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Oligomeric Symmetry of Purine

Nucleoside Phosphorylases.

Symmetry 2024, 16, 124. https://

doi.org/10.3390/sym16010124

Academic Editor: Arkadiusz

Chworos

Received: 28 December 2023

Revised: 16 January 2024

Accepted: 17 January 2024

Published: 19 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Oligomeric Symmetry of Purine Nucleoside Phosphorylases
Boris Gomaz and Zoran Štefanić *
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Abstract: Many enzymes are composed of several identical subunits, which are arranged in a regular
fashion and usually comply with some definite symmetry. This symmetry may be approximate
or exact and may or may not coincide with the symmetry of crystallographic packing. Purine
nucleoside phosphorylases (PNP) are a class of oligomeric enzymes that show an interesting interplay
between their internal symmetry and the symmetry of their crystal packings. There are two main
classes of this enzyme: trimeric PNPs, or “low-molecular-mass” proteins, which are found mostly in
eukaryotic organisms, and hexameric PNPs, or “high-molecular-mass” proteins, which are found
mostly in prokaryotic organisms. Interestingly, these two enzyme classes share only 20–30% sequence
identity, but the overall fold of the single monomer is similar, yet this monomeric building block
results in a different quaternary structure. To investigate this interplay of symmetry in this class of
enzymes, a comprehensive database of all PNPs is constructed, containing their local symmetries and
interface information.

Keywords: oligomeric enzymes; purine nucleoside phosphorylases; crystal symmetry

1. Introduction

Symmetry and oligomerization are ubiquitous phenomena in proteins and are closely
related to protein stability and function [1]. A large proportion of the structures deposited
in the PDB [2,3] display some kind of symmetric arrangement. Considering all proteins
deposited in the PDB, 40.4% are symmetric, with 31.5% displaying cyclic symmetry and
7.3% showing dihedral symmetry. Oligomeric proteins, which consist of several identical
subunits (chains), are often arranged in a regular fashion, following a point-group symmetry.
This is often referred to as a protein-quaternary structure. If we take into account only
the oligomeric proteins, the proportions of symmetric arrangements are much higher.
Depending on whether the subunits of oligomeric proteins are the same or different, they
are referred to as homomeric or heteromeric, respectively. The quaternary organization of
proteins is increasingly studied [4–6], as the improper organization of protein subunits can
lead to malfunction, poor allosteric regulation (and modulation), or both. The stability of
proteins depends on the interfaces and the interactions that occur between amino acids
on the interfaces. Generally, the larger the interface area between the two subunits, the
stronger the binding force. The vast majority of protein structures are determined by
X-ray crystallography (around 89% of all the structures in the PDB). In crystal packing, the
symmetric arrangement of oligomeric proteins is combined with the symmetry operations
of the crystal lattice. Sometimes, the crystal symmetry coincides exactly with the symmetry
present in a protein oligomer, making only part of the oligomer symmetrically independent.
There are many ways in which the symmetry of the space group may be exploited [7].
Although the crystal packing interactions of monomers are generally weaker and smaller in
size, they may become comparable to the interactions between monomers in their biological
state. This may sometimes complicate the determination of the native oligomeric state of
the protein [8]. Several approaches have been used in the past to determine the oligomeric
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state from the crystal structures. However, none of the proposed methods are fully accurate,
and there are still cases where this determination is not straightforward [9–11].

A family of oligomeric enzymes that exhibit an interesting interplay between their in-
ternal symmetry and crystal symmetry are purine nucleoside phosphorylases (PNPs) [12,13].
There are two main classes of this enzyme: trimeric PNPs, or “low-molecular-mass” pro-
teins, found mostly in eukaryotic organisms, and hexameric PNPs, or “high-molecular-
mass” proteins, found mostly in prokaryotic organisms [12,14,15]. Both forms take the same
substrate, guanine and hypoxanthine (2′-deoxy) ribonucleoside. However, there are cases
where hexameric and trimeric PNPs can also process adenine (2′-deoxy) ribonucleoside.
PNPs belong to the family of glycosyltransferases and are found in all organisms, from
bacteria to humans. PNPs catalyze a reversible ribosyl reaction, transferring from the
(deoxy)purine nucleoside to orthophosphate [16,17]. These enzymes play a key role in the
salvage pathway, an alternative way of synthesizing nitrogenous bases and nucleosides
by salvaging fragments of DNA/RNA. In organisms that completely lack the de novo
pathway of purine synthesis, this purine salvage pathway is the only way they acquire
the essential building blocks for DNA synthesis [18]. As a result, this makes the PNPs in
certain bacteria, such as Helicobacter pylori, a very attractive drug target [19].

