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Salopek Sondi, B. Influence of Soil

Salinity on Selected Element

Contents in Different Brassica Species.

Molecules 2022, 27, 1878. https://

doi.org/10.3390/molecules27061878

Academic Editors: Giuseppe

Scarponi, Silvia Illuminati, Anna

Annibaldi and Cristina Truzzi

Received: 31 January 2022

Accepted: 12 March 2022

Published: 14 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Influence of Soil Salinity on Selected Element Contents in
Different Brassica Species
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Abstract: Climate changes in coastal regions cause increased soil salinity, a well-known type of
environmental stress for a high number of agricultural crop species, including Brassicaceae, whose
growth and development, and consequently the crop quality and yield, are affected by salinity stress.
The aim of the present study is to investigate the effect of salt stress on micro- and macro-element
homeostasis in different Brassica crops. Kale (Brassica oleracea var. acephala), white cabbage (B. oleracea
var. capitata) and Chinese cabbage (B. rapa ssp. pekinensis) were grown hydroponically and treated
with 200 mmol/L sodium chloride for 24 h to mimic short-term salt stress. The contents of Al, Ca, K,
Mg, Na, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn were determined in the roots and leaves
of the salt-treated plants and corresponding controls by inductively coupled plasma atomic emission
spectrometry and inductively coupled plasma mass spectrometry. While Al, Ca, K, Mg and Na were
determined in the mg/g range, the contents of the other elements were found at the µg/g level. A
statistical analysis of the obtained data showed that the applied salt treatment significantly influenced
the single-element contents in different plant parts. The major elements Ca, K and Mg were mainly
unaffected in the more-salt-tolerant kale and white cabbage under salinity stress, while K and Mg
were significantly decreased in the more-sensitive Chinese cabbage. The levels of micro-elements
were found to be species/variety specific. In general, potentially toxic elements were accumulated in
the roots of salt-treated plants to a higher extent than in the corresponding controls.

Keywords: Brassicaceae; cabbage; kale; metal and metalloid uptake; salinity stress

1. Introduction

The growing population and trends towards replacing meat with vegetables in the
daily diet result in the necessity to ensure there are sufficient plant-derived food resources
for everyone. High harvest yield can be obtained when plants grow under optimal condi-
tions. However, plants, as sessile organisms, are often exposed to unfavourable environ-
mental conditions, such as high temperature, cold, drought and salinity (abiotic stress),
and to the attack of micro-organisms, insects and herbivores, which cause biotic stress.
Amongst the abiotic factors, salinity has been found to be the most significant stress limiting
the productivity of agricultural crops [1]. Depending on the agricultural crop, the decrease
in harvest yield has been reported to range from 50% to 80%, depending on crop species,
and salinity levels up to 320 mmol/L have also been reported [2]. Already in the 1980s,
20% of total cultivated lands and 33% of irrigated agricultural lands have been estimated
to be affected by high salinity. Considering an annual increasing rate of 10%, in 2050, half
of the arable land could be salinised [3]. Especially in coastal Mediterranean regions with
semi-arid and arid climates, the effect of rising soil salinity and the related consequences for
agriculture are of importance [4]. Elevated salinity levels lead to changes in morphological,
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physiological and biochemical processes in plants. These effects, especially regarding
reduced growth and lowered yield, have been investigated in recent years [5–7], alongside
studies aiming to develop salt-tolerant species [1,4].

A large and diverse group of widely consumed vegetables is represented by the
Brassicaceae family. The majority of the widely grown crops, such as cabbages, broccoli,
cauliflower, kale etc., belong to the genus Brassica. These cruciferous vegetables are char-
acterized by their content of glucosinolates, specialized metabolites responsible for the
specific tastes and odours of this food. Furthermore, they are rich in dietary fibres, calcium,
carotenoids (provitamin A), vitamin C and certain beneficial phytochemicals (polypheno-
lics) [8]. The ancient Romans and Greeks already consumed brassicas, which later, in the
Middle Ages, were also used for medical purposes [9]. Due to their important role in the
human diet and nutrition, these plants are investigated in order to obtain plants that are
more suitable for saline and dry lands [1,4].

