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The decay H → lþl−γ, l ¼ e, μ receives contributions from H → Z½→ lþl−�γ and a nonresonant
contribution, both of which are loop induced. We describe how one can separate these subprocesses in
a gauge-independent way, define the decay rate ΓðH → ZγÞ, and extract the latter from differential
H → lþl−γ branching ratios. For l ¼ μ, also the tree decay rate, which is driven by the muon Yukawa
coupling, is important. We propose kinematic cuts optimized to separate the three contributions, paving the
way to the milestone (i) discovery of H → Zγ, (ii) discovery of H → μþμ−γjtree, and (iii) quantification of
new physics in both the effective H-Z-γ and nonresonant H-lþ-l−-γ couplings.
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I. INTRODUCTION

Currently, ATLAS and CMS have put substantial effort
into the discovery of the decay H → Zγ. However, this
process is only well defined when the Z boson is taken on
shell. If one includes the effect of a nonvanishing Z decay
width ΓZ by smearing the off-shell H → Zγ decay ampli-
tude with a Breit-Wigner distribution, one finds an unphys-
ical, gauge-dependent result [1]. If the Z boson is detected
through its leptonic decay, H → Zγ is a subprocess of
H → lþl−γ. The one-loop diagrams contributing to the
process H → lþl−γ can be divided into three classes,
namely, diagrams with an off-shell Z boson (describing
H → Z�½→ lþl−�γ), those with an off-shell photon
(involving H → γ�½→ lþl−�γ), and box diagrams. The
calculations of the H → lþl−γ decay amplitude in an
arbitrary linear Rξ gauge in Ref. [2] have revealed how the
sum of all diagrams in each class depend on the gauge
parameter ξ of theW boson. This dependence cancels in the
final physical result after the summation of all contribu-
tions. Complete one-loop calculations of differential decay
rates (and asymmetries) of H → lþl−γ in the Standard
Model (SM) have been performed by several groups [1–5],

and Ref. [2] contains a detailed comparison of the numeri-
cal results presented in these references.
Nevertheless, it is possible to define a gauge-

independent resonant contribution which peaks near
s ¼ M2

Z, where
ffiffiffi
s

p
is the invariant lepton mass. The

remaining contribution to H → lþl−γ consisting of
H → γ�½→ lþl−�γ, box diagrams, and the gauge-depen-
dent off-peak pieces of H → Z�½→ lþl−�γ are all non-
resonant and can be experimentally distinguished from the
resonant term of interest. Next, one can employ the narrow-
width approximation (NWA) to relate the latter to the
product of the decay rate ΓðH → ZγÞ and the branching
ratio BRðZ → lþl−Þ. Thus, one arrives at a physical,
experimentally accessible definition of ΓðH → ZγÞ. Then,
ruling out ΓðH → ZγÞ ¼ 0 at 5 standard deviations will
constitute the desired discovery of this decay mode.1 At
several steps of this derivation (for instance, by modifying
the NWA), one could change the definition of ΓðH → ZγÞ
by terms of order Γ2

Z=M
2
Z and arrive at equally valid yet

different results. This feature is intrinsic to any decay into
an unstable particle detected only through its decay
products. In view of the smallness of Γ2

Z=M
2
Z ∼ 10−3,

however, this ambiguity is phenomenologically irrelevant.
The differential decay rate dΓðH → μþμ−γÞ=dmμμ peaks

at the photon and Z poles at mμμ ¼ 0 and mμμ ≃MZ,
respectively, and rises toward the end of the spectrum at
mμμ ¼ MH [see Fig. 2(b)]. The latter effect is due to the
tree-level contribution involving the small muon Yukawa
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1t-t̄-associated Higgs production has been recently proposed
[6] as a particularly promising channel for the discovery of
H → Zγ at the high-luminosity LHC.