Trimeric PNPs are composed of three identical chains, with an average length of
290 amino acids. These three chains are arranged in cyclic C3 symmetry, where three
monomers form a three-membered circle (or, equivalently, an equilateral triangle). On
the other hand, hexameric PNPs are composed of six identical chains with an average
length of 244 amino acids. Each chain is connected with two-fold symmetry to a neigh-
boring monomer, forming a symmetric dimer. Then, three such dimers are rotated by a
three-fold symmetry perpendicular to the two-fold axis, completing the full hexamer with
dihedral D3 symmetry (Figure 1). Overall, this results in trimeric PNPs possessing point
group 3 symmetry, while hexameric PNPs possess 32-point group symmetry. Although
trimeric and hexameric PNPs share only 20–30% sequence similarity, the overall fold of
their single monomers is remarkably similar (Figure 2) [20]. On the other hand, despite
the shape similarity of the monomeric building blocks, they assemble into different qua-
ternary structures. It is known that the oligomerization of these enzymes is required for
their function, despite the fact that, in principle, even single monomers could conduct
catalysis [21,22]. This relates to the increased structural stability of the oligomeric form and
the allosteric regulation between the subunits in the oligomers [23]. Previously, in our work
on PNPs, we discovered some peculiar features of active site conformations in some crystal
structures [14]. In order to investigate the symmetry relationships within PNPs and their
connection with the crystallographic symmetry appearing in their crystal structures, we
classified the possible symmetry arrangements in this study.
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Figure 1. Schematic representation of two prevalent symmetry arrangements found in the PNP
structures, with each monomer (chain) depicted as one colored sphere; (a) cyclic three-fold symmetry
is characteristic of trimeric PNPs, and the point group is noted as 3 (or C3 in Schoenflies notation);
(b) dihedral symmetry (point group 32 or D3 in Schoenflies notation), where the three-fold axis has
three two-fold axes perpendicular, is characteristic of hexameric PNPs.
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Figure 2. The overlap between one chain of trimeric PNP (gold) and hexameric PNP (teal) shows
excellent 3D overlap and high fold conservation despite a rather low sequence similarity of only
20–30%. However, these two similar monomeric subunits assemble to form quite different quaternary
structures: trimeric and hexameric PNPs, shown on the right.

2. Materials and Methods

In order to investigate the oligomerization and allosteric communication between
the monomeric subunits of PNPs, a specially designed database of the structural data
from 224 PNPs was constructed. The data on most aspects treated in this manuscript are
also available on the web page (https://alokomp.irb.hr/, accessed on 27 December 2023).
In the backend of the web page, there is a comprehensive database of all the structural
data of PNPs derived from the PDB, which is additionally enriched with the relationships
between structural data and sequence data. It features multiple sequence alignments of
all PNPs [24], all-to-all chain alignments, 3D structural alignments [25], and data derived
from molecular dynamics simulations on the selected PNPs. The sequence alignment was
performed using Biopython [26], a set of Python tools for computational molecular biology,
and a specific tool named Clustal Omega [24]. The web version of the multiple sequence
alignments (https://alokomp.irb.hr/d3/ accessed on 27 December 2023) was visualized
using the D3.js library [27], which is a JavaScript library for manipulating documents based
on data. The multiple-sequence alignment in Figure S1 was created using PyMSAviz [28].
The structural alignment of all chains was calculated using the GESAMT tool [25], which is
a supported program in the CCP4 suite (version 8.0.010) [29], software for macromolecular
X-ray crystallography. The resulting data from the chain-to-chain alignment was processed
using various Python libraries, and the heatmap figures were created by Seaborn [30].
For calculating the contact of residues and symmetry operations between the monomers,
the CCTBX library was used [31]. The interface and contact analysis were created with
the data drawn from the EPPIC web server at https://www.eppic-web.org (accessed on
27 December 2023) [32]. Using the REST API from https://www.eppic-web.org/rest/
(accessed on 27 December 2023), the data of all 224 PNPs contained in the database were
programmatically downloaded and inserted into the database in a suitable form. The
figures of simplified crystal packings were produced with the Pymol program (version
2.3.0) [33].

https://alokomp.irb.hr/
https://alokomp.irb.hr/d3/
https://www.eppic-web.org
https://www.eppic-web.org/rest/
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3. Results
3.1. Structural Alignment

