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Abstract: The electrode configuration is an important element in the development of Li-ion cells.
The energy density is proportional to the loading of the active material. Therefore, increasing the
electrode thickness is the simplest way to achieve higher capacities. In this paper, we compare
the effects of three different thicknesses of Ag-decorated Si electrode anode (HCSi) on the electro-
chemical performances such as the SEI layer formation, impedances, and mass capacitances. We
prepared three different silicon electrode thicknesses to optimize the electrodes: 20, 40 and 60 µm
and measured in situ galvanostatic electrochemical impedance spectroscopy (GEIS). Using GEIS, we
studied the intercalation mechanism of Li+ ions in detail and found that despite having the same
capacities (≈3500 mAh g−1), the thinnest electrode, HCSi20, allows diffusion of Li+ ions into the bulk,
whereas thicker layers prevent smooth diffusion into the bulk of the silicon electrode due to increased
layer resistance. The Voigt model was used to analyze the anomaly of the frequency dependence of
the measured impedance, in which, the classical Randles circuit is connected in series with one or
two R ‖ C parallel combinations. One R ‖ C circuit could be the result of the SEI formation, and the
second R ‖ C circuit could be the contribution of Li. To increase the number of charge and discharge
cycles, we improved the electrolyte by adding fluoroethylene carbonate (FEC), which reduced the
capacity of the HCSi20 electrode to 50% of the initial capacity (≈3500 mAh g−1) after 60 cycles,
whereas it dropped to 20% of the initial capacity after 10 cycles without the addition of FEC.

Keywords: electrode optimization; anode thickness; galvanostatic EIS; electrolyte additive

1. Introduction

Lithium-ion batteries (LiBs) are used as high-performance, portable, and rechargeable
energy storage devices in a variety of applications. As the energy storage requirements
continue to increase, graphite electrodes must be replaced to achieve higher capacities.
Silicon, in this context, represents a new generation of anode materials. Its high theoretical
capacity of 3590 mAh g−1 for Li15Si4 at room temperature is ten times higher than standard
graphite. Since silicon is the second most common element in the Earth’s crust, cost-effective
mass production is not an issue [1]. However, the practical application of such electrodes is
limited by volume expansion, which can be as much as 400% of the initial volume, causing
stress and strain that causes electrode fracture and electrical insulation during cycling [2].
Currently, intensive research is underway to develop porous nanostructured silicon that
can compensate for the volume expansion while also providing a large specific surface area
for the diffusion of Li+ ion [3,4]. When the electrode is first exposed to the electrolyte, a
solid electrolyte interphase (SEI) form. Continuous volume changes lead to the reformation
of the SEI layer and consumption of the electrolyte, as well as a fast capacity fade [5].
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An important element in the development of Li-ion cells is the electrode configuration.
The energy density is directly related to the loading of the active material. Therefore,
to achieve higher capacities, the easiest way is to increase the electrode thickness [6].The
critical electrode thickness where the energy density reaches its maximum varies depending
on the electrode material and test conditions. Unlike laboratory-scale electrodes, which
are ≈50 µm thick [7], conventional lithium-ion cell electrodes are 70 µm thick [8–10]. Most
studies compare and optimize cathode thickness, including the work of Zheng et al. [11],
which compares four NMC cathodes with different thicknesses (24 µm, 50 µm, 76 µm and
104 µm). The capacity retention after 500 cycles is 92% for the thinnest electrode, which
is significantly higher than the 60% retention for the thickest electrode. Research shows
that thicker electrodes achieve higher energy density but lower power density and faster
capacitance decay [12].Thinner electrodes have better cycling performance due to lower
charge transfer resistance along with better mechanical integrity. The increase in resistance
is probably related to the formation of the SEI layer which consequently contributes to the
total impedance of the cell. However, in most literature, anode thickness analyzes are based
on graphite electrodes [13–16]. Since silicon anodes suffer from volume expansion upon
cycling, it is very important to optimize the thickness. Thicker electrodes are favorable
for the energy density increase, especially for low C rates. By raising the mass load of the
active material, the proportion of inactive material, such as binder, separator, and current
collectors, is decreased, improving cell energy and lowering costs. However, long transport
pathways results in high ohmic resistances, so thick electrodes are unfavorable for Li+

diffusion [12,17]. Although the internal resistance has been widely reported [11,18], few
studies have considered the electrode thickness and diffusion through thicker electrodes.

