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1 Molecular Physics and New Materials Synthesis Laboratory, Rud̄er Bošković Institute, Bijenička 54,
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Abstract: Glyphosate is one of the most widely used pesticides in the world, but it has been shown to
persist in the environment and therefore needs to be detected in food. In this work, the detection
of glyphosate by surface-enhanced Raman scattering (SERS) using gold and silver nanoparticles
and three different commonly used laser excitations (532, 632, and 785 nm wavelengths) of a Raman
microscope complemented with a portable Raman spectrometer with 785 nm excitation is compared.
The silver and gold nanosphere SERS substrates were prepared by chemical synthesis. In addition,
colorimetric detection of glyphosate using cysteamine-modified gold and silver nanoparticles was
also tested. The best results were obtained with Ag NPs at 532 nm excitation with a detection limit of
1 mM and with Au nanoparticles at 785 nm excitation with a detection limit of 100 µM. The SERS
spectra of glyphosate with cysteamine-modified silver NPs improved the detection limits by two
orders of magnitude for 532 nm excitation, i.e., up to 10 µM, and by one order of magnitude for
632 and 785 nm excitation wavelengths.

Keywords: SERS; glyphosate; substrate; pesticides; silver; gold; colloid

1. Introduction

Pesticides are chemical or microbiological agents that control, destroy, repel, or miti-
gate the effects of various pests such as insects, rodents, and weeds. Unfortunately, pesticide
use disrupts the natural balance in the environment, leads to resistance, and can cause
water and food contamination. Their use in crop protection can also result in the absorption
of these substances by plants, which are later used in food [1,2]. However, even the best
regulations cannot fully protect consumers from excessive use of additives. Controlling
the production and use of pesticides and analyzing their presence in food, water, and the
environment are expensive and complex [3]. Gas and liquid chromatography combined
with UV spectroscopy, nuclear magnetic resonance or mass spectroscopy are the most
common analytical methods used in food analysis [4–7]. These techniques are accurate
and sensitive but have certain limitations: they are complex and require trained personnel,
they are time-consuming, and the analysis must be performed in a laboratory. Therefore,
it is of great interest to develop simple, rapid, inexpensive, and sensitive methods for the
detection of pesticides in samples with low concentrations.

Raman spectroscopy is fast and simple, requires no or minimal sample preparation,
and its advantage is the possibility of analysis in aqueous solutions. However, problems
such as insufficient sensitivity and the frequent occurrence of fluorescence limit the capa-
bilities of Raman spectroscopy. Since its discovery, surface-enhanced Raman scattering
(SERS) has gained great popularity as a sensitive method for studying the vibrational
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properties of molecules adsorbed on rough metal surfaces of nanometer size, even at low
concentrations [8,9]. It is widely accepted that two mechanisms are responsible for enhanc-
ing the intensity of the Raman signal during SERS: electromagnetic (EM) and chemical
effects. The electromagnetic enhancement is a consequence of the interaction of the external
electromagnetic fields of the incident and/or scattered light with those generated by the
plasmon excitation of the nanoscopic metal substrate, and the chemical enhancement, in
which the adsorbed analyte molecule transfers electrons to the metal substrate, causing the
formation of chemical bonds between the metal surface and the analyte molecule [10].

The choice of excitation wavelength depends entirely on the material under investiga-
tion. Since the Raman shift is small compared to the bandwidth of the local surface plasmon
resonance (LSPR), both the incident and scattered light fields can be amplified. Therefore,
the electromagnetic enhancement factor is approximately equal to the field enhancement
to the power of four. By tuning the excitation laser to the surface plasmon resonance, it is
possible to maximize the local electromagnetic field enhancement and obtain the largest
signal [11]. The LSPR wavelength of a plasmonic material, in our case Au and Ag NPs,
depends on their size and shape and ranges from 500 to 800 nm for gold and 400 to 700 nm
for silver. Moreover, the plasmonic peak shows a red shift with increasing nanoparticle size
or with the formation of NP aggregates. Therefore, the wavelength of the excitation source
must be close to the plasmonic resonance peak of the plasmonic material. According to the
literature, the best excitation is a little blue-shifted with respect to the LSPR maximum of
the SERS substrate [12].