PHYSICAL REVIEW D 105, 013007 (2022)

2470-0010=2022=105(1)=013007(9) 013007-1 Published by the American Physical Society

https://orcid.org/0000-0002-4712-5404
https://orcid.org/0000-0002-7442-4776
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.013007&domain=pdf&date_stamp=2022-01-11
https://doi.org/10.1103/PhysRevD.105.013007
https://doi.org/10.1103/PhysRevD.105.013007
https://doi.org/10.1103/PhysRevD.105.013007
https://doi.org/10.1103/PhysRevD.105.013007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


coupling. ATLAS has already found evidence for
H → lþl−γ in the low-invariant-mass region dominated
by the photon pole [7]. To discover H → Zγ, one must
study the complementary region and in the H → μþμ−γ
data carefully separate the Z peak from H → μþμ−γjtree. A
discovery of the latter contribution will constitute a
manifestation of the Higgs Yukawa coupling to muons,
independent of and complementary to the observation of
H → μþμ−. The loop contribution to the decay rate of
H → eþe−γ is several orders of magnitude larger than the
corresponding tree contribution, as the latter is suppressed
by the square of the tiny electron Yukawa coupling. We do
not consider the processH → τþτ−γ which is dominated by
the tree-level contribution. The light lepton masses are
neglected in the loop contributions which are found infra-
red finite in this limit.
With increasing statistics, one will be able to quantify

deviations from the SM predictions not only for the
effective H-Z-γ vertex, but also for the effective nonreso-
nant H-lþ-l−-γ couplings. To this end, the data sample
with l ¼ e and l ¼ μ should not be combined, as new-
physics (NP) contributions are likely to be different.
Through the Higgs vacuum expectation value H-μþ-μ−-γ,
couplings can contribute to the anomalous magnetic
moment of the muon, whose measurement significantly
deviates from the SM prediction [8]. The nonresonant
region between the photon and Z pole is best suited to
probe those NP operators which are unrelated to the
effective H-Z-γ vertex because the SM contribution
is small.
This paper is organized as follows: In Sec. II, we separate

the gauge-independent resonant contribution to H →
lþl−γ related to the H → Zγ subprocess. Section III
proposes various kinematic cuts to enhance the sensitivities
toH → Zγ,H → μþμ−γjtree, or nonresonant NP. In Sec. IV,
we define BðH → ZγÞ and relate this quantity to the
resonant piece of H → lþl−γ, and Sec. V presents the
conclusions. Two Appendixes contain numerical input
values and the loop function for H → Zγ.

II. SEPARATING THE RESONANT
CONTRIBUTION

We parametrize the loop-induced amplitude for the
process h → llγ as

Aloop¼½ðkμp1ν−gμνk ·p1Þūðp2Þða1γμPRþb1γμPLÞvðp1Þ
þðkμp2ν−gμνk ·p2Þūðp2Þ
×ða2γμPRþb2γμPLÞvðp1Þ�εν�ðkÞ; ð1Þ

where using the notation of Ref. [2], we denote the
four-momenta of the photon, lepton, and antilepton by k,
p1, and p2, respectively, while the chiral projectors
are PL;R ¼ ð1 ∓ γ5Þ=2.

The loop functions a1;2 and b1;2 depend on the
Mandelstam variables

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 þ kÞ2; and

u ¼ ðp2 þ kÞ2 ¼ m2
H þ 2m2

l − s − t; ð2Þ

where ml and mH denote the masses of the lepton and
Higgs boson. The coefficients a2 and b2 are obtained by
exchanging the variables t and u within a1 and b1,
respectively. Explicit one-loop expressions for the coef-
ficients a1 and b1 can be found in Ref. [2] and correspond-
ing ancillary files.
Each of the coefficients a1;2 and b1;2 can be written in the

following form, e.g., for a1:

a1ðs; tÞ ¼ ã1ðs; tÞ þ
α1ðsÞ

s −m2
Z þ imZΓZ

; ð3Þ

with the obvious index replacement and the change of
notation α1;2 → β1;2 for the coefficients b1;2. Note the
relations

α1ðsÞ ¼ α2ðsÞ≡ αðsÞ and β1ðsÞ ¼ β2ðsÞ≡ βðsÞ: ð4Þ

As mentioned in the Introduction, the off-shell amplitude
for H → γZ�, which determines αðsÞ and βðsÞ, depends on
the unphysical gauge parameter ξ. However, the process
H → γZ involving the on-shell Z boson does not depend on
the gauge. Thus, we can isolate the ξ-independent part of
the amplitude for the H → γZ�½→ lþl−� subprocess by
setting s ¼ m2

