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The twist-3 contribution, consisting of twist-2 transversity generalized parton distributions (GPDs) and a
twist-3 meson wave function, to deeply virtual pion electroproduction is discussed. The twist-3 meson
wave function includes both the qq̄ and the qq̄g Fock components. Two methods to regularize the end point
singularities are introduced—quark transverse momenta and a gluon mass. Using existing generalized
parton distribution parametrizations the transverse and the transverse-transverse interference cross sections
for π0 production are calculated and compared to experimental data.
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I. INTRODUCTION

It has been shown [1] that in the generalized Bjorken
regime of large photon virtuality (Q2) and large invariant
mass of the hadrons in the final state (W), but fixedBjorken-x
(xB) and squared momentum transfer (t) much smaller than
Q2, the amplitudes for exclusive meson electroproduction
factorize into generalized parton distributions (GPDs) and
perturbatively calculable subprocess amplitudes. The con-
tributions to cross sections from longitudinally polarized
photons dominate in that regime, while those from trans-
versely polarized photons are suppressed by 1=Q2, leaving
aside logarithmicQ2 dependencies. However, it is important
to realize that it is theoretically unknownhow largeQ2 andW
must be for the factorization concept to hold. Thus, from
extensive experimental and theoretical investigations it
turned out that for deeply virtual electroproduction of
pseudoscalar mesons (DVMP) for which experimental data
are available for Q2 < 10 GeV2, the longitudinal cross
section is smaller than the transverse one, leaving aside
the meson-pole contributions. This is most obvious from the
Rosenbluth measurement of the separated cross sections for

π0 production carried out by the Hall A collaboration at
Jefferson Lab [2,3]: dσL ≪ dσT is in fact compatible with
zero at Q2 of about 2 GeV2 and xB ≃ 0.36 within exper-
imental errors. Large contributions from transversally polar-
ized photons are as well seen by HERMES in asymmetries
for πþ production measured with a transversally polarized
proton target [4]. The large absolute value of the transverse-
transverse interference cross section for π0 electroproduction
[5] also signals strong contributions from transversally
polarized photons.
In order to achieve an understanding of the experimental

data the transverse amplitudes have been modeled in [6] by
twist-2 transversity (or helicity-flip) GPDs in combination
with a twist-3 meson wave function in Wandzura-Wilczek
(WW) approximation, i.e., by ignoring the three-body
(qq̄g) Fock component of the meson. It is to be stressed
that the factorization proof given in [1] does not apply to
the transverse amplitudes. Namely, they suffer from an end-
point singularity which has been regularized in [6] by
allowing for quark transverse momenta in the meson. The
emission and reabsorption of quarks from the nucleon are
still treated collinearly to the nucleon momenta. By the
quark transverse momenta in the meson wave function one
effectively takes into account the transverse size of the
meson which is neglected in the usual collinear approach.1Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The role of the meson’s transverse size in diffractive electro-
production of vector mesons has been investigated in [7].
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This so-called modified perturbative approach (MPA)
describes the data on electroproduction of pseudoscalar
mesons [6,8,9] rather well. Similar ideas have also been
discussed in [10]. We remark that the twist-3 effect
advocated for in [6] also occurs in exclusive electro-
production of longitudinally polarized vector mesons,
but there is little effect visible only in some of the spin-
density matrix elements [11]. That is in agreement with
experiments [12,13]. The twist-3 effect which we discuss
here, despite similarities, differs from the one advocated for
by Anikin and Teryaev [14] for electroproduction of
transversally polarized ρ mesons. Their twist-3 effect
consists of the usual twist-2 helicity non-flip GPDs in
combination with a twist-3 vector-meson wave function.
In our recent investigation of wide-angle pion electro-

production [15], we went beyond the WW approximation
utilized in [6] and computed the contribution from three-
body (qq̄g) Fock component of the meson. As a byproduct,
we also obtained the three-body contributions at large Q2

and t ¼ 0. The three-body twist-3 amplitude modifies the
WW approximation by an additional three-body contribu-
tion and a change of the two-body twist-3 pion distribution
amplitude (DA), ϕπp, generated by the three-body DA, ϕ3π ,
via the equation of motion. Here in this work we are going
to demonstrate how our twist-3 subprocess amplitude can
be applied to hard exclusive pion electroproduction.
We will present two methods to deal with the end point

singularities in the transverse amplitudes. First, we will use
the MPA, as in [6]. In the second approach, we use the
usual collinear approach but introduce in the gluon propa-
gators a dynamically generated mass, which reflects the
fact that a gluon is a carrier of strong interactions most
strongly influencing the nonlinear dynamics of the infrared
sector of QCD. As in [6,15], in this work, we do not
consider the twist-3 contributions from the nucleon, i.e.,
twist-3 GPDs [16]. They would lead to further power
corrections, which we expect to be small.
The plan of the paper is the following: In Sec. IIweprepare

the twist-3 subprocess amplitudes calculated in [15] for use
in deeply virtual processes and present the convolutions of
GPDs and the twist-3 subprocess amplitudes in order to
calculate the s-channel helicity amplitudes for electropro-
duction of pions. Section III is devoted to the soft-physics
input to the evaluation of observables for pion electro-
production such as the GPDs, the meson DAs, and the
respective wave functions. In the following section, Sec. IV,
the twist-3 contribution is treated within the MPA and the
results compared with experiment. The collinear approach
with the gluonmass as regulator of the end point singularities
is described in Sec. V and compared to experimental data.
Finally, in Sec. VI, we present our conclusions.

II. THE TWIST-3 SUBPROCESS AMPLITUDES

The twist-3 amplitudes for the subprocess, γ�ðμÞqðλÞ →
πiqð−λÞ, have been calculated in [15]. Here, πi denotes a

pion of charge i and λ is the helicity of the ingoing quark, μ
that one of the virtual photon. We will work in Ji’s frame
[17] in which the subprocess Mandelstam variables ŝ and û
are related to Q2 by

ŝ ¼ x − ξ

2ξ
Q2; û ¼ −

xþ ξ

2ξ
Q2; ð1Þ

and t̂ ¼ t. Thus, ŝ and û are of orderQ2. The skewness, ξ, is
defined by the ratio

ξ ¼ ðp − p0Þþ
ðpþ p0Þþ ; ð2Þ

where pþ and p0þ denote the light cone plus components of
the momenta of the incoming and outgoing nucleons,
respectively. The skewness is related to Bjorken-x by

ξ ¼ xB
2 − xB

; ð3Þ

up to corrections of order 1=Q2 (see for instance [18]). In
Eq. (1) xþ ξ (x − ξ) is the fraction of the plus component
of the average nucleon momenta, ðpþ p0Þ=2, the emitted
(reabsorbed) quark carries.
According to [15] the leading-order two-body twist-3

subprocess amplitudes for the production of a pion of
charge i read in collinear approximation2

Hπi;qq̄
0−λ;μλ ¼

ffiffiffi
2

p
πð2λþ μÞαsðμRÞCðabÞπi

fπμπ
CF

NC

Q2

ξ

×
Z

1

0

dτ
τ
ϕπpðτÞ

�
ea

ðŝþ iϵÞ2 þ
eb

ðûþ iϵÞ2
�
; ð4Þ

and the three-body CF part:

Hπi;qq̄g;CF
0−λ;μλ ¼ −

ffiffiffi
2

p
πð2λþ μÞαsðμRÞCðabÞπi

f3π
CF

NC

Q2

ξ

×
Z

1

0

dτ
τ̄2

Z
τ̄

0

dτg
τ̄ − τg

ϕ3πðτ; τ̄ − τg; τgÞ

×

�
ea

ðŝþ iϵÞ2 þ
eb

ðûþ iϵÞ2
�
; ð5Þ

with the standard iϵ prescription in the propagators. This is
needed in DVMP since the poles ŝ ¼ 0 and û ¼ 0 are
reached in contrast to wide-angle pion electroproduc-
tion [15].
The three-bodyCG part is given in [15] in a very compact

form, but more appropriate for our purposes is to go one
step back and use instead the replacement

2We have changed the normalization of the spinors employed
in [15] to the one used in DVMP. This results in a cancellation offfiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 − ξ2
p

in the subprocess amplitudes.
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ea
ŝ2û

þ eb
ŝû2

¼ −
1

Q2

�
ea
ŝ2

þ eb
û2

þ ea þ eb
ŝ û

�
: ð6Þ

The right-hand side of this equation actually corresponds to
the true diagrammatic origin of DVMP contributions.3 It is
a convenient simplification which may be used in a
collinear calculation. The CG part then reads