Another important point is the choice of an excitation wavelength that does not pro-
duce photoluminescence, reduces the noise level and in this way gives a Raman spectrum
with a better signal-to-noise ratio. It is well known that the strength of Raman scattering is
proportional to the fourth power of the excitation frequency, i.e. inversely proportional to
the fourth power of the wavelength. Therefore, it is reasonable to expect a higher Raman
signal from a given sample when shorter excitation wavelengths are used.

One of the main advantages of the SERS method is the possibility to analyze photo-
luminescent compounds, since the latter is quenched near the SERS substrate where the
plasmonic enhancement of the Raman signal is the highest [13]. The analysis of many
compounds is performed in situ using small portable Raman spectrometers [14,15]. The
sensitivity of the SERS method depends on the nature of the substrate, which can be either
a colloidal solution of metal nanoparticles or a metal surface with a suitable nanostructured
topology [16,17]. The SERS method usually provides signal amplification of the order
of 106, but in extreme cases amplifications of ~1014–1015 are possible, which is sufficient
for the detection of one or a few molecules [18]. Today, suspensions of silver and gold
nanoparticles (colloids) are most commonly used as SERS substrates [19].

The sensitivity and repeatability of the Raman signal can be significantly increased by
using metal particles of precisely defined size and shape [20]. The particle size suitable for
SERS ranges from 10 to 80 nm. The size and shape of the particles can be controlled in part by
the choice of colloid preparation method. Pesticides, antibiotics, drugs, melamine, illegal food
dyes, and toxic proteins, as well as other contaminants such as perchlorate and polycyclic
aromatic hydrocarbons, have been studied in detail using the SERS method [21–27].

Glyphosate (N-(phosphonomethyl)glycine) (Table 1) is the most widely used active
ingredient for crop protection worldwide [28]. Some of the commercially available products
are Roundup biactive (manufactured by Monsanto), Total 480 SL (manufactured by Nufram,
Genera) and Hercules super (manufactured by Cheminova). When glyphosate is applied
directly before harvest, it can be found in food. Studies on the harmfulness of glyphosate
are still ongoing [29,30]. Glyphosate inhibits amino acid synthesis and acts as an endocrine
disruptor, affecting hormone secretion and fertility [31,32]. Studies show that glyphosate
stimulates the growth of breast cancer cells in women via estrogen receptors [33].

The detection of glyphosate is mainly based on chromatographic methods. In gas
chromatography, glyphosate is derivatized to a volatile and thermally stable derivative [34,35].
In liquid chromatography, glyphosate derivatives are detected with a UV–visible detector



Molecules 2022, 27, 5767 3 of 14

and a fluorescence detector [36]. Ion chromatography and capillary electrophoresis are also
used for analysis [37,38].

Table 1. SERS measurement parameters for glyphosate.

Molecular Structure
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Costa and colleagues published a paper in 2012 that investigated the binding of
organophosphorus pesticides (including glyphosate) using SERS spectroscopy [39]. The
results indicated that glyphosate binds to silver nanocubes through the phosphate group.

Xu and co-workers proposed a simple and sensitive method for the determination of
glyphosate by combining the ninhydrin reaction and SERS [40]. They found that the product
of the ninhydrin reaction was SERS active and directly correlated with glyphosate concentra-
tion. The detection limit of the proposed method for glyphosate was 1.43 × 10−8 mol dm−3.
A colorimetric method for in situ detection of glyphosate on plant tissues using cysteamine-
modified gold nanoparticles was also developed [41].

In this study, glyphosate was detected directly using SERS. SERS substrates based
on colloidal gold and silver solutions were prepared by chemical synthesis. Three laser
excitation sources with wavelengths of 532, 632, and 785 nm were used for SERS measure-
ments. The effect of excitation wavelength on SERS enhancement of glyphosate using gold
or silver substrates was investigated. The choice of SERS substrate and laser excitation with
the best signal enhancement was evaluated by comparing glyphosate signal intensities.
Colorimetric detection of glyphosate was also performed using Au and Ag nanoparticles
modified with cysteamine. Samples suitable for colorimetric detection were also tested
with SERS.

