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We consider generalizations of the Snyder algebra to a curved spacetime background with de Sitter 
symmetry. As special cases, we obtain the algebras of the Yang model and of triply special relativity. 
We discuss the realizations of these algebras in terms of canonical phase space coordinates, up to fourth 
order in the deformation parameters. In the case of triply special relativity we also find exact realization, 
exploiting its algebraic relation with the Snyder model.
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1. Introduction

Noncommutative geometries have often been advocated as plausible candidates for describing physics at the Planck scale [1]. The 
first model of noncommutative spacetime was suggested by Snyder [2] in 1947. Soon after the publication of Snyder’s paper, C.N. Yang 
proposed a model that combined noncommutativity with spacetime curvature [3]. Yang’s model was based on the fifteen-dimensional 
SO(1,5) algebra. The generators of this algebra were identified with the coordinates of a phase space with de Sitter symmetry and with 
the generators of Lorentz transformation. The remaining generator rotates positions into momenta, but its physical meaning was not 
specified.

More recently, Kowalski-Glikman and Smolin [4] proposed a model inspired by that of Yang, which realizes the same symmetries in 
a nonlinear way, reducing to fourteen the number of generators. They called this model triply special relativity (TSR) because it contains 
three fundamental constants, identified with the speed of light, the Planck length and the cosmological constant, generalizing in this way 
the idea advanced in doubly special relativity theories [5] of deforming the Poincaré symmetry by the introduction of a new fundamental 
constant. A particularly interesting property of TSR [6] is that it realizes the Born duality [7] for the exchange of position and momentum 
operators. Another interesting consequence of this model is the prediction of the existence of both a minimal length and a minimal 
momentum [8].

Later, one of us showed that this model can be realized exactly in terms of coordinates and momenta only [8], and introduced the 
alternative denomination of Snyder-de Sitter (SdS) spacetime. In [8,9] it was also shown that TSR algebra can be obtained from the Snyder 
algebra by a nonunitary transformation.

While we are not aware of other papers dealing with the Yang model, except the recent proposal of a supersymmetric extension of 
the algebra [10], a number of articles have investigated aspects of TSR. Most of them treat its classical limit, either in a nonrelativistic or 
relativistic setting [11]. Also the quantum field theory of a self-interacting scalar field in SdS spacetime has been investigated in [12].

It is known that a fruitful approach to noncommutative geometry is based on Hopf algebras [13], that describe the symmetries of the 
quantum spacetime. A powerful tool in this formalism are realizations of Hopf algebras in terms of the Heisenberg algebra, that were 
introduced in [14–16]. Only recently this approach has been considered in the context of Yang and TSR models in [17]. In this paper, it 
has been proposed that TSR and a slight generalization of the Yang model can be treated in a unified way in this formalism.

In the present paper, we discuss general perturbative realizations of the unified model proposed in [17], in terms of the standard 
Heisenberg algebra. We also exploit the relation of TSR with the Snyder model to write down some exact realizations. These results
should consent to define a star product and a twist following the approach of [15–17]. This topic is currently being investigated.
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2. The model

We consider a noncommutative algebra of the form [17]

[x̂μ, x̂ν ] = iβ2Mμν, [p̂μ, p̂ν ] = iα2Mμν, [x̂μ, p̂ν ] = igμν, (1)

[Mμν, x̂λ] = i(ημλ x̂ν − ηνλ x̂μ), [Mμν, p̂λ] = i(ημλ p̂ν − ηνλ p̂μ), (2)

[Mμν, Mρσ ] = i
(
ημρ Mνσ − ημσ Mνρ − ηνρ Mμσ + ηνσ Mμρ

)
, (3)

with real parameters α and β and ημν the flat metric. We interpret the Hermitian operators x̂μ = x̂†
μ and p̂μ = p̂†

μ as coordinates of 
the phase space and Mμν = M†

μν as generators of Lorentz transformations. The rank-2 tensor gμν depends on x̂μ , p̂μ and Mμν , with 
g†
μν = gμν . The algebra (1)–(3) is invariant under Born duality, α ↔ β , x̂μ ↔ p̂μ , Mμν ↔ Mμν , gμν ↔ gνμ . In the limit β → 0 it contains 

as a subalgebra the de Sitter algebra, in the limit α → 0 the Snyder algebra.
The Jacobi identities imply

[Mμν, gρσ ] = i
(
ημρ gνσ − ημσ gνρ − ηνρ gμσ + ηνσ gμρ

)
, (4)