Hπi;qq̄g;CG
0−λ;μλ ¼

ffiffiffi
2

p
πð2λþ μÞαsðμRÞCðabÞπi

f3π
CG

NC

Q2

ξ

×
Z

1

0

dτ
τ̄

Z
τ̄

0

dτg
τgðτ̄ − τgÞ

ϕ3πðτ; τ̄ − τg; τgÞ

×

�
ea

ðŝþ iϵÞ2 þ
eb

ðûþ iϵÞ2 þ
ea þ eb

ðŝþ iϵÞðûþ iϵÞ
�
:

ð7Þ

The two-body and three-body twist-3 DA s, ϕπp and ϕ3π ,
will be discussed in some detail in Sec. III. The corre-
sponding decay constants—or normalizations, since the
DA s integrated over the momentum fractions are normal-
ized to unity—are fπ and f3π , respectively. In the defi-
nitions of the DAs we are using light cone gauge (Aþ ¼ 0).
The momentum fraction the gluon carries is denoted by τg,
and τ̄ is 1 − τ. The strong coupling, αsðμRÞ, is evaluated in
the one-loop approximation from ΛQCD ¼ 0.181 GeV and
four flavors (nf ¼ 4). The mass parameter, μπ , is large
since it is given by the square of the pion mass, mπ ,
enhanced by the chiral condensate

μπ ¼
m2

π

mu þmd
; ð8Þ

by means of the divergence of the axial-vector current (mu
and md are current quark masses). In our numerical studies
we take a value of μπðμ0Þ ¼ 2 GeV at the initial scale
μ0 ¼ 2 GeV. As usual, CF ¼ ðN2

C − 1Þ=ð2NCÞ and CG ¼
CF − CA=2 are color factors where NC (¼ CA) is the
number of colors. The constants ea and eb are the quark
charges in units of the positron charge, e0. The flavor
weight factors for the various pions are

Cuu
π0

¼ −Cdd
π0

¼ 1ffiffiffi
2

p ; Cudπþ ¼ Cduπ− ¼ 1: ð9Þ

All other CðabÞ
πi

are zero. The summation over the same
flavor labels is understood.

Any t-dependence of the subprocess amplitude is
neglected since, for dimensional reasons, t is to be scaled
byQ2 and according to the premise −t=Q2 ≪ 1. It has been
shown in [15] that the twist-3 contributions to the longi-
tudinal subprocess amplitudes (μ ¼ 0) vanish ∼

ffiffiffiffiffi
−t

p
.

Similarly suppressed are the twist-2 contributions to the
transverse amplitudes. It is also important to note that the
twist-3 amplitudes (4), (5), and (7) are suppressed by 1=Q
compared to the asymptotically dominant twist-2 contri-
butions to the longitudinal subprocess amplitudes.
The helicity amplitudes, Mπi

0ν0;μν, for the process
γ�ðμÞNðνÞ → πiN0ðν0Þ are given by convolutions of the
transversity GPDs, HT and ĒT , and the twist-3 subprocess
amplitudes [8] (explicit helicities are labeled by their signs
or by zero)

Mπi
0−;þþ ¼ e0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p Z
1

−ξ
dxHTðx; ξ; tÞHπi;tw3

0−;þþðx; ξÞ;

Mπi
0þ;�þ ¼ −e0

ffiffiffiffiffiffi
−t0

p

4m

Z
1

−ξ
dx ĒTðx; ξ; tÞHπi;tw3

0−;þþðx; ξÞ;

Mπi
0−;−þ ¼ 0; ð10Þ

where

Hπi;tw3
0−;þþ ¼ Hπi;qq̄

0−;þþ þHπi;qq̄g;CG
0−;þþ þHπi;qq̄g;CF

0−;þþ ; ð11Þ

and

t0 ¼ t − t0: ð12Þ

The quantity t0 is the minimal value of −t allowed in the
process of interest. It is related to the skewness by

t0 ¼ −4m2
ξ2

1 − ξ2
; ð13Þ

with m being the mass of the nucleon. The contributions
from other transversity GPDs, as for instance H̃T , are
neglected. There is no evidence in the available data for
such contributions. We also restrict this investigation to
valence-quark GPDs as in [6,8].
Inspection of (4) reveals that there is an end point

singularity in Hπi;qq̄
0−;þþ since ϕπpðτÞ → 1 for τ → 0 or 1.

This singularity requires a regularization for which we are
going to present two methods below: the introduction of
quark transverse momenta (Sec. IV) and a gluon mass
(Sec. V). There are no end point singularities in Hπi;qq̄g;CG

and Hπi;qq̄g;CF since, in contrast to ϕπp, the three-body DA
ϕ3π vanishes at the end points.

3In contrast to the general electroproduction contribution [15]
from which (5) and (7) were derived in the t → 0 limit, for DVMP
only the CA and CG proportional diagram contributions are
different from zero. Therefore, the CF proportional part entirely
originates from CA and naturally corresponds to a part of the CG
contribution.
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III. THE SOFT PHYSICS INPUT

A. GPDs

As a starting point for a comparison with experiment we
are going to use the GPDs proposed in [8,11,19]. One should
however be aware of possible necessary changes of them in
order to fit the experimental data since the subprocess
amplitudes are different now. As for the DAs, light cone
gauge is used in the definitions of the GPDs.
In [8,11,19] the GPDs are constructed from the zero

skewness GPDs. Their products with suitable weight
functions are considered as double distributions from
which the skewness dependence of the GPDs is generated
]20 ]. A zero-skewness GPD for a flavor a (¼ u, d here) is

parametrized as

Ka
j ðx; ξ ¼ 0; tÞ ¼ Ka

j ðx; ξ ¼ t ¼ 0Þ exp ½ðbaj − α0aj ln xÞt�:
ð14Þ

This ansatz is only suitable at small −t since its Mellin
moments fall exponentially at large −t. Such a behavior is
in conflict with the experimental data on the electromag-
netic form factors of the nucleon, which show a power-law
decrease.4 The forward limit of the GPDHT is given by the
transversity parton density. This forward limit is para-
metrized as

Ha
Tðx;ξ¼ t¼ 0Þ¼Na

HT

ffiffiffi
x

p ð1−xÞ½qaðxÞþΔqaðxÞ�: ð15Þ

This guarantees that the transversity density respects the
Soffer bound. The unpolarized [qaðxÞ] and polarized
[ΔqaðxÞ] densities are taken from Refs. [23,24], respec-
tively. The forward limits of the E-type GPDs are para-
metrized like the parton densities

Ka
j ðx; ξ ¼ t ¼ 0Þ ¼ Na

jx
−αaj ð0Þð1 − xÞβaj : ð16Þ

The additional parameters are fitted to the meson electro-
production data. The various GPD parameters are compiled
in Table I. Occasionally we need the derivative of a GPD
with regard to x. In Fig. 1 we display the GPD HT and its
derivative as an example. One sees that our twist-2 GPDs as
well as their derivatives are continuous at x ¼ �ξ. We
remark that in some special models the derivatives of the
GPDs are noncontinuous at x ¼ �ξ, see the discussion
in [25].5

For the described parametrization of the zero-skewness
GPDs combined with a suitable weight function [20], the
double-distribution integral can be carried out analytically.
The results of this integration are given in [19]. As is well
known, the GPDs depend on the scale, see [28] and
references therein. This evolution effect is taken into
account in our numerical studies.
As we said above the necessity may turn up to modify

the transversity GPDs. However, there are constraints on
these GPDs from lattice QCD: in [29,30] the first two
moments of the transversity GPDs have been calculated.
These results are compared to the moments evaluated from
our GPDs in Table II. With regard to the uncertainties of the
GPDs determined in [6,8] and those inherent in the lattice
calculations we think there is fair agreement of the first
moments although the d-quark moments of the GPD HT

FIG. 1. The π0 combination of the GPDHT and its derivative at
the initial scale, μ0 ¼ 2 GeV.

TABLE I. Parameters of the GPDs at the initial scale
μ0 ¼ 2 GeV, see [8,11]. The GPD Ẽ is only the nonpole part.
Parameters for which no value is quoted are fixed by the parton
densities.

Kðx; ξ; tÞ b αð0Þ α0 N β

H̃u;d 0.59 0.32 0.45 � � � � � �
Ẽu 0.9 0.48 0.45 14.0 5
Ẽd 0.9 0.48 0.45 4.0 5
Hu

T 0.3 � � � 0.45 1.1 � � �
Hd

T 0.3 � � � 0.45 −0.3 � � �
Ēu
T 0.77 −0.10 0.45 20.91 4

Ēd
T 0.5 −0.10 0.45 15.46 5

4In [21] a modification of the profile function in (14) has been
proposed: It is multiplied by ð1 − xÞ3 and a term Axð1 − xÞ2
added. This new profile function is also suitable for large −t. The
nucleon form factors fall as powers of t for it. This para-
metrization is supported by light front holographic QCD [22].

