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Abstract

Introduction: The second most common form of early-onset dementia—

frontotemporal dementia (FTD)—is often characterized by the aggregation of the

microtubule-associated protein tau. Here we studied the mechanism of tau-induced

neuronal dysfunction in neurons with the FTD-related 10+16MAPTmutation.

Methods: Live imaging, electrophysiology, and redox proteomics were used in 10+16

induced pluripotent stem cell-derived neurons and amodel of tau spreading in primary

cultures.

Results: Overproduction of mitochondrial reactive oxygen species (ROS) in

10+16 neurons alters the trafficking of specific glutamate receptor subunits via

redox regulation. Increased surface expression of α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors

containing GluA1 and NR2B subunits leads to impaired glutamatergic signaling,

calcium overload, and excitotoxicity. Mitochondrial antioxidants restore the altered

response and prevent neuronal death. Importantly, extracellular 4R tau induces the

same pathological response in healthy neurons, thus proposing a mechanism for

disease propagation.

Discussion: These results demonstrate mitochondrial ROS modulate glutamatergic

signaling in FTD, and suggest a new therapeutic strategy.
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1 BACKGROUND

Mutations in theMAPTgene, encoding themicrotubule-associatedpro-

tein tau, are known to cause familial frontotemporal dementia (FTD),

the second most common cause of early onset dementia.1 Among

them, the intronic 10+16 mutation causes augmented splicing in of

MAPT exon 10 and therefore an increase in the proportion of 4R-tau
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isoforms (containing four repeats of the microtubule-binding domain)

versus3R isoforms (containing three repeats),which are otherwise bal-

anced in the adult brain. Changes in the tau isoforms ratio are sufficient

to cause neurodegeneration in this and other disorders, by a mecha-

nism that is not fully understood. Altered regulation of microtubule

dynamics,2 neuroinflammatory mediators,3 calcium deregulation,4–6

as well as oxidative stress and mitochondrial dysfunction,7,8 have
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RESEARCH INCONTEXT

1. Systematic review: Tau is involved in a number of neu-

rodegenerative disorders such as frontotemporal demen-

tia. Different mechanisms have been described to under-

stand its role in neurodegeneration, including synaptic

dysfunction, mitochondrial alterations, oxidative stress,

and calcium deregulation.

2. Interpretation: Our findings demonstrate that tau

impairs glutamatergic signaling via mitochondrial reac-

tive oxygen species (ROS) overproduction, leading to the

overactivation of N-methyl-D-aspartate (NMDA) and

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) glutamate receptors, which results in excessive

calcium entry to the cytosol and neuronal death. We

demonstrate the underlying mechanism involves the

trafficking of specific glutamate receptor subunits and

the possibility to revert these effects using mitochondrial

antioxidants.

3. Future directions: We propose that mitochondria,

through mitochondrial ROS, modulate glutamatergic sig-

naling in neurons, with tau-triggered overproduction of

mitochondrial ROS leading to neuropathological effects.

Future experiments will extrapolate these findings to

other tauopathies and neurodegenerative disorders in

which different protein aggregates are the hallmark

(amyloid beta, tdp-43, alpha-synuclein); and investigate

the protective effect of mitochondrial antioxidants as a

therapeutic target.

been all suggested as potential mechanisms of tau-related neuronal

death.

Although neurodegeneration is a hallmark of dementia, memory

decline appears prior to neuronal loss in a number of neurodegener-

ative disorders, including FTD. Synaptic plasticity is thought to rep-

resent a key mechanism underpinning learning and memory. Indeed,

synaptic dysfunction is the best correlate with the progression of cog-

nitive decline in tauopathies such as Alzheimer’s disease (AD).9

Glutamate is the main excitatory neurotransmitter in the central

nervous system acting through either ionotropic glutamate receptors

(plasmalemmal ion channels such an N-methyl-D-aspartate [NMDA]

and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA]

receptors that mediate Ca2+ and Na+ influx) or metabotropic glu-

tamate receptors (mGlu, protein G-coupled receptors that mediate

Ca2+ release from intracellular stores, among other signaling path-

ways). However, excessive activation of glutamate receptors prompts

hyperexcitability in neurons, resulting in intracellular calcium overload

that triggers a pathological process known as excitotoxicity, which

ultimately leads to neuronal death.10–12 Impaired glutamatergic

transmission has been previously demostrated in tauopathies, pointing

to tau-induced dysfunction of NMDA and AMPA receptors.13,14

HIGHLIGHTS

∙ Tau impairs glutamatergic signaling in frontotemporal

dementia (FTD) via mitochondrial reactive oxygen species

(ROS) overproduction.

∙ Tau-induced mitochondrial ROS alter the trafficking of

specific glutamate receptors.

∙ Mitochondrial antioxidants prevent calcium overload and

excitotoxicity in FTD.

∙ Extracellular 4R tau impairs glutamatergic signaling by the

samemechanism.

Reactive oxygen species (ROS) are able to modulate physiolog-

ical and pathological signal transduction in the brain. NMDA glu-

tamate receptor activation can trigger superoxide production by

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, con-

tributing to cell signaling, but also to neuronal damage.15,16 Con-

versely, the function of NMDA receptors can also be modified by

ROS, impairing synaptic function in AD.17,18 Specifically, ROS pro-

duced by the mitochondria regulate diverse physiological processes

in brain cells, including signal transduction,19–21 but overproduction

of mitochondrial ROS can trigger cellular dysfunction and neuronal

death.22

Indeed, our previous studies in induced pluripotent stem cell

(iPSC)–derived neurons with the FTD-related 10+16 MAPT mutation

show that mitochondrial ROS overproduction is a key pathological

event of tau-induced pathology.8 Mitochondrial dysfunction in these

cells leads tooxidative stress andneuronal death that canbeprevented

with mitochondrial antioxidants. In addition, 10+16 neurons are more

vulnerable to calcium overload5,23 and exhibit severe functional

impairments including a depolarized resting membrane potential and

changed neuronal excitability due to reduced Nav1.6 expression.24

Here, we have tried to understand how this system of impairments

interact in the course of neurodegeneration, by exploring a possible

link between them and the dysregulation of the glutamatergic signal-

ing. We have found that overproduction of ROS in the mitochondria

of the 10+16 neurons leads to an increase in the surface levels of

specific subunits of NMDA and AMPA receptors via protein oxidation.

This impairs the glutamate-induced signal transduction leading to

calcium overload. Supplementation of the cells with mitochondrial

antioxidants completely recovers the glutamate-induced calcium

response in patients’ neurons and protects against excitotoxicity.

Similar results were obtained in isogenic-engineered 10+16 MAPT

iPSC-derived neurons and in primary neurons treated with extracel-

lular 4R tau. Our results highlight a direct link among mitochondrial

dysfunction, oxidative stress, and calcium deregulation in the mech-

anism of 4R tau-induced neuronal death, which is not restricted

to FTD but can be extrapolated to other forms of dementia. These

findings demonstrate a key role formitochondria in pathophysiological

signaling and the possibility to modulate its effects with mitochondrial

antioxidants.
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2 METHODS

2.1 Materials

Unless otherwise specified, all the materials were obtained from

Thermo Fisher Scientific (Life Technologies). NMDA, AMPA,

MitoTEMPO, Trolox, and MK801 were obtained from Sigma-Aldrich.

Kainic acid, CNQX, NBQX, SYM2206 were obtained from Tocris. Tau

2N3R and 2N4R are from Abcam. Deuterated polyunsaturated fatty

acid (D-PUFA) 11,11,14,14-D4-α-linoleic acid, was kindly provided

by Dr. Mikhail S. Shchepinov (Retrotope, Inc), and its synthesis was

previously described.25 MitoQ was kindly provided by Dr. Michael P.

Murphy (Medical Research Council Mitochondrial Biology Unit).

2.2 Human iPSC-derived cortical neuron cultures

Controls 1-3 and patients 1-2 iPSC lines were generated by retroviral-

transduction reprogramming of fibroblasts. All the information regard-

ing the reprogramming of the fibroblasts and characterization of these

lines was published previously.26 Control 1 was obtained from the lab-

oratory of Dr. Tilo Kunath, control 2 from the Coriell repository, and

control 3 was purchased from Thermo Fisher Scientific. The two iPSC

lines with the 10+16 MAPT mutation were generated from fibrob-

lasts obtained from the National Hospital for Neurology and Neuro-

surgery, London, UK. In addition, we used a genetically engineered

MAPT IVS10+16–/+ line which was generated using zinc finger nucle-

ase (ZFN) technology to introduce theMAPTmonoallelic 10+16muta-

tion into a parental iPSC line (Sigma) as described in Verheyen et al.27

The control line in these experiments is wild type (wt) at tau locus,

has a green fluorescent protein reporter inserted into SLC17a7 gene

using ZFN technology, and was generated from the same parental line

as IVS10+16–/+, thus both have the same genetic background. Both

lines are available via the EBISC repository (SIGi001-A-1 and SIGi001-

A-13).