[gλμ, x̂ν ] − [gλν, x̂μ] = i(ημλ p̂ν − ηνλ p̂μ), [gλμ, p̂ν ] − [gλν, p̂μ] = i(ημλ x̂ν − ηνλx̂μ), (5)

[gμν, gρσ ] = i
(
[ [gμν, p̂σ ], x̂ρ ] − [ [gμν, x̂ρ ], p̂σ ]

)
. (6)

Depending on the form of gμν , one can recover well known models. For example, the Yang model is characterized by the choice [3]

gμν = h(x̂2, x̂·p̂ + p̂·x̂, p̂2)ημν, (7)

while the TSR model is characterized by [4]

gμν = ημν + α2 x̂μ x̂ν + β2 p̂μ p̂ν + αβ(x̂μ p̂ν + p̂μx̂ν − Mμν). (8)

3. Hermitian realizations

We are interested in finding Hermitian realizations of the above models in phase space, in terms of canonical variables xμ and pμ , 
satisfying [xμ, xν ] = [pμ, pν ] = 0, [xμ, pν ] = iημν . In particular, we shall look for representations where the generators Mμν and gμν can 
be written in terms of xμ and pμ . Therefore, we assume

x̂μ = 1

2

(
xμF + F †xμ + pμG + G† pμ

)
, p̂μ = 1

2

(
pμH + H† pμ + xμK + K †xμ

)
, (9)

Mμν = xμpν − xν pμ, (10)

gμν = ημνh0 + xμxνh1 + h†
1xμxν + pμpνh2 + h†

2 pμpν + (xμpν + pνxμ)h3 + h†
3(xμpν + pνxμ) + (xν pμ + pμxν)h4

+ h†
4(xν pμ + pμxν), (11)

where F , G , H , K , hi are Lorentz-invariant functions of x2, x·p + p·x and p2.
In the following, we shall consider these realizations in a perturbative expansion in α and β . At second order, we make the ansatz

x̂μ = xμ + a1

2
αβ(xμ x·p + p·x xμ) + a2

2
β2(xμp2 + p2xμ) + a3

2
β2(pμ p·x + x·p pμ) + a4

2
αβ(pμx2 + x2 pμ),

p̂μ = pμ + b1

2
αβ(pμ p·x + x·p pμ) + b2

2
α2(pμx2 + x2 pμ) + b3

2
α2(xμ x·p + p·x xμ) + b4

2
αβ(xμp2 + p2xμ), (12)

with constant ai , bi .
We may also go to the next order, with the ansatz

x̂(4)
μ = c1

2
α3β(xμx2 x·p + p·x x2xμ) + c2

2
α2β2(xμx2 p2 + p2x2xμ) + c3

2
α2β2(xμ x·p p·x + p·x x·p xμ)

+ c4

2
αβ3(xμ x·p p2 + p2 p·x xμ) + c5

2
β4(xμp4 + p4xμ) + c6

2
β4(pμ x·p p2 + p2 p·x pμ) + c7

2
αβ3(pμp2x2 + x2 p2 pμ)

+ c8

2
αβ3(pμ p·x x·p + p·x x·p pμ) + c9

2
α2β2(pμx2 x·p + p·x x2 pμ) + c10

2
α3β(pμx4 + x4 pμ), (13)

p̂(4)
μ = d1

2
αβ3(pμp2 p·x + x·p p2 pμ) + d2

2
α2β2(pμp2x2 + x2 p2 pμ) + d3

2
α2β2(pμ p·x x·p + x·p p·x pμ)

+ d4

2
α3β(pμ p·x x2 + x2 x·p pμ) + d5

2
α4(pμx4 + x4 pμ) + d6

2
α4(xμ p·x x2 + x2 x·p xμ) + d7

2
α3β(xμx2 p2 + p2x2xμ)

+ d8

2
α3β(xμ x·p p·x + x·p p·x xμ) + d9

2
α2β2(xμp2 p·x + x·p p2xμ) + d10

2
αβ3(xμp4 + p4xμ), (14)

where ci , di are constants. Born dual realizations of (12)–(14) are obtained by x̂μ ↔ p̂μ , α ↔ β and xμ ↔ pμ .
2
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4. Yang model

