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We investigate physical implications of a gravitational analog of axion electrodynamics with a
parity-violating gravitoelectromagnetic theta term. This is related to the Nieh-Yan topological
invariant in gravity with torsion, in contrast to the well-studied gravitational Chern-Simons term
quadratic in curvature, coupled via a dynamical axionlike scalar field. Axion gravitodynamics is
the corresponding linearized theory. We find that potentially observable effects are over 80 orders
of magnitude stronger than for its Chern-Simons counterpart and could be in reach for detection
by experiments in the near future. For a near-Earth scenario, we derive corrections to the Lense-
Thirring effect and compare them to data from satellite-based experiments (Gravity Probe B). For
gravitational waves, we find modified dispersion relations, derive the corresponding polarization-
dependent modified group and phase velocities, and compare them to data from neutron star mergers
(GW170817) to derive even stronger bounds.

INTRODUCTION

General Relativity and its modifications or alternative
theories of gravity are being tested in our times beyond
the classical experimental tests that were settled in the
20th century. Prominent physical contexts that gener-
ate such tests are gravitational waves and corrections to
the precession of gyroscopes orbiting rotating bodies such
as the Earth. Both are predictions of General Relativ-
ity and both have been corroborated in the 21st century
through the detection and measurements of the LIGO
and Gravity Probe B experiments respectively [1, 2].

The linearized limit of General Relativity plays a cen-
tral role in both cases above. Notably, Einstein’s equa-
tions in this weak field limit are similar to Maxwell’s
equations for electrodynamics, with the electric and mag-
netic field replaced by the gravitational and the gravito-
magnetic field. The latter is generated by rotating masses
and it is the backbone of the Lense-Thirring effect [3].
Having this analogy in mind, a natural question regards
the existence and the potential physical effects of a grav-
itational theta term, the gravitational counterpart of the
electromagnetic term θ ~E · ~B in the Lagrangian. The lat-
ter, in case θ is not the same everywhere, appears in
axion electrodynamics [4] and it has important physical
uses, notably as an effective field theory in the physics of
topological materials [5, 6], such as topological insulators
and superconductors [7, 8].

Axion Gravitodynamics is the theory of linearized
gravity that contains the gravitational theta term θ ~EG ·
~BG, with the appearance of the gravitational field ~EG =

−~∇Φ − 1
2
~̇A and the gravitomagnetic field ~BG = ~∇× ~A,

in terms of the Newton and gravitomagnetic potentials

Φ and ~A (we drop the subscript G in the notation of
the fields from now on until the conclusion, since we will
always refer to the gravitational and never to the elec-
tromagnetic ones). Remarkably, this term has been used
in the recent past to study the gravitational response
of topological materials [9–12]. Its nonlinear origin was
proposed in [13] to be the teleparallel equivalent of Gen-
eral Relativity with the Weitzenböck connection, modi-
fied with the Nieh-Yan term [14], the quadratic in tor-
sion topological invariant in four dimensions [15, 16]. It
is worth noting that the Nieh-Yan term has found nu-
merous applications in recent years, for instance in mod-
ified Einstein-Cartan [17] or teleparallel gravity [18] and
in cosmological scenarios [19, 20] and moreover it is di-
rectly related to the Holst term that has played a pivotal
role in loop quantum gravity [21–25].

Our purpose in this paper is to study the effect of ax-
ion gravitodynamics on the precession of gyroscopes and
on the propagation of gravitational waves. In a similar
spirit to the Peccei-Quinn mechanism in QCD, we pro-
mote the parameter θ to an axion-like field θ(t, ~x) [26].
This introduces a new dimensionful scale, essentially the
decay constant of the axion-like field, which should be
bounded by observations.