Differentiation of the iPSC lines into cortical neurons was done

using the protocol described by Shi et al.28 Briefly, cells were subjected

to 10 days of dual SMAD inhibition with 1 μM dorsomorphin (Tocris)

and 10 μM SB431542 (Tocris), followed by extended neurogenesis in

N2B27media. Around 40 days after neural induction, cells were plated

in poly-ornithine/laminin (Sigma) coated μ-Slide 8 well Ibidi chambers

(Thistle Scientific) for most of the experiments, or glass coverslips sim-

ilarly coated for carrying out electrophysiological experiments. Cells

were maintained in neural maintenance media28 with media changes

twice a week. All the experiments were performed in neurons older

than 120 days (after induction).

2.3 Primary neuronal-astrocytic co-cultures

Primary cortical co-cultures of neurons and astrocytes were prepared

as described previously, from the cortex of Sprague-Dawley rat pups

(P2-P4) from the University College London breeding colony. Experi-

mental procedures were performed in full compliance with the United

Kingdom Animal (Scientific Procedures) Act of 1986 and with the

European directive 2010/63/EU. Cortex was rapidly removed into

ice-cold phosphate-buffered saline, and the tissue was trypsinized

(0.05% trypsin/ethylenediaminetetraacetic acid) for 15 minutes at

37◦C, homogenized and plated on poly-D-lysine-coated glass cover-

slips. Cultures were maintained at 37◦C in a humidified atmosphere

of 5% CO2 in Neurobasal A media supplemented with B27 and 2 mM

Glutamax and in the presence of penicillin/streptomycin. Media was

replaced after one week and cells were used at 12-15 DIV in all the

experiments.

2.4 K18 Tau protein expression and purification

Recombinant K18 Tau protein was expressed in BL21(DE3) E.coli cell

line transformed with pJ414 vector containing a bacterial codon opti-

mized synthetic gene encoding I260C/C291A/C322A tau K18. Protein

was purified as described previously29 by incubating the cell lysates

containing K18 protein at 90◦C to precipitate majority of the E.coli

proteins leaving the Tau in solution. Protein was further purified on a

SP Sepharose column followed by a Superdex 75 size exclusion chro-

matography step using an Akta Chromatography System (GE Health-

care).

2.5 Live cell imaging

Most of the experiments were performed in Hanks’ balanced salt solu-

tion (HBSS) buffer (with Ca2+ and Mg2+) supplemented with 10 mM

HEPES and adjusted to pH 7.4. In specific experiments, HBSS Ca2+-

free media (consisting of commercial HBSS Ca2+-Mg2+ free, supple-

mentedwith 2mMMgCl2 and 0.5mMethylene glycol tetraacetic acid)

or HBSSMg2+-free media (consisting of commercial HBSS Ca2+-Mg2+

free, supplemented with 2mMCaCl2) were used.

2.5.1 Ratiometric cytosolic Ca2+ imaging

[Ca2+]c was monitored in single cells using Fura-2 AM, a high affinity

intracellular calcium indicator which is ratiometric and allows an accu-

rate measurement of the cytosolic Ca2+ as the ratio of the emissions

of the dye in response to 340/380 excitation, independently of loading

variations. Cells were loaded for 30minutes at room temperature with

5 μMfura-2AM in the presence of 0.005%pluronic inHBSS buffer. Flu-

orescence measurements were made on an epifluorescence inverted

microscope equipped with a 20x fluorite objective (Nikon Eclipse Ti-

S). Excitation light was provided by a xenon arc lamp, the beam pass-

ing a monochromator at 340 and 380 nm (Cairn Research). Emitted

fluorescence light was reflected through an ET510/80 m filter to an

Andor Zyla sCMOS camera (Cairn Research) and digitized to a 16-bit

resolution. All imaging data were collected and analyzed using Andor

iQ2 (Andor) and Origin Pro 2018 (Origin Lab) software. Area under
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the curve (AUC; mathematical area) was calculated with the integra-

tion function inOriginPro2018, using a constantnumberof framesand

after baseline subtraction.

2.5.2 Two-photon (2P) excitation fluorescent
imaging

Cells were bolus loaded with the cell-permeable Ca2+ indicator Ore-

gon Green BAPTA-1 (OGB-1 AM; 5 μM, Invitrogen) by incubation for

30 minutes at 37◦C. After loading, the cells were washed for approxi-

mately30minutes forde-etherificationof thedye.A samplewasplaced

in a recording chamber mounted on the stage of an Olympus BX51WI

upright microscope equipped with galvo scanners, and integrated with

patch-clamp electrophysiology. 2P excitation microscopy was carried

out using an Olympus FV1000 imaging system optically linked to a

Ti:SapphireMaiTai femtosecond-pulse laser (SpectraPhysics-Newport)

at λ2Pex = 800 nm (optimized for OGB-1) with appropriate emission

filters. For the time-lapse changes inOGB-1 fluorescence, imageswere

collected using 512 × 512 pixel frames in the stream acquisition mode.

Various digital zooms were used to collect images at high resolution.

Recordings were carried out in a bicarbonate-buffered Ringer solution

containing (in mM) 126 NaCl, 3 KCl, 2 MgSO4, 2 CaCl2, 26 NaHCO3,

1.25NaH2PO4, 10D-glucose, saturated with 95%O2 and 5%CO2 (pH

7.4; 300-310mOsmol). To avoid phototoxic damage to the cells during

scanning, the laser power was always kept at its minimum. To provide

a brief, localized agonist application, glutamate (5 μM) was applied to

the cells via a fabricated glass micropipette (≈1 μm the tip diameter).

To enable visualization of the area and duration of the agonist spread,

the fluorescent tracer Alexa Fluor-594 (100 μM) was added into the

pipette.30 Changes in [Ca2+]c were expressed as the changes inOGB-1

fluorescence at the maximum of the fluorescent signal over the base-

line (ΔF/F0) as earlier.

2.5.3 Mitochondrial ROS production

Mitochondrial ROS production was analyzed using the mitochondrial-

targeted dye MitoTracker Red CM-H2XRos. Cells were loaded with 1

μM dye for 20 minutes at room temperature and images were taken

on the confocal microscope Zeiss 710 LSM with an integrated META-

detection system using a 40x oil-immersion objective. The dye was

excited at 561 nm, and the emitted fluorescence was detected above

580 nm. Imaging of the cells was recorded for several minutes and the

rate of increase in red fluorescencewas then analyzedusingZen (Zeiss)

andOrigin Pro 2018 (Origin Lab) software.

2.5.4 Mitochondrial membrane potential

Mitochondrial membrane potential (ΔΨm) was analyzed as previously

described.31 Cellswere loaded for 40minuteswith 25nMtetramethyl-

rhodamine methyl ester (TMRM, Sigma). Z-stacks were acquired using

a Zeiss 710 VIS CLMS confocal microscope equipped with a META

detection system and an x40 oil immersion objective (Zeiss). The dye

was excited at 561 nm, and the emitted fluorescence was detected

above 580 nm. Z-stacks were analyzed and average intensity was cal-

culated using Volocity 3D Image Analysis Software (PerkinElmer).

2.5.5 Cell death

Cellswere loaded for 20minutes at room temperaturewith 20μMpro-

pidium iodide (PI; only permeable to dead cells) and 10 μM Hoechst

33342 (which stains chromatin in all cells). Images of the cells were

then acquired using an epifluorescence inverted microscope equipped

with a 20x fluorite objective (Nikon Eclipse Ti-S). Excitation light was

provided by a xenon arc lamp, the beam passing a monochromator

at 340 or 530 nm. Emitted fluorescence light was reflected through

an ET455/50 m or a ET605/52 m filter, respectively, to an Andor

Zyla sCMOS camera. Images were analyzed using ImageJ software by

counting PI-positive cells (dead) relative to the total number of cells

(stainedbyHoechst). A total number of 300 to1000 cellswere counted

per field in n = 10 to 19 different fields. Experiments were repeated 3

to 4 times with different cell preparations.

2.5.6 Apoptosis

Caspase-3 activation was assessed by live confocal imaging after load-

ing the cells for 15 minutes with 10 μM NucView 488 caspase-3 sub-

trate (Biotium) and 10 μM Hoechst 33342. Bright NucView positive

nuclei colocalizing with Hoechst were considered apoptotic cells.

2.6 Cross-linking assay

To estimate the trafficking of the different AMPA receptor (AMPAR)

and NMDA receptor (NMDAR) subunits between the cytosol and the

cellular membrane we performed a crosslinking assay with the mem-

brane impermeable crosslinker bis(sulfosuccinimidyl)suberate BS3

(ThermoFisher) as described by Boudreau et al.32 Briefly, BS3 forms

a covalent bond between the cell surface proteins in close proxim-

ity leaving intracellular proteins unaffected. Therefore, the appar-

ent molecular weight of the receptors located in the cell membrane

increases compared to the non-crosslinked (intracellular) ones, and it is

possible to distinguish and quantify each fraction using western blot. A

samplenot treatedwithBS3was included to confirm thepositionof the

intracellular (non cross-linked) band. The absence of higher molecular

weight bands in the actin blot serves as a technical control indicating

that intracellular proteins were not crosslinked.