Since salinity also influences water and nutrient uptake via the hindrance of root
growth through ionic toxicity and osmotic effects [10], the interaction of micro- and macro-
elements, including metals and metalloids, with plants needs to be researched under this
aspect. Essential elements, namely, carbon (C), nitrogen (N), potassium (K), sulphur (S),
magnesium (Mg), chlorine (Cl), calcium (Ca), iron (Fe), zinc (Zn), manganese (Mn), sodium
(Na), copper (Cu), boron (B) and molybdenum (Mo), play an important role in plant
metabolism. Problems related to the deficiency of elements are thus common in agricultural
crops [11,12]. Apart from these essential elements, other elements exhibit harmful effects
even at very low concentrations, such as Cd, Pb and V. In the case of the uptake of essential
and harmful elements by the same mechanisms, an elevated uptake of the latter lowers
the uptake of the former. Metal uptake in plants depends on many factors. One important
aspect is the metal load in the surroundings, i.e., the soil composition as well as the pollution
of the respective site [13,14]. Each site is also characterized by its climatic conditions, whose
changes can even influence the uptake in the same plants across different years [15]. Species-
specific metal uptake and accumulation can be studied by analysing various plants grown
in the same area in order to exclude other influencing parameters.

For agricultural crops, a sufficient supply of essential elements has to be ensured,
whilst potentially toxic elements (PTEs) should be present only at very low levels. Climate
changes and anthropogenic activities may change plant environment and soil composition,
causing disturbances in the homeostasis of micro- and macro-elements in plants. The
purpose of this research study is to investigate the influence of increased salinity on
the uptake and accumulation of micro- and macro-elements in the roots and leaves of
three Brassica crops (kale, white cabbage and Chinese cabbage). Elemental analyses were
performed by inductively coupled plasma atomic emission spectrometry and inductively
coupled plasma mass spectrometry. This information is not only relevant under a nutritional
aspect but also for risk assessment studies and applicability to certain (agricultural) lands.

2. Results and Discussion
2.1. Plant Growth and Salinity Stress

The salinity level of 200 mmol/L applied to the nutritional solution was chosen
because this concentration has been previously reported to cause severe effects in brassica
crops depending on their natural salinity tolerance [16].

Regarding root growth and reduction in the seedling biomass, all investigated Brassica
species have been found to be strongly affected by high salinity (200 mmol/L), but Chinese
cabbage has been reported to appeare to be the most sensitive, followed by white cabbage,
while kale has been stated to be the most tolerant. Root-growth inhibition equal to or even
more than 90% has been described for all three plants, whilst the seedling biomass has
been reported to have only been reduced by 40–55% [17]. Conversely, air anions [18] and
electric stimulation have been found to promote the growth of leafy vegetables [19] in
closed cultivation.
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2.2. Figures of Merit of the Analytical Procedure

The analytical procedures for inductively coupled plasma atomic emission spectrome-
try (ICP-AES) as well as inductively coupled mass spectrometry (ICP-MS) were found to
be applicable to the given analytical task and sample type. The spiking experiments led to
recoveries ranging from 86% to 115% for the elements determined, proving the trueness of
the methods. The precision, expressed as relative standard deviation (RSD), ranged from
<1% up to 5.9%. Combining good trueness and precision showed acceptable accuracy of
the applied procedures. All external calibration curves had R2 values beyond 0.997.

2.3. Elemental Contents in Salt-Treated Roots and Leaves Compared with the Corresponding Control
2.3.1. General Findings

The contents of all the elements determined refer to the dry matter mass of the
respective plant tissue (leaves or roots). The table below (Table 1) shows the results for kale
leaves. For these samples, more elements (30 instead of 18) were determined than for all the
other ones, due to the option to analyse selected samples using a second method, namely,
ICP-MS. The effect of elevated salinity on plant growth is also indicated in the tables, with
arrows marking statistically significant increases (↑) or decreases (↓), whilst no statistically
significant differences are shown using a dash (−), based on paired t-tests using level of
significance of 95% (see Section 3.3.).

Table 1. Contents of selected elements in treated and untreated kale leaves, all values given in mg/kg.