The setting is analogous to the Chern-Simons modifi-
cation of General Relativity [27], which was used in [28]
to calculate corrections to the general-relativistic gravit-
omagnetic field around massive spinning bodies in case θ
is only time-dependent (as in the quintessence scenario).
Although a parity-violating interaction between the grav-
itoelectric and gravitomagnetic fields is introduced in
both settings [29], the crucial difference is that the Chern-
Simons modification is based on higher derivatives (since
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the curvature and torsion tensors differ by one deriva-
tive) and therefore an ~E · ~B term is not sufficient for a
nontrivial coupling to θ. On the contrary, in axion gravi-
todynamics it is precisely the ~E · ~B term that couples to θ,
which leads to different quantitative predictions. What is
more, we argue that the effect of this term in axion grav-
itodynamics is much stronger and therefore if it exists
it becomes much more relevant than its Chern-Simons
counterpart. Comparing with the Gravity Probe B ex-
periment, we find that the coupling is very weak and
therefore it should be either detected in upcoming exper-
iments or certain reasonable models will be ruled out.

In a similar spirit to the modification induced by
the electromagnetic theta term to the propagation of
light [30], we find that the dispersion relation of gravita-
tional waves is modified in axion gravitodynamics. This
leads to a splitting of the group and phase velocities of
the two polarizations of the gravitational wave, which is
a direct consequence of parity and Lorentz violation. Us-
ing the observed discrepancy between the group velocity
of the gravitational wave event GW170817 and the speed
of light [31], we are able to place an additional bound on
the coupling of the gravitational theta term. This bound
is stricter than the one obtained previously by five orders
of magnitude.

AXION GRAVITODYNAMICS

The most common way to obtain the Einstein field
equations of General Relativity from an action princi-
ple is to consider the Einstein-Hilbert action, which is a
second-order formulation with the only independent field
being the Riemannian metric. However, there exists a
variety of different starting points that also lead to the
Einstein equations (see e.g. the textbook [32] for a de-
tailed exposition.). For example one may consider as
independent variable the vierbein (or tetrad) or employ
the first-order (Palatini) formulation where the indepen-
dent variables are the metric and the linear connection,
respectively the vierbein and the spin connection.

Einstein’s General Relativity may also be viewed as a
particular case in a class of gravity theories formulated
in terms of the Weitzenböck connection, which has van-
ishing curvature but nonvanishing torsion [32]. The in-
dependent field in this case is the vierbein eaµ, where
µ and a are spacetime and tangent (Lorentz) indices re-
spectively, both ranging from 0 to 3; the torsion of the
Weitzenböck connection is not an independent field but
it is given by T ρ

µν = 2 ea
ρ∂[µe

a
ν] in terms of the vierbein

and its inverse. The correspondence to the usual formu-
lation of General Relativity is based on the identity [33]

1

16
RLC = T− 1

4
∇µTµνν , (1)

which relates the Ricci scalar RLC of the Levi-Civita

connection to the torsion of the Weitzenböck connection
up to a total derivative term. The scalar T is the fol-
lowing linear combination of the three parity-preserving,
quadratic in the first derivative of the vierbein terms
called Weitzenböck invariants:

T =
1

4
TµνρT

µνρ +
1

2
TµνρT

ρνµ − TνµµT νρρ . (2)

Due to the identity (1), the Einstein-Hilbert action (writ-
ten in terms of the vierbein) is identical, up to boundary
terms, to the action functional

STEGR = − 1

2κ2

∫
d4x eT , (3)

where κ2 = 8πG and e is the vierbein determinant. The
two formulations are therefore classically equivalent. In
fact, this action is the starting point for the so-called
teleparallel equivalent formulation of General Relativity.

Jackiw and Pi considered a modification of General
Relativity, extending it by a parity-violating gravita-
tional Chern-Simons term which is quadratic in the Rie-
mann curvature tensor [27]. Subsequently, the authors
of [28] studied the effects of this modified theory on the
precession of gyroscopes orbiting around the Earth, plac-
ing bounds on the allowed parameter space of the theory.
A crucial ingredient for this analysis was the coupling of
the Chern-Simons term to a pseudoscalar axion-like field.
Motivated by these works we pose the following question.
Suppose that instead of the usual formulation of General
Relativity in terms of the Levi-Civita connection which
has curvature but not torsion, we start with the equiva-
lent formulation in terms of the Weitzenböck connection
which has torsion but not curvature. How can the theory
be modified by a gravitational Chern-Simons-like term
that is quadratic in the torsion tensor and what physical
consequences can be obtained once an axion-like field is
coupled to the theory?