The original Yang model was characterized by an algebra where gμν was considered as an independent generator. Here we adopt 
instead the definition (7), where gμν is a Hermitian operator, written in terms of a Lorentz-invariant function h of the phase space 
variables x̂μ and p̂μ . Clearly, at zeroth order, h(0) = 1. At second order in α and β we can set

h(2) = g1α
2x2 + g2αβ( x·p + p·x ) + g3β

2 p2, (15)

with gi real parameters. One easily sees that the realization (12) satisfies the Yang algebra if

a2 = b2 = −1

2
, a3 = b3 = 0, a1 + b1 = 0 a4 + b4 = 0, (16)

and

h(2) = −1

2

(
α2x2 + β2 p2

)
. (17)

At this order, the simplest realization of the Yang algebra is given by the choice a1 = b1 = a4 = b4 = 0.
To fourth order, we can assume

h(4) = e1α
4x4 + e2

2
α3β(x2 x·p + p·x x2) + e3

2
α2β2(x2 p2 + p2x2) + e4α

2β2 x·p p·x + e5

2
αβ3( x·p p2 + p2 p·x ) + e6β

4 p4. (18)

Inserting (13)–(14) in the Yang algebra, one gets the independent conditions

c6 = d6 = 0, c6 − 4c5 = 1

2
, d6 − 4d5 = 1

2
, c8 + d1 = 0, d8 + c1 = 0,

c1 + d4 = a1b2 + 2a4b2, d1 + c4 = a2b1 + 2a2b4, 2c2 + d9 = −a1b4, 2d2 + c9 = −a4b1,

c7 + 2d10 = −a2b4, d7 + 2c10 = −a4b2, c3 + d3 = −a1b1 + 2a2b2, c9 + d9 = −a4b1 − a1b4 − 2a4b4,

with

e1 = d5, e2 = c1 + d4 + a1b2, e3 = c2 + d2 + a2b2 − a4b4,

e4 = c3 + d3 + a1b1, e5 = c4 + d1 + a2b1, e6 = c5.

Taking into account (16), it follows that at this order there are six further independent parameters c1, c2, c3, c4, c7 and c10, with

c6 = d6 = 0, c5 = d5 = −1

8
, c8 = −a1

2
− a4 + c4, c9 = a1a4 + 2a2

4 + 2c2,

d1 = a1

2
+ a4 − c4, d2 = −a2

4 − c2, d3 = 1

2
+ a2

1 − c3, d4 = −a1

2
− a4 − c1,

d7 = a4

2
− 2c10, d8 = −c1, d9 = a1a4 − 2c2, d10 = −a4

4
− c7

2
,

and

e1 = e6 = −1

8
, e3 = 1

4
, e4 = 1

2
, e5 = −e2 = a1 + a4.

The simplest Hermitian realization of the Yang model up to fourth order in α, β is therefore

x̂μ = xμ − β2

4

(
xμp2 + p2xμ

)
− β4

16

(
xμp4 + p4xμ

)
+ α2β2

8

(
xμ x·p p·x + p·x x·p xμ

)
,

p̂μ = pμ − α2

4

(
pμx2 + x2 pμ

)
− α4

16

(
pμx4 + x4 pμ

)
+ α2β2

8

(
pμ p·x x·p + x·p p·x pμ

)
, (19)

with

h = 1 − 1

2

(
α2x2 + β2 p2

)
− 1

8

(
α2x2 − β2 p2

)2 + α2β2

2
x·p p·x . (20)

Note that h, x̂μ and p̂μ satisfy [h, ̂xμ] = iβ2 p̂μ and [h, p̂μ] = −iα2 x̂μ .
3
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5. Triply special relativity

The TSR algebra is defined by (1)–(3) with gμν given by (8). An important relation following from (8) is

gμν − gνμ = −2αβMμν. (21)

From this, after some manipulations, one can obtain an equivalent form of the algebra, written explicitly in terms of x̂μ and p̂μ only, that 
was first proposed in [8,9]. In those papers, the Lorentz generators were defined as

Mμν = 1

2

(
x̂μ p̂ν + p̂ν x̂μ − x̂ν p̂μ − p̂μ x̂ν

)
, (22)

or equivalently, using (21),

Mμν = 1

1 − iαβ
(x̂μ p̂ν − x̂ν p̂μ) = 1

1 + iαβ
(p̂ν x̂μ − p̂μx̂ν). (23)

It follows that gμν can be written as

gμν = ημν + α2 x̂μ x̂ν + β2 p̂ν p̂μ + αβ(x̂ν p̂μ + p̂μx̂ν). (24)

We call this SdS realization of the TSR algebra. Using (22) and (24) we can obtain second-order realizations of the SdS algebra in terms 
of the canonical Heisenberg algebra by inserting (10) and (12) in the defining relations. It is easy to see that the SdS algebra is satisfied if

a1 + b1 = 0, a2 = b2 = 0, a3 = b3 = 1, a4 + b4 = 1. (25)

The simplest choice of coefficients satisfying these relations is given by a1 = b1 = 0, a4 = b4 = 1
2 .