Z in αðsÞ, βðsÞ; i.e., the residue of the Z-boson
propagator is gauge independent. In the following, we
denote this term as the “resonant” contribution.
Separating the resonant and nonresonant terms in this

way yields

a1ðs; tÞ ¼ anr1 ðs; tÞ þ ares1 ðsÞ; ð5Þ

anr1 ðsÞ≡ ã1ðs; tÞ þ
αðsÞ − αðm2

ZÞ
s −m2

Z þ imZΓZ
;

ares1 ðsÞ≡ αðm2
ZÞ

s −m2
Z þ imZΓZ

: ð6Þ

We write

d2Γ
dsdt

¼ d2Γloop

dsdt
þ d2Γtree

dsdt
;

where the tree contribution in the second term is to be
dropped for l ¼ e. The loop contribution to the differential
decay rate over the variables s and t is given by the formula
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d2Γloop

dsdt
¼ s

512π3m3
H
½t2ðja1j2 þ jb1j2Þ þ u2ðja2j2 þ jb2j2Þ�;

ð7Þ

where we have neglected the light lepton masses in the
phase space, and u is to be substituted for the expression in
Eq. (2). The nonzero value of the lepton mass impacts the
value of the loop-induced contribution to the decay rate
only in the dilepton invariant-mass region close to the
production threshold mll ∼ 2ml via the kinematic effect.
We avoid this region by using the cut mll;min ≡ ffiffiffiffiffiffiffiffi

s̃min
p ¼

0.1mH in what follows.
The square of the magnitude of a1 in Eq. (6) contains

three distinguishable pieces:

ja1j2 ¼ janr1 j2 þ jares1 j2 þ 2Reðanr1 ares
�

1 Þ; ð8Þ

and mutatis mutandis for a2 and b1;2. Corresponding
contributions to the one-loop decay rate are

d2Γloop

dsdt
¼ d2Γnr

dsdt
þ d2Γres

dsdt
þ d2Γint

dsdt
; ð9Þ

where the small interference term denoted by Γint corre-
sponds to the third term in Eq. (8) and can be safely
neglected for the purposes of expected near-future
measurements.
The differential decay rate for the tree contribution for

H → μþμ−γ reads

d2Γtree

dsdt
¼ N

�
9m4

μ þm2
μð−2sþ t − 3uÞ þ tu

ðt −m2
μÞ2

þ 9m4
μ þm2

μð−2sþ u − 3tÞ þ tu

ðu −m2
μÞ2

þ 34m4
μ − 2m2

μð8sþ 5ðtþ uÞÞ þ 2ðsþ tÞðsþ uÞ
ðt −m2

μÞðu −m2
μÞ

�
; ð10Þ

where

N ¼ e4m2
μ

256π3 sin2 θWm2
Wm

3
H
: ð11Þ

For this distribution, we keep the nonvanishingmuonmass in
the formulas for physical kinematic limits given in Eq. (12).
Note that the muon mass cannot be neglected in the phase
space integral of the tree contribution; see Eq. (12) below.

The dependence of the loop and tree contributions to the
differential decay rate on the Mandelstam variables s and t
is displayed in the Dalitz plots in Fig. 1. With focus on the
kinematic cuts required in the measurements, it is interest-
ing to observe the behavior of the distributions in the end-
point regions of the Dalitz plots. While the one-loop
contribution does not increase toward the boundaries, the
tree distribution exhibits strong enhancements in the high-
s, small-t, and small-u regions; see Eq. (10) above.

FIG. 1. Dalitz plot for (a) the one-loop contribution to the decay rate of h → lþl−γ and (b) the tree contribution to the decay rate of
h → μμγ.
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With data on d2Γ
dsdt, one can implement a very simple

discovery strategy for H → Zγ: Just insert ares1 from Eq. (6)
into Eq. (5) and the resulting expression for a1 into Eq. (8)
(and treat a2 and b1;2 in the same way), then use these

results in Eq. (7), and finally add d2Γtree
dsdt . When using this

formula to fit the three quantities ½αðm2
ZÞ�2 þ ½βðm2

ZÞ�2,
janr1 j2 þ jbnr1 j2, and janr2 j2 þ jbnr2 j2 to the data, a 5σ signal of
½αðm2

ZÞ�2 þ ½βðm2
ZÞ�2 ≠ 0 will imply the desired discovery.