The answer to this question is simple once one notices
that there exists a four-dimensional, parity-violating and
Lorentz invariant topological invariant which is quadratic
in the torsion tensor. This is the Nieh-Yan 4-form defined
in [14] for an arbitrary connection. In a local coordinate
basis, the components of this 4-form read

1

12
Nµνρσ :=

1

2
T[µν

λTρσ]λ −R[µνρσ] (4)

in terms of the components of the curvature and torsion
tensors. Furthermore, it was shown in Ref. [14] that
this object corresponds to a total derivative due to the
following identity:

1

12
Nµνρσ = ∂[µTνρσ] . (5)

In absence of torsion (e.g. for the Levi-Civita connec-
tion) the Nieh-Yan 4-form (4) vanishes identically due
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to the algebraic Bianchi identity for the Riemann ten-
sor. On the other hand, choosing the curvature-free but
torsion-full Weitzenböck connection, one is left with a
single torsion-squared term.

Based on these observations, a modification of Gen-
eral Relativity formulated in terms of the Weitzenböck
connection is singled out; it is obtained by adding the
quadratic torsion term of Eq. (4) to the action functional
(3). Since this is a total derivative term, only a coupling
to an additional (pseudo)scalar field θ(x) would lead to
modified dynamics, as is the case in the Chern-Simons
modified gravity too. Such axion-like fields appear in a
variety of Standard Model extensions as pseudo-Nambu-
Goldstone bosons of spontaneously broken global symme-
tries and they are also abundant in models arising from
string theory compactifications as dark matter, inflaton
or quintessence candidates [34, 35]. It is then natural
to assume that if such a field exists it can couple to the
quadratic torsion term. Therefore we consider the action
functional (we work in units where c = 1)

S =
1

2κ2

∫
d4x e

(
−T +

`θ(x)

4
εµνρσTµνλT

λ
ρσ

)
−
∫

d4x e

(
1

2
(∂θ)2 + V (θ)

)
+ SM , (6)

where V (θ) is the potential of the field θ(x). Since θ(x)
has mass dimension 1, a scale ` with dimensions of length
is introduced in the theory.

It is important to note that although both the Chern-
Simons modified gravity and the Weitzenböck-based
teleparallel gravity modified by the Nieh-Yan term are
equivalent to General Relativity in absence of the field θ
and its coupling to topological terms, the modified the-
ories are not equivalent to each other. Crucially, this
additional term is quadratic in derivatives in the latter
case, in contrast to Chern-Simons modified gravity where
it is quartic in derivatives. Since in the theory given by
(6) there are less derivatives in the term that modifies
the dynamics compared to Chern-Simons gravity, this is
expected to lead to stronger physical effects and therefore
the theory we introduced deserves a separate study.

The field equations obtained from this theory after
variation with respect to the vierbein and the field θ are
the modified Einstein and Klein-Gordon equations

Gµν + Cµν = κ2Tµν , � θ =
dV

dθ
− `

8κ2
εµνρσTµνλT

λ
ρσ .

Here Gµν is the usual Einstein tensor and Cµν is obtained
from the variation of the Nieh-Yan (θ-)term with respect
to the vierbein,

Cµν = `εµκρσT
ρσ
ν∂

κθ . (7)

As usual, Tµν is the total energy-momentum tensor con-
taining contributions both from the matter fields and
from θ(x). Inspection of the modified Einstein equation

leads to two remarks: First, the antisymmetric part of
Cµν vanishes, which can be seen as the on-shell constraint

ελρσ[µT
ν]

ρσ = 0 for the torsion tensor. Second, one may
confirm that the divergence of Cµν is equal to the diver-
gence of the energy-momentum tensor for θ(x), which is
a useful consistency check.