At higher order, using the ansatz (13)–(14), one obtains the following independent relations among the parameters:

c5 = c6 = d5 = d6 = 0, c2 + d2 = a4b4, c3 + d3 = a3b3 − a1b1

c1 + d4 = a4b3, d1 + c4 = a3b4, c1 + d8 = a1 + b3, d1 + c8 = b1 + a3,

2c7 + 4d10 = b4 − a3b4, 2d7 + 4c10 = a4 − a4b3, 2c2 + d9 = 2b4 − a1b4, 2d2 + c9 = 2a4 − a4b1.

It follows that, taking into account (25), one has, in analogy with the Yang model, six new independent parameters, say c1 , c2, c3, c4, 
c7, c10 and the relations

c5 = c6 = 0, c8 = −a1 + a4 + c4, c9 = a1a4 + 2a2
4 + 2c2, d1 = 1 − a4 − c4,

d2 = a4 − a2
4 − c2, d3 = 1 − a1b1 − c3, d4 = a4 − c1, d5 = d6 = 0,

d7 = −2c10, d8 = 1 + a1 − c1, d9 = 2 − a1 − 2a4 + a1a4 − 2c2, d10 = − c7

2
.

A simple realization of the SdS algebra up to fourth order with symmetric x̂ and p̂ is therefore given by

x̂μ = xμ +
(β2

2
pμ p·x + αβ

4
pμx2 + α2β2

16
xμx2 p2 + α2β2

4
xμ x·p p·x + αβ3

4
xμ x·p p2 + αβ3

2
pμ p·x x·p

+ 3α2β2

8
pμx2 x·p + h.c.

)
(26)

p̂μ = pμ +
(α2

2
xμ x·p + αβ

4
xμp2 + α2β2

16
pμp2x2 + α2β2

4
pμ p·x x·p + α3β

4
pμ p·x x2 + α3β

2
xμ x·p p·x

+ 3α2β2

8
xμp2 p·x + h.c.

)
(27)

6. Further developments

The relation of the TSR algebra with the Snyder algebra was first noticed in [8,9]. Here we exploit it using a different derivation. We 
proceed as follows: the expression (8) of gμν can be written as

gμν = ημν + (αx̂μ + β p̂μ)(αx̂ν + β p̂ν) − αβMμν = ημν + β2 Pμ Pν − αβMμν, (28)

where we have defined Pμ = p̂μ + α
β

x̂μ . Since x̂†
μ = x̂μ , p̂†

μ = p̂μ , M†
μν = Mμν , it follows that P †

μ = Pμ , g†
μν = gμν , and consequently 

from (28) [Pμ, Pν ] = 0. Hence,

[x̂μ, Pν ] = i(ημν + β2 Pμ Pν). (29)

Together with [x̂μ, ̂xν ] = iβ2Mμν this recalls the commutation relations of the Snyder model [2]. One can hence derive a realization 
of the SdS algebra from the realizations of the Snyder model discussed in [15,18], in terms of canonical variables Xμ , Pν satisfying 
[Xμ, Xν ] = [Pμ, Pν ] = 0, [Xμ, Pν ] = iημν , namely,
4
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x̂μ = Xμ + β2

2

(
X ·P Pμ + Pμ P ·X

)
, p̂μ = Pμ − α

β
x̂μ = Pμ − αβ

2

(
X ·P Pμ + Pμ P ·X

) − α

β
Xμ. (30)

This realization is not included in the class investigated in the previous section, because p̂μ contains terms proportional to Xμ that were 
neglected in the ansatz (12), but is exact, although it is not symmetric in X and P and is not well defined in the limit β → 0.

A realization that is regular for vanishing β , but singular for α → 0 can be obtained by duality, starting from a representation of de 
Sitter algebra in Beltrami coordinates [19]. One has

p̂μ = Pμ + α2

2

(
P ·X Xμ + Xμ X ·P

)
, x̂μ = Xμ − β

α
p̂μ = Xμ − βα

2

(
P ·X Xμ + Xμ X ·P) − β

α
Pμ, (31)

where Xμ and Pμ still satisfy canonical commutation relations, but are not the same as in (30).