Element Control Leaves Treated Leaves Change *

Ag <LOD <LOD
Al 20.8 52.8 ↑
As <LOD <LOD
B 79.3 52.8 ↓

Ba LOD < × < LOQ LOD < × < LOQ −
Be <LOD <LOD
Bi LOD < × < LOQ LOD < × < LOQ
Ca 8111 8144 −
Cd 0.090 0.044 ↓
Co 0.091 0.108 −
Cr 2.09 1.03 ↓
Cu 5.97 5.78 −
Fe 101 101 −
Ga <LOD <LOD
K 41,572 44,850 −
Li 0.227 0.079 ↓

Mg 11,124 10,057 −
Mn 205 185 ↓
Mo 25.2 16.1 ↓
Na 1665 65,752 ↑
Ni 2.28 0.773 ↓
Pb 8.34 0.672 ↓
Rb 7.97 8.81 ↑
Se <LOD <LOD
Sr 42.5 41.9 −
Te <LOD <LOD
Tl <LOD <LOD
U <LOD <LOD
V 0.043 0.038 −

Zn 27.2 21.5 −
* ↑ statistically significant increase; ↓ statistically significant decrease; – no statistically significant differences.

The levels of the elements detected are in a range comparable to that given in the
literature [20–24]. When using literature data, it is crucial to check how the data are pre-
sented, i.e., whether they refer to fresh mass or dried matter and to which mass (100 g or
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1 kg) [22,24], or if they list the mass of a certain element considering the entire plant [19];
it is also necessary to check which growing conditions and climatic influences are con-
sidered [13,15]. Furthermore, the pollution background of the soil where the vegetables
grow determines the elemental contents observed in the plants and needs to be considered
when comparing data, such as in the Ethiopian study with sampling carried out in an
industrial area [23] or in another study analysing an area with high impact of atmospheric
deposition [25]. It has to be taken into account that all data from the present study are
relative data (content, i.e., element mass per mass of dried plant material); thus, in order to
see the total amount of metals and metalloids taken up by a plant, the entire harvested mass
of the leaves needs to be considered. Furthermore, natural variations in mineral uptake and
accumulation play a role and affect the obtained data [26]. For nutritional aspects, however,
as well as for the current research question, the contents were sufficient for the evaluation
of risk and/or benefits, as well as changes in the uptake behaviour.

In the following figures, the elemental patterns are shown for each investigated plant
species and plant tissue (root, leaves); the results for the untreated (control) plants are
displayed on the left-hand side, while the results for the treated plants grown under salinity
stress are shown on the right-hand side. In order to allow a visual evaluation of the results
to be conducted, sodium was excluded from all pie charts due to its high content in the
treated plants, in which its content increased 10–50-fold.

As it can be seen in Figures 1 and 2, calcium, potassium and magnesium are the major
elements found in the roots as well as in the leaves. All three Brassica species showed
different ratios of these elements, and the differences were more evident in the roots than
in the leaves.

Figure 1. Elemental patterns of selected elements in the roots of treated and untreated plants
without sodium.
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Figure 2. Elemental patterns of selected elements in the leaves of treated and untreated plants
without sodium.