In the present paper we are interested in the weak
field limit of this theory, which we are now going to
derive. Since we are not going to delve in the dynam-
ics of θ, hence we consider it effectively nondynamical
and treat it as a background field. In the weak field
limit, the vierbein and its inverse are split into flat back-
ground values and perturbations as eaµ ' δaµ + aaµ and
ea
µ ' δµa − aaµ, where aaµ = δaνaνµ is a small pertur-

bation containing both a symmetric hµν := 2a(µν) and
an antisymmetric bµν := 2a[µν] piece. The former cor-
responds to the linearized metric perturbation around
the flat Minkowski metric, since gµν = eaµe

b
νηab =

ηµν + 2a(µν) + O(a2), while the latter is the linearized
Kalb-Ramond field. In this limit, the torsion tensor be-
comes Tµνρ ' ∂[µhν]ρ + ∂[µbν]ρ. Then the first line of the
nonlinear action (6) reduces to the linearized one

S ' − 1

8κ2

∫
d4x

(
2 ∂µhνρ∂

[µhν]ρ + 2 ∂µh ∂νh
µν

−∂µh ∂µh− ∂µhµν∂ρhρν − ` θ εµνρσ∂µhνλ∂ρhλσ
−2 ` θ εµνρσ∂µbνλ∂ρh

λ
σ − ` θ εµνρσ∂µbνλ∂ρbσλ

)
, (8)

where we denote the trace of the linearized metric by
h := ηµνh

µν . This action is invariant under linearized
diffeomorphisms parametrized by an arbitrary vector ξµ,
which act on the fields as

δhµν = ∂µξν + ∂νξµ and δbµν = ∂µξν − ∂νξµ . (9)

In the following we will be interested in backgrounds
where the Kalb-Ramond perturbation vanishes, bµν = 0.
Then, the field equations obtained by variation of the
action (8) with respect to hµν are

�hµν − ηµν�h+ ∂µ∂νh− 2∂ρ∂(µhν)ρ

+ηµν∂ρ∂σh
ρσ − ` εκρσ(µ∂κθ ∂ρhσν) = −κ2Tµν . (10)

One can then perform a coordinate transformation and
reach the harmonic gauge ∂µh̄µν = 0, where h̄µν := hµν−
1
2ηµνh is the trace-reversed linearized metric. Then the
field equations take the simpler form

� h̄µν − ` ερσλ(µ∂ρθ ∂σh̄λν) = −κ2 Tµν . (11)

Taking the divergence of the linearized field equation in
vacuum, we observe that it is consistent with the har-
monic gauge condition provided the second derivatives
of θ(x) are negligible. The energy-momentum tensor for
a finite distribution of matter has the form Tµν = ρ vµvν ,
where ρ is the mass density of the source. We will use the
notation Ji = ρvi for the components of the mass current
vector with Latin indices denoting spatial directions.
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The theory given by the field equations (11) is what
we call axion gravitodynamics. To see why, recall that
within the framework of gravitoelectromagnetism (see
e.g. the review [36]) scalar and vector potentials are de-
fined through the components of h̄µν as

Φ := −1

4
h̄00 and Ai :=

1

2
h̄i0 . (12)

Subsequently, one can define the gravitational and grav-

itomagnetic fields by ~E := −~∇Φ− 1
2
~̇A and ~B := ~∇× ~A.

