
Lepton phenomenology of Stueckelberg portal to dark sector

Aliaksei Kachanovich ,1,2 Sergey Kovalenko,3,4,5 Serguei Kuleshov ,3,4

Valery E. Lyubovitskij,6,5,4 and Alexey S. Zhevlakov 7,8

1Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology (KIT),
Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany

2Ruder Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
3Departamento de Ciencias Físicas, Universidad Andres Bello, Sazié 2212, Piso 7, Santiago, Chile
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We propose an extension of the Standard Model (SM) with a UA0 ð1Þ gauge-invariant dark sector
connected to the SM via a new portal—the Stueckelberg portal, arising in the framework of dark photon A0

mass generation via the Stueckelberg mechanism. This portal opens through the effective dim ¼ 5

operators constructed from the covariant term of the auxiliary Stueckelberg scalar field σ providing flavor
nondiagonal renormalizable couplings of both σ and A0 to the SM fermions ψ . The Stueckelberg scalar
plays a role of Goldstone boson in the generation of mass of the dark photon. Contrary to the conventional
kinetic mixing portal, in our scenario, flavor diagonal A0 − ψ couplings are not proportional to the fermion
charges and are, in general, flavor nondiagonal. These features drastically change the phenomenology of
dark photon A0 relaxing or avoiding some previously established experimental constraints. We focus on the
phenomenology of the described scenario of the Stueckelberg portal in the lepton sector and analyze the
contribution of the dark sector fields A0 to the anomalous magnetic moment of muon ðg − 2Þμ, lepton
flavor–violating decays li → lkγ, and μ − e conversion in nuclei. We obtain limits on the model parameters
from the existing data on the corresponding observables.

DOI: 10.1103/PhysRevD.105.075004

I. INTRODUCTION

The idea of the dark sector (DS) of the Universe, existing
almost independently of the Standard Model (SM) sector,
has attracted growing interest in recent years. Originally,
DS was thought to be populated by only one dark species,
necessary to make up for the lack of matter in the Universe
with dark matter (DM). In particular, extensions of DS were
motivated by the popular scenario of light sub-GeV DM. It
was realized that in this case a dark boson, known as the
dark photon, would need to be introduced to prevent the
Universe from overclosing. An extended DS can have not

only cosmological but also interesting phenomenological
consequences. This DS physics beyond the SM can
manifest itself in the phenomena observable experimentally
(for a status report see, e.g., Ref. [1]).
Presently, there are a number of experiments to search

for DS physics, and others are planned for the near future.
Among them, we mention CERN-based experiments NA64
[2,3], NA62 [4], SHiP [5–7], LHCb [8], ATLAS [9], and
CMS [10] and the BABAR experiment at SLAC [11], HPS
at JLab [12], and Belle at KEK [13]. So far, no signal of DS
or another kind of new physics beyond the SM (BSM) is
observed.
An encouraging indication of new physics has recently

come from measurements of the anomalous magnetic
moment (AMM) of the muon ðg − 2Þμ. The Fermilab
Muon g − 2 Collaboration published [14] the observation
of 4.2σ deviation of the ðg − 2Þμ from its SM value and
stimulated an explosion of the BSM literature. As is known,
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measurements of ðg − 2Þμ are a very sensitive probe of
BSM physics. The Fermilab Muon g − 2 result with such
unprecedented precision can severely limit or refute many
BSM models.
On the other hand, there is no doubt that the SM is an

incomplete theory, requiring some physics beyond its scope
to explain a number of problems that cannot be addressed
in the SM. Among them, the DM problem is one of the
most obvious. As we already mentioned, DM hints at the
existence of a DS of the Universe, which not only provides
DM particle candidates but is also populated by other
particles involved in interactions governed by some dark
symmetries. The DS with possible nontrivial physics could
have a phenomenological impact on the SM sector through
portals such as the well-known kinetic mixing of dark
and normal photons. Other hypothetical DS particles can
have access to the SM sector through different portals and
contribute to various observables, in particular, to ðg − 2Þμ,
allowing one to probe the DS.
We should stress that there is much evidence of deviation

from SM. Besides (g − 2) of muon [15,16], evidence
includes the strong CP problem and rare meson decays
[17–21], flavor nonuniversality [22,23], the b − s quark
anomaly, and others. This motivates theoretical study/
construction of effective Lagrangians beyond Standard
Model trying to involve new particles/portals, like the
axion, dark photon, vectors, pseudoscalars, scalars, axials,
etc., [1,5,24–56].
Here, we propose an extension of the SM by inclusion

of DS with UA0 ð1Þ symmetry. The corresponding gauge
boson A0, also known as the dark photon, acquires a
nonzero gauge-invariant mass via the Stueckelberg mecha-
nism [57,58], which implies the existence of a scalar
Stueckelberg field σ, which is unphysical.
This field opens a new portal from the SM to the dark

sector via the effective dimension-5 operator with the
covariant derivative of the σ field. We call it the
Stueckelberg portal. In our setup, this portal coexists with
the conventional kinetic mixing portal and leads to new
phenomenological effects in the SM sector, in particular,
flavor violation both in the lepton and quark sectors. In the
present work, we focus on the lepton flavor violation (LFV)
and the corresponding experimental observables.
We also introduce one dark fermion, χ, charged under

Uð1ÞD, which is a viable light DM particle candidate. We
postulate that the dark scalar boson (DSB) plays an
important role in this model: (i) generating mass of the
dark gauge boson (DGB) or dark photon, via the
Stueckelberg mechanism [57,58]; (ii) generating a mixing
of DS with the SM fermion including couplings preserving
and violating symmetries of SM (e.g., LFV) [interaction of
DGB and DSB with fermions is based on the idea of a
familon (or flavons)] [35,45,59]; (iii) playing the role
auxiliary field for DGB and reducing degrees of freedom
of one of something.