5In some models twist-3 GPDs are even noncontinuous at x ¼
�ξ [26,27]. In [27] is has been conjectured that this may be a
general feature of the twist-3 GPDs, which would lead to
problems with factorization. However, as shown in [27], a
particular linear combination of twist-3 GPDs contributes to
deeply virtual Compton scattering for which the discontinuities at
x ¼ �ξ cancel. Here, in our work, we do not include the twist-3
GPDs.
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are a bit small. In [31] it has been pointed out that the
GPDs cannot be extracted uniquely from the experiment
in the usual collinear approximation. To any GPD a so-
called shadow GPD can be added without changing the
convolutions.

B. The three-body twist-3 DA

For the twist-3 DA of the qq̄g pion’s Fock component we
use an ansatz advocated for in [32]

ϕ3πðτa; τb; τgÞ ¼ 360τaτbτ
2
g

�
1þ ω1;0

1

2
ð7τg − 3Þ

þ ω2;0ð2 − 4τaτb − 8τg þ 8τ2gÞ

þ ω1;1ð3τaτb − 2τg þ 3τ2gÞ
�
: ð17Þ

The DA is normalized as

Z
1

0

dτ
Z

τ̄

0

dτgϕ3πðτ; τ̄ − τg; τgÞ ¼ 1; ð18Þ

which goes together with the normalization constant f3π .
This constant as well as the conformal-expansion coeffi-
cients, ωi;j, depend on the factorization scale, μF. The
corresponding anomalous dimensions can be found in [32]
or in [15]. Note that ω2;0 and ω1;1 mix under evolution.
In [33] the normalization constant, f3π , and the coef-

ficient ω1;0 have been taken from a QCD sum rule analysis
[34] whereas ω1;1 is assumed to be zero at the initial scale
μ0 ¼ 2 GeV, and ω2;0 is fixed by a fit to the wide-angle π0

photoproduction data [35] (i.e., photoproduction at large
Mandelstam variables s, −t and −u):

f3πðμ0Þ ¼ 0.004 GeV2; ω1;0ðμ0Þ ¼ −2.55;

ω2;0ðμ0Þ ¼ 8.0; ω1;1ðμ0Þ ¼ 0: ð19Þ

For reasons that will become clear below we will also use a
second set of expansion coefficients, namely

ω1;0ðμ0Þ ¼ 2.5; ω2;0ðμ0Þ ¼ 6.0; ω1;1ðμ0Þ ¼ 0:

ð20Þ

The constant f3π remains unaltered. The expansion coef-
ficients (20) also provide a reasonable fit to the π0 photo-
production data, see Fig. 2. Since the present data on wide-
angle photoproduction do not fix more than one expansion
parameter other sets of expansion coefficients are possible.
In our work within the MPA framework, we also consider

quark transverse momenta in the meson. Instead of DAs
hadronwave functions are required in this case. Analogously
to the proton wave function [36,37] we are writing the light
cone wave function of the pion’s qq̄g Fock component as

Ψ3π ¼ f3πϕ3πðτ1; τ2; τgÞΩ3πðk⊥1;k⊥2;k⊥gÞ: ð21Þ

In the zero-binding limit, which is characteristic of the parton
picture, one has

τ1 þ τ2 þ τg ¼ 1; k⊥1 þ k⊥2 þ k⊥g ¼ 0: ð22Þ

The k⊥ dependence of the wave function (21) is assumed to
be a simple Gaussian with a transverse size parameter a3π:

Ω3π¼ð16π2Þ2 a43π
τ1τ2τg

exp½−a23πðk2⊥1=τ1þk2⊥2=τ2þk2⊥g=τgÞ�:

ð23Þ

It can readily be seen that

Z
d2k⊥1d2k⊥2d2k⊥g

ð16π3Þ2 δð2Þðk⊥1 þ k⊥2 þ k⊥gÞΩ3π ¼ 1:

ð24Þ

The Fourier transform to the impact parameter plane with
respect to the transverse momenta k⃗⊥1 and k⃗⊥2, defined by

TABLE II. Moments of the transversity GPD at t ¼ 0 defined
by Ka

Tn0 ¼
R
1
0 dxxðn−1ÞKa

Tðx; 0; 0Þ and comparison with lattice
QCD results [29,30] at the scale μ0.

Table I (65) [29] Table I [30]

Hu
T10 0.83 0.90 0.857(13) Ēu

T10 3.35 2.93(13)
Hu

T20 0.17 0.19 0.268(6) Ēu
T20 0.60 0.420(31)

Hd
T10 −0.05 −0.06 −0.212ð5Þ Ēd

T10 2.03 1.90(9)
Hd

T20 −0.007 −0.007 −0.052ð2Þ Ēd
T20 0.32 0.260(23)

FIG. 2. The cross section of π0 photoproduction versus the
cosine of the scattering angle in the center-of-mass system at
s ¼ 11.06 GeV2. The solid (dashed) line represents the results
obtained with the three-body DA (20) [(19)] and the parameter A
controlling the large-x behavior of the GPDs HT and ĒT (see
footnote 4) is chosen to be 0.1ð0.5Þ GeV−2. The data are taken
from [35].
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f̂ðbÞ ¼ 1

ð2πÞ4
Z

d2k⊥1d2k⊥2

× exp ½−ib1 · k⊥1 − ib2 · k⊥2�fðk⊥Þ; ð25Þ

of the wave function reads

Ψ̂3π ¼ f3πϕ3πΩ̂3π; ð26Þ

where

Ω̂3πðb⃗1; b⃗2Þ

¼ ð4πÞ2 exp
�
−

1

4a23π
½τ1τgb21þ τ2τgb22þ τ1τ2b2g�

�
: ð27Þ

The transverse separation bg is b1 − b2. Now one sees that
the variable b1 (b2) is the transverse separation between the
quark (antiquark) and the gluon. The Fourier transform with
respect to b⃗1 and b⃗g is obtained from (27) by the simultaneous
replacement

τ2 ↔ τg b⃗2 ↔ b⃗g; ð28Þ

which results in

Ω̂3πðb⃗1; b⃗gÞ

¼ ð4πÞ2 exp
n
−

1

4a23π
½τ1τ2b21þ τ2τgb2gþ τ1τgðb⃗g− b⃗1Þ2�

o
:

ð29Þ

The Fourier transform with respect to b⃗2 and b⃗g is obtained
analogously.
In our numerical studies we choose the transverse size

parameter a3π ¼ 0.3 GeV−2. This leads to about the same
root-mean-square (rms) value of b1ð¼ b2Þ, as for the two-
body twist-3 Fock component.

C. The two-body twist-3 DA

The two-body twist-3 DA of the pion, ϕπp, is uniquely
fixed by the three-body twist-3 DA via the equation of
motion which, in light cone gauge, is a first-order linear
differential equation [33]. Thus, the DA (17) leads a
truncated Gegenbauer expansion of ϕπp:

ϕπpðτÞ ¼ 1þ 1

7

f3π
fπμπ

ωð10C1=2
2 ð2τ − 1Þ − 3C1=2

4 ð2τ − 1ÞÞ;

ð30Þ

where

ω ¼ 7ω1;0 − 2ω2;0 − ω1;1; ð31Þ

and fπ is the usual pion decay constant for which we take
fπ ¼ 0.132 GeV. As usual this DA respects the constraint

Z
1

0

dτϕπpðτÞ ¼ 1 ð32Þ

and can be written in a more compact form

ϕπpðτÞ ¼ 1þ f3π
fπμπ

ωð1 − 30τ2τ̄2Þ: ð33Þ

In the WW approximation ϕ3π is zero and ϕπp reduces to
ϕWW
πp ¼ 1. There is a second two-body twist-3 DA, ϕπσ,

which is also fixed by the three-body DAvia the equation of
motion. We do not quote it here because it does not
contribute to DVMP as has been shown in [6].
It is inspiring to examine the evolution behavior of ϕπp:

The mass parameter evolves with the scale as

μπðμFÞ ¼ L−4=β0μπðμ0Þ; ð34Þ

where β0 ¼ ð11NC − 2nfÞ=3 and

L ¼ lnðμ20=Λ2
QCDÞ

lnðμ2F=Λ2
QCDÞ

: ð35Þ

It follows that μπ is small at small scales and becomes large
for μF → ∞. This untypical evolution behavior is caused by
the current quark masses in the denominator of μπ , see (8).
On the other hand,

f3πðμFÞ ¼ Lð16=3CF−1Þ=β0f3πðμ0Þ;
ω1;0ðμFÞ ¼ Lð−25=6CFþ11=3CAÞ=β0ω1;0ðμ0Þ; ð36Þ

while a more complicated scale dependence of ω2;0 and
ω1;1 is a consequence of their mixing under evolution, see
[15,32]. Their scale dependence is similarly strong as that
of ω1;0. Now we understand the evolution behavior of the
second term of ϕπp: it is large at small scales but tends to
zero for μF → ∞. In Fig. 3 we display ϕπp generated by the
two three-body DAs (19) and (20). The combination ω
strongly differs in magnitude and sign for the two cases