When indicated, 100 nM MitoTEMPO was added to the cell media

2 hours before the experiment. Neurons were then washed, the

crosslinking reaction was performed incubating them in 0.5 mM BS3

in HBSS for 15 minutes at 37◦C and terminated by adding 100 mM

glycine (10 minutes at 4◦C). Solution was washed and protein extracts
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collected in ice-cold RIPA lysis buffer supplemented with protease and

phosphatase inhibitors (Thermo Fisher). Samples were snap frozen,

sonicated, and centrifuged at 14000 rpm; and protein content of the

extracts was determined by the Pierce BCA protein assay (Thermo

Fisher).

2.7 Western blot

Fifteen to twenty μg of protein extracts were then fractionated on a

sodium dodecyl sulfate polyacrylamide gel (4%–12%; Thermo Fisher),

transferred to a polyvinylidene difluoride membrane (Bio-Rad) and

blocked with 5% non-fat milk. Membranes were incubated overnight

with the corresponding primary antibodies diluted in 5% bovine albu-

min serum: pan AMPA (mabn832) 1:1000 from Merck Millipore; NR1

(SAB4501301) 1:1000 from Sigma-Aldrich; GluA1 (ab109450) 1:2000

and NR2B (ab28373) 1:500 from Abcam; beta-actin (4970) 1:5000

from Cell Signaling Technologies; beta-III Tubulin (MAB1195) 1:5000

from R&D Systems; and afterward with the corresponding specie-

specific horseradish peroxidase (HRP)-conjugated secondary antibod-

ies. The luminol-basedPierce ECLWesternBlotting Substrate (Thermo

Fisher Scientific) was used to detect the HRP activity. Protein band

densities were quantified using Image J (NIH) after scanning the X-

ray films. For the estimation of total levels of the protein of interest

in the crosslink experiments, intracellular and surface band densities

were added. In some cases, western blots with non-crosslinked pro-

teins were performed. To compare the results between experiments,

in all cases results were normalized to control.

2.8 Redox proteomics

For redox proteomics, protein extracts were prepared from cell cul-

tures on RIPA buffer and separated on Bolt 4%-12% Bis-Tris Plus

polyacrylamide gels tominimize artefactual proteinmodifications. The

whole sample lanes excised were divided into eight equal parts. Sam-

ples were reduced with 10 mM dithiothreitol, alkylated with 10 mM

iodoacetamide and digested with the mass spectrometry grade mix-

ture of trypsin and Lys-C (trypsin/Lys-C, Promega) according to the

manufacturer’s protocol. To minimize the interference of artifactual

protein oxidation all samples were processed in parallel. Complex

peptide mixtures were loaded on a 25 cm reversed-phase C18 col-

umn (75 μm, 2 μm Acclaim RSLC C18, Thermo Scientific) using nano

Easy n-LC II (Thermo Scientific) system coupled to an Orbitrap Elite

mass spectrometer (Thermo Scientific). Peptides were separated over

a 90 minute linear gradient from 5% acetonitrile, 0.1% formic acid

to 37% acetonitrile, 0.1% formic acid with a constant flow of 300

nL/min, followed by a wash step and re-equilibration prior to injection

of new sample. The Orbitrap Elite operated in a data-dependent mode

using collision-induced dissociation (CID) for peptide fragmentation as

described previously.33

The raw MS data files were searched against Uniprot Homo sapi-

ens database (downloaded on 12th October 2017) using Sequest HT

search engine in Proteome Discoverer 2.2 (Thermo Fisher Scientific),

with false discovery rate (FDR) calculated by a target–decoy approach

set to 0.01. Two Sequest HT searches were performed where trypsin

or Lys-C, respectively, were selected as the enzyme. The following

search parameters were used: 10 ppm precursor mass tolerances,

0.6 Da fragment mass tolerance, and maximum of two missed cleav-

ages with a minimum peptide length of six amino acids. Other parame-

ters include carbamidomethylation of cysteine (+57.021Da) as a static

modification and several variable modifications of peptides: acetyla-

tion of Lys (+42.011 Da), amino acid mono-oxidation (+15.995 Da),

di-oxidation (+31.990 Da), tri-oxidation (+47.985 Da), deamidation

(+0.984 Da), nitration of Trp or Tyr (+44.985 Da), oxidation of His to

Asn (–23.016 Da) or Asp (–22.032 Da), oxidation of Lys to aminoadipic

acid (+14.963 Da), Trp oxidation to oxolactone (+13.979 Da), conver-

sion of Trp to kynurenine (+3.995Da), carbonylation of Arg to glutamic

semialdehyde (GluSA, –43.053 Da), Lys to aminoadipic semialdehyde

(Allysine, –1.032Da), and Pro to pyrrolidinone (–30.010Da).

The mass spectrometry proteomics data have been deposited to

the ProteomeXchangeConsortium via the PRIDE34 partner repository

with the dataset identifier PXD025083.

2.9 Electrophysiology

A sample of human iPSC-derived cortical neurons was placed in a

recording chamber mounted on the stage of an Olympus BX51WI

upright microscope equipped with a LUMPlanFI/IR 40×0.8 objec-

tive coupled to an infrared DIC imaging system. Electrophysiologi-

cal recordings were performed using Multipatch 700B amplifier con-

trolled by pClamp 10.2 software package (Molecular Devices). Record-

ings were made in a bicarbonate-buffered solution (aCSF) contain-

ing (in mM) 126 NaCl, 3 KCl, 2 MgSO4, 2 CaCl2, 26 NaHCO3, 1.25

NaH2PO4, 10 D-glucose (95% O2 and 5% CO2; pH 7.4; osmolarity

300-310 mOsmol) at 31◦C to 33◦C. Recording electrodes (the resis-

tance of 3.5–5 MΩ) were filled with an intracellular solution contain-

ing (in mM) 126 K-gluconate, 10 HEPES, 4 KCl, 4 MgCl2, 2 BAPTA,

4 Mg-ATP, 0.4 GTP-Na (pH 7.2 with KOH, osmolarity ≈290 mOsmol).

Neurons were monitored for spontaneous firing activity in either cell-

attached configuration (after formation of gigaseal) or whole-cell (at

–60 mV). Once after membrane breakthrough (whole-cell), cells were

monitored for the intrinsic passivemembrane properties, including the

resting membrane potential (Vrest), capacitance (Cm), and input resis-

tance (Rin), as described by Kopach et al.
24 Synaptic activity (excitatory

transmission)was examinedby recording spontaneous excitatory post-

synaptic currents (sEPSCs) at –70 mV. The glutamate-evoked currents

were recorded at differentmembrane potential by applying exogenous

glutamate using the rapid-application system. An application pipette

was positioned close to a recorded neuron, and glutamate (100 μM
in aCSF) was applied in a series of 500-ms pulses (or as indicated), in

varied inter-pulse intervals, with a pressure supplied by a two-channel

PDES-02DX pneumatic micro ejector system (npi electronic GmbH).

Glutamate-evoked currents were analyzed for the peak amplitude cal-

culated as mean amplitude for train of repetitively evoked responses
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(at least 3 to 5 trials), in every tested cell. Antagonists (10 μM CNQX,

10 μMNBQX, 10 μMMK801) were applied in bath.

Clampfit 10.3 software (Molecular Devices) and OriginPro (Origin

Lab) were used for analysis. Mini Analysis Program (Synaptosoft) was

used for off-line analysis of sEPSCs, as described.35 Briefly, excitatory

events were distinguished from baseline noise by setting the appro-

priate parameters for each individual cell and by manually eliminat-

ing false events. The AMPAR-mediated postsynaptic currents were

analyzed for the frequency of their occurrence and the amplitude.

For bursting activity, polysynaptic events occurring in the bursts were

counted.

2.10 Statistical analysis

OriginPro 2019 and IBM Statistics SPSS 25 were used for the statisti-

cal analysis. Data setswere first probed for normalitywith the Shapiro-

Wilk test and homogeneity of variances was analyzed with Levene’s

test. In most of the cases, the data sets did not show a normal distribu-

tion; therefore, non-parametric tests were performed (Kruskal-Wallis

H test or Mann-Whitney U-test). When appropriate, Student’s t-test

or analysis of variance followed by Bonferroni post-hoc test were per-

formed to estimate the statistical significance between experimental

groups. Histograms represent the mean ± standard deviation, and box

plots represent the median and 25 and 75 percentiles, with the distri-

bution profiles showing single-cell values, unless otherwise indicated.

Electrophysiological data are presented as mean ± standard error of

the mean with n referring to the number of cells analyzed. The Fisher

exact test was used to determine statistical difference between the

two category variables as indicated in the text. A P-value less than 0.05

was considered statistically significant for either test.

3 RESULTS

3.1 Dysfunction of human iPSC-derived neurons
with the MAPT 10+16 mutation links to upregulation
of AMPAR and NMDAR

We have previously shown that human iPSC-derived cortical neurons

with the 10+16 MAPT mutation linked to FTD exhibit pathophysio-

logical excitability at late stages of neurogenesis (≈150 DIV), revealed

as a depolarized resting membrane potential associated with impaired

firing due to reduced expression of Nav1.6 channels.24 We therefore

used electrophysiology to further explore dysfunctions on these neu-

rons.