The paper is organized as follows. In Sec. II, we describe
our theoretical setup. In Secs. III, IV, and V, we consider
application of the Stueckelberg portal to phenomenological
aspects of the g − 2 lepton anomaly, lepton conversion,
and rare lepton-flavor-violating decays li → lkγ which
were used to derive limits for couplings occurring in the
Stueckelberg portal. In Sec. VI, we discuss the boundary to
DGB couplings and a possible contribution to the g − 2
lepton from obtained restrictions for different channels.
Section VII is the conclusion. Technical details of our
calculations are placed in Appendixes.

II. THEORETICAL SETUP

We consider an extension the SM with a UA0 ð1Þ gauge
invariant dark sector described by the Lagrangian

LSMþDS ¼ LSM þ LDS þ Lint; ð1Þ

where LSM and LDS are the SM and dark sector
Lagrangians. Communication between these two sectors
takes place through a portal interaction Lagrangian Lint.
We suppose that the DS, blind to the SM interactions, is

populated with Dirac fermions χi charged underUA0 ð1Þ, the
lightest of which is stable and plays the role of dark matter.
By definition, all the SM fields are neutral with respect to
this group. The gauge boson, A0, of the dark sector UA0 ð1Þ
group is called the dark photon. In the conventional dark
photon scenario, A0 acquires its massmA0 from spontaneous
breaking of the UA0 ð1Þ group. In contrast, in our approach,
its mass is a gauge-invariant quantity generated by the
Stueckelberg mechanism. This requires the introduction of a
scalar Stueckelberg field σ, which plays a role of Goldstone
boson in the generation of mass of the dark photon. The
UA0 ð1Þ gauge-invariant Stueckelberg Lagrangian LDS with
one specie of dark fermion, χ, reads

LDS ¼ −
1

4
A0
μνA0μν þ 1

2
DμσDμσ þ χ̄ði=Dχ −mχÞχ; ð2Þ

where, as usual, A0
μν ¼ ∂μA0

ν − ∂νA0
μ and ðiDχÞμ ¼ i∂μ −

gA0A0
μ is the conventional covariant derivative.

The Stueckelberg covariant derivative is defined as

Dμσ ¼ ∂μσ −mA0A0
μ: ð3Þ

The UA0 ð1Þ symmetry is realized on the dark sector fields
according to the transformations

A0
μ → A0

μ þ
i
gA0

∂μΩA0Ω−1
A0 ; A0

μν → A0
μν; ð4Þ

σ → σ −
mA0

gA0
θA0 ; ∂μσ → ∂μσ þ imA0

gA0
∂μΩA0Ω−1

A0 ;

Dμσ → Dμσ; ð5Þ
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χD → ΩA0χD; i=DχDχD → ΩA0i=DχDχD; ð6Þ

where

ΩA0 ðxÞ ¼ exp½iθA0 ðxÞ�: ð7Þ

As seen from (5), the σ is an axionlike field shift trans-
formed under the UA0 ð1Þ. Quantization of the Uð1ÞA0 dark
sector requires adding to the Lagrangian (2) a gauge-fixing
term [32]. We choose it in the form

Lgf ¼ −
1

2ξ
ð∂μA0μ þ ξmA0σÞ2; ð8Þ

where ξ is a gauge parameter. Then, the dark sector
Lagrangian can be written as

L0
DS¼LDSþLgf ¼−

1

4
A0
μνA0μνþm2

A0

2
A0
μA0μþ χ̄ði=Dχ −mχÞχ

−
1

2ξ
ð∂μA0μÞ2þ1

2
∂μσ∂μσ−ξ

m2
A0

2
σ2:

In this gauge, the Stueckelberg field is decoupled from
other fields, making the theory manifestly unitary and
renormalizable. Note that the mass of the σ field is
proportional to the gauge parameter ξ, signaling that this
field is unphysical.
In the gauge (8), the dark photon propagator takes the

form

Dμν
A ðk; ξÞ ¼ 1

k2 −m2
A0

�
gμν −

kμkνð1 − ξÞ
k2 − ξm2

A0

�
: ð9Þ

Let us turn to the SM-DS portals Lport possible in the
present model. The well-known example of these is the
generic renormalizable portal given by kinetic mixing of
the dark and the SM photons, A − A0, according to

Lmix ¼ −
ϵA
2
FμνA0μν; ð10Þ

where ϵA is the mixing parameter. It has a rather particular
phenomenology, which we comment on latter.
In the Stueckelberg framework, there exists another

specific portal, which relies on the SUcð3Þ × SULð2Þ ×
UYð1Þ ×UA0 ð1Þ gauge-invariant effective operator

Lint ¼
1

Λ
Dμσ

X
ij

½Q̄iχijγμQj þ ūiRχ
ij
u γμu

j
R þ d̄iRχ

ij
d γ

μdjR

þ L̄imκijLγ
μLjm þ l̄i

Rκ
ij
Rγ

μlj
R�: ð11Þ

The fields in the expression (11) belong to the following
Qð3; 2; 1=3; 0Þ, uRð3; 1; 4=3; 0Þ, dRð3; 1; −2=3; 0Þ,
Lð1; 2;−1; 0Þ, lRð1; 1;−2; 0Þ representations of the