To compare the individual differences between the different chains, a comprehen-
sive database of the structural alignments was constructed. Each chain from the pool
of structures determined by X-ray crystallography overlapped with every other chain
using the GESAMT [25]. This resulted in the pairwise alignment of all the chains, with
176,715 alignments in total (with almost 37 million individual matches between residues,
each characterized by similarity in scores and distance). Each alignment is characterized
by several measures of fitness: Q-score, RMSD, percent of sequence identity, and number
of aligned residues [25]. All alignments are visible on the page (https://alokomp.irb.hr/
alignments/list/ accessed on 27 December 2023). We used the Q-score to produce an
all-to-all clustering of PNP chains. This leads to the clear separation of all PNPs into two
large classes, corresponding to hexamers and trimers (Figure 3). There is also an addi-
tional component that corresponds to a very small proportion of PNPs, which are neither
hexameric nor trimeric. These other structures are either monomeric (6) or dimeric (4).
Although they share some similarity on a monomer level, they are not interesting from a
symmetry standpoint.
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Figure 3. Q-score and rmsd distributions between the chains of all PNPs. A very clear separation
between the hexamers and trimers is visible. In the middle, there is a small portion of PNPs, which
are neither hexamers nor trimers and have a very poor Q-score below 0.15 and rmsd over 4 Å. The
chains from the hexamers and trimers have an average Q-score of 0.4–0.6 between themselves (upper
right corner) and rmsd between 2–3 Å.
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3.2. Multiple Sequence Alignment

For any sort of comparison between the different structures, one common point of
reference is needed to know which amino acids in one structure correspond to which other
amino acids in some other structure. A natural way of finding such a common reference is
by using multiple sequence alignments. Thus, all-to-all multiple sequence alignments were
performed with chains from all PNPs (Figure S1). This allowed the unique assignment
of positions for every amino acid in every chain, which correspond to each other. The
overall length of the multiple sequence alignment is 405 positions, and there are 610 unique
chains from all PNPs. Interestingly, the most conserved amino acid is Gly at position
133, and it is conserved in 100% of the cases. Unsurprisingly, this amino acid is situated
in the active site, in the beta sheet region immediately below the purine aromatic ring
binding pocket. Any larger amino acid would interfere with substrate binding [14]. The
next most conserved amino acid is also Gly at position 42, corresponding to the Gly that
binds the phosphate molecule deep in the active site, which is conserved in 97.7% of the
PNPs. Perhaps unexpectedly, the third most conserved amino acid at position 88 is also Gly
(at 94.3% conservation). However, this one is situated at a hairpin loop on the periphery of
the monomer on the surface of the protein, with no obvious reasons for such a high degree
of conservation. The only remaining amino acid that is conserved more than 90% is Met
at position 250 (at 93%), which also takes part of the hydrophobic pocket for the purine
binding pocket in the immediate vicinity of the substrate.

3.3. Distribution of Space Groups

The distribution of PNPs across the different space groups does not follow the general
distribution of other proteins in the PDB. It can be noted that the space groups that contain
either the three-fold or two-fold axis, or both, are present in a much higher proportion than
in the general distribution (Figure 4). The two space groups with the highest number of
structures are P212121 and P213, with 43 structures each. The space group P212121 is the
most common space group in the PDB, with over 21% of the structures crystallizing in
it. This explains the high number of PNPs that crystallize in this space group. This is in
sharp contrast with the second-most popular space group, P213, with the same number
of PNPs but a general abundance of only 0.44%. This space group has a three-fold axis.
Next in line is the trigonal space group R32 (33 structures), with a general percentage of
1.2%. This space group contains the positions with site symmetry 32 that match exactly
the point group symmetry of hexameric PNPs. Then comes the hexameric P6122, with
24 structures and featuring several two-fold axes. Further down the list, there are other
such space groups that have a much higher number of structures than would be expected
if they followed the general distribution in the PDB (P6322 with 14 structures, P321 with
7 structures, R3 with 5, and so on). All of them contain the symmetry of PNPs, as they
contain the sites with the site symmetry, which is the subgroup of point group 32 and the
full symmetry of hexameric PNPs, or point group 3 as the full symmetry of trimeric PNPs.

