least one particle has jumped to
that site starting from the step-function initial configuration. Similarly, for j < 0 we have

nj(∆t) ≈ 1− κ∆t

N/2−1∑

l=−N/2,l ̸=j

Θ[l]|l − j|−2α, (S66)

⇒ nj(∆t) ≈ 1− κ∆t

N/2−1∑

l=0

|l − j|−2α, (S67)

and hence

⇒ nj(∆t) ≈ 1− κ∆t

N/2−1+|j|∑

r=|j|
|r|−2α. (S68)

Again, this has a simple physical explanation, i.e. after a short time t the occupation of a site on the left of the chain
is only influenced by the escape probability of the particle that initially was at that position.

Putting (S65) and (S68) together we thus get the occupation profile for short time:

nj(t) = Θ[j]κt

N/2+j∑

r=j+1

|r|−2α + (1−Θ[j])
[
1− κt

N/2−1+|j|∑

r=|j|
|r|−2α

]
. (S69)

To get some insight about the large-time regime we can instead look at the stationary solution of (S60). In this
case we would have

N/2−1∑

l=−N/2,l ̸=j

[nl − nj ]n
(sp)
l−j = 0, (S70)

which can be solved by setting nj = c ∈ R ∀j. The constant is determined by the normalization condition which
implies the conservation of the number of particles, i.e.

∑
l nl =

N
2 . Therefore, we have that for large t the stationary

solution is the flat profile

nj = 1/2 ∀j. (S71)
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III. THE QUANTUM CASE: WEAK-DEPHASING REGIME

Here we consider the QME [Eq. (1) in the main text] in the single-exciton case, for weak dephasing and d = 1. We
rewrite the Hamiltonian [Eq. (2) in the main text] as

H =
∑

1≤i<j≤N

hi,j(S
+
i S−

j + h.c.), (S72)

where hi,j = J [|i− j|α +(N − |i− j|)α](1− δi,j) is the single-particle Hamiltonian with periodic boundary conditions.
The evolution of the two-point correlation functions Gj,m = Tr(ρS+

j S−
m) in the single-particle regime is described by

Eqs. (S3-S4), that we rewrite in matrix form as

Ġ = i[hT , G]− γ[G− diag(G)] . (S73)

In order to solve Eq. (S73), here we follow the approach of [6]. Thanks to the time-linearity of Eq. (S73), we can
solve it in terms of the eigenvalues and eigenvectors of the time-evolution operator (Eq,k and Aq,k respectively, with
some labels q, k that we characterize below). We substitute Aq,k

j,m(t) = Aq,k
j,me−Eq,kt into Eq. (S73), leaving us with the

eigenvalue equation

−Eq,kA
q,k
j,m = i

N−1∑

l=0

[hl,jA
q,k
l,m −Aq,k

j,l hm,l]− γ(1− δj,m)Aq,k
j,m. (S74)

At this point we exploit translational invariance to write Aq,k
j,m = eiqjAq,k

0,m−j , where q = 2π
N j, j = 0, . . . , N − 1.

Substituting this in Eq. (S74) we thus have

Eq,kA
q,k
0,m−j = −i

N−1∑

l=0

[
hl,jA

q,k
0,m−le

iq(l−j) −Aq,k
0,l−jhm,l

]
+ γ(1− δ0,m−j)A

q,k
0,m−j . (S75)

This equation can be written in matrix form as

(Cq + γX)A⃗q,k = Eq,kA⃗
q,k. (S76)

Here, A⃗q,k are vectors of size N with components Aq,k
0,m (m = 0, . . . , N − 1), while Cq are N ×N circulant matrices

with elements

(Cq)m,j = i
[
1− eiq(m−j)

]
hm,j (m, j = 0, · · · , N − 1) (S77)

and X is a diagonal matrix with elements Xm,m = 1− δ0,m (where m = 0, . . . , N − 1). Therefore, we have to solve N
independent eigenvalue problems of the type of Eq. (S76) (one for each value of q), where each provides N eigenvectors
and eigenvalues, A⃗q,k and Eq,k, for some labeling index k = 0, . . . , N − 1. Then, given an initial condition G(0) for
the two-point correlation matrix, the time-evolved G(t) is

Gj,m(t) =
∑

q,k

Tr [(Aq,k)−1G(0)]Aq,k
j,me−Eq,kt. (S78)

Since an analytical solution of the eigenvalue problem in Eq. (S76) for q ̸= 0 is non-trivial, in the following we focus
on the small-dephasing regime, and we treat γX as a perturbation of Cq.