SUcð3Þ × SULð2Þ ×UYð1Þ ×UA0 ð1Þ group. The parameter
Λ is the characteristic scale of this effective operator,
defining when it opens up in terms of renormalizable
interactions of a UV completion. The parameters χij and κij

form 3 ⊗ 3 Hermitian matrices leading to the neutral
current flavor violation both in quark and lepton sectors.
In the present work, we focus only on the lepton sector and
make an ad hoc assumption χ ¼ χu ¼ χd ¼ 0.
Let us look closely at the effective operator (11). At first

glance, it looks like a nonrenormalizable operator of
dimension 5. However, after the substitution of the expres-
sion (3), we find that the gauge-invariant operator (11)
generates dimension-4 interactions of the dark photon with
the SM fermions ψ in the form

LA0−ψ ¼ A0
μ

X
ij

ψ̄ iγ
μðgVij þ gAijγ5Þψ j; ð12Þ

where vector gV and axial-vector gA dimensionless cou-
plings are defined as

gVij ¼
mA0

Λ
vij and gAij ¼

mA0

Λ
aij;

vij ¼
1

2
ðκR þ κLÞij and aij ¼

1

2
ðκR − κLÞij: ð13Þ

As seen, these couplings are linearly scaled with the dark
photon mass mA0 , which is crucial for our analysis of the A0
contribution to the lepton sector observables and setting
limits on the corresponding couplings in function of the
intermediate-state mass.
The operator (11) also contains the interaction of the

unphysical Goldstone-like field with the SM fermions of
the form jμ∂μσ. In principle, these interactions should be
taken into account in calculations made in the Rξ gauge (8)
with the arbitrary parameter ξ. To avoid this complication,
we select from now on the unitary-type gauge ξ → ∞
in which, as seen from (9), the σ becomes infinitely heavy
and decouples completely from the observable sector.
Therefore, the only physical interactions generated by (11)
in this gauge are due to the renormalizable couplings of the
dark photon to the SM fermions (12).
These interactions also absorb the kinetic portal (10). In

fact, the latter can be removed from the Lagrangian by the
conventional field redefinition converting its effect to the
flavor diagonal vector interactions of the form (12). As
usual, we shift the SM photon field

Aμ → Aμ − ϵAA0
μ ð14Þ

and, then, rescale the dark photon field

A0
μ → A0

μð1 − ϵ2AÞ−1=2: ð15Þ

These redefinitions generate flavor diagonal couplings of
the SM fermions ψ to the dark photon,
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LA0−ψ
mix ¼ eϵAA0

μψ̄ iγ
μTQψ i; ð16Þ

originating from the kinetic mixing term (10). Here, TQ is
the charge matrix of SM fermions.These interactions
feature the characteristic property of the kinetic portal
requiring the A0 couplings to the SM fermions to be
proportional to their electric charges. It is clear that terms
(16) are completely absorbed by redefinition of the flavor
diagonal vector couplings gVii in (12).
Thus, our model contains the following free parameters:

gVij, g
A
ij, and mA0 with gV;Aij ¼ gV;Aji . Let us highlight two

principal differences between the conventional kinetic
portal and the Stueckelberg portal scenarios of the dark
sector. First, in the latter case, contrary to the former one,
the A0 couplings to the SM fermions are not proportional to
the SM fermion electric charges. Second, these couplings
are flavor nondiagonal, leading to reach LFV phenomenol-
ogy. Note that the first point can significantly affect the
conclusions following from the existing searches of dark
photon. In particular, the conventional dark photon from
the kinetic portal scenario has been strongly constrained
from the data of the NA64 experiment at SPS CERN [2,3].
For the Stueckelberg dark photon, these constraints can be
significantly relaxed.
In the subsequent sections, wewill study contributions of

the dark photon A0 to muon anomalous magnetic moment
ðg − 2Þμ and LFV decays li → lkγ as well as μ − e
conversion in nuclei.

III. ANOMALOUS MAGNETIC MOMENT

In the Stueckelberg portal scenario, the SM leptons l
receive the dark photon A0 one-loop contributions to their
ðg − 2Þl shown in Fig. 1. The loop involves A0 due to its
couplings to the l and f SM fermions according to
Eqs. (12). We calculate the corresponding A0 loop con-
tribution in the unitary gauge, setting ξ → ∞ in (9). In this
case, the σ field is decoupled from low-energy theory, as
commented in the previous section.
The first calculation of the vector and axial contributions

to the lepton anomalous moments in the Rξ gauge (9),

taking into account LFV, was made in Ref. [37]. As it was
noted in Ref. [37], the axial contributions δaAl can obtained
from the vector ones δaVl by inverting the sign in front of
the mass of the internal leptonmf → −mf. In particular, the
δaVl and δaAl contributions due to exchange of the dark
photon, A0, read [37]

δaVl ¼ ðgVlfÞ2
4π2

yl

Z
1

0

dx
1 − x

Δðx; yA; ylÞ
�
xð2 − ylð1þ xÞÞ

þ ð1 − ylÞ2
2y2A

ð1þ ylxÞð1 − xÞ
�
; ð17Þ

δaAl ¼ −
ðgAlfÞ2
4π2

yl

Z
1

0

dx
1 − x

Δðx; yA; ylÞ
�
xð2þ ylð1þ xÞÞ

þ ð1þ ylÞ2
2y2A

ð1 − ylxÞð1 − xÞ
�
; ð18Þ

where we defined yl ¼ ml=mf, yA ¼ mA0=mf, and
Δðx; a; bÞ ¼ a2xþ ð1 − xÞð1 − b2xÞ. The dimensionless
couplings are defined in Eq. (13). For convenience, we
present details of the calculations of these integrals in
Appendix A.
The recent experimental measurements of the anomalous

magnetic dipole moments of muon and electron aμ;e ¼
ðgμ;e − 2Þ=2 demonstrate conspicuous deviation from
the predictions of the SM. In particular, defining
Δal ¼ aexpl − aSMl , one gets