The reason for the preference of PNPs towards higher-symmetry space groups, which
contain their own local symmetry, must be linked with the tendency to have only part of
their oligomeric structure in the asymmetric unit of the crystal. The question then arises:
how often in the crystal structures that crystallize in the space groups that contain the two-
fold, three-fold, or both axes do these axes coincide with the non-crystallographic symmetry
of the PNPs? In other words, how many trimers have one monomer in the asymmetric unit,
or how many hexamers have one, two, or three monomers in the asymmetric unit? The
results of this analysis are summarized in Table 1. In the case of 98 hexameric structures,
there are 68 that contain either a three-fold or two-fold axis, or both. In the crystal structures
that contain both axes, this symmetry is used by the hexamers in 77.4% of the cases (24 out
of 31). This means that the point group symmetry of the hexamer is fully aligned with the
crystallographic symmetry. In other words, the center of the hexamer coincides with the
points with site symmetry 32 in their corresponding space groups. In the case of 37 crystal
structures that contain only the two-fold axis, it is used in 33 cases (89.2% of the cases).
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Also, there are no hexamers that crystallize in the space groups that contain three-fold
symmetry but do not contain two-fold symmetry. The situation is quite the opposite for
trimers. Since one trimer does not contain two-fold symmetry, this means that only in the
space group, which contains three-fold symmetry, can there be an overlap between point
group symmetry and crystal symmetry. But, then it occurs in 100% of the cases (78 out of
78), similar to point group 32 in the case of the hexamers. This means that the maximal
point group symmetry of the hexamers (point group 32) and trimers (point group 3) is
always fully satisfied if the space group contains the sites with that symmetry.
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Figure 4. The distribution of the number of structures of PNPs across their space groups. In blue, the
counts of structures in a particular space group are given. In green is the percentage of that particular
space group across the entire PDB archive. It can be noted that PNPs are very prone to crystallizing
in the higher symmetry groups, which are generally lower in number in the PDB, if they contain a
three-fold and/or two-fold axis (denoted by their crystallographic symbols in black). Among the
four most common space groups (P212121, P21, P1, and C2), there is an unusually high proportion of
rare high-symmetry groups with a general abundance below 1.5% (P213, R32, P6122, P6322, P321,
and R3).
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Table 1. The agreement between crystallographic symmetry and point group symmetry in the crystal
structures of PNPs. Each cell shows two numbers: the first number shows how many cases of
crystallographic symmetry coincide with the point group symmetry of the hexamers and trimers,
and the second number is the total number of space groups that contain that symmetry.

Symmetry Hexamers Trimers Others

only two-fold (point group 2) 33/37 (89.2%) 0/11 (0%) 0/2

only three-fold (point group 3) 0/0 50/50 (100%) 0

both (point group 32) 24/31 (77.4%) 28/28 (100%) 0

no two-fold or three-fold symmetry 0/30 0/27 11

Various possible arrangements displayed in the crystal structures of PNPs, with respect
to space group symmetry, are summarized in Figure 5. Overall, there is a clear bias of
both hexamers and trimers towards space groups that contain either two or three axes or
both (most of the structures are roughly in the right three quarters of Figure 5). Also, it
is apparent that any given space group symmetry can be utilized in multiple ways. For
example, in hexameric structures that crystallize in space groups that contain points of site
symmetry 32 (trigonal P321, R32; hexagonal P6322 and cubic I4132 and P4132), there are
three different arrangements: (a) most hexamers in this group exploit full symmetry, i.e.,
their centers coincide with points of 32 site symmetry; (b) there are some which use only
the three-fold axes but not the two-fold, and therefore have two independent monomers
in the asymmetric unit, and (c) there is one structure (PDB code 4m7w) which combines
the (a) and (b) options and features one hexamer which utilizes full symmetry, and the
other independent hexamer which uses only the three-fold axis (therefore three chains in
the asymmetric unit) in the same crystal packing. A similar peculiar instance occurs in a
trimeric structure with PDB code 4ns1, where one trimer uses the three-fold axis, but there
is an additional trimer that does not have any exact symmetry, thus giving a structure with
four chains in the asymmetric unit. One would maybe expect to find more space groups
with hexagonal symmetry (six-fold axis) in the hexameric PNPs; however, there is only one
group. The reason for this is that the hexamers possess dihedral 32-point group symmetry,
not cyclic point group symmetry 6. Therefore, there is only one structure in the space
group P6 (3mb8) that utilizes the three-fold symmetry also present in that space group. The
number of chains in the asymmetric unit of hexamers ranges from 1 all the way up to 18 in
the structure 3ooh, which has as many as three hexamers in the asymmetric unit. In trimers,
this number ranges from one to at most six, i.e., two trimers in the asymmetric unit.

3.4. Crystal Packing Similarities

Crystal packings within the same space groups show an exceptional degree of anal-
ogy (the full list is available at https://alokomp.irb.hr/symmetry/gallery/ accessed on
27 December 2023). This is apparent in the simplified views of the crystal packings, where
each monomeric subunit is represented by a sphere centered at the chain’s center of mass
(Figure 6). This applies to the hexamers and trimers. Some arrangements are similar in
different space groups, such as the honeycomb structures of the hexamers in space groups
P321, R32, and P6322.