ωðμ0Þ ¼ −33.85 ð37Þ

for (19) and

ωðμ0Þ ¼ 5.5 ð38Þ

for (20). These different values of ω lead to a drastically
different behavior of ϕπp at low scales as Fig. 3 reveals. The
first value of ω leads to a ϕπp with pronounced maxima and
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minima whereas the DA, evaluated from (38), remains
close to unity, i.e., close to ϕWW

πp . Only for very low scales
close to ΛQCD, this DA differs substantially from its WW
approximation.
In the following we will also need a light cone wave

function for two-body twist-3 Fock component of the pion
for which we will use [6,8]

Ψπp ¼ 16π3=2ffiffiffiffiffiffiffiffiffi
2NC

p fπa3πpk⊥ϕπpðτÞ exp ½−a2πpk2⊥�: ð39Þ

For the transverse size parameter, the value aπp ¼
1.8 GeV−1 has been used in [6,8] and will be applied by
us as well. This value of aπp corresponds to a rms value

of
ffiffiffiffiffiffiffiffiffi
hb2i

p
¼ 0.5 fm.

It is easy to show that for integer n

Z
d2k⊥
16π3

k2n⊥ Ψπp ¼ fπ
2

ffiffiffiffiffiffiffiffiffi
2NC

p ϕπpa−2nπp
2ffiffiffi
π

p Γðnþ 3=2Þ: ð40Þ

IV. THE MODIFIED PERTURBATIVE APPROACH

As we already mentioned, the two-body twist-3 sub-
process amplitude (4) possesses an end point singularity.
Following [6] where the WW approximation of this
amplitude has been applied, we are going to calculate
the subprocess amplitudes within the MPA in which
transverse momenta of the partons entering the pion are
taken into account. The emission and reabsorption of
quarks by the nucleons is still treated collinearly to the
nucleon momenta. This scenario is justified to some extent

by the fact that the GPDs describe the full proton, and their
k⊥ dependence therefore reflects the nucleon charge radius
(hk2⊥i1=2 ≃ 200 MeV), while the pion is mainly generated
through its compact qq̄ Fock component with a rms k⊥ of
about 500 MeV. The DA s of the collinear approximation
are to be replaced by light cone wave function in this
scenario. The parton transverse momenta are accompanied
by gluon radiation. In [38] the gluon radiation has been
calculated in form of a Sudakov factor exp ½−S� to next-to-
leading log approximation using resummation techniques
and having recourse to the renormalization group. Since the
resummation of the logarithms involved in the Sudakov
factor can only be efficiently performed in the impact
parameter space [38] we have to work in that space. The
Sudakov factor is zero for b ≥ 1=ΛQCD. This cutoff gen-
erates a series of power suppressed terms which come from
the region of soft quark momenta. The interplay of the
quark transverse momenta and the Sudakov factor regu-
larizes the above mentioned end point singularity. For more
details see [19].

A. The two-body twist-3 case

We assume that the quark and antiquark momenta of the
pion’s constituents are

τq0 þ K; τ̄q0 − K; ð41Þ

where q0 is the momentum of the pion and

q0 · K ¼ 0; K2 ¼ −k2⊥: ð42Þ

The leading-order (LO) perturbative calculation reveals that
the k⊥ dependence appears only in the gluon propagator
and the double poles in (4) become

1

ðŝþ iϵÞðτ̄ ŝ−k2⊥þ iϵÞ ;
1

ðûþ iϵÞðτû−k2⊥þ iϵÞ : ð43Þ

We decompose the product of propagators into a sum of
two single propagators

1

ðŝþ iϵÞðτ̄ ŝ−k2⊥ þ iϵÞ ¼
1

k2⊥

�
−

1

ŝþ iϵ
þ τ̄

τ̄ ŝ−k2⊥ þ iϵ

�
;

1

ðûþ iϵÞðτû − k2⊥ þ iϵÞ ¼
1

k2⊥

�
−

1

ûþ iϵ
þ τ

τû − k2⊥ þ iϵ

�
:

ð44Þ

Using the τ ↔ τ̄ symmetry of ϕπp and the relation (40) as
well as the above decomposition, we can write the sub-
process amplitude (4) as

FIG. 3. The DA ϕπp vs x. The solid line denoted KPK (I)
represents the DA generated from the expansion coefficients (19)
[(20)] at the scale μF ¼ 2.0 GeV. The dashed lines are the DAs at
the scale μF ¼ 0.7 GeV.
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Hπi;qq̄
0−λ;μλ ¼ −2

ffiffiffi
2

p
πð2λþ μÞCðabÞ

πi
fπμπa2πpαsðμRÞ

CF

NC

Q2

ξ

�
ea

ŝþ iϵ
þ eb
ûþ iϵ

�

þ 4πð2λþ μÞCðabÞπ μπ
CFffiffiffiffiffiffiffi
NC

p Q2

ξ

Z
dτ

Z
d2k⊥
16π3

k−2⊥ ΨπpαsðμRÞ
�

τ̄ea
τ̄ ŝ−k2⊥ þ iϵ

þ τeb
τû − k2⊥ þ iϵ

�
: ð45Þ

The next step is to transform the subprocess amplitude to the impact parameter plane. Since the wave function appears to be
divided by k2⊥ it is convenient to transform the product k−2⊥ Ψπp. Using the wave function (39) this Fourier transform is

½k−2⊥ Ψπp�FT¼ 4π
fπa2πpffiffiffiffiffiffiffiffiffi
2NC

p ϕπpðτÞI0ðb2=8a2pÞe−b2=ð8a2πpÞ: ð46Þ

Here, I0 is the Bessel function of order zero. Replacing k−2⊥ Ψπp in (45) by its Fourier transform

k−2⊥ Ψπp ¼
Z

d2b e−ib·k⊥ ½k−2⊥ Ψπp�FT; ð47Þ

it remains to perform the Fourier transform of the propagators, which can easily be done using

Z
d2k⊥
ð2πÞ2

e−ik⊥·b

k2⊥ − a − iϵ
¼ i

4
Hð1Þ

0 ð ffiffiffi
a

p
bÞΘðaÞ þ 1

2π
K0ð

ffiffiffiffiffiffi
−a

p
bÞΘð−aÞ; ð48Þ

where Hð1Þ
0 and K0 denote Hankel and Bessel functions of the second kind, respectively. Thus, we finally arrive at

Hπi;qq̄
0−λ;μλ ¼ −2

ffiffiffi
2

p
πð2λþ μÞCðabÞ

πi
fπμπa2πp

CF

NC

Q2

ξ

�
αsðμRÞ

�
ea

ŝþ iϵ
þ eb
ûþ iϵ

�

þ
Z

dτϕπpðτÞ
Z

bdbI0ðb2=ð8a2πpÞÞe−b2=ð8a2πpÞαsðμRÞe−S

×

�
τ̄ea

�
i
π

2
Hð1Þ

0 ð
ffiffiffiffiffi
τ̄ ŝ

p
bÞΘðŝÞ þ K0ð

ffiffiffiffiffiffiffiffiffi
−τ̄ ŝ

p
bÞΘð−ŝÞ

�
þτebK0ð

ffiffiffiffiffiffiffiffi
−τû

p
bÞΘð−ûÞ

��
: ð49Þ

This subprocess amplitude is to be convoluted with
a transversity GPD in accordance with (10). In the spirit
of the MPA we have added the Sudakov factor
exp ½−Sðτ;b; Q2Þ� under the integral. The quark-antiquark
separation, b, in the impact parameter space acts as an
infrared cutoff. Radiative gluons with wave lengths larger
than the infrared cutoff are part of the pion wave function.
Those gluons with wave lengths between the infrared cutoff
and a lower limit (related to the hard scale Q2) yield
suppression while harder ones are part of the perturbative
subprocess amplitude. In this situation the factorization scale
is naturally given by μF ¼ 1=b. With regard to the scale
dependence of the DA ϕπpwe stop the evolution at 0.5 GeV,
i.e., μF ¼ maxð1=b; 0.5 GeVÞ. Not all logarithmic singu-
larities arising from the evolution of theDAϕπp are canceled
by the Sudakov factor as was the case for the WW
approximation used in [6,8]. The renormalization scale is
taken to be the largest scale appearing in the subpro-
cess, μR ¼ maxðτQ; τ̄Q; 1=bÞ.