In cell-attached mode, iPSC-derived cortical neurons (healthy

cohort) demonstrated a sustained spontaneous activity, a constant and

regular firing (Figure 1A), representing genuine human cell activity (i.e.,

not compromised by membrane breakthrough and potential washing

out/dilution of intracellular regulators). On the contrary, iPSC-derived

neurons with the 10+16MAPT mutation displayed bursting, irregular

discharge consisting of high-frequency bursts (≈2.6 Hz to 9.3 Hz), fol-

lowed by periods of prolonged “silence” (Figure 1B) associated with

membrane depolarization (Figure S1A in supporting information). In

whole-cell mode, iPSC-derived neurons with the 10+16 MAPT muta-

tion (held at –60 mV) revealed bursts of spontaneous discharge, again,

opposing regular firing in the age-matched control neurons (Figure1C).

We observed two characteristic patterns of spontaneous activity in

FTD: (1) high-frequency firing associatedwith sustaineddepolarization

(case 1) and (2) trains of short bursts consisted of few spikes followed

by periods of “silence” (case 2; Figure 1C).

To evaluate synaptic dysfunction, we next recorded synaptic events

(sEPSC), which revealed about two-fold increase in the frequency of

events occurred in neurons with the mutation (Figure 2B). These cur-

rents were AMPAR-mediated because they were recorded at –70 mV

and eliminated by the competitive AMPAR antagonist NBQX (Fig-

ure 2A). The increased frequency indicates boosted synaptic drive in

FTD. Interestingly, the mutation did not change the sEPSC amplitude

(P = 0.10; Figure 2B). Consistently, in 10+16 neurons, about ≈41% of

all synaptic events occurred within high-frequency bursts (Figure 2B),

further confirming irregular, bursting activity in FTD.

To understand how neuronal dysfunction in FTD relates to changes

in glutamate receptor functioning,wenext recordedglutamate-evoked

currents. The currents were evoked by locally applied glutamate (see

Methods) and recorded in human iPSC-derived neurons at different

membrane potentials (Figure 2C) in response to train of repeated glu-

tamate puffs (500-ms to 5-s pulses; Figure 2D). In 10+16 iPSC-derived

neurons, the amplitude of glutamate-evoked currents recorded at –

70 mV was increased ≈7.6 times compared to that in control (Fig-

ure 2D). Because it was recorded at –70 mV and fully eliminated

by a selective AMPA/kainate receptor antagonist CNQX, this indi-

cates upregulated AMPAR in FTD neurons. The glutamate-evoked cur-

rent amplitude was also increased when recorded at +40 mV (above

≈4.4 times, Figure 2E). Such an increase in the current amplitude was

reduced by CNQX (by ≈50%, P < 0.001 paired comparison), reflect-

ing the AMPAR-mediated component, while the subsequent applica-

tion of an activity-dependent NMDAR antagonist, MK-801, fully elim-

inated the remaining current (Figure 2E). This indicates that in FTD

human neurons with the MAPT mutation, the glutamate-evoked cur-

rent increase is due to upregulation of both AMPAR andNMDAR.

3.2 Increased AMPAR- and NMDAR-mediated
Ca2+ influx in iPSC-derived neurons with the MAPT
10+16 mutation

Impairment of glutamatergic signaling by AMPAR and NMDAR upreg-

ulation might disturb intracellular Ca2+ homeostasis, which is a known

mechanism leading to neuronal death in tau-inducedFTD.4,5 We there-

fore used live imaging to evaluate glutamate-induced cytosolic Ca2+

signaling in the neurons. Application of a physiological concentration

(5 μM) of glutamate induced a typical peak-like elevation of [Ca2+]c

in control neurons, while the 10+16 MAPT mutation led to a calcium

response of significantly higher amplitude and different shape (Fig-

ures 3A–3B). FTD neurons showed a sustained plateau of elevated
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F IGURE 1 Human induced pluripotent stem cell (iPSC)-derived cortical neurons display pathological activity in frontotemporal dementia
(FTD)-relatedMAPT 10+16mutation. A, Image, human iPSC-derived cortical neurons at≈150DIV for electrophysiology. Traces, typical firing
activity recorded under cell-attachedmode from iPSC-derived cortical neurons in control lines, showing spontaneous action potentials (AP),
evoked at the frequency≈0.9 Hz. Lower row shows individual AP spikes on an expanded scale (N= at least 8 cells from 4 independent
preparations). B, Representative spontaneous AP firing pattern in iPSC-derived neurons from FTDP group, showing irregular firing activity and
bursts of spontaneous AP. Boxes depict an area for illustration on an expanded scale, with the corresponding frequency of discharge shown (N= 8
cells, 2 independent preparations). C, Examples of spontaneous AP firing (whole-cell, Vm= –60mV) in iPSC-derived cortical neurons (≈150DIV)
from control lines (upper row) and FTDPwith theMAPT 10+16mutation (lower traces). Two individual cases illustrated; boxes depict an area on
an expanded scale, with the corresponding frequency of discharge
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F IGURE 2 Pathological activity of frontotemporal dementia (FTD) neurons with theMAPT 10+16mutation links to upregulated
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). A, Representative synaptic activity recording (spontaneous excitatory
postsynaptic currents, sEPSC)made from FTD-induced pluripotent stem cell (iPSC)-derived neuron (≈150DIV). Note irregular activity with bursts
of sEPSC, which are solely AMPAR-mediated (Vm= –70mV) and completely abolished by 10 μMNBQX (lowest red trace). Box depicts an area
illustrated on an expanded scale. B, Quantification of the sEPSC frequency (left), the current amplitude (right), and the proportion of bursts of
synaptic events (bottom), relative to the total number of sEPSC recorded in control iPSC-derived neurons (n= 1557 events, 7 neurons) and in FTD
with theMAPT 10+16mutation (n= 13683 events, 8 neurons). Data aremedian values. **P< 0.01 (Mann-Whiney U-test); ###P< 0.001 (Fisher’s
exact test). C, Image, experimental arrangement as seen in themicroscope (DIC channel) for local application of exogenous glutamate; recording
(rec) and application (puff) pipettes are seen. Traces, glutamate-evoked (100 μM, 500ms) currents recorded from an IPSC-derived neuron at
different membrane potentials as noted. D, Left, example AMPAR-mediated currents (Vm= –70mV) in response to sequential glutamate
applications (Glu, 100 μM) of different duration (500ms and 5 s). Right, summary of the AMPAR-mediated current amplitude in IPSC-derived
neurons from control lines (n= 11) and FTD (n= 10 neurons) at 150DIV. Data aremean± standard error of themean (SEM). ***P< 0.001
(unpaired t-test). E, Left, example glutamate-evoked currents, recorded at 40mV in a FTD iPSC-derived neuron. Note, 10 μMCNQX reduced
glutamate-induced current at 40mV (reflecting the AMPAR/kainate receptor activation) and 10 μMMK801 completely eliminated the current
(representing the N-methyl-D-aspartate receptor (NMDAR)-mediated component). Right, statistics of the AMPAR/NMDAR-mediated current
amplitude (Vm= 40mV) in IPSC-derived neurons in control lines (n= 5 neurons) and FTD (n= 7 neurons), with quantification of the upregulated
AMPAR andNMDAR in FTD neurons relative to the corresponding glutamate-evoked current before antagonist applications. Data are
mean± SEM. *P< 0.05 (unpaired t-test)
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[Ca2+]c with most of them depicting a second (delayed) peak (Fig-

ure 3A). AUC was ≈two times larger; while recovery of basal [Ca2+]c

significantly reduced (≈to half) in FTD neurons (Figures 3C, 3D), and

ultimately, was only achieved by washing out the agonist (Figure 3A).

Basal [Ca2+]c before stimulationwas however similar between cohorts

(Figure S2A in supporting information). Nevertheless, trains of spon-

taneous [Ca2+]c rise were observed in some neurons from patient 2

(Figure 3A), in agreement with previous results.5 We also explored

the calcium response to other stimuli that further helped us to distin-

guish neurons and glial cells (Figure 3A).36,37 Application of ATP acti-

vates P2Y receptors and induces calcium signaling predominantly in

glial cells, but not in mature neurons. In our preparations, there was

only a small proportion of glial cells (typically ≈10%) that responded

to ATP and displayed a glial-like morphology, thus were not taken in

further analysis. In addition, high [K+] mediumwas applied to depolar-

ize neurons, leading to the opening of voltage gated calcium channels

specifically in neurons. High [K+] induced a robust Ca2+ response with

no significant difference between the groups (Figure S2B).

Metabotropic glutamate receptors (mGlu) can contribute to the

[Ca2+]c transients by releasing Ca
2+ from the endoplasmic reticulum.

Application of 5 μMglutamate in the absence of extracellular Ca2+ did

not induce any changes in [Ca2+]c (Figure 3E), discarding the role of

mGlu, and confirming 10 + 16 mutation inMAPT alters calcium signal-

ing through ionotropic glutamate receptors.