Further realizations can be obtained by similarity transformations starting from the ones found above. In fact, let us consider the 
commutation relations (1)–(3) and act on them with a unitary operator S from the left and S−1 from the right, defining

x̂′
μ = Sx̂μS−1, p̂′

μ = S p̂μS−1, M ′
μν = S Mμν S−1 = Mμν, g′

μν = Sgμν S−1. (32)

Then x̂′
μ and p̂′

μ satisfy the same commutation relations as x̂μ and p̂μ .

We may write S = eiG , with G = G(x2, x·p + p·x , p2), G† = G and [Mμν, G] = 0. In this way we generate infinitely many realizations of 
x̂ and p̂ in terms of x and p, satisfying the same algebra.

7. Conclusions

We have discussed a general quantum algebra that depends on two parameters α and β , usually identified with a minimum length 
and the cosmological constant, and includes as special cases Yang [3] and TSR [4] algebras. This algebra is relevant for quantum gravity 
research, because it combines the effects of non-commutativity with those of the curvature of spacetime, a subject that has attracted a 
large interest recently [21].

We have found realizations of these quantum algebras on canonical phase space. The form of the algebra (1)–(3) is much more general 
than the special cases we have considered, and we are now constructing more general models of this class. In particular, even considering 
algebras not more than quadratic in the generators, several possibilities are available.

A more difficult problem is to construct a quasi-Hopf algebra associated to these models. It seems that star product and twist have not 
been constructed so far for Yang and TSR models. Star products should be nonassociative as for the Snyder model [15,17,18]. Star products, 
related to noncommutative coordinates x̂μ whose realizations depend on the parameters α and β and on xμ , pμ are under construction, 
exploiting the method proposed in [15,18,20]. This construction implies a generalization of the Hopf algebroid approach [22].

An interesting field of application of our results is QFT. A field theory based on the SdS algebra has been discussed in [12], where it 
was also remarked its similitude with the Grosse-Wulkenhaar model [23]. This model is of primary relevance because it gives rise to a 
renormalizable and exactly solvable theory, which, in analogy with SdS field theory, can be thought as a field theory in noncommutative 
curved space [24].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

We wish to thank J. Lukierski and M. Woronowicz for interesting discussions. S. Mignemi acknowledges support from GNFM and COST 
action CA18108.

References

[1] S. Doplicher, K. Fredenhagen, J.E. Roberts, Phys. Lett. B 331 (1994) 39.
[2] H.S. Snyder, Phys. Rev. 71 (1947) 38.
[3] C.N. Yang, Phys. Rev. 72 (1947) 874.
[4] J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 70 (2004) 065020.
[5] G. Amelino-Camelia, Phys. Lett. B 510 (2001) 255;

J. Magueijo, L. Smolin, Phys. Rev. Lett. 88 (2002) 190403.
[6] H.G. Guo, C.G. Huang, H.T. Wu, Phys. Lett. B 663 (2008) 270.
[7] M. Born, Rev. Mod. Phys. 21 (1949) 463.
[8] S. Mignemi, Class. Quantum Gravity 29 (2012) 215019.
[9] S. Mignemi, R. Štrajn, Adv. High Energy Phys. (2016) 1328284, 2016.

[10] J. Lukierski, M. Woronowicz, Phys. Lett. B 824 (2021) 136783.
5

http://refhub.elsevier.com/S0370-2693(22)00423-3/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bibE4DA3B7FBBCE2345D7772B0674A318D5s2
http://refhub.elsevier.com/S0370-2693(22)00423-3/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0370-2693(22)00423-3/bibD3D9446802A44259755D38E6D163E820s1


S. Meljanac and S. Mignemi Physics Letters B 833 (2022) 137289
[11] C. Chryssomakolos, E. Okon, Int. J. Mod. Phys. D 13 (1817);
A. Das, O.C.W. Kong, Phys. Rev. D 73 (2006) 124029;
S. Mignemi, Class. Quantum Gravity 26 (2009) 245020;
M.C. Carrisi, S. Mignemi, Phys. Rev. D 82 (2010) 105031;
R. Banerjee, K. Kumar, D. Roychowdhury, J. High Energy Phys. 1103 (2011) 060;
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