The contents in the treated and untreated plant parts show no statistically significant
differences for Ca, K, and Mg except for the roots of the Chinese cabbage, where a significant
decrease was registered. Looking at the minor elements, especially the potentially toxic
ones, are of higher interest for this study. Low bioconcentration factors have been reported
for the species Chinese cabbage, namely less than 0.01 for As, Cr and Pb alongside 0.3 for
Cd [27]. Cadmium, chromium, copper, nickel and vanadium were accumulated to a higher
extent in the roots when the plants were exposed to elevated salt levels, regardless of the
tested Brassica species. This tendency was particularly notable in white cabbage, but also in
kale (compare Figure 1). Considering, however, that the root biomass was strongly reduced
under the applied growing conditions, the total amount of the absorbed metals did not
increase. Barium and cobalt showed the same behaviour as the above-listed elements,
but only in kale, since their contents in the white cabbage and Chinese cabbage samples
were below the respective limits of detection. For lead, another element that is harmful to
the environment, wildlife and humans, similar trends were found in white cabbage and
Chinese cabbage, i.e., an increase in the roots and no statistically significant differences in
the leaves; on the other hand, in kale, no differences could be found in the roots, but there
was a significant decrease in lead content in the edible parts. Aqueous extracts of Collard
Green (Brassica oleracea) have been found to have a tendency for Pb uptake, removing
more than 99% of Pb from contaminated water [28]. Aluminium, an element found in high
abundance in the Earth’s crust, was found to behave differently in all three investigated
plants. In white cabbage, Al showed the same pattern as other PTEs, namely, an increase in
the roots and no changes in the leaves. However, in kale, Al was more highly accumulated
in both roots and leaves. Chinese cabbage had even less Al in the roots when the plants
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were grown under salt stress, and no statistically significant changes were observed in
the edible parts. Boron, an essential element for plants, but, nevertheless, not detected
in the samples of Chinese cabbage, behaved similarly to Al, Cd, Cr, Cu, Ni, Pb and V in
white cabbage; however, it was found to be present in kale leaves at lower levels, whilst
its content in the roots was unaffected by higher salinity. Iron is another essential element
for plants, and all three studied plants reacted differently to salt stress with respect to iron
uptake and accumulation. Kale showed a response to Fe similar to that shown for B; in
white cabbage, the content increased in the roots but significantly decreased in the leaves.
In Chinese cabbage, Fe content was found to have changed similarly to the contents of the
minor element Al and major elements K and Mg. Strontium content in roots and leaves
was found not to be depending on salt stress; no statistically significant differences were
registered in kale and white cabbage, whilst in Chinese cabbage, it was not present at levels
above the LOD. Manganese, an essential element for plants as well as for humans, did not
show significant changes due to elevated salinity in white cabbage but showed to have
decreased in the roots and leaves of kale. In Chinese cabbage, only the edible parts were
affected by salt stress, in such a way that less Mn was accumulated in the leaves, whilst
untreated and treated roots had similar contents. Zinc contents were also found to have
been affected by higher salinity in a species-dependent manner. Like for K, Mg and Sr,
no statistically significant changes were observed for Zn in kale roots and leaves, as well
aswhite cabbage leaves. Roots of white cabbage and Chinese cabbage, however. contained
more Zn when treated with an elevated sodium chloride concentration. Conversely, Chinese
cabbage leaves, showed a decrease in Zn content, whilst no differences were observed in
white cabbage plants. The table below (Table 2) summarizes all these findings, which are
based on paired t-tests and a decision level of p < 0.05 for the statistical significance of an
observed change.

Even if studies of salt-stress effects on Brassicaceae species have been performed,
they have mainly been focused on biomass and harvest yield but not on mineral con-
tents, except for plant nutrients, e.g., sodium and potassium. A study of the levels of
Ca, Cu, Fe, K, Mg, Mn, Na and Zn in three Brassica species treated with a NaCl solution
at different concentrations ranging from 50 mmol/L up to 200 mmol/L showed similar
values for Mg and Mn, but lower ones for the other elements [29]; this underlines the
biological variation in the uptake behaviour of individual plants. Zhou and colleagues
grew plants on soils enriched not only with sodium chloride but also with As, Cd, Pb
and Zn, so that two parameters were changed making a comparison more complex [30].
A study of submersed plants showed that Pb content increased with salinity, whilst the
contents of Cd, Cu and Zn decreased with the increase in the sodium chloride concen-
tration [31]; however, the biological differences in aquatic plants and leafy vegetables
adapted to other growing conditions have to be taken into account when comparing such
studies. Limonium brasiliense, a coastal herb of the Plumbaginaceae family mainly found
in Southern Brazil, was investigated for Pb uptake under salt stress. In this plant, the
metal contents in the roots and aerial parts decreased with the elevation of the salinity
level [32]. As the metal uptake can differ among various species of the same plant fam-
ily, data for representatives of other families are only of limited use for comparison and
data interpretation.
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Table 2. Comparison table with changes in elemental contents caused by salinity.