2. Results and Discussion
2.1. Characterization of Nanoparticles

Ag and Au nanoparticles were synthesized for use in the SERS measurements. The
characteristics of the samples are listed in Table 2. The obtained colloidal solutions were
characterized by UV–Vis absorption spectroscopy and transmission electron microscopy.
Figure 1A shows the UV–Vis absorption spectra of the synthesized Ag NPs with a well-
defined LSPR band at 413 nm and Au NPs with a plasmon band at 533 nm. These values
are expected for spherical Ag and Au NPs in the size range of 20 to 100 nm. The relatively
narrow width of the plasmon peaks indicates the formation of uniform sized NPs in
the colloids. The UV–Vis absorption spectrum of glyphosate solution is also shown in
Figure 1A. It can be seen that this analyte does not contain intense absorption bands in the
visible region.

TEM measurements were performed to observe the size and morphology of the
synthesized NPs (Figure 1B,C). TEM images show spherical NPs in both samples. The
Au colloid consists of particles with only one size, while two particle sizes are present in
the Ag colloid. The calculated mean particle size for the Au colloid is 27.3 nm and for the
Ag colloid is about 32 and 72 nm, respectively. The hydrodynamic size distributions by
volume and hydrodynamic diameters for the colloidal samples are listed in Table 2. The
results of the DLS measurements indicate that the hydrodynamic diameters of the NPs
agree well with the sizes estimated using TEM. Measurements of the zeta potential (ζ)
indicate negatively charged stable particles that are not prone to spontaneous aggregation.
The pH of the Ag and Au colloidal suspensions was found to be 6.5 and 4.7, respectively.
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Table 2. The characteristics of the Ag and Au samples.

Sample LSPR λmax (nm) Zeta Potential (ζ) (mV) Hydrodynamic Diameter 1 (nm) pH DTEM (nm)

Ag NPs 413 −33.7 17.4 (98%), 120.8 (2%) 6.5 32.1 ± 6.7; 71.9 ± 13.8;

Au NPs 533 −12.9 27.6 (93%), 131.5 (6%) 4.7 27.3 ± 4.3
1 Percentages in parentheses indicate ratios based on volume distributions.
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Figure 1. (A) UV–Vis spectra of synthesized nanoparticles and glyphosate solution (2.4 mM); TEM
images of (B) Ag NPs and (C) Au NPs.

2.2. Raman and SERS Measurements

The Raman spectra of the glyphosate powder sample were recorded with 532, 632, and
785 nm laser excitations and are shown in Figure 2. Fairly good glyphosate Raman bands
are observed in all spectra. Photoluminescence is present but does not prevent detection of
the Raman peaks at any of the excitation wavelengths. The spectral profile depends strongly
on the excitation wavelength, although the most prominent Raman band at ≈1032 cm−1 is
present in all spectra, along with peaks at about 450, 574, 767, 860, 914, and 1421 cm−1 (the
peak positions show some variance depending on the excitation wavelength). The peak
positions of glyphosate from the literature and those observed in our experiment are listed
in Table 3.

In addition to the difference in the photoluminescence background, the main difference
between the spectra is the change in the intensity ratio of the bands. For example, at 632 nm
excitation, the band at 1036 cm−1 (or the corresponding band at 1039 cm−1/1032 cm−1) has
a higher intensity under all three laser excitation energies, and its intensity is several times
higher than that of the other bands. At 532 nm excitation, the bands in the 700–950 cm−1