In our previous work, we investigated a silicon honeycomb (HCSi) structure prepared
by Magnesium Thermal Reduction (MRR) as a potential anode material for lithium-ion
batteries previously reported [19]. For this purpose, a different content of silver nanoparti-
cles (AgNP) was deposited on the HCSi structure to improve its conductivity. In summary,
the HCSi sample, with the highest Ag content showed the lowest impedance and the
highest intercalation intensity, resulting in an excellent specific capacity of 3333 mAh g−1 at
0.067 A g−1 [19]. In this research, we report a comparative study on the effects of three dif-
ferent HCSi anode thicknesses of the electrochemical performances such as the formation of
SEI layer, impedances, and mass capacitances. The combined electrochemical techniques in
different time domains can provide a deeper understanding of the mechanism of lithiation.
As a result of Li+ ion diffusion, the interphase Si/electrolyte becomes a complex inter-
phase containing various types of resistive and capacitance elements, and electrochemical
impedance spectroscopy appears to be an ideal technique for studying lithiation [16,20].

During the intercalation of Li+, a series of polarizations occur. The Li ions from the
electrolyte migrate to the silicon surface covered by the SEI, resulting in ohmic polarization
(RS). They diffuse through the SEI layer and produce an activation polarization correspond-
ing to each step (RSEI, RCT). After LixSiy alloying, the remaining Li+ diffuse through the
silicon and produce a concentration gradient, a concentration polarization [10]. As the
electrode thickness increases, a higher concentration gradient is achieved [12]. Electrolyte
additives can improve the composition and stability of a SEI by forming a thin SEI with
low ionic resistance [21–23].

Each process step is a separate kinetic parameter that can be studied by electrochemical
impedance spectroscopy (EIS) [24]. The overall process can be divided into separate steps
based on frequency. Usually, impedance spectra are obtained by controlled-potential tech-
niques (PEIS) after the system has reached a steady state [25]. Over 40% of the studies on the
commercial Li-ion cells uses PEIS, typically with sinusoidal potential 5–10 mV. Commercial
batteries, on the other hand, have much lower impedance than lab-scale cells, so a small
changes in the input voltage can result in large output current [26]. For this reason, PEIS
cannot determine the state of charge (SOC) and is therefore not suitable for investigation of
Li-ion cells [27]. In this work, we measured in-situ EIS using galvanostatic electrochemical
impedance spectroscopy (GEIS), in which a sinusoidal current is superimposed with a
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fixed charge. The primary advantage of this technique is that the cell under test meets the
stationarity conditions for valid impedance measurements.

Many studies have been performed by investigating the internal resistance of the
electrode through charge transfer (RCT) [11,18,28]. To fully explain the mechanism of the
Li+ ion diffusion, diffusion through the porous layer and the phase boundary between the
electrode and electrolyte must be included [18]. We studied electrochemical processes in
porous electrodes using in situ GEIS method, which include diffusion of Li+ ion and charge
transfer related to Li+ intercalation.

These GEIS studies mainly focus on the impedance variation with different electrode
thicknesses in the first cycle to study the kinetics and reaction mechanism of lithiation.

In addition, the poor cycling stability were investigated and improved by adding
fluoroethylene carbonate (FEC) to the electrolyte. The basic idea behind electrolyte additives
is that it has higher reduction potential than the solvent molecule, resulting in the formation
of a stable SEI film and preventing decomposition of electrolyte which further leads to
better performances of the lithium battery. Experimental and theoretical studies have
recently demonstrated that FEC preferentially decomposes in contact with lithium, forming
SEI film with the main component of small organic molecules and LiF. Increase of the LiF
particles in the inorganic layer, in particular, can make the SEI film more dense, preventing
further contact of lithium and electrolyte [29].

2. Experimental
2.1. Electrode Preparation

As the active material of the working electrode, previously described [19] Ag-decorated
silicon (HCSi), was combined in a 60:20:20 ratio with carboxymethyl cellulose (CMC) as a
binder and carbon black (CB) in H2O as a solvent. Using a Doctroblade coating machine,
the produced slurries were subsequently applied on an aluminum foil as a current collector.
Electrode sheets were prepared in dry thicknesses of 20, 40 and 60 µm and dried at 60 ◦C
for 12 h in vacuum. Round electrodes with a diameter of 18 mm were cut with an electrode
punching tool. The samples were designated as HCSi20, HCSi40 and HCSi60, with an
active material loading of ≈1.5 mg for HCSi20, ≈3 mg for HCSi40 and ≈4.5 mg for HCSi60.