AugmentedCa2+ influxwas indeedblockedbyNMDARandAMPAR

antagonists, such as MK-801, CNQX, NBQX, and SYM2206 (Fig-

ures 3F–3H). Each of those significantly reduced the AUC and the peak

[Ca2+]c amplitude, to a varied extent (Figure S2C). Importantly, neu-

rons with the mutation recovered basal [Ca2+]c in the presence of

AMPAR/NMDAR antagonists (Figure S2D), discarding an impairment

in Ca2+ efflux in the mechanism of glutamate-induced Ca2+ overload

in FTD.

To further confirm the increase in AMPAR/NMDAR-mediated Ca2+

permeability, we stimulated the cells with the selective agonists. Bath

application of NMDA (20 μM, inMg2+-free medium) or AMPA (20 μM)

to neuronal cultures evoked a [Ca2+]c rise, whichwas, again, of a higher

amplitude, with a larger AUC, in neurons with the 10+16MAPTmuta-

tion compared to healthy controls (Figures S3A, S3B, S3D, S3E). Inter-

estingly, application of kainate induced a higher rise in the patients,

but [Ca2+]c at the end of the experiment was not significantly different

between all the controls and patients (Figures S2C, S2F). These data

point to the tau-induced upregulation of Ca2+-permeable AMPAR and

NMDAR in FTD neurons.

3.3 Introduction of the 10+16 MAPT mutation
impairs calcium signaling and mitochondrial function
in genetically engineered neurons

To confirm 10+16 MAPT mutation was indeed causing the observed

calcium impairment in patients, we additionally used neurons derived

from a genetically engineered iPSC line, in which the 10+16T monoal-

lelic mutation in MAPT was introduced into a control iPSC line.27

Immunocytochemistry validated positive neuronal staining with Tuj1

(Figure 4A), with some cells positively stained with the astrocytic

marker GFAP (up to ≈10%), confirming a pattern similar to that in our

FTD-iPSC lines.24

Alike FTD-neurons, glutamate-induced [Ca2+]c rise in genetically

engineered 10+16 iPSC-derived neurons presented a higher peak

amplitude, larger AUC, and slower [Ca2+]c recovery compared to their

isogenic wt tau control, that were reverted with the AMPA/kainate

antagonist CNQX (Figure 4B, Figures 5G–5I, Figures S5B, S5C in sup-

porting information). This was further confirmed by 2-photon exci-

tation (2PE) imaging (see Methods). Time-lapse imaging (≈1 s per

F IGURE 3 Glutamate-induced calcium influx through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and
N-methyl-D-aspartate receptors (NMDARs) is upregulated in frontotemporal dementia (FTD)-related induced pluripotent stem cell
(iPSC)-derived neurons withMAPT 10+16mutation. A-D, Cytosolic calcium levels ([Ca2+]c) of iPSC-derived neurons from controls (C1-3) and
patients with the 10+16mutation (P1-2) in response to different stimulus were analyzed by live cell imaging using Fura-2 AM. A, Color-coded
images and traces from a representative experiment. Images show Fura-2 ratio levels at the beginning of the experiment (minute 0), in the peak
after application of glutamate (minute 2), and at the end of the glutamate exposure (after 10minutes) in control and patient. Scale bar: 25 μm.
Representative traces show the calcium response of (C) control (n= 26), (D) patient 1 (n= 34), and (E) patient 2 (n= 29) neurons (red traces
depicts the average) to the subsequent application of 5 μMglutamate, 100 μMATP and 50mMKCl, withmedia replacement before each
application. B-D, Peak amplitude (B), area under the curve (C), and percentage of basal calcium levels recovery after the peak at the end of the
glutamate exposure (D; 100% represents a full recovery of the calcium basal levels, 0% represents themaintenance of the peak amplitude= no
recovery) of the glutamate-induced calcium response. Box plots represent themedian, 25, and 75 percentiles; C1 n= 762, C2 n= 351, C3 n= 601,
P1 n= 732, P2 n= 1364 neurons analyzed. Non-parametric Kruskal-Wallis H test, ***P< 0.0001. E, Representative traces of the cytosolic calcium
levels of neurons (control n= 15, patient 1 n= 38, patient 2 n= 46). None of the cells showed a calcium signal after the application of 5 μM
glutamate in calcium-free HBSS (+ 0.5mMethylene glycol tetraacetic acid), discarding the role of metabotropic glutamate receptors.
Reintroduction of glutamate in regular HBSSmedia (containing 2mMCaCl2) reproduced the type of response observed in (A), indicating that
ionotropic receptors are responsible for the altered signal. F-H, Traces from a representative experiment showing themean± standard error of
the calcium response of control (F) and patient (G) neurons to 5 μMglutamate after a pre-treatment (20minutes) with different ionotropic
glutamate receptors antagonists. No drug pre-treatment (–); NMDA antagonistMK801, 10 μM; AMPA/kainate antagonist CNQX, 20 μM;
AMPA-selective competitive antagonist NBQX, 20 μM; AMPA-selective non-competitive antagonist SYM2206, 10 μM.H, Area under the curve of
the calcium signals. No drug pre-treatment (–) (C, n= 49 neurons; P1, n= 250; P2, n= 152); MK801 (C, n= 125; P1, n= 128; P2, n= 108); CNQX
(C, n= 128; P1, n= 119; P2, n= 80); NBQX, 20 μM (C, n= 17; P1, n= 175; P2, n= 233); SYM2206, 10 μM (C, n= 46; P1, n= 61; P2, n= 61). Box
plots represent themedian, 25, and 75 percentiles. Non-parametric Kruskal-Wallis H test was used to determine whether there were statistically
significant differences between controls and patients, or between the treatments in each group (ns: non-significant, ***P< 0.0001)



ESTERAS ET AL. 11



12 ESTERAS ET AL.

frame) demonstrated a robust transient [Ca2+]c rise in wt-tau neu-

rons in response to repetitive localized applications of glutamate

(10 μM), whose kinetics well resembled a spatial-temporal profile of

agonist application/diffusion (a few seconds time-course; Figure 4C).

Glutamate-evoked [Ca2+]c transients were eliminated by CNQX (Fig-

ure 4D). In genetically engineered 10+16 MAPT neurons, the [Ca2+]c

rise had a dramatically slower decay and a higher peak amplitude com-

pared to the isogenic wt tau cells (Figures 4C, 4E). Electrophysiological

recordings also demonstrated increased glutamate-induced currents

in 10+16MAPT neurons, which were eliminated by CNQX at –70 mV

(Figure S4A in supporting information) and CNQX with APV at 40 mV

(Figure S4B).

Importantly, genetically engineered 10+16 neurons also mimicked

the mitochondrial dysfunction we previously described in 10+16

FTD neurons.8 Engineered 10+16 neurons exhibited a hyperpolar-

ized mitochondria and an increased rate of cytosolic and mitochon-

drial ROS production (Figures 4F–4G, Figures S4C, S4D) compared

to their isogenic wt tau neurons. Depolarization of the mitochondria

with rotenone reduced ROS production in 10+16 neurons (Figures

S4C, S4D), indicating mitochondrial hyperpolarization was the under-

lying cause of the elevated ROS, as previously observed in patients’

neurons.8 Thus, both calcium-deregulation andmitochondrial dysfunc-

tion appear to be specifically mediated by this taumutation.

3.4 Mitochondrially located antioxidants prevent
the glutamate-induced calcium deregulation in MAPT
10+16 iPSC-neurons

Indeed, we previously showed that 10+16 FTD-neurons are more

vulnerable to calcium-induced cell death5 and that mitochondrial

ROS overproduction is a key pathological event, leading to neu-

ronal death that could be prevented with mitochondrially targeted

antioxidants.8,23 We therefore reasoned whether the neuroprotec-

tive effect of mitochondrial (and other) antioxidants could be exerted

by targeting AMPAR and NMDAR-mediated calcium overload. We

implemented several treatments: water soluble analogue of vitamin E,

Trolox; mitochondrially located antioxidants MitoQ and MitoTEMPO;

and deuterated PUFAs (non-antioxidant compounds which inhibit lipid

peroxidation38; Figure 5A). Trolox treatment reduced the peak ampli-

tude of glutamate-evoked [Ca2+]c rise in patients’ neurons with the

10+16mutation, improved the AUC, and the recovery of basal [Ca2+]c

(Figures 5A–5C, Figure S5A). In contrast, treatment with D-PUFAs did

not significantly changed peak amplitude or AUC, nor facilitated recov-

ery of basal [Ca2+]c in the patients (Figures 5A–5C, Figure S5A) sug-

gesting no considerable role of lipid peroxidation in the glutamater-

gic impairment induced by tau. However, treatment with mitochon-

drial antioxidants MitoQ and MitoTEMPO restored the augmented

glutamate-induced [Ca2+]c rise in neurons with the MAPT 10+16

mutation, to the full extent (Figures 5A–5C, Figure S5A). Interest-

ingly, both MitoQ and MitoTEMPO improved [Ca2+]c handling in the

control cohort (Figures 5A–5C, Figure S5A). Mitochondrial antioxi-

dants produced a greater effect than the general antioxidant trolox

on recovering the impaired [Ca2+]c signaling in FTD neurons, thus

emphasizing the key impact of mitochondrial ROS in the mechanism of

tau-induced AMPAR and NMDAR upregulation. Indeed, MitoTEMPO

also restored the augmented glutamate-evoked [Ca2+]c rise in genet-

ically engineered 10+16 neurons, reducing peak amplitude, AUC, and

enhancing recovery of basal [Ca2+]c (Figures 5G–5I, Figure S5C).