B. The three-body case

We have now to deal with three parton transverse
momenta defined analogously to Eqs. (41) and (42)
and which satisfy the condition (22). From the LO
perturbative calculation of the subprocess amplitudes
(5) and (7) we learn that always two different parton
transverse momenta appear in the propagators in contrast
to the two-body case.6 We expect therefore a strong
suppression of the three-body contributions. Introducing
the three-body wave function (21) instead of the distri-
bution amplitude as we did analogously for the two-body

twist-3 case, the subprocess amplitudeHπi;qq̄g;CF
0−λ;μλ in Eq. (5)

reads

6As explained in [8], in the spirit of MPAwe only retain k⊥ in
the denominators of the propagators where both momentum
fractions x and τ appear.
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Hπi;qq̄g;CF
0−λ;μλ ¼ −ð2λþ μÞ

ffiffiffi
2

p
πCðabÞP

CF

NC

Q2

ξ

Z
1

0

dτ1
τ̄1

Z
τ̄1

0

dτg

Z
d2k⊥1d2k⊥2

ð16π3Þ2 Ψ3παsðμRÞ
�
ea

1

ðτ̄1ŝ − k2⊥1 þ iϵÞðτ2ŝ − k2⊥2 þ iϵÞ

þeb
1

ðτ̄1û − k2⊥1 þ iϵÞðτ2û − k2⊥2 þ iϵÞ
�
: ð50Þ

Transforming to the impact parameter space and using (48) we arrive at

Hπi;qq̄g;CF
0−λ;μλ ¼ −ð2λþ μÞ

ffiffiffi
2

p
πCðabÞP

CF

NC

Q2

ξ
f3π

Z
1

0

dτ1
τ̄1

Z
τ̄1

0

dτgϕ3πH1; ð51Þ

where

H1 ¼
Z

b1db1b2db2 exp

�
−

1

4a23π
ðτ1τ̄1b21 þ τ2τ̄2b22Þ

�
αsðμRÞe−Sðb1;b2Þ

× I0ðτ1τ2b1b2=ð2a23πÞÞ
�
ea

�
−
π2

4
Hð1Þ

0

	 ffiffiffiffiffiffiffi
τ̄1ŝ

p
b1


Hð1Þ

0

	 ffiffiffiffiffiffiffi
τ2ŝ

p
b2


ΘðŝÞ þ K0

	 ffiffiffiffiffiffiffiffiffiffi
−τ̄1ŝ

p
b1


K0

	 ffiffiffiffiffiffiffiffiffiffi
−τ2ŝ

p
b2


Θð−ŝÞ

�

þ ebK0

	 ffiffiffiffiffiffiffiffiffiffi
−τ̄1û

p
b1


K0

	 ffiffiffiffiffiffiffiffiffiffi
−τ2û

p
b2


Θð−ûÞ

�
: ð52Þ

The angle integrations implied in d2bi have already been carried out and the Sudakov factor is introduced. The
momentum fraction τ2 is

τ2 ¼ 1 − τ1 − τg: ð53Þ

The subprocess amplitudeHπi;qq̄g;CG
0−λ;μλ (7) is treated analogously, although it is much more complicated because any pair of

parton transverse momenta k⃗i, k⃗j occurs in the propagators:

Hπi;qq̄g;CG
0−λ;μλ ¼ ð2λþ μÞ

ffiffiffi
2

p
πCðabÞP

CG

NC

Q2

ξ

Z
1

0

dτ1
τ̄1

Z
τ̄

0

dτg

Z
d2k⊥1d2k⊥2d2k⊥g

ð16π3Þ2 δðk⃗⊥1 þ k⃗⊥2 þ k⃗⊥gÞΨ3παsðμRÞ

×

�
ea

ðτ̄1ŝ − k2⊥1 þ iϵÞðτ2ŝ − k2⊥2 þ iϵÞ þ
eb

ðτ̄1û − k2⊥1 þ iϵÞðτ2û − k2⊥2 þ iϵÞ
þ ea
ðτ̄1ŝ − k2⊥1 þ iϵÞðτgŝ − k2⊥g þ iϵÞ þ

eb
ðτ̄1û − k2⊥1 þ iϵÞðτgû − k2⊥g þ iϵÞ

þ ea
ðτ2ŝ − k2⊥2 þ iϵÞðτgû − k2⊥g þ iϵÞ þ

eb
ðτ2û − k2⊥2 þ iϵÞðτgŝ − k2⊥g þ iϵÞ

�
: ð54Þ

In the impact parameter space we have

Hπi;qq̄g;CG
0−λ;μλ ¼

ffiffiffi
2

p
πð2λþ μÞCðabÞP

CG

NC

Q2

ξ
f3π

Z
1

0

dτ1
τ̄1

Z
τ̄1

0

dτgϕ3π½H1 þH2 þH3�; ð55Þ

where H1 is given in (52) while H2 is obtained from H1 by the replacement

τ2 → τg; b2 → bg; ð56Þ

and
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H3 ¼
Z

b2db2bgdbg exp

�
−

1

4a23π
ðτ2τ̄2b22 þ τgτ̄gb2gÞ

�
I0ðτ2τgb2bg=ð2a23πÞÞαse−Sðb2;bgÞ

×

�
ea

�
i
π

2
Hð1Þ

0

� ffiffiffiffiffiffiffi
τ2ŝ

p
b2
�
ΘðŝÞ þ K0

� ffiffiffiffiffiffiffiffiffiffi
−τ2ŝ

p
b2
�
Θð−ŝÞ

�
K0

� ffiffiffiffiffiffiffiffiffiffi
−τgû

q
bg
�
Θð−ûÞ þ ebK0

� ffiffiffiffiffiffiffiffiffiffi
−τ2û

p
b2
�
Θð−ûÞ

×

�
i
π

2
Hð1Þ

0

� ffiffiffiffiffiffi
τgŝ

q
bg
�
ΘðŝÞ þ K0

� ffiffiffiffiffiffiffiffiffiffi
−τgŝ

q
bg
�
Θð−ŝÞ

��
: ð57Þ

The Sudakov factor in the above amplitudes is that of the
qq̄g system, which is unknown. We therefore approximate
the Sudakov factor by

e−Sðbi;bjÞ ≃ Θðb0 − biÞΘðb0 − bjÞ; ð58Þ

where b0 ¼ 1=ΛQCD. This way we rather overestimate the
three-body contribution since the Sudakov factor sup-
presses the amplitudes already at b < b0. As it turns out
from our numerical studies described in Sec. IV C, the
three-body contribution is much smaller than the two-body
twist-3 one. In fact it is almost negligible. Hence, our
approximation suffices. As we already mentioned above the
cutoff of the b integrals generates a series of power
suppressed terms that come from the region of soft quark
momenta. We also stress that there are neither end point
singularities in the three-body contribution nor double poles.

C. Numerical studies

In this subsection we are going to compare our twist-3
contribution evaluated within the MPA to experimental data
on deeply virtual electroproduction of pions. We will
demonstrate that the twist-3 contribution—accompanied
by a moderate adjustment of the transversity GPDs—leads
to reasonable results for a sample of kinematical settings
ðQ2; xBÞ for which experimental data are available from
either CLAS [5], the Hall A collaboration [39], or
COMPASS [40]. We stress that we restrict ourselves to
π0 production because in this case the contributions from
transversal photons, which are of a twist-3 nature, are
dominant. This is to be contrasted with charged pion
production, where longitudinal photons play the decisive
role, at least at small −t0. This is mainly caused by the large
contribution from the pion pole [6].
Let us first discuss the transverse-transverse interference

cross section that is defined in terms of γ�p → π0p helicity
amplitudes by (for convenience we drop the subscript π0 in
this subsection)

dσTT
dt

¼−
2Re½M�

0−;þþM0−;−þþM�
0þ;þþM0þ;−þ�

32πðW2−m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðW2;−Q2;m2Þ

p ; ð59Þ

where Λ is the familiar Mandelstam function and W is
the energy in the pion-(final-state) proton center-of-mass

system. The center-of-mass helicity amplitudes are given
by the convolutions (10) of transversity GPDs and the
subprocess amplitudes discussed in the preceding subsec-
tion. From (10) we see that the first term in (59) is zero and
the second one is equal to