2.2. Electrochemicall Cell Preparation

Figure 1 shows a “home-made” 2-electrode system used for electrochemical character-
ization assembled in argon-filled glove box (Mbraun, <0.1 ppm of H2O and <0.1 ppm of
O2) using lithium foil as the counter electrode (CE) and glass fiber (18 × 1.55 mm) sepa-
rator soaked with LP30 electrolyte (1M LiPF6 in 1:1 dimethyl carbonate (DMC): ethylene
carbonate (EC). Fluoroethylene carbonate (FEC), an electrolyte additive was added to the
basic electrolyte at a concentration of 10% v/v. Working electrodes (WE) were Ag decorated
Si nanostructure in different thicknesses (HCSi20, HCSi40, HCSi60).
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2.3. Instrumental Analysis

Field emission scanning electron microscope coupled with Energy-dispersive spec-
troscopy JSM 7000F (JEOL) was used to investigate the morphology of the obtained mate-
rials. Chronopotentiometric measurements and electrochemical impedance spectroscopy
(EIS) measured by by Solartron FRA (Model 1250) with ECI (Model 1287) were used to
determine the kinetics of lithiation and delithiation. EIS was performed in the frequency
range from 100 kHz to 10 mHz with a current bias up to 10 µA. The cycle performance test
was performed at 0.2 A g−1 current density.

3. Results

SEM images of the electrode cross-section after testing are shown in Figure 2. In a
previous paper [19], the TEM microscope was used to determine the primary particle size
of HCSi, which contains two types of NPs, larger (≈100 nm) and smaller (≈40 nm) particles
with an active surface of 34.03 m2 g−1. According to the SEM, the electrode thickness
is quite uniform since the electrodes are prepared in a controllable way. The aluminum
foil has a thickness of about 6 µm. The observed changes in surface morphology in all
three electrodes could be attributed to one of two degradation mechanisms: lithium metal
deposition or oxidation in reaction with the electrolyte. The HCSi20 electrode has cracks
that extend into the bulk, indicating good Li+ diffusion in a thin film. Bulk changes and
cracks are not observed for thicker electrodes, the majority of the lithium remains behind
the active surface and does not diffuse into the bulk.
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To confirm our assumptions, further SEM images of the samples HCSi20, HCSi40, and
HCSi60 were obtained (see Figure 3). These images demonstrate the pulverization of the
HCSi surface following lithiation (Figure 3a, before lithiation), especially in HCSi60. The
interparticle porosity, which is obvious in Figure 3a, is not present in Figure 3b–d indicating
pulverization. Moreover, Figure 3b supports lithiation into bulk.
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Three different electrode thickness were studied as anode materials: HCSi20, HCSi40
and HCSi60. These electrodes were connected to the Li-electrode in a two-electrode cell
and, after stabilization, were galvanostatically tested at a constant current of −100 µA.

Figure 4 shows the chronopotentiometric curves for the HCSi20, HCSi40 and HCSi60
electrodes with a constant current of −100 µA. After stabilization, the open circuit potential
(OCP) of all three electrodes was ≈ +3.5 V. Above 1.2 V, the primary SEI forms, and below
it, the process of Li+ intercalation occurs, as seen in the chronopotentiometry curves for the
electrode with the thinnest layer of active material, HCSi20. The dynamics of the potential
change during the galvanostatic process, resulting in a change in the slope. Three potential
regions with different Li+ intercalation dynamics were observed, i.e., the formation of
different forms of LixSiy (shown in Figure 4, marked a, b, c) [30]. These regions were not
observed in thicker layers, HCSi40 and HCSi60, implying that intercalation of Li+ ion into
the bulk is difficult, which may be related to the increase in resistance with increasing
layer thickness.

The specific capacities of the electrodes were calculated using chronopotentiometry
curves and are shown as inset in Figure 4. The specific capacities for all three electrode
thicknesses are around 3500 mAh g−1, but it is unknown whether some of the charge was
used to generate an additional SEI rather than lithiation.