Δaμ ¼ ð2.51� 0.59Þ × 10−9 ½14; 15; 60–63� ð19Þ

Δae ¼ ð8.7� 0.5Þ × 10−13 ½64�;
Δae ¼ ð4.8� 3.0Þ × 10−13 ½65�: ð20Þ

In the case of the muon, the value aexpμ was extracted from
the combined data of the E821 experiment at BNL [66] and
recent Muon (g − 2) measurements at FNAL [14]. This
experimental result shows 4.2σ deviation from the SM
prediction. The value for Δae was derived from the recent
measurement of the fine-structure constant [65]. For
completeness, we also include in our analysis the same
observable for the τ lepton,

Δaτ ¼ ð2.79Þ × 10−4 ½67; 68�: ð21Þ

Its precision is significantly worse than for the case of e
and μ. This is due to the experimental difficulties in
measuring the properties of such a short-lived particle as
the τ lepton. For rough estimations, we will use the central
value of Δaτ in (21).
We compare our theoretical predictions (17) and (18)

with the experimental data (19), (20), and (21). First, we
extract upper limits on the coupling constants gV;Aij of the

FIG. 1. Feynman diagrams describing the contributions of the
dark sector vector A0 to the anomalous magnetic moments δal of
the leptons, taking into account flavor nondiagonal l − f cou-
plings, where l; f ¼ e, μ, τ.
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dark photon to the SM fermions. Then, in Sec. VI, we will
discuss the possibility of simultaneous explanation of the
muon and the electron (g − 2) in our model, taking into
account the limits from LFV processes.
Extracting limits on gV;Aij , we apply the conventional

simplifying assumption about the presence of only one
nonvanishing coupling constant at a time. In Figs. 2 and 3,
we show the resulting upper limits for the couplings gV;Ale ,
which are significantly more stringent than for other

combinations of flavor indices gV;Alf with f ≠ e due to
the factor ml=mf in Eqs. (17) and (18). These latter limits

can be approximately obtained from gV;Ale with the corre-
sponding rescaling using the mentioned factor.
To estimate the effect of the combined contribution of gV

and gA couplings, we also studied the upper limits on the
coupling gV for different values of the ratio gA=gV . The
results are shown in Fig. 3.

FIG. 2. Upper bounds on the couplings gV of the dark photon A0 to the SM fermions as a function of its massm0
A derived from the data

on leptonic (g − 2). The shaded area is excluded.

FIG. 3. Upper bounds on the couplings gVij of the dark photon A
0 to the SM fermions in the vector+axial-vector channel as a function of

its mass mA0 , derived from the experimental data on ðg − 2Þl. The shaded area is excluded. We show the plots for different values of the
ratio gAij=g

V
ij.
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Let us to note that the combination of vector and negative
axial-vector contributions to ðg − 2Þμ makes limits less
stringent in comparison with the case of the pure vectorial
term. This can significantly extend a window in the mass-
coupling parameter space for the light dark vector particles.
Finally, we note that, if the LFV effects in the (g − 2) were
not taken into account, then the upper limits for the
couplings gVll would be almost the same as for gAll.

IV. NUCLEAR LEPTON-FLAVOR CONVERSION

We recall again that the Stueckelberg portal model
inherently features LFV couplings of the dark sector field
A0 to the SM leptons, described by (12). These LFV
couplings can contribute to both flavor-conserving observ-
ables [e.g., ðg − 2Þl studied in the previous section] and to
the LFVones, some of which we consider in what follows.
We start with nuclear μ− − e− conversion, which is a LFV
process with the participation of a nucleus,

l−
1 þ ðA; ZÞ → l−

2 þ X: ð22Þ

It was recently advocated that deep inelastic lepton con-
version on nuclei with X denoting all the possible final-
state particles has good prospects for setting limits on the
effective couplings of l1 and l2 in the e − μ, τ and μ − τ
channels at the fixed-target NA64 experiment [25].
However, the process most studied experimentally is

coherent μ− − e− conversion in muonic atoms, in which
one electron is replaced by a muon. In this case, l1 ¼ μ,
l2 ¼ e, and X ¼ ðA; ZÞ. This process has not yet been
discovered experimentally. Presently, the best upper limits
on its rate Rμe have been set by the SINDRUM II experi-
ment on μ − e conversion in 198Au [69]:

RAu
μe ≤ 4.3 × 10−12: ð23Þ

In the near future, the PRISM/PRIME experiment [70] with
a titanium 48Ti target is going to reach the limit

RTi
μe ≲ 10−18: ð24Þ

In Ref. [71], on the basis of nucleon-meson effective field
theory, the above experimental limits were translated into
the upper limits on the effective couplings αV;A of the LFV
μ − e current to nucleons defined by Lagrangian

LlN
eff ¼ 1

Λ2
LFV

N̄γμNē½αVγμ þ αAγμγ5�μþ H:c: ð25Þ

These limits are

αV;AA0

�
1 GeV
ΛLFV

�
2

≤ 8.5 × 10−13; fromSINDRUMII ½69�;

ð26Þ

αV;AA0

�
1 GeV
ΛLFV

�
2

≤ 1.6 × 10−15; fromPRISM=PRIME ½70�:

ð27Þ

In our approach, the Lagrangian (25) is generated at tree
level by the t-channel exchange with A0 between the μ − e
and qq currents, where q ¼ u, d are valence quarks of the
nucleon. Note that transitions with q1 ≠ q2 do not con-
tribute to coherent μ − e nuclear conversion. Starting from
our Lagrangian (12) and matching at a certain scale the
quark currents with nucleon ones (see for details Ref. [71]),
we find the relations

αVðAÞA0 ≃ zgVðAÞqq gVðAÞeμ
m2

A0

m2
A0 þm2

μ
; ð28Þ

where z is a dimensionless constant of order Oð1Þ. Thus,
from Eqs. (26)–(28), we find the following upper limits:

jgVeμgVqqj≲

8>><
>>:

8.5× 10−13
�

m2
A0

m2
A0 þm2

μ

�−1
SINDRUM

1.6× 10−15
�

m2
A0

m2
A0 þm2

μ

�−1
PRISM=PRIME:

ð29Þ

We will use these limits in Sec. VI for our combined
analysis of the ðg − 2Þl and the LFV experimental data.

V. LFV DECAYS li → lkγ

The matrix element of this LFV process can be para-
metrized as

iMik ¼ ieϵμðqÞūkðp2;mkÞ
�

i
2mi

σμνqνFM þ i
2mi

σμνqνγ5FD

�

× uiðp1;miÞ: ð30Þ

Then,

jMikj2 ¼ m2
i

�
1 −

m2
k

m2
i

�
2

ðjFMj2 þ jFDj2Þ: ð31Þ

Here, we used the Gordon identities listed in Appendix B.
Taking into account that me ≪ mμ ≪ mτ, we have for the
decay width of this process in a very good approximation
the expression [72]

Γðli → lkγÞ ¼
1

2mi

Z
d3p2d3q

4E2Eqð2πÞ6
ð2πÞ4

× δð4Þðp1 − p2 − qÞjMikj2

¼ α

2
miðjFMj2 þ jFDj2Þ; ð32Þ
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where FM and FD are the magnetic and dipole form factors
and α ¼ e2=ð4πÞ ¼ 1=137.036 is the fine-structure con-
stant. The dark sector contributes to li → lkγ decay only
with the dark photon A0 according to the diagrams in Fig. 4.
The corresponding analytical expressions for single LFV

coupling read

FM ¼ −
1

16π2

h�
gVikg

V
ii þ gAikg

A
ii

�
hV2 ðxμÞ

þ
�
gVikg

V
kk þ gAikg

A
kk

�
hV3 ðxμÞ

i
; ð33Þ

FD ¼ 1

16π2

h�
gVikg

A
ii þ gAikg

V
ii

�
hV2 ðxμÞ

þ
�
gVikg

A
kk þ gAikg

V
kk

�
hV3 ðxμÞ

i
: ð34Þ

For μ → eγ process with the τ lepton in loop with double
LFV coupling, we have

FM ¼ −
1

16π2

�
mμ

mτ

�h
gVμτgVeτhV1 ðxτÞ þ gAμτgAeτhV1 ðxτÞ

i
;

FD ¼ 1

16π2

�
mμ

mτ

�h
gVμτgAeτhV1 ðxτÞ þ gAμτgVeτhV1 ðxτÞ

i
; ð35Þ

where xi ¼ m2
A0=m2

i . Expressions for the loop functions
hVi ðxiÞ in the approximation me ≪ mμ ≪ mτ are shown in
Appendix D.
Let us note that the diagrams in Figs. 4(b) and 4(c) are

needed to guarantee gauge invariance of the photon
interactions with leptons through loop diagrams induced
by the A0 dark photon. This simultaneously leads to
cancellation of a divergence arising from the diagram in
Fig. 4(a).
Similarly, we can write the A0 contributions to FM and

FD form factors of the for τ → μγ and τ → eγ LFV rare
decays for the case when the initial or final leptons are
different from the lepton in the loop. We have for τ → μγ
decay

FM ¼ −
1

16π2

h
gVeτgVeμ þ gAeτgAeμ

i
hV3 ðxτÞ;

FD ¼ 1

16π2

h
gVeτgAeμ þ gAeτgVeμ

i
hV3 ðxτÞ ð36Þ

and for τ → eγ decay

FM ¼ −
1

16π2

h
gVμτgVeμ þ gAμτgAeμ

i
hV3 ðxτÞ;

FD ¼ 1

16π2

h
gVμτgAeμ þ gAμτgVeμ

i
hV3 ðxτÞ: ð37Þ

VI. ANALYSIS OF CURRENT LIMITS

In this section, we derive experimental bounds on the A0

couplings gV;Aij for several benchmark scenarios.
The current limits for the branchings of the LFV lepton

decays li → lkγ are [68]

Brðμ → eγÞ < 4.2 × 10−13;

Brðτ → eγÞ < 3.3 × 10−8;