Element Kale White Cabbage Chinese Cabbage

Roots Leaves Roots Leaves Roots Leaves

Al increase increase increase no significant
changes decrease no significant

changes

B no significant
changes decrease increase no significant

changes <LOD <LOD

Ba increase no significant
changes <LOD <LOD <LOD <LOD

Ca no significant
changes

no significant
changes

no significant
changes

no significant
changes

no significant
changes

no significant
changes

Cd increase decrease increase no significant
changes increase no significant

changes

Co increase no significant
changes <LOD <LOD <LOD <LOD

Cr increase decrease increase no significant
changes increase no significant

changes

Cu increase no significant
changes increase no significant

changes increase no significant
changes

Fe increase no significant
changes increase decrease decrease no significant

changes

K no significant
changes

no significant
changes

no significant
changes

no significant
changes decrease no significant

changes

Mg no significant
changes

no significant
changes

no significant
changes

no significant
changes decrease no significant

changes

Mn decrease decrease no significant
changes

no significant
changes

no significant
changes decrease

Na increase increase increase increase increase increase

Ni increase decrease increase no significant
changes increase no significant

changes

Pb no significant
changes decrease increase no significant

changes increase no significant
changes

Sr no significant
changes

no significant
changes

no significant
changes

no significant
changes <LOD <LOD

V increase no significant
changes increase no significant

changes increase no significant
changes

Zn no significant
changes

no significant
changes increase no significant

changes increase decrease

2.3.2. Principal Component Analysis of Obtained Data

In addition to the paired t-tests performed individually for all elements and samples,
the data were analysed by PCA. The graphs in Figure 3 show the contribution of each
element, considering all analytes on the left-hand side and only the minor elements on the
right-hand side. Whilst PC2 was more or less unchanged for both scenarios, the reduction
in the number of analytes increased the percentage of PC1. Excluding the major elements,
principal component 1 (PC1) and principal component 2 (PC2) carried 54% and 19% of the
variance of the data, respectively.

As already mentioned above, not only all three Brassica species showed distinct reac-
tions to salinity but they also showed different uptake and accumulation patterns of the
elements investigated, in agreement with their different salinity tolerances. This can be
visualized in the PCA biplot below (Figure 4).
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Figure 3. PCA graphs of variables for all elements (left) and only for minor elements (right) in the
three Brassica species studied.

Figure 4. PCA biplot of elemental contents in the three Brassicaceae crops studied.

Figure 5 shows the elemental contents in the three Brassica crops studied with respect
to salt treatment (left) and plant organs (right). In particular, most treated samples appeared
in the right part of the biplot, and their position relative to the loadings suggests that they
had higher contents of most elements than the controls. Similarly, the contents found in
the roots generally seemed to be higher than those found in leaves, since root samples
generally appeared in the right part of the biplot.
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Figure 5. PCA biplots of elemental contents in the three Brassicaceae species studied with respect to
salt treatment (left) and plant part (right).

3. Materials and Methods
3.1. Growing Plants and Sampling

Chinese cabbage (B. rapa L. ssp. pekinensis (Lour.) Hanelt cv. Cantonner Witkrop),
white cabbage (B. oleracea var. capitata cv. Varaždinski) and kale (B. oleracea var. acephala
cv. IJK9) were selected for the present investigation. Plants were grown hydroponically
starting from seeds purchased from ISP International Seed Processing GmbH (Quedlinburg,
Germany), Agricultural Advisory Service of Varaždin Region (Croatia) and Institute for
Adriatic Crops and Karst Reclamation (Split, Croatia), respectively. After having been
germinated on 1% agar plates, several-day-old seedlings were transferred into a hydroponic
growth system with 5.5 L dark pots, as previously described [16]. Two nutrient solutions,
namely, Flora Series and GHE Hydroponics, were purchased and used according to the
manufacturers’ instructions. The conditions applied to the growing chamber were a
temperature of 21 ◦C and a 16/8 h light (photons: 115 µmol/m2s)/dark cycle. From three
to four weeks later (depending on the species), when the four fully developed leaves
stage was reached, the plants were exposed to salinity stress by stepwise increasing the
sodium chloride concentration in the nutrient solution until it finally reached 200 mmol/L
(4–25 mmol/L, 2–50 mmol/L at 2 h intervals), whilst the nutrient solution of the control
plants remained unchanged. Twenty-four hours after starting salinization, treated and
untreated plants (controls) were harvested, and their leaves and roots were separated and
quickly frozen using liquid nitrogen. All plant samples were then freeze-dried and stored
before further analyses. The plant growing was carried out in four replicates (four separate
pots), with each replicate consisting of eight plants per pot.