In terms of these, the linearized field equations (11) take
the form

~∇ · ~E = −κ
2

2
(ρ+ ρθ) , ~∇× ~E +

1

2
~̇B = ~0 , (13)

~∇ · ~B = 0 , ~∇× ~B − 2 ~̇E = −κ2( ~J + ~Jθ) ,

where the contributions of θ(x) can be seen as the effec-
tive mass and mass current densities

ρθ =
`

κ2
~∇θ · ~B and ~Jθ = − `

κ2

(
~∇θ × ~E +

θ̇

2
~B

)
(14)

on the right hand side of the field equations. In the com-
ing sections we will solve these equations in specific phys-
ical settings. It is worth mentioning that formally they
have the same form as the ones found by Sikivie in the
context of axion models [37] and by Wilczek in axion
electrodynamics [4].

EFFECT ON GYROSCOPE PRECESSION

We would now like to use axion gravitodynamics to
compute the gravitomagnetic field of a spinning spherical
body, for instance a planet, in case θ is spatially homo-
geneous and slowly-varying, such as a quintessence field
[38]-[39]. We further assume that the source is station-
ary, i.e. φ̇ = Ȧi = Ėi = 0. Under these assumptions, one
can act on the fourth equation in (13) with the operator(
` θ̇
2 I + ~∇×

)
and, using ~∇ · ~B = 0, obtain(

∇2 +
`2θ̇2

4

)
~B = κ2

(
` θ̇

2
~J + ~∇× ~J

)
. (15)

This is an inhomogeneous Helmholtz equation for the
gravitomagnetic field ~B. To solve it, we consider the
case of a homogeneous spherical source of radius R with
constant density ρ and angular velocity ~ω. The mass
current of such a matter distribution is given by

~J(~r) = −ρ rΘ(R− r) r̂ × ~ω . (16)

The general solution of equation (15) for such a source
reads as

~B = κ2ρR2 [f1(r) ~ω + f2(r) r̂ × ~ω + f3(r) r̂ × (r̂ × ~ω)] ,

in terms of the functions

f1(r) =
2R

r
j2(

` θ̇

2
R) y1(

` θ̇

2
r) ,

f2(r) = −` θ̇
2
Rj2(

` θ̇

2
R) y1(

` θ̇

2
r) ,

f3(r) =
` θ̇

2
Rj2(

` θ̇

2
R) y2(

` θ̇

2
r)

(17)

for the exterior region (r ≥ R). The elementary func-
tions j and y correspond to spherical Bessel functions of
the first and second kind, respectively. This solution is
continuous on the boundary of the sphere and in the GR
limit ` → 0 it reproduces the well-known result for the
gravitomagnetic field generated outside a rotating spher-
ical body

~BGR = −κ2ρR2

[
2R3

15r3
~ω +

R3

5r3
r̂ × (r̂ × ~ω)

]
. (18)

This result highlights an important qualitative feature
of the gravitational θ term, which was also found in
Chern-Simons modified gravity in Ref. [28]. The grav-
itomagnetic field has an additional component parallel
to the vector r̂×~ω. This toroidal component is absent in
GR and appears as a consequence of the parity violation
introduced by the topological terms in each case.

Following the analogous discussion in Ref. [28], we can
now compute the correction induced by the θ term in the
Schiff precession of a gyroscope [40], while it performs
a circular polar orbit around a rotating spherical body.
Using the standard relation

~̇S = 2 ~B × ~S , (19)

between the time variation of the spin ~S of the gyroscope
and the gravitomagnetic field generated by the spherical

body, one can show that the ratio α := |〈 ~̇Sθ〉|/|〈 ~̇SGR〉|
reads as

α = 1+
15r2

R2
j2(

` θ̇

2
R)

(
y1(

` θ̇

2
r) +

` θ̇

2
r y0(

` θ̇

2
r)

)
, (20)

where r and R are the radii of the gyroscopic orbit and

the spherical body, respectively. ~̇Sθ is the contribution

of θ to the change in gyroscope’s spin and ~̇SGR the stan-
dard change predicted by GR, averaged over one orbital
period. This result is qualitatively similar to the one
obtained in Ref. [28] for Chern-Simons modified gravity,
αCS. However, the two ratios α and αCS are quantita-
tively different.