With Eq. (36) below, one can translate this measurement
into a number for ΓðH → ZγÞ. Thus, after implementing
the lengthy SM expressions for anr1;2 and bnr1;2, one can
directly compare ΓðH → ZγÞ to the SM prediction
in Eq. (30).
Next we discuss the various contributions to dΓ

dmll
, where

mll ¼ ffiffiffi
s

p
is the dilepton invariant mass. As a first step, we

perform the integration over the full allowed range of the
variable t, tmin ≤ t ≤ tmax with

tminðmaxÞðs;mlÞ ¼
1

2

�
m2

H − sþ 2m2
l

∓ ðm2
H − sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

l=s
q

Þ: ð12Þ

The resulting resonant and nonresonant one-loop distribu-
tions are shown in the left plot in Fig. 2. Since the masses of
electrons and muons can be safely neglected in the one-
loop calculation, Fig. 2(a) represents the loop correction for
both cases. Furthermore, since the tree contribution for
H → eþe−γ is negligible, dΓloop=dmll also represents the
total contribution for H → eþe−γ. The effect of the tree
contribution is shown in Fig. 2(b). The only kinematic cut
imposed for these plots is the one for the photon energy in
the Higgs rest frame Eγ;min ¼ 5 GeV, which only lowers
the maximum value of mll.

In Fig. 3, we display the interference contribution.
As expected, this distribution changes sign at the value
of mll corresponding to the Z pole and is approximately
symmetric around the null axis in this region. However, its
magnitude turns out negligible within the full rate; this term
is completely dropped in the following discussion.

III. KINEMATIC CUTS

In this section, we study the impacts of the kinematic
cuts on the minimal values of the variables t and u on the
resonant, nonresonant, and tree contributions.
We fix the kinematic range for the variable s all the way

to Sec. III D as

s̃min¼ð0.1mHÞ2; s̃max¼m2
H−2mHEγ;min¼ð120GeVÞ2

with Eγ;min¼5GeV; ð13Þ

where Eγ;min the minimal photon energy in the rest frame of
the Higgs boson.

(a) (b)

FIG. 2. One-loop contributions to differential decay rate with respect to the invariant dilepton mass for l ¼ e (a) and l ¼ μ (b). The
full one-loop, resonant and nonresonant contributions are denoted by black dashed, solid red, and turquoise dot-dashed curves,
respectively. For the case l ¼ e, the full one-loop contribution represents the full rate, while for l ¼ μ, the additional tree-level
contribution needs to be accounted for.

FIG. 3. Differential distribution dΓint
dmll

with respect to invariant
dilepton mass for l ¼ e, μ.
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The full physical range for the variable t is given in
Eq. (12). We introduce the kinematic cuts on the minimal
values of the t and u variables and denote them by t̃min > 0
and ũmin > 0. Note that the cut on the minimal value of
variable u lowers the maximal value of t from the physical
limit tmaxðsÞ to tmaxðsÞ − ũmin.
Neither the resonant nor the nonresonant loop contribu-

tion exhibits a strong dependence on the small variations of
the cuts on the t, u variables near the boundaries of the
Dalitz plot; see Fig. 1(a) or Eq. (19) below. On the other
hand, the tree contribution is peaking for the small values of
t, as can be seen from the Dalitz plot boundary parallel to
the s axis, and for the small values of u, as can be seen from
the diagonal boundary of the plot in Fig. 1(b).

A. Resonant contribution

The resonant distribution is given by

dΓres

dsdt
¼ sðt2þu2Þ
512m3

Hπ
3

1

ðs−m2
ZÞ2þm2

ZΓ2
Z
ðjαðm2

ZÞj2þjβðm2
ZÞj2Þ;

ð14Þ

with the mass of the light lepton neglected in the
evaluations of both the kinematics and the a mplitude.
With ml ¼ 0, the physical limits on the variable t are
tminðsÞ ¼ 0, tmaxðsÞ ¼ m2

H − s, while u ¼ m2
H − s − t.