Whole-cell recordings further confirmed that mitochondrial antiox-

idants restored the AMPAR-mediated currents (recorded at –70 mV

and eliminated by CNQX) in FTD neurons to a level of those in healthy

control lines (Figures 5D–5E). Similarly, the amplitude of glutamate-

evoked currents recorded at 40 mV decreased after MitoTEMPO

treatment in neurons with themutation (Figures 5D, 5F).

Thus, tau-induced mitochondrial ROS overproduction is the under-

lying cause of NMDAR- and AMPAR-mediated calcium deregulation in

both FTD and engineered 10+16 neurons.

F IGURE 4 Genetically engineered 10+16MAPT induced pluripotent stem cell (iPSC) neurons display increased glutamate-induced calcium
influx andmitochondrial reactive oxyten species (ROS) compared to isogenic wild-type (WT)MAPT controls. A, Immunostaining of the genetically
engineered 10+16MAPT iPSC-neurons and their isogenicWTMAPT control at D125, showing the neuronal marker Tuj1, the astrocytic marker
GFAP and the nuclear dye Hoechst. Scale bar: 20 μm. B, Traces from one representative experiment showing the calcium response (measured by
Fura-2 ratio) to 5 μMglutamate in n= 44wtMAPT neurons; n= 29 10+16MAPT neurons and n= 14 10+16MAPT neurons pre-treated for
20minutes with the AMPA/kainate antagonist CNQX 20 μM. C-E, Two-photon excitation (2PE) imaging of the intracellular Ca2+ dynamics (OBG-1
signal) in wt and 10+16MAPT lines. C, Images show experimental arrangement for focal application of glutamate (10 μM) through amicropipette
positioned in close proximity of the cells; combined transmitted light, OGB-1 (green), and Alexa Fluor-594 (red) channels during glutamate puff;
λ2Pex = 800 nm inWT neurons (top image) and 10+16MAPT neurons (bottom image). Traces, time course of the Ca2+ rise over indicated regions of
interest (ROI, dotted circles on images) before and after repetitive glutamate puffs; top trace, Alexa Fluor-594 diffusion profile across the field of
view; red arrow, timing of glutamate puff. Note extended Ca2+-signals induced by a single glutamate puff in 10+16MAPT neurons, suggesting
mitochondrial involvement. D, Quantification of the glutamate-induced Ca2+-rise (OGB-1 fluorescence intensity ratio) in individual neurons in wt
tau neurons, eliminated by CNQX (right). E, Statistical comparison of the glutamate-induced Ca2+-rise in control (WT) and 10+16MAPT groups.
Data aremean± standard error of themean (SEM). ***P< 0.001; **P< 0.01 (Mann-Whiney U-test). Number of analyzed neurons indicated. F,
Mitochondrial membrane potential assessed by TMRM staining. Box plots represent themedian, 25 and 75 percentiles;WT, n= 93 neurons;
10+16, n= 52. Non parametricMannWhitney test, ***P< 0.0001. Color-coded representative images. Scale bar: 20 μm. G,Mitochondrial ROS
production assessed withMitoTrackerRed-CMH2Ros live imaging. Traces from one representative experiment (left) and rate of mito ROS
production in independent neurons. Histograms represent the average±SEMofWTMAPT, n= 87 neurons and 10+ 16MAPT n= 72. Two-sample
t-test, ***P< 0.0001
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3.5 Mitochondrial antioxidants reduce the
surface levels of specific AMPAR and NMDAR
subunits elevated in patients’ neurons

Excessive ROS production might exert a pathogenic role by mediating

the oxidation of numerous proteins and altering their structure, hence

function.37,39 Some amino acid oxidations can be reversed (i.e., methio-

nine or cysteine oxidation), while amino acid carbonylation remains

irreversible. Accumulation of reversibly oxidized amino acids may act

as a regulatory switch.40,41 To further understand the role of mito-

chondrial ROS overproduction in FTD pathogenesis we next explored

the pattern of protein oxidation in neurons using redox proteomics.

As expected, we observed an increase in the amount of oxidized pep-

tides in patients compared to control (Figure 6A). Pre-incubation of

neurons with MitoQ effectively reduced the number of oxidized pep-

tides (by > 20%) in FTD samples (Figure 6A) and shed some light on

potential protein candidates to explain how mitochondrial ROS medi-

ates tau pathology and glutamatergic dysfunction (Figure 6B). Notably,

MitoQ reversed the oxidation of proteins such as MAP1B, clathrin,

or Hsc70, known to regulate AMPAR and NMDAR trafficking, so we

next explored this possibility by analyzing the distribution of these

receptors between cytosol and plasma membrane of neurons using a

crosslinking assay as described inMethods.

AMPARs are tetramers composed of different subunits (GluA1-4),

with GluA1 and GluA2 predominant, and the lack of editing of GluA2

conferring the receptor calcium permeability. There was no significant

difference in the total levels of all fourAMPARsubunits (GluA1-4)mea-

sured with a pan AMPAR antibody (Figure 6C), or specifically GluA1

(Figure 6F) between control and FTD neurons. However, their surface

expressionwas significantly higher in patients (Figures 6D, 6E, 6G, 6H).

Importantly, treatment of FTD neurons with the mitochondrial antiox-

idant MitoTEMPO decreased the surface level of GluA1 and GluA(1-

4) (Figures 6D, 6E, 6G, 6H), with no significant effect on total subunit

content (Figures 6C, 6F). This indicates increased mitochondrial ROS

contributes to the trafficking of AMPARs, and specifically the calcium-

permeable subunit GluA1, to the cellular membrane in patients.

NMDARs are also tetramers composed of two obligatory NR1,

plus NR2(A-D) (or more rarely NR3) subunits, which confer the

receptor-specific signaling properties. NR1 total and surface levels

were similar between control and FTD neurons, and were unaf-

fected by mitoTEMPO (Figures 6I–6K). However, NR2B, known to

predominately locate in extrasynaptic membranes and contribute to

excitotoxicity,42 was highly expressed in patients (Figure 6L), and

MitoTEMPO significantly reduced its presence in the cell membrane

(Figures 6M, 6N). These results indicate that although membrane

expression of NMDARs is similar as indicated by NR1, specific NR2B-

containing receptors involved in excitotoxicity are upregulated in the

patients and can be modulated by mitochondrial antioxidants, provid-

ing a mechanistic basis of the neuroprotective action of these com-

pounds.

3.6 Extracellular 4R tau impairs the
glutamate-induced calcium response of control
neurons by increasing mitochondrial ROS production