Measurement of the Schiff precession for gyroscopes
orbiting the Earth at an altitude of 642 km was one of
the primary goals of the Gravity Probe B mission [2].
The final results of the mission reported a verification
of the general-relativistic result at an accuracy of 19%.
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The laser-ranged satellites LAGEOS, LAGEOS 2, and
LARES further improve the accuracy to about 5% [41],
but here we will work with the more conservative result.
If we assume that the Earth is a perfect sphere with ra-
dius R = 6368 km, then the satellite’s orbit has a radius
r = 7010 km. Using these values, we can then plot the
ratio (20) as depicted in Figure 1. From this plot we con-

|` θ̇| (km−1)|` θ̇| (km−1)

αα

FIG. 1. The ratio α in (20) for the Gravity Probe B mission.

The x-axis is logarithmic in the variable |` θ̇|. The gray region
enclosed by the dashed lines α = ±0.19 represents the 19%
accuracy with which the Gravity Probe B final results confirm
General Relativity.

clude that a 19% verification of the general-relativistic
effect places the following generic upper bound:

|` θ̇| / 10−4 km−1 ' 2× 10−23 GeV . (21)

One should also note that for certain non generic values
of the fundamental parameters it can be relaxed by 1-2
orders of magnitude. It is useful to compare the strengths
of the predicted effects between Axion Gravitodynamics
and Chern-Simons modified gravity. In the latter case
and in terms of the same parameters ` and θ̇, Ref.[28]
find

|`CS θ̇| / 1060 GeV . (22)

Thus we observe that the bound obtained from axion
gravitodynamics is immensely stricter that the Chern-
Simons one. For a field θ(t) = θ0e

−t/` and, therefore
` θ̇ ≈ θ, the above bounds imply that the coupling of
the topological term in axion gravitodynamics is weaker
than the Chern-Simons one by approximately 83 orders
of magnitude. The bound (21) will be further improved
in the next section.

EFFECT ON GRAVITATIONAL WAVES

Let us now study the gravitational wave solution of the
system of equations (13), for the case of a slowly varying
and spatially homogeneous axion field. For gravitational

waves propagating in vacuum, we also have to consider
the source-free case of vanishing ρ and ~J . Acting on the
fourth equation in (13) with a time derivative, neglect-
ing second time derivatives of θ, and using the second

equation in (13) to eliminate ~̇B, leads to

� ~E = −` θ̇
2
~∇× ~E . (23)

This PDE is solved by a transversal circular polarized
wave ~E with frequency ω, wave vector ~k and dispersion
relation

ω2 − k2 = ±`θ̇
2
k , (24)

where k ≡ |~k|. The positive and negative signs corre-

spond to left and right helicity respectively. For k > `θ̇
2 ,

these dispersion relations have real solutions. The re-

quirement k > `θ̇
2 holds by default for gravitational

waves, since their typical wavelengths are λGW = 2π
k '

103km ' 5 × 1021GeV−1 and |` θ̇| should respect the
bound (21).

Let us now discuss the consequences of the modified
dispersion relation (24) to the phase and group velocities
of a gravitational wave. These are found to be

vp =
ω

k
=

√
1± `θ̇

2k
' 1± `θ̇

4k
+O(`2) ,

vg =
dω

dk
=

1± `θ̇
4k√

1± `θ̇
2k

' 1 +
`2θ̇2

32k2
+O(`3) ,

(25)

respectively. The front velocities (k →∞ limit) are 1, i.e.
equal to the speed of light. Similarly to the electromag-
netic case of [30], we observe that the two polarizations
propagate with different velocities, which are also differ-
ent from the speed of light. The group velocity is larger
than the speed of light and polarization-independent up
to O(`2). These are direct consequences of the parity
and Lorentz violation, respectively, which are introduced
through the gravitational theta term. Moreover, we ob-
serve that the group velocity is modified at order O(`2),
while the phase velocity is already affected at order O(`).