∼jM0þ;þþj2: ð60Þ

We also see from this equation and (10) that only the GPD
ĒT contributes to this interference cross section.
In Fig. 4 we display our results evaluated from the three-

body twist-3 DA (19) and the corresponding two-body
twist-3 DA (33) (termed KPK in the following), and
similarly from the DA (20). For comparison we also show
the results obtained with the WW approximation [8]. The
various results are evaluated from the GPDs defined in
Table I. As is evident from Fig. 4 the results on dσTT
obtained from the DA (20) are in very good agreement with
experiment. The KPK results, on the other hand, are a
bit worse.
In Fig. 5 we show the results for the unseparated cross

section defined by

dσU
dt

¼ dσT
dt

þ ϵ
dσL
dt

; ð61Þ

where ϵ is the ratio of the longitudinal and transversal
polarization of the virtual photon and dσL is the longi-
tudinal cross section that is fed by the twist-2 subprocess
amplitudes and the GPDs H̃ and Ẽ, see Table I. We take the
longitudinal cross section from [8]. It is small, about 3% of
the transverse cross section at xB ¼ 0.275 and even smaller
for larger xB. The smallness of the predicted longitudinal
cross section at an xB of about 0.3–0.4 is in agreement with
experiment [2,3]. At the COMPASS kinematics however
dσL is substantially larger. It amounts to about 40% of the
transverse cross section. Mainly responsible for the
increase of the ratio dσL=dσT with decreasing Bjorken-x
(at fixed Q2) is the GPD parameter αð0Þ (see Table I),
which acts like a Regge intercept. For xB → 0 (at fixed Q2)
a GPD contributes to a cross section as

dσ ∼ x−2ðαð0Þ−1ÞB : ð62Þ
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While αð0Þ is about 0.3–0.5 for the GPDs H̃ and Ẽ
contributing to the longitudinal cross section, for the
transversity GPDs its value is about −0.2 and −0.1 [see
Table I and Eq. (15)].
In terms of the amplitudes (10) the transverse cross

section reads

dσT
dt

¼ jM0−;þþj2 þ 2jM0þ;þþj2
32πðW2 −m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛðW2;−Q2; m2Þ

p : ð63Þ

Comparing (59) and (63) one notices the bound

 dσTTdt

 ≤ dσT
dt

; ð64Þ

which holds generally not only for the amplitudes (10).
Comparison of the data shown in Figs. 4 and 5 makes it
clear that the transversal cross section, under control of the
twist-3 contributions and the GPD ĒT , amounts to a
substantial fraction of the unseparated cross section.
Both the GPDs, HT and ĒT , contribute to the transverse
cross section. The HT contribution dominates at small −t0,
ĒT at larger −t0, see Fig. 5.
Inspection of Fig. 5 reveals that the KPK results obtained

from the GPDs quoted in Table I, are much smaller than
experiment. Evaluating instead the transverse cross section
from the DA (20) leads to results that are very close to
experiment. Still they can be improved by changing the
normalization of HT

FIG. 4. The transverse-transverse interference cross section versus t0 for various kinematical settings. The solid lines with error bands
(evaluated from the uncertainties of the GPDs and μπ) are the MPA results evaluated from the DA (20), the dashed lines are evaluated
from the DA (19) (KPK) and from the WW approximation (WW). The latter result is taken from [8]. The data are taken from [5]
(full circles) and from [39] (triangles). The Hall A data in the upper right plot are at the adjacent kinematics Q2 ¼ 3.57 GeV2 and
xB ¼ 0.36.
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Nu
HT

¼ 1.17; Nd
HT

¼ −0.31; ð65Þ

with a corresponding change of the moments, see Table II.
The agreement with the lattice QCD results is still not very
good but, with regard to all uncertainties, the differences
seem to be tolerable.
We also achieve good agreement with the COMPASS

data [40] at Q2 ¼ 2 GeV2 and xB ¼ 0.093, see lower right
panel of Fig. 5. Only our t dependence seems to be a bit flat.
However, the COMPASS collaboration has a new, still
preliminary set of data at the same values of t as in [40].
These new data, already shown at conferences [41], are
noticeably closer to our results.
The three-body contribution, i.e., the sum of the sub-

process amplitudes (51) and (55) convoluted with a trans-
versity GPD, is much smaller than the two-body, twist-3

one. This can be seen from Fig. 6 where the ratio of the
absolute values of these two contributions to the amplitude
M0−;þþ is displayed.7 This ratio amounts only to about
5%; i.e., it is almost negligible. The corresponding ratio of
these contributions to the amplitude M0þ;þþ is of similar
size. The smallness of the three-body contribution supports
the assumption (58).
We understand now why the results obtained with the

DA (20) and the GPDs proposed in [8,11,19] are so close to
those evaluated from the WW approximation in contrast to
the KPK scenario. The three-body contribution is very
small in both the scenarios but the DA ϕπp generated from
(20) through the equation of motion is very close to unity

FIG. 5. The unseparated cross section versus t0 for various kinematical settings. The separate contributions fromHT and ĒT are shown
as dotted lines for Q2 ¼ 2.21 GeV2. The data shown by open circles are taken from [40]. For other notations, see Fig. 4.

7The three-body contribution is given by a five-dimensional
integral that we evaluated with a Monte Carlo procedure.
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except at extremely low scales, close to ΛQCD, see Fig. 3.
The factor f3πω=ðfπμπÞ in (33) is small for (38), about 0.08
at the initial scale, while for the KPK scenario (37) it is
about −0.51.

V. THE COLLINEAR PERTURBATIVE
APPROACH WITH MASSIVE GLUONS

A practical disadvantage of the MPA is the large
computing time needed for cross sections evaluation,
complicating large-scale fitting of experimental data to
extract the GPDs. A collinear approach is much faster since
one has essentially to evaluate only a two-dimensional
integral, while for the MPA three- and five-dimensional
integrals contribute, as discussed in Sec. IV. Another
disadvantage of the MPA is the demanding calculation
of next-to-leading order (NLO) corrections due to the
presence of k⊥ terms. On the other hand, the calculation
of NLO corrections poses no principal difficulty for the
collinear approach, although, at present, they have been
calculated only for the twist-2 amplitude [42,43]. However,
in collinear approach the question then arises: how do we
regularize the end point singularity appearing in the
subprocess amplitude (4)?8 A possibility is to use a
dynamically generated gluon mass as a regulator. The idea
of the gluon mass generation, even if the local gauge
symmetry of the QCD Lagrangian forbids a mass term, was
proposed by Schwinger long ago in Refs. [44,45]. For a
discussion of a dynamical generation of a gluon mass, see
also [46]. The gluon mass generation, which is based on the
Schwinger mechanism, is at present the subject of intensive

studies in the QCD context and is motivated by recent
evidences for such a phenomenon from lattice simulations,
for reviews see, e.g., [47–49]. Similar mass generation, also
intensively studied at present, can be achieved as a result of
the formation of condensates [50], as well as within the
instanton liquid model, see, e.g., the review [51] and
references therein. The regularization of the end-point
singularity can be thus achieved by introduction of a
dynamically generated gluon mass into the gluon propaga-
tors. This idea was applied in [52] in a discussion of pion
electromagnetic form factor in perturbative QCD, or recently
in Ref. [53] in a discussion of the mesonic form factors.9

A comprehensive method for regularizing the end point
singularities with a dynamical gluon mass, mg, would
involve substituting it into all denominators of the gluonic
propagators with momentum kμ. The substitution is made by
replacing k2 þ iϵ with k2 −m2

g þ iϵ. The integrations over
the variables x in the convolution with the GPDs and τ of the
pion DAs are then performed. However, in the present study
we proceed in a simplified waywhich, we believe, permits to
obtain a reliable estimate of the helicity amplitudes (10)
easier. The minimal mg extension of the collinear approach
inserts the gluon mass only in the gluon propagator that
appears in the two-body twist-3 subprocess amplitude (4),
the one in which the end point singularity actually turns up.10

We think that this minimal extension is sufficient for our
purpose. The reason is that the twist-3 contribution regular-
ized with a dynamical gluon mass differs substantially from
the MPA with the WW approximation, as will become
evident from our studies. Therefore, the GPDs derived in
[8,11,19] do not apply.11 New extensive fitting of exper-
imental data is required in order to obtain a new set of GPDs,
as well as possible inclusion of NLO corrections, which is
beyond the scope of the present paper.With regard to all this,
wewill only present an exploratory study of this approach in
order to demonstrate how the gluon mass regulates the end
point singularity in the two-body twist-3 contribution.

A. The gluon mass as a regulator to end point
singularities

The twist-3 subprocess amplitudes in the collinear limit
are given in Sec. II. Here we explain the treatment of the
double poles and the end point singularity in (4).

FIG. 6. The ratio of three-body and two-body twist-3 contri-
butions to the amplitude M0−;þþ for two values of the photon
virtuality.

8In the photoproduction case (γq → Pq) this contribution
vanishes and no singularity appears.

9In [53] both quark transverse momentum and gluon mass are
suggested as regulators that originate from the subleading terms
in denominators.

10This minimal extension is in agreement with the strategy
outlined in Ref. [14], where it was argued that for quantitative
estimates, one should combine the factorizable contributions and
regularized nonfactorizable ones.