3.2. Sample Preparation and Elemental Analysis

The freeze-dried plant material was homogenized with a metal-free mortar prior to
acidic microwave-assisted digestion. This sample preparation procedure was performed
using an MWS-2 Microwave System Speedwave Berghof device applying the following
temperature program: step 1—20 min, 500 W, 120 ◦C; step 2—30 min, 600 W, 170 ◦C;
step 3—30 min, 400 W, 110 ◦C. Aliquots of 100–200 mg of dried matter were mixed with
5.0 mL of nitric acid (7 mol/L; diluted from 69% w/w HNO3 purchased from Kemika,
Zagreb, Croatia) and 3.0 mL of hydrogen peroxide (1 mol/L; diluted from 30% w/w H2O2
purchased from Kemika, Croatia). The clear digests were filled to a final volume of 25 mL
prior to analysis using inductively coupled plasma optical emission spectrometry (ICP-OES;
Prodigy High Dispersive ICP). The digests of kale leaves were also analysed by inductively
coupled plasma mass spectrometry (ICP-MS; Agilent 7500cx ICP-MS) after further dilution
at 1:10 using 1% nitric acid (obtained from 65% w/w; Merck, Darmstadt, Germany) to
increase the number of analytes. Digestion blanks were prepared in the same way and
measured on the same day alongside the sample digests. The instrumental conditions for
ICP-OES as well as for ICP-MS are listed in Table 3. For both methods, external calibration



Molecules 2022, 27, 1878 10 of 12

based on multi-elemental standard solutions prepared from ICP multi-element standard
solution VI (Merck, Germany) was used for quantification. This mixed standard solution
was also used to prepare spiked digest solutions (at two different concentrations) to check
the precision and the trueness of the measurements conducted according to both methods.

Table 3. Instrumental conditions for both analytical methods used.

Parameter ICP-OES * ICP-MS **

Instrument Prodigy High Dispersive ICP-OES
(Teledyne Leeman, Hudson, NH, USA)

Agilent 7500cx ICP-MS
(Agilent, Tokyo, Japan)

Output power 1100 W 1500 W

Argon flows
Coolant: 18 L/min Coolant: 15 L/min

Auxiliary: 0.8 L/min Auxiliary: 0.9 L/min
Nebuliser: 1 L/min Nebuliser: 0.2 L/min

Sample flow 1.0 mL/min 0.3 mL/min

Nebuliser Pneumatic (glass concentric) MicroMist

Spray chamber Glass cyclonic Scott double pass

Collison cell ——- off
* at Department of Chemistry, Faculty of Science, University of Zagreb. ** at Man-Technology-Environment
Research Centre, School of Science and Technology, Örebro University.

3.3. Data Evaluation and Statistical Tests

All raw data obtained with the respective instrument (mass concentrations of the
elements) were converted, considering digestion blank, final volume, dilution step and
mass of sample digested, into contents in mg/kg of all analytes. Mean and standard
deviation were calculated for each sample. The statistical significance of the differences
found in elemental contents in the treated and control samples was individually verified for
all elements and samples using paired t-tests. Additionally, a PCA (Principal Component
Analysis) was carried out to ascertain the influence of salt treatment on the plants, alongside
the contribution of each element analysed. For all tests, a level of significance of 95% was
used for decision making. Microsoft Office Excel, v2016, and R 4.03 were used to perform
the above-described calculations.

4. Conclusions

The investigation of the effects of salinity stress on important vegetables consumed by
humans is of great and rising importance due to the ongoing salinization of arable land,
especially in Mediterranean areas. Crop yield and quality can be significantly affected by
increased soil salinity. This also includes the changes in the contents of essential as well as
potentially toxic elements. Thus, three common Brassica crops (kale, white cabbage and
Chinese cabbage) were grown under elevated salinity and analysed for their elemental
contents. Regarding the major elements Ca, K and Mg, the contents remained more or
less unchanged in kale and white cabbage, while a statistically significant decrease in K
and Mg was found in the roots of Chinese cabbage. In general, harmful elements were
accumulated at a higher level in the salt-treated plants than in the untreated controls and to
a higher extent in the roots than in the edible parts (leaves). Essential minor elements, such
as Fe and Zn, were not changed in the more-tolerant kale, while they were decreased in
white cabbage and Chinese cabbage under salinity stress. Besides the drawback of reduced
growth under high salt stress, the quality of the leafy parts did not change significantly
when considering the mineral content, particularly in crops that were more tolerant to
salinity stress.
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