The group velocity of the neutron star merger gravita-
tional wave event GW170817 was bounded by observa-
tion to be [31]

− 3× 10−15 ≤ vg − 1 ≤ 7× 10−16. (26)

This is a bound on the ratio of the speed of gravitational
waves over the speed of light. The group velocity (25)
predicted by axion gravitodynamics can be compared to
the observed one (26). As we already mentioned, the
typical wavelengths of gravitational waves are λGW '
5 × 1021GeV−1. Ignoring terms of order O(`3), we can
therefore obtain the upper bound

|` θ̇| / 2× 10−28 GeV . (27)
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This is stricter than the one in (21) by five orders of
magnitude. We discuss this further in the conclusions.

CONCLUSIONS

Axion gravitodynamics is the theory that incorporates
in the weak field limit of General Relativity a gravita-
tional θ term proportional to the product ~EG · ~BG of the
gravitational and gravitomagnetic fields. It arises natu-
rally as the linearization of the teleparallel equivalent of
General Relativity with a Nieh-Yan term. Promoting θ
to a field and introducing an associated length scale `,
leads to a set of gravitational field equations for ~EG and
~BG that include first derivatives of θ(x) in striking simi-
larity to axion electrodynamics. Motivated by the variety
of uses of the latter in physics, it is natural to ask what
is the effect of axion gravitodynamics in certain physical
phenomena, such as the Lense-Thirring effect and the
propagation of gravitational waves in vacuum.

In this paper, under the assumption that the field θ
is spatially homogeneous and depends only on cosmic
time, we solved the gravitational field equations of the
theory in these two settings. First we computed the
gravitomagnetic field around a spinning spherical mass
and its corrections to the general relativistic prediction.
At a qualitative level, we found additional components
to the gravitomagnetic field with no analogue in Gen-
eral Relativity, which were first reported in the study of
Chern-Simons modified gravity [28]. Comparing with the
observational data of the Gravity Probe B satellite mis-
sion, a bound on the parameters of the theory is found,
|` θ̇| / 2 × 10−23 GeV, which is much stronger than the
one in the Chern-Simons case (/ 2× 1060 GeV). There-
fore, we conclude that the effect of axion gravitodynamics
is stronger and if it exists it could very well be discovered
or ruled out by near future observations [42–44].

The presence of θ(t) has an effect on the propaga-
tion of gravitational waves too, leading to a modifi-
cation of their dispersion relation which influences the
phase and group velocities of gravitational waves in a
polarization-dependent way (birefringence). Comparison
to the reported bounds on the group velocity from the
neutron star merger GW170817 allowed us to place an
even stricter bound to the parameters of axion gravitody-
namics, |` θ̇| / 2×10−28 GeV. Together with the Lense-
Thirring effect, the modified gravitational wave propaga-
tion can serve as observational signatures of Axion Grav-
itodynamics.

Although we have not discussed the dynamics of the
field θ, appealing to its (quintessential) axionic nature
prompts us to interpret this as a bound on its decay
constant |fθ| > 1028|θ̇|GeV. The decay constant for
a quintessence field should be approximately equal to
(and definitely not higher than) the reduced Planck mass
MP ' 3 × 1018 GeV where quantum gravitational ef-

fects become relevant. Assuming that fθ . MP di-
rectly implies that |`| & M−1P . This would mean that

|θ̇| . 6 × 10−10GeV2, a reasonable outcome given that
to explain dark energy the kinetic energy of quintessence
should be much lower than its potential energy. More
detailed study on the dynamics of θ is required to test
these statements more precisely. Finally, it would be in-
teresting to explore the possibility of a field that is not
spatially homogeneous. In that case, finding solutions to
the field equations becomes more demanding and we plan
to report on this in future work.

Note added. Recently, we learned of the preprint [45],
which has some overlap with our discussion on gravita-
tional waves and a proposal for a stronger bound on the
parameters of the theory based on phase velocities.
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