Numerical values of the loop coefficients at s ¼ m2
Z are [2]

αðm2
ZÞ ¼ −9.41 × 10−6 GeV−1;

βðm2
ZÞ ¼ 1.17 × 10−5 GeV−1: ð15Þ

Integrating over the variable t, while imposing the cuts
t̃min and ũmin, we have

dΓres

ds
ðs; t̃min;ũminÞ¼

s
512π3m3

H

1

ðs−m2
ZÞ2þm2

ZΓ2
Z
ðjαðm2

ZÞj2

þjβðm2
ZÞj2Þ

·

�
t3þðsþ t−m2

HÞ3
3

�
t¼t̃max¼tmaxðsÞ−ũmin

t¼t̃min

:

ð16Þ

A further integration over the variable s can also be
performed analytically, but it results in a somewhat lengthy
expression. In Fig. 4, we illustrate the variations of the
resonant differential decay rate dΓres=dmll for different
values of the cuts ðt̃min; ũminÞ.
The effects of the cuts are more noticeable in the fully

integrated decay rate. Integrating over s in the range given
in Eq. (13), we have, e.g.,

Γres½t̃min ¼ ðκmHÞ2; ũmin ¼ ðκmHÞ2�
Γres½t̃min ¼ 0; ũmin ¼ 0�

¼ ð1; 0.94; 0.77Þ for κ ¼ ð0; 0.1; 0.2Þ ð17Þ

with

Γres½t̃min ¼ 0; ũmin ¼ 0� ¼ 0.215 keV: ð18Þ

B. Nonresonant contribution

The analytic form of the nonresonant contribution turns
out rather lengthy; its explicit form can be read off from the
expressions given in Appendix A of Ref. [2]. As in the
previous case, we integrate the corresponding decay dis-
tribution over the variable t numerically from t̃min > 0 to
the value tmaxðsÞ − ũmin ¼ m2

H − s − ũmin. We illustrate the
effect of several choices of the cuts t̃min; ũmin on the
nonresonant differential distribution over mll in Fig. 5.
Again, integrating over the variable s in the limits given in
Eq. (13), we obtain

Γnr½t̃min ¼ ðκmHÞ2; ũmin ¼ ðκmHÞ2�
Γnr½t̃min ¼ 0; ũmin ¼ 0�

¼ ð1; 0.97; 0.87Þ for κ ¼ ð0; 0.1; 0.2Þ; ð19Þ

where

Γnr½t̃min ¼ 0; ũmin ¼ 0� ¼ 0.043 keV: ð20Þ

Therefore, we find weak dependence on the t, u cuts as long
as the values of the latter are not such that they remove a
significant amount of the phase space.
It is convenient to display the shapes of the distributions

shown in Fig. 5 in an approximate numerical form. Since
the dependence on the cuts is small, we represent the shape
that does not involve any cuts on variables t, u as the
following power series:

FIG. 4. The resonant decay rate distribution with respect to
dilepton invariant mass mll for different choices of the cuts
ðt̃min; ũminÞ.
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dΓnr

dmll
¼ 10−10

X3
n¼−4

cn

�
mll

mH

�
n
þ… ð21Þ

with

ðc−4;…; c3Þ ¼ ð3.27 × 10−4;−1.26 × 10−2; 2.0 × 10−1;

8.49 × 10−1; 7.96;−30.1; 32.1;−11.0Þ:
ð22Þ

The integral of the above approximate function over the
variable mll differs from the exact result at the level of
around 0.5% (2%) for mll;min ¼ 0.1mH ð0.5mHÞ, with

mll;max ¼ 120 GeV for both cases. This is an acceptable
approximation given that the nonresonant part is itself a
small contribution to the full decay rate in the interesting
region around the Z-boson peak.

C. Tree contribution

The definite integral over the variable t in Eq. (10) can be
performed analytically. As before, for the lower limit
we have t̃min, which is larger than or equal to the physical
lower limit tminðs;mlÞ, while the upper limit is
tmaxðs;mlÞ − ũmin. Introducing the shorthand notation