Figure 5a shows the galvanostatic charge and discharge for the HCSi20 electrode
over ten cycles at current of 300 µA. Due to a higher current density, the capacity reaches
2400 mAh g−1 in the first cycle, which is lower than the chronopotentiometry discharge in
Figure 4. The value of the initial capacity drops to 20% in the second cycle and remains
constant for the next cycles.
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To improve cycle stability, we investigated the effects of the fluoroethylene carbonate
(FEC) electrolyte additive on the properties of the HCSi20 electrode. Figure 5b shows
charging and discharging potential profile over 60 cycles, which shows 40–50% of the
initial capacity after 60 cycles, which is significantly better than the stability in the cell with
electrolyte without FEC, which drops to 20% after 10 cycles (Figure 5a).

During the galvanostatic procedures shown in Figure 4, impedance changes (GEIS)
were measured in situ as a function of time. The resulting impedance spectra are shown in
Figures 6–8.
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Figure 6. In situ GEIS impedance spectra for HCSi20 electrode in (a) Nyquist plot, (b) Bode plot.
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Figure 7. In situ GEIS impedance spectra for HCSi40 electrode in (a) Nyquist plot, (b) Bode plot.
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Figure 8. In situ GEIS impedance spectra for HCSi60 electrode in (a) Nyquist plot, (b) Bode plot.
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From the dependencies shown, it is evident that only the impedance spectrum mea-
sured after one hour shows a low-frequency (LF) semicircuit connected with an additional
series of parallel R ‖ C combination. This impedance spectrum was measured at a potential
of ≈+2.5 V, as shown by the chronopotentiometry curve in Figure 4, when the primary SEI
is formed. As a result, the formation of SEI may be associated with the formation of an LF
semicircuit; however, the impedance spectra measured at other refute this assumption. This
LF semicircuit disappears in the other impedance spectra, so it is impossible to associate the
formation of the primary SEI with the existence of this LF semicircuit. Since the conditions
for the intercalation process are not met at this potential, the layer acts as a resistor. A
semicircle associated with the charge transfer resistance (Rct) on and within the electrode
was registered in the other impedance spectra from 10 to 80 h. The intercalated Li+ makes
the layer more conductive, resulting in the loss of the semicircular dependence in the LF
region registered in the first measurement.

The time-dependance GEIS impedance spectra for HCSi40 are shown on Figure 7.
The presence of the LF semicircles is evident up to 60 h of the galvanostatic process, with
resistances higher than the resistance registered for the HCSi20. Despite the intercalation of
Li+ ions registered up to 60 h (Figure 4), Li+ has a harder time penetrating into the bulk
due to the increased thickness of the layer, so that the resistive component of the layer is
present for a longer time. The semicircle disappears after 60 h.

Figure 8 shows the time dependent GEIS impedance spectra for the thickest layer
HCSi60. The presence of an LF semicircle throughout the galvanostatic process indicates
that the resistive component dominates all the time. There is hard intercalation of Li+ ions
into the bulk and cannot eliminate the resistive component of the layer. Intercalation occurs
in a single process (Figure 4) that changes only after 60 h, but the Li+ ions continue to have
difficulty penetrating deeper into the electrode.

By comparing in situ GEIS impedance spectra for all three thicknesses after 20 h of lithi-
ation (Figure 9), we can conclude that, despite having the same capacities (≈3500 mAh g−1),
the thinnest electrode, HCSi20, allows diffusion of Li+ ions into the bulk, while thicker
layers prevent smooth diffusion into the bulk of the silicon electrode due to the increased
resistance of the layer as shown on Figure 9.

Batteries 2023, 9, x FOR PEER REVIEW 9 of 15 
 

By comparing in situ GEIS impedance spectra for all three thicknesses after 20 h of 

lithiation (Figure 9), we can conclude that, despite having the same capacities (≈3500 mAh 

g−1), the thinnest electrode, HCSi20, allows diffusion of Li+ ions into the bulk, while thicker 

layers prevent smooth diffusion into the bulk of the silicon electrode due to the increased 

resistance of the layer as shown on Figure 9. 

0 500 1000 1500 2000

0

-500

-1000

-1500

 HCSi20

 HCSi40

 HCSi60

 

 Z
" 

 /
 W

  

 Z'  / W 

0.10 Hz

0.10 Hz

350 Hz

0.01 Hz

Time  20 h

 

Figure 9. In situ GEIS impedance spectra compared for all three thicknesses after 20 h of lithiation 

in Nyquist plot. 