3.5. Contacts between Subunits

One significant difference between the hexameric and trimeric PNPs is the nature
of the interfaces dictated by their symmetry [8]. Specifically, since the trimers have only
cyclic three-fold symmetry, they can only have heterologous interfaces [34]. In contrast,
all the interfaces between the monomers in the hexamers are isologous because they
are operated by a two-fold axis. In hexamers, there are two different kinds of these
isologous interfaces: intra-dimer and inter-dimer interfaces. This means that, in principle,
the amino acids that participate in biological interfaces in the hexamers will be symmetric

https://alokomp.irb.hr/symmetry/gallery/
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with respect to the interchange of chain labels in the hexamers; however, this will not
be true for trimers. To characterize all the interfaces formed in the crystal structures of
PNPs, we used the Evolutionary Protein–Protein Interface Classifier (EPPIC) [32] web
server. This method classifies the interfaces as biological and crystal contacts and gives
an estimate of confidence in classification. The residue in each monomer can be part of
several interfaces. It is interesting to look at how the amino acids involved in interfaces
are distributed against positions in the multiple sequence alignment. This distribution is
shown in Figure 7. It allows for comparison between these distributions—between the
hexamers and trimers—because their amino acids are aligned. It is shown that the amino
acids found on the interfaces are concentrated in several regions (marked I–IV in Figure 6),
which are approximately aligned between the hexamers and trimers. This is expected
since the evolutionary conservation, which is generally reflected in the multiple sequence
alignment, is higher at the interfaces. On the other hand, if these regions are found in
approximately the same places in the hexamers and trimers, this is in accordance with the
similar overall shape of their building blocks (chains) between the hexamers and trimers
(Figure 2) and their participation in the interfaces. Despite the evolutionary divergence of
hexameric and trimeric PNPs, which leaves them at only 20–30% sequence similarity, the
overall shape and the interfaces remain similar.
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crystal system.
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Figure 6. Simplified representation of the crystal structures of the hexameric PNPs in the most
common space groups. Each sphere represents one monomer, and the projections are along the
symmetry axis. The spheres are colored according to their distance from the plane of projection, from
blue, which is—the closest to the plane of projection, to red, which is the farthest. It shows that the
packings in the same space group are highly isomorphic. There are a few exceptions (e.g., PDB code
4ldn in the space group R32 and PDB codes 4m3n and 4mar in C2221) that show that even in the same
space group, utilizing the full 32-point group symmetry, the packing can be realized in multiple ways.
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Figure 7. The heatmap distribution of the number of interface contacts between the different chains
in the trimers (blue) and hexamers (green). On the horizontal axis are the positions of the multiple
sequence alignment of all PNPs (from 1 to 405). Each horizontal row represents one chain of one PNP
(labels are omitted for clarity). Each square dot represents one amino acid, colored by the number of
different interfaces that it is part of. It can be noted that the regions where these interface contacts take
place are approximately situated in the same position (in the regions denoted I–IV) and conserved
throughout the PNPs.

4. Discussion

PNPs have evolved from the hexameric form in lower organisms to the trimeric form
in higher organisms. Along the way, they have kept their original function despite a
substantial change in quaternary structure and their primary sequence. It is yet another
example of evolutionary function preservation. From the individual chain alignments, a
very clear grouping of PNPs is visible, and there is very little variation within these groups
(Figure 3). In addition, the scores between these groups are very consistent, indicating
rather good fold conservation within each species, although the source organisms of various
PNPs may vary substantially.
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The local symmetry of PNPs strongly influences the symmetries realized in their
crystal structures, radically altering the distribution pattern of observed space groups
(Figure 4). This favors the groups that contain sites with symmetry 3 or 32. We have seen
that, in the majority of the cases, the present crystallographic symmetry is fully exploited,
meaning that the crystallographic axes of symmetry coincide with the axes of the point
group symmetries of the hexamers and trimers. In the case of trimers, this is always
fulfilled. This bias towards symmetries that contain favorable point group symmetries
is superimposed on the general preference of proteins towards space groups, so that the
most common space group in all proteins (P212121) is still the most common in PNPs, but
with the high-symmetry cubic space group, P213, having the same number of structures,
and two rare space groups immediately following (R32 and P6122). The preference for
space groups that closely accommodate the symmetry of individual building blocks is an
expected feature. This would likely be observed in other symmetric proteins. Nevertheless,
it is remarkable and instructive to see such a high degree of agreement between local and
space group symmetry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym16010124/s1. Figure S1: Multiple sequence alignment of all
PNP chains.
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