11As we already mentioned, the MPA takes effectively into
account the transverse size of the meson. For deeply virtual
Compton scattering, therefore, the collinear approach with the
GPDs [8,11,19] derived from DVMP within the MPA should
work, as is evidenced by [54].
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We start with the regularization of the two-body twist-3
subprocess amplitude (4) by the gluon mass. The double
poles in the subprocess amplitude originate from a quark and
a gluon propagator. Changing the latter one by introducing
the gluon mass the subprocess amplitude becomes

Hπi;qq̄
0−λ;μλ¼

ffiffiffi
2

p
πð2λþμÞαsðμRÞCðabÞπi

fπμπ
CF

NC

Q2

ξ

Z
1

0

dτϕπpðτÞ

×

�
ea

ðŝþiϵÞðτ̄ ŝ−m2
gþiϵÞþ

eb
ðûþiϵÞðτû−m2

gþiϵÞ
�
:

ð66Þ

Note that no double pole appears. Partial breaking of the
propagator products as in (44) (with k2⊥ being replaced by
m2

g) leads to a sum of single propagators. One can show that
the subprocess amplitudeHπi;qq̄ is now regular. In this work
we apply the scale dependent form

m2
gðQ2Þ ¼ m2

0

1þ ðQ2=M2Þ1þp ; ð67Þ

form0 ¼ 376 MeV and several parameter sets ðM;pÞ taken
from a physically motivated fit to the numerical solutions of
the gluon mass equation given in [49], see Fig. 7.
The three-body twist-3 subprocess amplitudes (5) and

(7) contain the double poles that do not cause any problem
for integration over the GPDs that we are using. There, one
may start from the distributions

1

ðŝþ iϵÞ2 ¼−
2ξ

Q2

d
dx

1

ŝþ iϵ
1

ðûþ iϵÞ2¼
2ξ

Q2

d
dx

1

ûþ iϵ
; ð68Þ

which convoluted with a valence-quark transversity GPD,
KTðx; ξ; tÞ, lead to the form

Z
1

−ξ
dx

KTðx;ξ; tÞ
ðŝþ iϵÞ2 ¼ 2ξ

Q2

Z
1

−ξ
dx

K0
Tðx;ξ; tÞ
ŝþ iϵ

−
4ξ2

1−ξ

1

Q4
KTð1;ξ; tÞ−

2ξ

Q4
KTð−ξ;ξ; tÞ;

ð69Þ

and analogously for 1=û2. Since the GPDs are zero at x ¼ 1
and x ¼ −ξ (see the discussion in Sec. III A and in
particular Fig. 1), the double pole convoluted with a

GPD reduces to a convolution of a single pole with the
derivative of the GPD

K0
Tðx; ξ; tÞ ¼

d
dx

KTðx; ξ; tÞ: ð70Þ

The appearance of the GPD derivatives do not pose
problems as long as they are continuous at x ¼ �ξ, which
is the case for the parametrization of the GPDs we are
using, see the discussion in Sec. III A. The convolution of a
valence-quark transversity GPDs and the double poles
therefore reads

Z
1

−ξ
dxKTðx;ξ; tÞ

�
ea

ðŝþ iϵÞ2 þ
eb

ðûþ iϵÞ2
�

¼ 4ξ2

Q4

Z
1

−ξ
dxK0

Tðx;ξ; tÞ
�

ea
x− ξþ iϵ

þ eb
xþ ξ− iϵ

�
: ð71Þ

The last term in (7) can be simplified with the help of
identity

1

ŝ û
¼ −

1

Q2

�
1

ŝ
þ 1

û

�
: ð72Þ

Thus, this is a single-pole contribution and numerically it
turns out to be small. Since the x and the τ integration
factorize, one can perform the τ integrations separately.
Taking into account (17), the τ integrals in three-body
contributions (5) and (7) amount to

ωF ¼
Z

1

0

dτ
τ̄2

Z
τ̄

0

dτg
τ̄ − τg

ϕ3πðτ; τ̄ − τg; τgÞ ¼ 20 −
15

4
ω1;0 þ

24

5
ω2;0 −

6

5
ω1;1;

ωG ¼
Z

1

0

dτ
τ̄

Z
τ̄

0

dτg
τgðτ̄ − τgÞ

ϕ3πðτ; τ̄ − τg; τgÞ ¼ 30 − 10ω1;0 þ 8ω2;0 −
1

2
ω1;1; ð73Þ

respectively.

FIG. 7. The gluon mass m2
gðQ2Þ as in (67) for parameters

(381 MeV, 0.26), (436 MeV, 0.15), and (557 MeV, 0.08), denoted
by solid, dashed, and dotted line, respectively.
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B. Results from the collinear approach

We are now prepared to compute the subprocess ampli-
tudes (5), (7), and (66) within the collinear approach,
followed by the determination of the s-channel helicity
amplitudes (10), and ultimately, the transverse-transverse
interference (59) (dσTT=dt) and unseparated (61) (dσU=dt)
cross sections. The expressions for computing the twist-2
contributions, and thus the longitudinal cross section
contributing to dσU=dt, are the usual ones [28], while
we use the standard twist-2 pion DA with the second
Gegenbauer coefficient taken from [55]. Our current focus
does not entail a comprehensive collinear analysis involv-
ing fits or the introduction of NLO corrections. Instead, we
aim to present a proof of concept and offer an insight into
the interplay of contributions. With this goal in mind, in
order to simplify our explorative study of collinear
approach, we employ an analytical integration of subpro-
cess amplitudes over the GPD parametrization [8,11,19]
and we omit the GPD evolution.
Following the MPA analysis presented in Sec. IV C, on

Figs. 8 and 9 we compare our predictions to a selected set
of experimental results from [5,39] and [40]. The thin and
thick lines denote the cross sections obtained using the pion
DA parameter sets (19) (KPK) and (20), while the dashed
lines represent the WW contributions in collinear approach.
The best description is obtained by using in (67) the
parameters ðM;pÞ ¼ ð436 MeV; 0.15Þ.

As in the MPA case, the predictions obtained using
parameter set (20) are in good agreement with dσTT=dt
data presented on Fig. 8. The agreement of the same set
with dσU=dt data is good for the CLAS data at Q2 ¼
2.21 GeV2 and xB ¼ 0.275, but fails for higher Q2 and xB.
Since only the GPD ĒT contributes to dσTT=dt, while both
HT and ĒT contribute to dσT=dt, one can take it as a hint
that HT needs to be modified. Similarly to the MPA case,
the collinear predictions obtained using the pion DA (19)
are too low.
From the series of plots in Fig. 9, it is apparent that the

Q2 and xB dependence of the dσU=dt predictions obtained
by set (20) does not seem to be satisfactory in the range
considered. Notably, the decrease in collinear predictions
obtained using the set (19) is much milder. As illustrated in
Fig. 10 (see Sec. V C for details), this behavior is due to the
interference of 2- and three-body twist-3 contributions.
This suggests investigating the direction in which the
collinear approach captures the observed Q2 and xB
dependence with an appropriately modified pion DA.
On Fig. 9 the longitudinal cross section dσL=dt is

depicted by a dashed line and is much smaller than
dσT=dt for relatively low Q2 and W at which CLAS and
Hall A data are available. In contrast, it is important to
stress that in the low xB kinematics, as for COMPASS data
[40] depicted on Fig. 9 (bottom right figure), the longi-
tudinal cross section cannot be neglected and is of

FIG. 8. The transverse-transverse interference cross section (59) versus t0 for various kinematical settings, obtained using the collinear
approach with the gluon mass (67) for (436 MeV, 0.15). The thick (thin) solid lines denote the cross sections obtained using the pion DA
parameter sets (20) [(19)]. The dashed line represents the WW prediction. The experimental data are denoted as filled circles [5] and
triangles [39] (the triangles in the upper right plot correspond to Q2 ¼ 3.57 GeV2 and xB ¼ 0.36).
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comparable size as the transverse one. Thus, in that energy
region the NLO twist-2 corrections should be included and
the collinear approach is of particular importance since it
enables easier inclusion of NLO corrections. Analytical
expressions for these corrections are available [42,43].
However, the twist-2 NLO results were not confronted
with the data but the model dependent assessments of the
size of the NLO corrections were given and they amount to
40–100% [42,56]. The calculation of NLO corrections to
twist-3 part represent a demanding task left for future. It is

worth noting that if one introducesm2
g in gluon propagators

for the twist-2 part, a new calculation even for NLO twist-2
corrections would be required. For higher Q2, it is safe to
neglect such m2

g=Q2 terms. Since at Q2 ≈ 2 GeV2 such
corrections for LO contribute only up to a few percent, the
corrections to NLO are expected to be small as well. The
similar inclusion of m2

g terms in nonsingular three-body
twist-3 contributions could bring suppression of these
terms of up to 18% for Q2 ¼ 2 GeV2. The suppression
decreases fast with Q2 and xB.