Brðτ → μγÞ < 4.4 × 10−8: ð38Þ

First, we analyze the dimensionless LFV couplings gij
by focusing on the scenario of lepton-flavor universality,
assuming equal values of their diagonal elements, i.e.,
gVii ¼ gV and gAii ¼ gA for i ¼ e, μ, τ. In this scenario, we
calculated and estimate coupling from μ → eγ and τ → eγ
LFV decays. The results are presented in Fig. 5 for the
particular value gii ¼ 1. Bounds from the lepton ðg − 2Þl
(see Fig. 5) are shown for the case of vanishing flavor-
conserving couplings gii. Note that bounds from τ → μγ are
the same as for τ → eγ because in the approximationme ≪
mμ ≪ mτ the contributions from the loops are same. Also,
we omit in our analysis doubly LFV suppressed diagrams
with heavy leptons propagating in the loop.
The peaks in Fig. 5 are induced by behavior of the loop

integrals hiðxÞ near the point x ¼ 1 located in the vicinity
of the vector boson production threshold. For resolving this
problem, one needs to include in our analysis finite width
ΓA0 of the decay of dark vector boson to the leptonic pair
with ΓA0 ∼ τ−1A0 ∼ g2ij in the Breit-Wigner propagator.
Limits on the LFV couplings in Fig. 5 include constraints

from the lepton (g − 2) and rare LFV li → lkγ lepton
decays. In the case of e − μ LFV transition (see left
pictures in Fig. 5) we add bound from e − μ conversion.
Suppression for e − μ conversion at heavy masses is
induced by heavy bosons exchange in the t channel. The

FIG. 4. Feynman diagrams of gauge invariant matrix elements of the interaction lepton with external electromagnetic field accounting
for the LFV effect generated by the A0 dark photon.
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dark A0 photon keeps a window for possible huge LFV
couplings gij at light masses of leptons. We also would like
to note that couplings gij are different from one pushing the
limits from LFV processes up.
Using the limit from li → lkγ decay in the scenario of

universal lepton flavor–conserving (LFC) couplings gVii or
gAii, we can deduce the possible lepton contribution to
(g − 2) in function of the mass of dark vector photon A0. We
have estimated the contribution to ðg − 2Þl of the sum of
loops with light leptons e and μ, taking into account the
contribution of LFC and LFV couplings, which are con-
strained by li → lkγ decay. In this way, we write down

Δali ¼ ðΔaliÞLFC þ ðΔaliÞLFV: ð39Þ

For the vector contribution, we also included constraints
from μ − e conversion. The results are shown in Fig. 6. As
can be seen, the dark photon A0 contribution to ðg − 2Þe
through the vector channel explains the electron anomaly
Δae for mA0 < 10−2 GeV. Attempting to explain both Δae
and Δaμ anomalies on account of the A0 contribution, we

find that it is not possible at least in the lepton universal
benchmark scenario where gμμ=gee ¼ 1 (see the dashed line
in the right panel in Fig. 6). Going beyond this simplified
scenario, we can find the simultaneous solution of Δae and
Δaμ for gVμμ > gVee. A particular solution for gμμ=gee ¼ 40,
properly taking into account the limits from the LFV
processes (see Fig. 2), is presented in the right panel of
Fig. 6. We note that this solution is pretty hierarchical,
requiring separation of two couplings of the similar nature
in more than order of magnitude, which looks unnatural.
Another possibility avoiding this kind of hierarchy would
be to extent the field content of the model, amending it with
the dark sector (pseudo)scalars providing additional con-
tributions to ðg − 2Þl. The study of this possibility is
beyond the scope of this work.

VII. CONCLUSIONS

We constructed a phenomenological Lagrangian
approach which combines SM and DM sectors based on
the Stueckelberg mechanism for the generation mass of the

FIG. 5. Limits on vector gij couplings in dependence on massesMA0 are deduced from an analysis of the following phenomena: g − 2
ratios of leptons, widths of LFV decays μ → eγ, and τ → eγ and lepton conversion. The shaded area is excluded by the data.

FIG. 6. Estimate of contribution to lepton AMM is made in dependence on masses of dark photon. The limit is established for the
benchmark case gee ¼ 10−5 with taking into account the restriction for LFV couplings.
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dark UDð1Þ gauge boson (or dark photon). The DM sector
contains dark photon, dark scalar, and generic dark fermion
fields. Note that the dark scalar generates the mass of the
dark photon and plays a role of Goldstone boson in our
gauge-invariant formalism. The Stueckelberg portal opens
new possibilities for the study of phenomenology of BSM
physics and can be important for running and planning
experiments at worldwide facilities (e.g., for the NA64
Experiment at SPS CERN [2,3]).
We derived the limits on the effective couplings of our

Lagrangian using data on lepton AMMs, LFV lepton decays
li → γlk, and μ − e conversion. It is known that the latter
are very useful because they give more stringent limits on
the couplings of effective Lagrangian. We also found that
the (g − 2) anomaly cannot be preferably solved within the
Stueckelberg portal scenario by the light dark photon in the
framework of the conservative scenario with taking into
account lepton universality. However, the simultaneous
explanation of these both anomalies becomes possible once
we allow approximately one–order of magnitude hierarchy
between the flavor diagonal couplings of A0 to electron
gee and to muon gμμ, which can be treated as moderately
unnatural. We mentioned the possible ways for relaxing this
tension with the naturalness. We leave a detailed study of
these aspects of our model for the future publications.
In the future, we plan to study a possible role of the

Stueckelberg portal in different LFV processes including
semileptonic decays. We plan include scalar and pseudo-
scalar dark bosons into the Stueckelberg portal of DM. We
also intend to extended our ideas on non-Abelian scenario
for the dark sector.
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APPENDIX A: CONTRIBUTION OF DARK
PHOTON TO LEPTON ANOMALOUS
MAGNETIC MOMENT IN Rξ GAUGES

The most simple calculation of the contribution of the
dark photon to the lepton anomalous magnetic moment inRξ

gauges can be performed in the unitary gauge specified by

the choice ξ ¼ ∞. In particular, in this case, the contribution
of Goldstone bosons explicitly vanishes. It is convenient to
perform all calculations in dimensional regularization with
D ¼ 4 − 2ϵ in order to explicitly show that all potentially
divergent terms cancel each other, leading to finite results. In
particular, the sum of these terms is given by the integral