In the recent years, increasing evidence supports that tau spreads

through the brain in a “prion-like” manner, in a mechanism involving

extracellular tau release and uptake by cells.43,44 We found that iPSC-

derived neurons were able to secrete tau and interestingly, tau secre-

tion in patient 2 was significantly higher than in control (Figure S6B

in supporting information). Notably, this patient also showed spon-

taneous calcium oscillations in the absence of any stimulation (Fig-

ure 3A), which is consistent with other authors showing that increased

neuronal activity stimulates the release of tau.45 We then hypothe-

sized if secreted extracellular tau was also able to alter the glutamate-

induced calcium signaling of the cells. To this end, we treated the three

control lines either with their own supernatant or with the super-

F IGURE 5 Mitochondrially located antioxidants reduce the upregulated glutamate-induced calcium signals inMAPT 10+16 induced
pluripotent stem cell (iPSC)-derived neurons. A, Representative traces showing the calcium response to 5 μMglutamate (application indicated by
the arrow), after pre-treatment of control, patient 1 or patient 2 neurons with different antioxidants: no drug pretreatment (–), water-soluble
analogue of vitamin E, Trolox (100 μM, 2 hours); mitochondrially located antioxidantsMitoQ andMitoTEMPO (100 nM, 1 hour) or inhibitor of lipid
peroxidation, d-PUFA (10 μM, 48 hours). B-C, Peak amplitude (B) and area under the curve (C) of the calcium response induced by glutamate, in the
presence or absence of the different antioxidants. No drug (C, n= 346 neurons; P1, n= 393; P2, n= 405); Trolox (C, n= 154; P1, n= 218; P2,
n= 336);MitoQ (C, n= 26; P1, n= 218; P2, n= 154);MitoTEMPO (C, n= 33; P1, n= 140; P2, n= 103); d-PUFA (C, n= 161; P1, n= 13; P2, n= 55).
Box plots represent themedian, 25- and 75 percentiles. Non-parametric Kruskal-Wallis H test was used to determine whether there were
statistically significant differences between controls and patients, or between the treatments in each group (ns: non-significant, *P< 0.05, **
P< 0.01, *** P< 0.0001). D-F, Patch-clamp recordings of the glutamate-evoked currents in iPSC-derived neurons. D, Representative whole-cell
recordings in FTD-iPSC-derived neurons with theMAPT 10+16mutation without treatment (red) and post-treatment withMitoTEMPO (2 hours
pre-incubation) at –70mV (lower traces) and 40mV (upper traces) in response to local glutamate (Glu) puffs (as indicated). Statistical comparison
of the glutamate-evoked current amplitudes at –70mV (E) and 40mV (F) between control (gray) and FTD groups without treatment (red) and
treated withmitochondrial antioxidant (blue). Data aremean± standard error of themean (SEM). *** P< 0.001; **P< 0.01 (unpaired t-test). G-I,
Changes in [Ca2+]c in response to glutamate after the pretreatment of the genetically engineered 10+16MAPT neurons and isogenicWTMAPT
control with themitochondrial antioxidantMitoTEMPO (MT, 100 nM, 1 hour) or the AMPA/kainate antagonist CNQX (20 μM, 20minutes). G,
Traces represent the average±SEM from one representative experiment, ofWT, n= 45;WT+MT, n= 8; 10+16. n= 36; 10+16+MT, n= 21;
10+16+CNQX, n= 14 neurons. Quantification of the peak amplitude (H) and area under the curve (I) in individual neurons. Box plots represent
themedian, 25 and 75 percentiles;WT, n= 222 neurons;WT+MT, n= 34; 10+16, n= 279; 10+16+MT, n= 97; 10+16+CNQX, n= 32.
Non-parametric Kruskal-Wallis test, * P< 0.05, ** P< 0.01, *** P< 0.0001)
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F IGURE 6 Mitochondrial antioxidants reduce the surface levels of specific α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR) andN-methyl-D-aspartate receptor (NMDAR) subunits elevated in patients’ neurons. A,B, Redox proteomics analysis of oxidized
peptides in patients (P) and control (C) groups with andwithoutMitoQ treatment (100 nM). A, Histograms represent themean± standard
deviation of the number of oxidized peptides in control n= 4, c+mitoQ n= 2, patients n= 6, patients+mitoQ, n= 3 preparations. ** P< 0.01,
two-way analysis of variance. B, Specific proteins showing a reduction in the number of oxidized peptides after the treatment withMitoQ (100 nM)
in patients as analyzed by redox proteomics. Only proteins that showed a reduction in the three samples investigated are shown. C-N, Intracellular
and surface distribution of different AMPAR andNMDAR subunits analyzed bywestern blot after the crosslinking of the superficial receptors
using BS3. E, H, K, N, Representative western blots showing the bands corresponding to the intracellular and surface (crosslinked) subunits of: (E)
all the AMPAR subunits GluA(1-4), detected with a pan-AMPA antibody, (H) AMPAR subunit GluA1, (K) NMDAR subunit NR1, (N) NMDAR subunit
NR2B. Neuron-specific βIII tubulin was used as a loading control. Absence of higher molecular weight bands in the actin band (E) confirms that
intracellular proteins were not crosslinked. Histograms show the quantification of the number of samples indicated in brackets, lines represent the
median. For the quantification of the total levels, intracellular and surface levels were added. In the total levels group, some additional experiments
using non-crosslinked samples were also included. In all cases, data was normalized to control for each experiment. Statistical significance between
control and patients was analyzedwith the non-parametricMann-Whitney test in all cases except (G), which followed a normal distribution and
two-sample t-test was used, number of samples analyzed is indicated in brackets. Specific samples, as indicated by the dotted lines, were treated
with themitochondrial antioxidantMitoTEMPO (MT, 100 nM, 1h). Statistical significance of the effect ofMitoTEMPOwas analyzedwith the
non-parametric pairedWilcoxon signed-rank test, except in (G) where the paired t-test was used. Number of samples analyzed is indicated in the
MT column

natant obtained from the two 10+16 FTD iPSC-lines for 48 hours

(Figure 7). Control cells treated with conditioned media from patients

depicted a similar alteration in the glutamate-induced calcium signal-

ing as patients’ cells themselves, including increased peak amplitude,

AUC, and sustained shapeof the [Ca2+]c transients (Figures7A, 7B; Fig-

ures S6C–S6F). Importantly, pretreatment of control neurons with the

mitochondrial antioxidantmitoTEMPOagain significantly restored the

altered response induced by the conditioned media from mutant cells

(Figures 7A, 7B). Total tau concentration in the conditionedmedia used

was similar in control and patients (Figure S6A), but only the super-

natant from patients induced an alteration in the glutamate-induced

calcium response. At the age our iPSC-neurons were used for exper-

iments (120–150 DIV), 10+16 neurons show a robust expression of

exon 10, and therefore 4R tau production, whereas only low levels of

4R tau are observed in controls.26 This suggests a specific role for 4R

tau isoform, whose production is enhanced by the 10+16 mutation, in

themechanism of action. To confirm this point, we used K18 tau, which

is a construct from wt 4R tau comprising the four-repeat region of the
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protein, to treat primary rat cortical neurons (300 nM K18 tau, 24 h).

Similarly to human iPSC-derivedneurons, tau-treatedprimary neurons

also showed upregulated calcium responses to a physiological concen-

tration of glutamate (5 μM), which were restored with the mitochon-

drial antioxidant MitoQ (Figures 7C–7G). Notably, mitochondrial ROS

production was also increased by K18 tau (Figures 7H, 7I).

Calcium deregulation in tau-treated primary neurons became even

clearer under exposure of these cells to toxic concentrations of glu-

tamate. Thus, 50 μM glutamate induced the initial peak and delayed

calcium deregulation typical for this concentration, which was higher

in tau-treated cells (Figures S6G, S6H, S6K). And again, the mitochon-

drial antioxidant MitoQ significantly decreased the calcium signal in

response to 50 μM glutamate in both control and tau-treated neurons

(Figures S6I–S6K). The specific role of 4R tau was further confirmed

by treating primary neurons with extracellular 3R tau. Interestingly,

3R tau also induced an altered calcium response in the neurons but by

a different mechanism than 4R tau, because it was not modulated by

mitochondrial ROS (Figure S6L), which indeed were only upregulated

by 4R and not 3R tau (Figure S6M). Taken together, these results con-

firm that extracellular or secreted 4R tau recapitulate the pathological

phenotype of 10+16mutation.

3.7 Tau-enhanced excitotoxicity can be reduced
by mitochondrial antioxidants

Treatment of primary cortical neurons with K18 tau significantly

increased neuronal death (Figures 7J–7K) as previously observed in

human iPSC-derived neurons with the 10+16 mutation.8 Caspase-3

activation was similar among all the conditions (Figure 7L) suggest-

ing necrosis was the preferential cell death mechanism. Importantly,

neuronal death was also significantly higher in tau-treated cells after

24 hours of an (excitotoxic) 30-minute exposure to 50 μM glutamate

(Figures 7J–7K). Mitochondrial antioxidant MitoQ significantly pre-

vented excitotoxicity in a similar way as the glutamate ionotropic

receptor antagonist CNQX (Figures 7J–7K). These results highlight the

key role of mitochondrial ROS in tau-induced glutamatergic dysfunc-

tion and the neuroprotective effect of these compounds in calcium-

induced cell death in FTD.

4 DISCUSSION

Here we report a direct link amongmitochondrial ROS, calcium signal-

ing, and glutamatergic transmission deregulation, which might lead to

early dysfunction preceding neuronal loss in tauopathies, and, accord-

ing to our results, is also involved in the mechanism of neurodegenera-

tion.