Figure 10 compares in situ GEIS impedance spectra with FEC for all three thicknesses 

in Nyquist plot. The impedance is evidently lowest for the electrode HCSi20, confirming 

the easier lithiation. Furthermore, the addition of FEC reduces Rct values significantly, 

confirming our assumptions. With the addition of FEC, the charge transfer resistance for 

HCSi20, which is ≈450 Ω, is reduced by nearly 4 times. Resistance values for thicker elec-

trodes are slightly higher than 500 Ω, but with the addition of FEC, it drops to 200 Ω for 

the HCSi40 and 320 Ω for the HCSi60 electrode. 

0 50 100 150 200 250 300 350

0

-50

-100

-150

-200

-250

   Time 1h

   HCSi20

   HCSi40

   HCSi60

 

 

Z
´́

 /
 W

Z  ́/ W

E= +0.50 V

0.01 Hz 0.01 Hz
0.01 Hz

10 Hz

100 Hz

500 Hz

10 Hz

100 Hz

500 Hz

100 Hz

 

Figure 9. In situ GEIS impedance spectra compared for all three thicknesses after 20 h of lithiation in
Nyquist plot.
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Figure 10 compares in situ GEIS impedance spectra with FEC for all three thicknesses
in Nyquist plot. The impedance is evidently lowest for the electrode HCSi20, confirming
the easier lithiation. Furthermore, the addition of FEC reduces Rct values significantly,
confirming our assumptions. With the addition of FEC, the charge transfer resistance for
HCSi20, which is ≈450 Ω, is reduced by nearly 4 times. Resistance values for thicker
electrodes are slightly higher than 500 Ω, but with the addition of FEC, it drops to 200 Ω
for the HCSi40 and 320 Ω for the HCSi60 electrode.
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Since a two-electrode system was used with Li metal as the counter electrode (CE),
the contribution of Li to the total impedance must be considered [31–34]. In general, a
total impedance of 2-electrode cell (Li-electrode, electrolyte, separator, HCSi-electrode)
corresponds to the sum of the electrolyte resistance Rs, the resistance within the separator
Rsep, the counter electrode impedance (Li-electrode), ZCE, and the impedance of the work-
ing electrode (HCSi), ZWE. In the high-frequency (HF) region, Rs and Rsep predominate
and can be easily separated from the total impedance. Estimating contribution of the ZWE
and the ZCE impedance requires additional measurements. Therefore, measurements of
the Li impedance in a symmetric cell (Li-electrolyte-separator-Li) with an OCP of 0.0 V
were performed.

The impedance spectrum of a symmetric cell (Li-Li) at OCP 0.0 V and an asymmetric
cell (Li-HCSi20) at OCP +3.5 V are shown in Figure 11. The total impedance of the asym-
metric cell is equal to the sum of the impedances ZLi, as ZCE, and ZHCSi, as ZWE, with the
standard sum of electrolyte and separator resistance:

Symmetric cell: Ztot= 2ZLi + Rsep + Rs

Asymmetric cell: Ztot= ZLi + ZHCSi + Rsep + Rs

Since both impedance spectra were measured under OCP conditions, without addi-
tional polarization, we assume that the in the ZLi in symmetric and asymmetric cell is
equal, since Li is in same equilibrium with the electrolyte used in both cases. Under this
assumption, subtracting the ZLi measured in the symmetric cell which represents the ZCE,
from the total impedance of the asymmetric cell, we obtain the impedance of the working
electrode (HCSi20), also shown in Figure 11.
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Figure 11. Impedance spectra of symmetric cell (Li-Li) at OCP 0.0 V and asymmetric cell. (Li-HCSi20)
at OCP +3.5 V in (a) Nyquist plot, (b) Bode plot.

In this case, the impedance was measured as a function of time at constant current
flowing through the cell simultaneously with an AC bias GEIS signal. At constant current
density, we can assume that oxidation of Li is constant, with constant impedance at the CE, so
that any change in the measured impedance of the asymmetric cell corresponds to a change
in the ZWE. Galvanostatic measurements are also performed in a 2-electrode combination,
allowing measurements to be more reliably correlated with galvanostatic measurements.

Figure 12 shows the impedance spectra of HCSi20 cell polarized at E = +0.05 V. In the
frequency range up to 0.5 Hz, all spectra show a semicircular dependence. The resistance
to charge transfer is related to the intercalation of Li+ ions, but this process is complex and
not uniquely related to a single reaction, as is the case with a redox reaction in a solution.
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Figure 12. Time-dependance PEIS spectra of HCSi20 cell at +0.05 V in (a) Nyquist plot, (b) Bode plot.