IðtÞ ¼
Z

dt
d2Γtree

dsdt
; Iða; bÞ≡ IðbÞ − IðaÞ; ð23Þ

the resulting distribution with respect to s is

dΓtree

ds
ðs; t̃minũminÞ¼

Z
tmax−ũmin

t̃min

dt
d2Γtree

dsdt
θðt− tminðsÞÞ

¼IðtminðsÞ;tmaxðsÞ− ũminÞ
−θðt̃min− tminðsÞÞIðtminðsÞ; t̃minÞ; ð24Þ

where we have temporarily suppressed an additional
dependence of tminðmaxÞ on the lepton mass for clarity of
the notation. Note that the insertions of the Heaviside step
function in the above equation confine the integration to the
physically allowed region. The expression for IðtÞ is

IðtÞ¼ α2m2
l

16πm3
Hm

2
Wsin

2θW

�
2m2

lðm2
H−4m2

lÞ
t−m2

l
þ2m2

lðm2
H−4m2

lÞ
sþ t−m2

H−m2
l
−
m4

H−4m2
Hm

2
lþðs−4m2

lÞ2
s−m2

H
ln

�
sþ t−m2

H−m2
l

t−m2
l

��
: ð25Þ

The final formula for d2Γtree
ds ðs; t̃min; ũminÞ is obtained by

inserting the result of Eq. (25) into Eq. (24). We illustrate
the dependence of the tree contribution on the cuts for
several values of t̃min and ũmin in Fig. 6.
Finally, integrating over the variable s in the limits given

in Eq. (13), we have

Γtree½t̃min ¼ ðκmHÞ2; ũmin ¼ ðκmHÞ2�
Γtree½tminðs;mμÞ�

¼ ð1; 0.25; 0.12Þ for κ ¼ ð0; 0.1; 0.2Þ; ð26Þ

where

Γtree½t̃min ¼ tminðs;mμÞ� ¼ 0.104 keV: ð27Þ

D. Kinematic cuts and total rates

We now explore how each of the three contributions to
the integrated decay rate depends on the cuts on variables

FIG. 5. The nonresonant decay distributions dΓnr=dmll for
few choices of the cut t̃min.

FIG. 6. Differential distribution dΓtree=dmμμ with respect to
invariant dimuon mass.
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that also include s. We propose different cuts to optimize
the sensitivity to the three milestones mentioned in the
abstract. The results for several combinations of such cuts
are shown in Table I.
Cuts 1 and 2 correspond to the choices of the three

previous subsections.2 For cut 1, we find that the nonreso-
nant contribution is around 20% of the resonant one, while
the tree contribution is somewhat larger than about 10%.
As noted before, the tree contribution receives a strong
suppression with the increasing values of t̃min and ũmin.
Cuts 3 and 4 isolate the resonant contribution stemming
from H → Zγ, while cuts 5 and 6 probe the nonresonant
contribution. The purpose of cut 7 is the isolation of the tree
contribution. Cut 8 simply illustrates an additional sup-
pression of the tree contribution that results from tightening
of cuts on t and u.

IV. RESONANT CONTRIBUTION AND THE
NARROW-WIDTH APPROXIMATION

The resonant contribution is related to the decay rate of
H → Zγ involving an on-shell Z boson that subsequently
decays to a pair of light leptons.
We recall the amplitude for the process H → Zγ:

A¼ Ã½ðpZ ·ϵðqÞ�Þðq ·ϵðpZÞ�Þ−ðpZ ·qÞðϵðqÞ� ·ϵðpZÞ�Þ�;
ð28Þ

where pZ, q, ϵðpZÞ, ϵðqÞ denote the momenta and polar-
izations of the Z boson and photon, respectively, while the
loop function Ã is given in Eq. (B1). The decay rate is

ΓðH → ZγÞ ¼ ðm2
H −m2

ZÞ3
32πm3

H
jÃj2; ð29Þ

in agreement with the result in Ref. [9]. Evaluating Ã in
Eq. (B1) for the input values of Eq. (A1) gives the SM
prediction

ΓðH → ZγÞ ¼ 6.51 keV; ð30Þ

again in agreement with the numerical result found from
the analytic expression in Ref. [9]. This value is 3% larger
than the central value quoted by the LHC Higgs Cross
Section Working Group, ΓðH → ZγÞ ¼ 6.31 keV in
Table 177 on page 679 of Ref. [10]; see also
Eq. (III.1.18) on page 403. Reference [10] finds an
uncertainty of the theory prediction of order 5%, which
could be reduced by a two-loop calculation.
Furthermore, the branching ratio of the process Z → ll

at tree level is

BRðZ→llÞ¼mZ

ΓZ
C̃;