FIG. 9. The unseparated cross section (61) versus t0 for various kinematical settings, obtained using the collinear approach with the
gluon massm2

gðQ2Þ (67) for (436 MeV, 0.15). The thick (thin) lines denote the cross sections obtained using the pion DA parameter sets
(20) [(19)]: solid line dσU=dt, dot-dashed line dσT=dt, and dotted line dσL=dt. The dashed line represents the dσU=dtWW contribution.
The open circles denote experimental data [40] and for other notation we refer to Fig. 8.

FIG. 10. The sizes of pion DA contributions from Eqs. (4), (5), and (7) and normalized as in (75) for m2
gðQ2Þ (67) and for parameters

(436 MeV, 0.15). The thick lines denote the WW (dashed), two-body (dotted), three-body (dash-dotted), and the complete (solid) twist-3
relative contributions, while the thin lines show the CF (dotted) and CG (dashed) proportional three-body twist-3 parts. Left plot is for
pion DA set (19) and the right one for (20).
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C. Lessons from DVMP and photoproduction

To better understand the obtained numerical results it is
instructive to analyze the relative sizes of the twist-3
contributions. We illustrate how the size of the twist-3
contribution and its Q2 dependence are influenced by the
pion DA, and consequently by the interplay of the two- and

three-body twist-3 contributions. In order to do that we
make an approximate factorization of x and τ integration in
(66), i.e., we use (4) and regularize only the integral over τ
by replacing τ in the integrand of (4) by τ þm2

g=Q2.
Consequently, the integral over τ from (4) can be cast into
the form

Z
1

0

dτ
1

τ þm2
g=Q2

ϕπpðτÞ ¼ ln

�
1þ 1

m2
g=Q2

��
1þ f3π

fπμπ
ω

�
1 −

30m4
g

Q4
−
60m6

g

Q6
−
30m8

g

Q8

��

−
5

2

f3π
fπμπ

ω

�
1 −

4m2
g

Q2
−
18m4

g

Q4
−
12m6

g

Q6

�
; ð74Þ

with ω given in (31). The first term in (74) encapsulates the
effect of end point singularity. The values for integral (74)
decrease with increasing m2

g and as expected vanish for
m2

g → ∞. The justification for approximating (66) by (4)
supported by (74) lies in the smallness of the gluon mass.
For the small gluon mass we are employing, the numerical
results are close to those obtained using (66). This
simplification facilitates a clearer interpretation of our
numerical results from (66), allowing for a distinct sepa-
ration of the roles played by GPDs (effectively overall
factor) and the modifications introduced by the different
choices for the twist-3 pion DA.
As an inspection of Eqs. (4), (5), and (7) reveals, the

relative size of different twist-3 contributions is essentially
controlled by the integrals over the pion DAs,12 i.e., the size
of two-body twist-3 contribution is proportional to

μπ
Q2

CF

�
ln

�
1þ 1

m2
g=Q2

�
þ f3π
fπμπ

ω

×

�
ln

�
1þ 1

m2
g=Q2

�
−
5

2
þO

�
m2

g

Q2

���
; ð75aÞ

while the CF and CG proportional three-body twist-3
contributions are governed by

−
μπ
Q2

CF
f3π
fπμπ

ωF;
μπ
Q2

CG
f3π
fπμπ

ωG; ð75bÞ

respectively. The factors ω, ωF, and ωG depend on pion DA
coefficients ω1;0, ω2;0, and ω1;1, and they are defined in (31)
and (73). The WW approximation corresponds to tak-
ing ω ¼ ωF ¼ ωG ¼ 0.
Now it is straightforward to illustrate the sizes of

different twist-3 contributions for selected pion DAs.

In Fig. 10 we compare the sizes of the contributions
(75) in the 2 ≤ Q2 ≤ 10 GeV2 range. The gluon mass
mgðQ2Þ is introduced as in (67). We compare both DA
parameter sets introduced above, i.e., (19) and (20), with
their evolution taken into account. The corresponding
values for ω are given in (37) and (38), while

ωFðμ20Þ ¼ 67.96;
CG

CF
ωGðμ20Þ ¼ −14.94; ð76Þ

and

ωFðμ20Þ ¼ 39.43;
CG

CF
ωGðμ20Þ ¼ −6.63; ð77Þ

respectively. To remind, the π0 photoproduction [15] was
used for the determination of the parameter set (19). The
parameter set (20) was introduced in Sec. III in order to
reconcile the DVMP and photoproduction data along with
minimal adjustments to the GPD parameters given in
Table I.
The dominant CF proportional three-body twist-3 con-

tribution in DVMP is proportional to ωF, defined by the
integral in (73). This integral, and consequently ωF,
also appears in and dominates the π0 photoproduction.
Additionally, since the twist-3 contribution proportional
to ϕπp vanishes in photoproduction, the twist-3 contribu-
tion proportional to ϕ3π governs, establishing the range of
ωF through photoproduction.
Although the prefactor f3π=ðfπμπÞ from (75) is a small

number (0.01515 at the initial scale μ0 ¼ 2 GeV and it
decreases), the effect of three-body pion DA encapsulated
in ω proportional terms can significantly alter the two-body
twist-3 contribution, especially at lower Q2 values. This is
prominent for the set (19), where ω takes a large negative
value (37). In Fig. 10 (left) the two-body twist-3 contri-
bution lies well beyond the WW prediction. The three-body
twist-3 contribution is negative and large for lower Q2

values, making our twist-3 prediction much lower than the
12The contribution of remaining CG proportional term in (7) is

numerically small.
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WW prediction. Since in the MPA the WW predictions
along with GPD parameters quoted in Table I describe the
data well, the set (19) produces the predictions in both the
MPA and the collinear approach that do not match the data.
This could also be seen as a hint to modify the GPDs but the
constraints on their form coming from other sources (as, for
example, lattice QCD) do not leave enough room to
incorporate this particular set. But it is important to note
that for the set (19) the cancellation between two- and
three-body contributions results in an extremely mild
dependence on Q2, which, as discussed above, aligns with
theQ2 dependence of the data. Hence, to accurately capture
the Q2 dependence of the data, a corresponding set may be
constructed in a similar manner, using the three-body twist-
3 contributions to modify the steep decent of the two-body
twist-3 contributions.
For the set (20), with a small positive value (38), the two-

body twist-3 contribution closely aligns with the WW
prediction. The three-body twist-3 contribution is negative,
and since its dominant part is also the major contributor to
the photoproduction, it is smaller than the two-body
contribution but not negligible. We note that the incorpo-
ration of the gluon mass into the three-body twist-3
component would result in a further decrease in this
contribution, similar to the observed effects in the MPA.
By design, this set effectively describes the DVMP data
within the MPA, and its predictions do not differ signifi-
cantly from the WW prediction both in the MPA and the
collinear approach.
The above analysis illustrates the potential to modify the

pion DA expansion coefficients by considering both
DVMP and photoproduction data. It aims to enhance our
understanding of the numerical results obtained through
both the collinear approach and the MPA, and it should
serve as a guide for the use of the collinear approach in
future fits. As in other DVMP scenarios, there are three
potential approaches: using the meson DA from another
process/input and fitting the GPDs, retaining the GPDs and
attempting to fit the meson DA, or trying to fit both
simultaneously. However, the quality of the data may pose
challenges in effectively fitting both DA and GPDs. In this
study we refrained from attempting the fits, reserving them
for future work.

VI. SUMMARY

We studied the twist-3 contributions to DVMP beyond
the WWapproximation. The three-body twist-3 DA is fixed
by the adjustment to the wide-angle pion photoproduction
data. This DA generates modifications of the flat two-body
twist-3 DA, ϕπp ≡ 1, through the equation of motion. Still,
the new DA ϕπp does not vanish at the end points, τ ¼ 0

and 1. As in [6,8], we apply the MPA, in which quark
transverse momenta and Sudakov suppressions are taken
into account, in order to regularize the end point singularity
present in the two-body twist-3 contribution. The mod-
ifications of the twist-3 subprocess amplitude are small so
that, within the MPA, the GPDs derived in [6,8] (with only
minor adjustments applied) still lead to reasonable agree-
ment with experiment. As a second regularization method,
we proposed the use of a dynamically generated gluon
mass in combination with the collinear approach. The
agreement with the experiment is only fair due to the fact
that the soft parameters were left the same as in the MPA
case. The interplay between different contributions has
been illustrated, and a basis for a more thorough analysis,
including higher-order corrections, has been outlined. It
was found that NLO twist-2 corrections could play an
important role in COMPASS kinematics.
We stress that the twist-3 analysis connects deeply

virtual processes (probing the GPDs at small −t) with
wide-angle ones (probing GPDs at large −t) and allows us
to extract information on the GPDs at a fairly large range of
t. This is valuable information required for the study of the
three-dimensional partonic structure of the proton.
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