I ¼
Z

1

0

dx
Z

dDk

iπD=2

k2

½Δðx; yA; ylÞ − k2�3

×
2

D
½4 − ðDþ 2Þð1 − xÞ�; ðA1Þ

where x is the Feynman parameter of integration.
Performing integration of the loop integral in D dimen-

sions using master integral

I ¼
Z

1

0

dx
Z

dDk

iπD=2

ðk2Þs
½Δ − k2�n

¼
Z

1

0

dxð−1Þs ΓðsþD=2ÞΓðn − s −D=2Þ
ΓðD=2ÞΓðnÞðΔÞn−s−D=2 ; ðA2Þ

we get

I ¼ −
Z

1

0

dxð1 − xÞð4 − ðDþ 2Þð1 − xÞÞΔD=2−2ðyA; ylÞ:

ðA3Þ
Next, using D ¼ 4 − 2ϵ and performing ϵ expansion

Δ−ϵ ¼ 1 − ϵ log½Δ�; ðA4Þ
we verify that the integral is finite and after straightforward
simplifications at the limit ϵ → 0 is given by

I ¼ −
Z

1

0

dx
ð1 − xÞ2

Δðx; yA; ylÞ
½1 − y2l x

2�: ðA5Þ

Then, summing all finite terms, we arrive at the final
results, which are in full agreement with results of
Ref. [37]. For convenience, we display partial contributions
to the integrand over Feynman parameter x, e.g., in case of
the dark photon connecting vector Dirac matrices γμ and γν.
As was stressed in Ref. [37] and was pointed out before in
the present manuscript, the axial case is simply obtained
from the vector case upon inverting a sign in front of the
mass of external lepton mf:

(i) contribution induced by transverse part of the dark
photon propagator, i.e., by the gμν part:

xð1 − xÞ
Δðx; yA; ylÞ

½2 − ylð1þ xÞ�; ðA6Þ

(ii) contribution induced by longitudinal part of the dark
photon propagator, i.e., by the pμpν=m2

A0 part:

ð1 − xÞ2
Δðx; yA; ylÞ

ð1 − ylÞ2
2y2A

ð1þ ylxÞ: ðA7Þ
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APPENDIX B: GORDON IDENTITIES

The Gordon identities for the matrix elements describing
the coupling of the external gauge field with fermions
having different masses read

iσμνqν ¼ −Pμ þ ðmi þmjÞγμ;
iσμνPν ¼ −qμ þ ðmj −miÞγμ; ðB1Þ

iσμνqνγ5 ¼ −Pμγ5 þ ðmj −miÞγμγ5;
iσμνPνγ5 ¼ −qμγ5 þ ðmi þmjÞγμγ5; ðB2Þ

where P ¼ p1 þ p2 and q ¼ p1 − p2

APPENDIX C: DIAGRAMS IN FIGS. 4

In this Appendix, we explicitly demonstrate that the set
of three diagrams in Figs. 4(a)–4(c) is gauge invariant and
finite. To simplify the proof of gauge invariance, we split
the contribution of each diagram M from the set 4 into a
part which is manifestly gauge invariantMGI and onewhich
is not Mrest as M ¼ MGI þMrest. This separation can be
achieved in the following manner. For the γ matrix
contacting with photon field, we use the substitution γμ ¼
γμ⊥ þ qμ =q=q2 where γμ⊥ ¼ γμ − qμ =q=q2 obeys the trans-
versity condition γμ⊥ · qμ ¼ 0. Expressions for diagrams
containing only ⊥ values are gauge invariant separately. It
is easy to show that the remaining terms, which are not
gauge invariant, cancel each other in total (see the detailed
discussion of this technique, e.g., in Ref. [73]). Therefore, it
is enough to consider only the sum of the gauge-invariant
contributions from all diagrams in Fig. 4(a)–4(c). The proof
of cancellation of the remaining terms is straightforward.
Below, we list these terms for each diagram using dimen-
sional regularization and for general case of exchange by
the boson particle (with spin 0 or 1) (i.e., we do not restrict
to the exchange of the dark photon):

Mrest
4a ¼

Z
dDk

ð2πÞDiΓ1

1

=p0 þ=k−mf

qμ=q
q2

1

=pþ=k−mj
Γ2

dΓ1Γ2ðkÞ
k2−m2

;

ðC1Þ

Mrest
4b ¼ qμ=q

q2
1

=p −mk

Z
dDk

ð2πÞDiΓ1

1

=pþ =k −mj
Γ2

dΓ1Γ2ðkÞ
k2 −m2

;

ðC2Þ

Mrest
4c ¼

Z
dDk

ð2πÞDiΓ1

1

=p0 þ =k −mj
Γ2

dΓ1Γ2ðkÞ
k2 −m2

1

=p0 −mi

qμ =q
q2

:

ðC3Þ

Here, Γ1 and Γ2 are the corresponding Dirac matrices;
dΓ1Γ2ðkÞ ¼ 1 for exchange by scalar/pseudoscalar particles
with Γ1¼ I;γ5 and Γ2¼ I;γ5, and dμνðkÞ¼−gμνþkμkν=m2

for exchange by vector/axial particles with Γ1 ¼ γμ; γμγ5

and Γ2 ¼ γν; γνγ5.
Next, using the Ward identity for inverse fermion

propagators =q ¼ ð=p −mlÞ − ð=p0 −mlÞ and free Dirac
equations of motion for initial and final leptons, we
simplify expressions for the individual rest matrix
elements as