C̃¼e2ð8sin4θW−4sin2θWþ1Þ
96πcos2θWsin2θW

¼Eq:ðA1Þ
9.2×10−4:

ð31Þ

Integration of the resonant distribution d2Γres=ðdsdtÞ over
the variable t in the full range given in Eq. (12) results in

dΓres

ds
¼ s

512π3m3
H

1

ðs −m2
ZÞ2 þm2

ZΓ2
Z
·
2

3
ðm2

H − sÞ3

· ðjαðm2
ZÞj2 þ jβðm2

ZÞj2Þ: ð32Þ

We now apply the NWA for the Breit-Wigner distribution:

NWA∶
ΓZ

mZ
→0;

1

ðs−m2
ZÞ2þm2

ZΓ2
Z
→

π

mZΓZ
δðs−m2

ZÞ;

ð33Þ

where the limit is taken under the integral over s.
Substituting this limit into Eq. (32), integrating this dis-
tribution over s, and using the relations (29) and (31) we
find

ΓNWA ¼ ΓðH → ZγÞ · BRðZ → llÞ; ð34Þ

provided that

TABLE I. Integrated decay rates for different contributions toH → μþμ−γ for several choices of the kinematic cuts on the variables s,
t, and u. Note the symmetric choice ũmin ¼ t̃min.

Cut smin smax t̃min; ũmin Γres (keV) Γnr (keV) Γtree (keV) Γtot (keV) Purpose

1 ð0.1mHÞ2 ð120 GeVÞ2 ð0.1mHÞ2 0.202 0.042 0.026 0.270 General
2 ð0.1mHÞ2 ð120 GeVÞ2 ð0.2mHÞ2 0.165 0.037 0.013 0.215 General
3 ð70 GeVÞ2 ð100 GeVÞ2 ð0.1mHÞ2 0.195 0.002 0.007 0.204 h → Zγ
4 ð70 GeVÞ2 ð100 GeVÞ2 ð0.2mHÞ2 0.160 0.001 0.004 0.165 h → Zγ
5 ð10 GeVÞ2 ð40 GeVÞ2 ð0.1mHÞ2 3.53 × 10−4 3.78 × 10−2 1.02 × 10−3 3.92 × 10−2 Nonresonant
6 ð20 GeVÞ2 ð40 GeVÞ2 ð0.1mHÞ2 3.33 × 10−4 1.75 × 10−2 8.12 × 10−4 1.87 × 10−2 Nonresonant
7 ð100 GeVÞ2 ð120 GeVÞ2 ð0.1mHÞ2 1.93 × 10−3 7.51 × 10−5 1.5 × 10−2 1.70 × 10−2 Tree
8 ð100 GeVÞ2 ð120 GeVÞ2 ð0.2mHÞ2 1.40 × 10−3 5.28 × 10−5 6.06 × 10−3 7.51 × 10−3 Tree

2The upper limit on s ¼ ð120 GeVÞ2 set for these two cuts is
the result of imposing a minimal photon energy; see Eq. (13).
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½αðm2
ZÞ�2 þ ½βðm2

ZÞ�2 ¼ 24πÃ2C̃: ð35Þ

The latter relation can be explicitly confirmed using the
functions αðsÞ and βðsÞ given in Eqs. (A.1) and (A.2) in
Ref. [2]. Thus, if ½αðm2

ZÞ�2 þ ½βðm2
ZÞ�2 is extracted from the

data, the desired decay width is calculated as

ΓðH → ZγÞ ¼ ðm2
H −m2

ZÞ3
32πm3

H

½αðm2
ZÞ�2 þ ½βðm2

ZÞ�2
24πC̃

¼Eq:ðA1Þð30.687 GeVÞ3 × ½½αðm2
ZÞ�2 þ ½βðm2

ZÞ�2�
ð36Þ

with C̃ defined in Eq. (31).
Using Eq. (35), we can rewrite Eq. (16) as

dΓres

ds
ðs;t̃min;ũminÞ¼ΓðH→ZγÞ ·BRðZ→llÞ · 3sΓZ

2πmZðm2
H−m2

ZÞ3
·

1

ðs−m2
ZÞ2þm2

ZΓ2
Z

�
t3þðsþt−m2

HÞ3
3

�
t¼tmaxðsÞ−ũmin

t¼t̃min

: ð37Þ

The resulting decay rate is expressed as the function of the
kinematic cuts t̃min, ũmin and can be readily compared to the
leading-order result for

ΓNWA ¼ ΓðH → ZγÞ · BRðZ → llÞ ¼ 0.219 keV

¼ 0.0336 × ΓðH → ZγÞ ð38Þ

obtained using the parameter inputs from Eq. (A1).