Our data demonstrate that in 10+16 MAPT human neurons,

NMDA- and AMPA-mediated signaling is upregulated, as shown by

the enhanced calcium responses induced by physiological concentra-

tions of glutamate and the upregulated conductance and firing activity

observed in the electrophysiology experiments. In agreement with our

results, it was previously published that tau-mediated NMDA recep-

tor impairment underlies the dysfunction of a selectively vulnerable

network in a mouse model of FTD,46 the enhanced effect of mutated

tau on excitotoxicity via NMDA,47 and the involvement of calcium

dysregulation in the mechanism of cell death of FTD iPSC-neurons

with different MAPT mutations.4 Interestingly, 10+16 MAPT muta-

tion in our experiments also induced AMPA receptors deregulation

similarly to FTD-associated mutant CHMP2B in mice, where AMPA

deregulation led to social behavioral impairments.48 A number of stud-

ies show altered expression of glutamate receptors in FTD and tau-

relateddiseases.49–51 Ourdata strongly suggest that the glutamatergic

deregulation is reversible, and more sensitive to mitochondrial antiox-

idants compared to general ROS scavengers. We show that the sur-

F IGURE 7 Extracellular tau alters the glutamate-induced Ca2+ response of induced pluripotent stem cell (iPSC) and primary control neurons
by increasingmitochondrial ROS production. A, B, Conditionedmedia (CM) containing secreted tau from each of the frontotemporal dementia
(FTD)-relatedMAPT 10+16 iPSC- patients neurons (P1 and P2) was applied to control iPSC-neurons and incubated for 48 hours. Calcium
responses to glutamatewere studied afterward in the control, with or without pre-treatment with themitochondrial antioxidant mitoTEMPO (MT,
100 nM, 1 h). A, Traces from a representative experiment. B, Quantification of the peak amplitude and area under the curve in individual neurons.
Box plots represent themedian, 25 and 75 percentiles; C, n= 135 neurons; C+CMP1, n= 112; C+CMP1+MT, n= 120; C+CMP2, n= 84; C+CM
P2+MT, n= 38. Non-parametric Kruskal-Wallis test, **P< 0.01, *** P< 0.0001. C-F, Representative traces illustrating the glutamate-induced
calcium response on rat primary neurons to a physiological (5 μM) concentration of glutamate in control conditions (C), after the incubation of the
cells for 24 hours with 300 nMK18 tau (D), and after preincubating the cells for 1 hour with 100 nMMitoQ prior to the experiment (E, F). G,
Amplitude of the calcium peak in the conditions described before. Box plots represent themedian, 25 and 75 percentiles; C, n= 181 neurons; C+
MitoQ, n= 17; Tau, n= 234; Tau+MitoQ, n= 23. Non-parametric Kruskal-Wallis test, ***P< 0.0001). H-I, Rate of mitochondrial reactive oxygen
species (ROS) production was assessed withMitoTrackerRedCMH2Ros in control primary neurons treated or not with 300 nMK18 tau for
24 hours. Representative traces from one experiment (H) and quantification of the rate of ROS production (I) in control (n= 24 neurons) and
tau-treated (n= 18) neurons. Box plots represent themedian, 25, and 75 percentiles. Non parametricMann-Whitney test, ***P< 0.0001. J,
Percentage of cell death in basal conditions (control n= 19 fields analyzed; tau n= 19), or 24 hours after a short treatment (30minutes) with 50
μMglutamate in the absence (C, n= 18; tau n= 19); or presence of the inhibitor of mitochondrial ROS,MitoQ 100 nM, (C, n= 10; tau, n= 15) or
the AMPA/kainate receptor antagonist, CNQX 20 μM (C, n= 19; tau, n= 19). Histograms represent themean± standard deviation, two-way
analysis of variance with Bonferroni post-hoc test, **P< 0.01. K, Representative images of cell death experiments: propidium iodide (red
fluorescence) labels dead cells, and Hoechst (blue fluorescence) labels all cells. Triton was used as a positive control. Scale bar: 50 μm. L,
Representative images showing caspase-3 activation in individual cells as bright NucView488 nuclei colocalizing with the nuclear marker Hoechst.
Staurosporine (ST)1 μM for 3 hours was used as a positive control. Right panel, percentage of caspase-3 positive cells. Scale bar: 50 μm
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face expression of AMPAR and NMDAR is increased in 10+16 neu-

rons and can be restored with mitochondrial antioxidants. This was

not a general effect for all the AMPAR and NMDARs, as NR1 sur-

face levels and therefore, general NMDAR surface levels, were not

altered. Instead, specific subunits trafficking such as the calcium per-

meable GluA1 and NR2B were modified by tau-induced mitochondrial

ROS, although the role of other subunits cannot be discarded. Inter-

estingly, GluN2B-containing NMDA receptors are preferentially found

in the extrasynapses and its activation is more linked to excitotoxic-

ity. Indeed, several studies support the role of tau in the modulation of

these receptors.52–54 Oneof themost important findings inour study is

that taumediates thismodulation throughmitochondrial ROS: we pro-

vide evidence of a direct link between mitochondrial dysfunction and

glutamatergic transmission impairment.Most of the studies in this field

reported the effect of glutamate receptor activation in physiology and

pathology (excitotoxicity) onmitochondrial membrane potential, mito-

chondrial calcium, and ATP55,56 for review. However, how mitochon-

dria modify the glutamatergic signal in physiology, and mitochondrial

dysfunction in particular, is poorly understood. That kind of effect of

mitochondrial ROS on AMPA and NMDA receptors is shown for the

first time to our knowledge. Considering the protective effect of mito-

chondrially located antioxidants, it should be mediated by ROS pro-

duced in the mitochondrial matrix. The lifetime of superoxide anion,

which is initially produced in the ETC, is in the nanosecond range22 and

it should be converted to hydrogen peroxide and transported to other

parts of the cell.

It was confirmed by redox proteomics data that MitoQ protects

mitochondrial and cytosolic proteins against oxidation in the iPSC

patient neurons. Considering the redox sensitivity of the glutamate

receptors (shown by the activation of NADPHoxidases57) the effect of

mitochondrial ROS on the glutamate-induced calcium signalling could

be used in the physiological regulation of AMPA and NMDA conduc-

tivity. Among the oxidized proteins detected in the redox proteomics

analysis to be reversed by MitoQ treatment in the patients, we found

proteins implicated in glucose metabolism, like the beta subunit of the

mitochondrial ATP synthase; and the gamma and alpha subunits of the

glycolytic enzyme enolase—the latter has been consistently reported

to be oxidatively modified in AD patients’ brains and animal mod-

els of the disease.58–60 Oxidative modifications of metabolism-related

enzymes have been linked to a diminished enzymatic function37 and

contribute to the altered glucose metabolism occurring in neurode-

generative disorders, which might also affect the synaptic function,

due to its high energy requirements. We previously showed glucose

metabolism was altered in 10+16 neurons,8 which were able to main-

tain ATP levels at the age theywere studied by different compensatory

mechanisms. This chronic impairment in theenergy supplymightbe the

trigger for neuronal dysfunction and neurodegeneration. Indeed, we

demonstrate that mitochondrial bioenergetics dysfunction, shown by

the increased mitochondrial membrane potential, is a key event in the

pathology, as it drives the increasedmitochondrial ROS production.

Proteomics data suggest that the protective effect of MitoQ is

related to the regulation of AMPAR and NMDAR trafficking. Oxi-

dation of several cytoskeletal-related proteins closely related to tau

was also recovered by MitoQ, such as the beta 3 and 4a tubulins,

which are components of the microtubules, together with the cyto-

plasmic dynein, myosin 10, or the microtubule-associated protein 1B

(MAP1B), which might affect axonal transport. Importantly, MAP1B

has been shown to modulate synaptic transmission by regulating

AMPAR61–63 and NMDAR trafficking.64 Clathrin heavy chain oxida-

tive modifications were also reduced by MitoQ in the patients’ cells.

This protein has a major role in the formation of coated vesicles

essential for clathrin-mediated endocytosis, which is implicated in the

AMPA65–67 and NMDA68,69 receptors’ internalization. Another com-

ponent of this machinery, the heat shock cognate 71, Hsc70, a con-

stitutively expressed heat shock protein important for the uncoating

of the clathrin-coated vesicles,70 was also recovered by MitoQ. Alter-

ations in Hsc70 might lead to the impairment of clathrin-mediated

endocytosis,71 and therefore, AMPAR and NMDAR internalization.

Interestingly, oxidative modifications of this protein were also found

in AD brains by redox proteomics.59 In addition, the tyrosine-protein

phosphatase Shp-2 also has a role in the regulation of NMDA function-

ality, by regulating its phosphorylation.72 Taken together, redox pro-

teomics data show that MitoQ was able to reverse the oxidative mod-

ifications found in several proteins implicated in AMPAR and NMDAR

trafficking in patients’ cells, suggesting this could be themechanism for

the altered glutamatergic signaling induced bymitochondrial ROS.

Here, we show that tau pathology alters glutamatergic signaling,

and, conversely, it has also been described that overactivation of

AMPARs and NMDARs are able to trigger tau hyperphosphorilation

and pathology.73,74 Increased neuronal activity also leads to enhanced

tau secretion and propagation.45 We show that iPSC-derived neu-

rons are able to secrete tau, and importantly, extracellular tau (specifi-

cally the 4R isoform, either patient-secreted or the recombinant K18

fragment) reproduces the alterations in the glutamatergic signaling

observed in the mutated iPSC neurons. Rather than a direct effect of

extracellular tau in the receptors at themembrane site, themechanism

appears to be also mediated by tau-induced mitochondrial ROS, as the

altered calcium signaling is restored in the presence of mitochondri-

ally targeted (intracellular) antioxidants. Thus, this could be one of the

mechanisms for tau pathology propagation and amplification in FTD

and other tauopathies.

In summary, our results show that mitochondrial ROS induced by

4R tau pathologymediate glutamatergic signaling alteration via AMPA

and NMDA receptors in iPSC-derived neurons and primary neuronal

cultures. Mitochondrial antioxidants are able to prevent both the

altered calcium signaling and the induced neuronal death, offering

a new therapeutic strategy for indirect glutamatergic modulation in

tauopathies. Importantly, this type of compounds have already been

shown to prevent cognitive decline in micemodels of dementia.75,76
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