Mrest
4a ¼

Z
dDk

ð2πÞDiΓ1

�
1

=p0 þ=k−mj
−

1

=pþ=k−mj

�
Γ2

dΓ1Γ2ðkÞ
k2−m2

;

ðC4Þ

Mrest
4b ¼

Z
dDk

ð2πÞDiΓ1

1

=pþ =k −mj
Γ2

dΓ1Γ2ðkÞ
k2 −m2

; ðC5Þ

Mrest
4c ¼ −

Z
dDk

ð2πÞDiΓ1

1

=p0 þ =k −mj
Γ2

dΓ1Γ2ðkÞ
k2 −m2

: ðC6Þ

Finally, summing Eqs. (C4)–(C6), we get 0, therefore,
proving gauge invariance of the set 4(a)–4(c).
Now, we turn to the discussion of finiteness of the sum of

the set of diagrams 4(a)–4(c). The logarithmically divergent
term in Fig. 4(a) is generated by the part of numerator
containing two loop momenta: =kγμ=k. Applying dimension
regularization with D ¼ 4 − 2ϵ, it gives the following
divergent result in case of exchange by a scalar S or
pseudoscalar P particle with Γ1 ¼ Γ2 ¼ I or iγ5:

MUV;S=P
4a ¼ −

γμ

2ϵ
: ðC7Þ

The diagrams in Figs. 4(d) and 4(e) induce the following
logarithmic divergencies:

MUV;S=P
4b ¼ γμ

2ϵ

mi � 2mj

mi −mk
: ðC8Þ

and

MUV;S=P
4c ¼ γμ

2ϵ

mk � 2mj

mk −mi
; ðC9Þ

respectively. Here and below,� corresponds to exchange of
a scalar or pseudoscalar particle.
Summing up divergent contributions of three diagrams,

we get exact cancellation of the latter:

MUV;S=P
4a þMUV;S=P

4b þMUV;S=P
4c

¼ γμ

2ϵ

�
−1þmi � 2mj

mi −mk
þmk � 2mj

mk −mi

�
¼ 0: ðC10Þ

In case of the diagrams induced by vector particle
exchange, the logarithmic divergences induced by individ-
ual diagrams read (we explicitly show the contribution of

ALIAKSEI KACHANOVICH et al. PHYS. REV. D 105, 075004 (2022)

075004-10



transverse and longitudinal part of the vector V or axial A
propagator, which are supplied by the subscript T and L,
respectively)

MUV;V=A
4a ¼ MUV;V=A

4a;T þMUV;V=A
4a;L ;

MUV;V=A
4a;T ¼ −

γμ

ϵ
;

MUV;V=A
4a;L ¼ γμ

ϵ

�
1þ 3

2

m2
j

m2
−
m2

i þm2
k þmimk

2m2

�
; ðC11Þ

MUV;V=A
4b ¼ MUV;V=A

4b;T þMUV;V=A
4b;L ;

MUV;V=A
4b;T ¼ γμ

ϵ

mi ∓ 2mj

mi −mk
;

MUV;V=A
4b;L ¼ γμ

ϵ

mk ∓ mj

mi −mk

�
1þm2

j

m2
−
mkðmk �mjÞ

2m2

�
; ðC12Þ

MUV;V=A
4c ¼ MUV;V=A

4c;T þMUV;V=A
4c;L ;

MUV;V=A
4c;T ¼ γμ

ϵ

mk ∓ 2mj

mk −mi
;

MUV;V=A
4c;L ¼ γμ

ϵ

mi ∓ mj

mk −mi

�
1þm2

j

m2
−
miðmi �mjÞ

2m2

�
: ðC13Þ

Here, � corresponds to exchange of a vector or axial
particle.
It is easy to show that in case of vector and

particle exchange we also get exact cancellation of the
divergences and it occurs separately for transverse
and longitudinal contribution of the propagator of the
exchange particle:

MUV;V=A
4a þMUV;V=A

4b þMUV;V=A
4c ¼ 0;

MUV;V=A
4a;T þMUV;V=A

4b;T þMUV;V=A
4c;T ¼ 0;

MUV;V=A
4a;L þMUV;V=A

4b;L þMUV;V=A
4c;L ¼ 0: ðC14Þ

APPENDIX D: LOOP FUNCTIONS hV1 ðxÞ
In this Appendix, we present the analytical expressions

of the loop integrals occurring in the amplitude of
the LFV decays li → γlk for different channels and
leptons propagating in the loop in the approximation
me ≪ mμ ≪ mτ:

hV1 ðxÞ ¼ −
ð4x3 − 3x2 − 6x2 lnðxÞ − 1Þ

xð1 − xÞ3 ; ðD1Þ

hV2 ðxÞ ¼ 2

�
2Li2ð1 − xÞ − 2Li2

�
2

−xþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − 4Þxp þ 2

�
þ 2Li2

�
2

xþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − 4Þxp
�
− 2xþ log2

�
xþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − 4Þxp

2x

�

þ ðxþ 1Þððx − 4Þxþ 2Þ logðxÞ
x − 1

− 2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − 4Þx

p
log

� ffiffiffi
x

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx − 4Þp
2

�
þ 1

�
; ðD2Þ

hV3 ðxÞ ¼ −4xþ 4ðx − 1Þ2 ln
�

x
x − 1

�
þ 6: ðD3Þ

All results have been numerically and analytically cross-checked using the Mathematica Package-X [74] and packages
FeynHelpers [75] and FeynCalc [76].
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