V. CONCLUSIONS

The decay rate dΓðH→lþl−γÞ
dmll

with l ¼ e or μ offers
insights into different aspects of Higgs physics. With
increasing integrated luminosity, it will be possible to
(i) discover the decay H → Zγ and measure its branching
ratio, (ii) discover the decay H → μþμ−γjtree driven by the
muon Yukawa coupling, and (iii) ultimately quantify
potential new-physics contributions to both the loop-
induced H → Zγ decay and the off-peak contributions to
H → lþl−γ. The latter comprise the nonresonant loop
contributions, best tested in the region between the photon
and Z poles, and (for l ¼ μ) H → μþμ−γjtree which

dominates dΓðH→lþl−γÞ
dmll

near the end-point region
with mll > MZ.
In this paper, we have proposed a gauge-independent,

physical definition of the decay rate ΓðH → lþl−γÞ and

shown how it can be extracted from the measured decay

spectrum dΓðH→lþl−γÞ
dmll

. To this end, it is necessary to subtract

the nonresonant contribution to dΓðH→lþl−γÞ
dmll

, and we have
derived easy-to-use approximations for the cumbersome
SM expression; see Eq. (21) above. We have further studied

the dependence of dΓðH→lþl−γÞ
dmll

on kinematical cuts, which
we have only found to be a critical issue for
H → μþμ−γjtree. In order to perform the three milestone
measurements mentioned above, we have proposed cuts to
optimize the sensitivities to H → Zγ, H → μþμ−γjtree,
and the nonresonant loop contribution, respectively; see
Table I.
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APPENDIX A: INPUTS

We use the following values for the parameter inputs:

mW ¼ 80.379 GeV; mZ ¼ 91.1876 GeV; sin2θW ¼ 1 −
m2

W

m2
Z
¼ 0.223013;

mt ¼ 173.1 GeV; mH ¼ 125.1 GeV; mμ ¼ 0.105658 GeV; ΓZ ¼ 2.4952 GeV;

GF ¼ 1.1663787 × 10−5 GeV−2; α−1 ¼ πffiffiffi
2

p
GFm2

Wsin
2θW

¼ 132.184: ðA1Þ
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APPENDIX B: THE LOOP FUNCTION Ã

The loop function Ã introduced in Eq. (28) is given as

Ã ¼ e3

3 · 16π2 cos θWsin2θWm2
Wðm2

H −m2
ZÞ2

f4ð5 − 8cos2θWÞm2
t m2

ZmWðB0ðm2
H;m

2
t ; m2

t Þ − B0ðm2
Z;m

2
t ; m2

t ÞÞ

− 3mWm2
Zð2m2

W þm2
H − 12cos2θWm2

W − 2cos2θWm2
HÞðB0ðm2

H;m
2
W;m

2
WÞ − B0ðm2

Z;m
2
W;m

2
WÞÞ

þmWðm2
Z −m2

HÞð2ð5 − 8cos2θWÞm2
t ðm2

H − 4m2
t −m2

ZÞC0ð0; m2
H;m

2
Z;m

2
t ; m2

t ; m2
t Þ

− 6m2
Wðð1 − 6cos2θWÞm2

H þ 2ð6cos4θW þ 3cos2θW − 1Þm2
ZÞC0ð0; m2

H;m
2
Z;m

2
W;m

2
W;m

2
WÞ

þ ð3 − 6cos2θWÞm2
H þ 4ð8cos2θW − 5Þm2

t þ 6ð1 − 6cos2θWÞm2
WÞg ðB1Þ

expressed in terms of Veltman-Passarino loop functions [11] following the conventions of the FEYNCALC [12–14] package.
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