A. Small dephasing: perturbation theory

For the unperturbed problem (γ = 0) the normalized eigenstates (A⃗q,k)(0) and the corresponding eigenvalues E
(0)
q,k

(k = 0, 2π
N , . . . , 2πN−1

N ) of the circulant matrices Cq are

(Aq,k
0,m)(0) =

eimk

√
N

, (S79)
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E
(0)
q,k =

N−1∑

m=0

(Cq)0,meimk. (S80)

From Eq. (S77) one can see that Cq are anti-hermitian matrices. Therefore, all the eigenvalues in (S80) are purely
imaginary conjugated pairs, except one which is equal to zero [7]. In order to use standard perturbation theory
formulas for the eigenvalues of hermitian operators we multiply both sides of Eq. (S76) by the imaginary unit, so that,
up to correction of order γ4, we have

Eq,k = E
(0)
q,k + γδ

(1)
q,k − iγ2δ

(2)
q,k + γ3δ

(3)
q,k + o(γ4), (S81)

with the following real coefficients:

δ
(1)
q,k =

N − 1

N
, (S82)

δ
(2)
q,k =

i

N2

∑

p ̸=k

1

E
(0)
q,p − E

(0)
q,k

, (S83)

δ
(3)
q,k =

1

N3

∑

p ̸=k

∑

s̸=k,p

1

(E
(0)
q,k − E

(0)
q,p)(E

(0)
q,k − E

(0)
q,s )

. (S84)

The first order of the perturbation series gives a constant contribution to the real part of the eigenvalues, whose
fluctuations are captured by the third-order term. The second-order term captures the fluctuations of the imaginary
part of the eigenvalues. These fluctuations are small, as one can see from Fig. S3: for large system sizes the smallest
real part of the eigenvalues predicted by (S81) (green symbols) converges to γ, and the convergence does not depend
on the value of the hopping rate α. This means that the correction obtained from the first-order perturbation
theory is effectively dominant. Therefore, for weak dephasing, we can keep just the leading order corrections for the
eigenvectors,

Aq,k
0,m = (Aq,k

0,m)(0) − γ

N

∑

p ̸=k

(Aq,p
0,m)(0)

E
(0)
q,k − E

(0)
q,p

, (S85)

and eigenvalues,

Eq,k = E
(0)
q,k + γ

N − 1

N
, (S86)

which, when plugged into (S78), would imply that Gj,m relaxes to its stationary state with a fixed rate ∼ γ.

B. Exact diagonalization

An exact diagonalization approach reveals that the real part of the vast majority of the eigenvalues are indeed
∼ γ, independent of α (see red symbols in Fig. S3). However, we find also that there are N − 1 real eigenvalues
which, for large system sizes, acquire a decay rate smaller than γ (see blue symbols in Fig. S3). This is not captured
by the perturbation theory, and thus the long-time dynamic, which is dominated by these small eigenvalues, is non-
perturbative. Therefore, in the long-time limit we can restrict our analysis to these slow-decaying terms. The results
obtained with exact numerics are shown in Fig. S4 (left panel). The logarithmic plot shows the emergence of a
power-law tail in the exciton density profile nj = Gj,j before reaching a minimum at j = N/2. There, the profile
bends and the density increases because of the periodic boundary conditions that we have employed. Comparing
the amplitudes of the populations and coherences obtained in the long-time limit we found that the populations are
at least one order of magnitude larger than the coherences. Therefore, this justifies an adiabatic elimination of the
coherences in Eq. (S73) similarly to the large dephasing regime (see Sec. I A) which would lead us to the classical
master equation (S7). Indeed, as one can see in the right panel in Fig. S4, the diffusion constant obtained numerically
in the weak-dephasing regime (symbols) agrees quite well with that predicted by the CME (continuous line), and the
agreement improves as we increase the system size.
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