A HF semicircular dependence (Figure 12) associated with the Rct shows significant
asymmetry connected only with the mechanism of intercalation of Li+ ions, which is not
the case at Figure 13 where Rct is significantly smaller, and asymmetry is absent.
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Figure 13. Time-dependance PEIS spectra of HCSi20 with FEC cell at +0.05 V in (a) Nyquist plot,
(b) Bode plot.

In the HF region (Figure 13 inset), the resistance connected with the resistance of the
electrolyte between the electrodes and the resistance of the separator, slightly increases with
time. The increase in resistance could be attributed to a change in electrolyte composition
and the gradual formation of the SEI layer. Since there is no semicircular dependence
anomaly in the impedance displays in Figure 13, we assume that its influence could
manifest as an increase in resistance due to the layer’s electrical properties.

Because the dynamics of SEI layer formation varies, charge transfer resistance values
are likely lower with the addition of FEC. As shown in the Figure 14, Rct increases slightly,
but with the addition of FEC, this value is stabilized over long periods of lithiation (>20 h).
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In the research of materials for Li-ion cells, when the intercalation of Li+ ions in
the structure of the Si-electrode is present, there are processes that take place in a series,
one after the other: (a) diffusion of Li+ ions through the electrolyte and separator to the
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surface of the Si-electrode, (b) migration of Li+ ions through the surface film, (c) charge
transfer reactions, (d) diffusion through the solid phase of the electrode and, finally, (e) ion
accumulation manifested as a capacity. In any case, all these processes affect the total
impedance, so the model that describes the impedance spectrum should include the effects
of these processes in series. The so-called Voigt model, which faithfully describes the
influence of certain processes and consists of several serial R ‖ C parallel combinations,
is frequently used [20,35,36]. The anomaly of the HF semicircular dependence can be
explained using such a model.

Figure 15a shows a typical impedance spectrum of the Si-electrode in the Nyquist plot,
with a pronounced anomaly of the semicircular dependence, visible also in the dependence
of the phase angle (Bode plot).
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Figure 15. Time-dependance PEIS spectra of HCSi20 cell at +0.05 V in (a) Nyquist plot, (b) residuals.

The Voigt model was used to analyze the frequency dependence, in which the clas-
sic Randles circuit is connected in series with one or two R ‖ C parallel combinations.
Figure 15b shows the model’s adaptation quality to the measured frequency dependence
of the cell as residuals, deviations of the real and imaginary components between the
measured values and the values obtained by applying models 1 and 2. We can conclude
from the obtained dependences, that model 2 provides a satisfactory fit of the frequency
dependence, where two R ‖ C parallel circuits represent processes that have a direct impact
on the semicircular dependency anomaly. One R ‖ C circuit could be connected to the
formation of the SEI, while the other R ‖ C circuit could be a contribution of the Li-electrode,
because the measurement was performed in a so-called two-electrode combination.

These studies compare three electrode thicknesses side by side, with the thinnest one
regarded as the most optimal. We demonstrated the addition of electrolyte additive, FEC,
increased the number of cycles. These studies have the potential to make a significant
contribution to silicon anode material optimization.

4. Conclusions

We demonstrated the significance of electrode thickness in anode design in this paper.
We concluded that the intercalation of Li+ ions into the thicker electrodes is difficult by
systematically comparing three different electrode thicknesses (20, 40 and 60 µm). One



Batteries 2023, 9, 173 13 of 14

of the causes could be increased resistance as layer thickness increases. Despite having
the same capacities (≈3500 mAh g−1), the thickest electrode, HCSi20, allows diffusion of
Li+ ions into the bulk, whereas thicker layers prevent smooth diffusion into the bulk of
the silicon electrode due to increased layer resistance. To increase the number of charge
and discharge cycles, we improved the electrolyte by adding fluoroethylene carbonate
(FEC), which reduced the capacity of HCSi20 electrode to 50% of the initial capacity
(≈3500 mAh g −1) after 60 cycles, whereas it dropped to 20% of the initial capacity after
10 cycles without the addition of FEC. The charge transfer resistance for HCSi20, which is
450, is nearly four times reduced with the addition of FEC. Resistance values for thicker
electrodes are slightly higher than 500, but with FEC, they drop to 200 for the HCSi40
electrode and 320 for the HCSi60 electrode. These results can greatly contribute to the
further optimization of the anode materials.
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