range have a higher intensity than the peaks in the 400–600 cm−1 region, in contrast to
785 nm excitation, where the band at 490 cm−1 has a higher intensity compared to the bands
between 700–950 cm−1. With the portable Raman system (Figure 2D), the resolution and
intensities are somewhat weaker relative to the noise. In addition, impurities or effects of
laser heating on the sample can be seen in the 1300–1400 cm−1 region, where a broad band
appears, presumably because of the deterioration and amorphization of the glyphosate by
the laser radiation. Figure 2E shows the Raman spectrum of the glyphosate solution as
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well. No glyphosate Raman bands are present; only the peaks originating from the Si wafer
used as a solid substrate can be observed.
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Figure 2. Raman spectra of glyphosate powder recorded with different laser excitations: (A) 532 nm
(B) 785 nm, (C) 632 nm, (D) 785 nm (portable Raman; baseline corrected), and (E) Raman spectrum of
10 mM glyphosate solution excited at 632 nm on Si wafer.

The SERS substrates used to detect glyphosate were silver and gold NPs, and the
same excitation wavelengths were used. When gold NPs were used as SERS substrate, no
signal appeared at 532 nm excitation. When silver NPs were used together with the 785 nm
excitations, the SERS signal was low; thus, these were not included in the study. This can
be explained by the fact that gold colloids have a plasmon maximum at about 520 nm, but
after the formation of aggregates of Au nanoparticles, the plasmon resonance shifts toward
longer wavelengths, making the use of 785 nm excitations more favorable for gold NPs.

As previously reported in the literature, not all Raman bands of glyphosate appear
in the SERS spectra [38]. For example, when using a 532 nm excitation with Ag NPs, two
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prominent SERS glyphosate peaks are located at 1032 and 770 cm−1 (Figure 3A). Using
Au NP and 632 nm excitation, the most prominent peak is at 1025 cm−1. Peaks at 996 and
1063 cm−1 also occur, but with lower intensity, along with several peaks in the 1400–1600 cm−1

region. A colloidal Au solution and excitation at 785 nm resulted in spectra in which the
peaks at 1010 and 1036 cm−1 are most pronounced. Using a portable Raman instrument
and gold NPs, the most intense peaks are found at 1010 and 1036 cm−1, and peaks at
560 and 861 cm−1 are also present. The band at about 1010 cm−1 is more intense than the
SERS glyphosate band at 1036 cm−1, and its intensity decreases with decreasing concentra-
tion, but there was no evidence in the literature that this band was arising from glyphosate.
In our opinion, this band could correspond to the 996 cm−1 peak, which was shifted to
higher frequencies due to the interaction of glyphosate with the gold nanoparticles. The
absorption of the glyphosate molecule on the Ag/Au NPs is most likely through the P
atom, as indicated by the vibrational enhancement of the band at 1036 cm−1 that occurs in
all spectra. All observed Raman and SERS bands are listed in Table 3 along with the bands
and tentative assignments from the literature.
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(B) with Au NPs at 632 nm excitation; (C) with Au NPs at 785 nm excitation; (D) with Au NPs at 785 nm
excitation (baseline corrected; portable Raman).

Considering the detection limit under the given conditions, the best results (detec-
tion limits) were obtained with 532 nm excitation for silver nanoparticles of 1 mM and
785 nm excitation for gold NPs up to a concentration of 100 µM. Although these detected
glyphosate concentrations are high compared to the literature data, the aim of this work
was not to obtain low detection limits, but to compare the SERS measurement conditions
for different NPs and excitation wavelengths. For example, De Goes et al. synthesized
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citrate-stabilized silver nanoparticles prepared by pulsed laser ablation in liquids for the
detection of glyphosate in water [42]. The detection limit for glyphosate in water obtained
with SERS was 1.3 mg L−1. Feis and co-workers concluded that the relevant differences in
intensities and wavenumbers between SERS and Raman spectra of glyphosate must be due
to the effects caused by adsorption on the nanoparticles [43]. Recently, an indirect SERS
sensing assay was developed for the determination of glyphosate (Gly) in tap water [44].
The mechanism of detection was based on relieving the inhibitory effect of L-cysteine
(L-cys) on an Au-Pt nanozyme by the association of Gly with L-cys by divalent copper
ions (Cu2+). The detection limit and quantification limit of Gly were reported to be 5 and
10 µg L−1, respectively.

Table 3. Experimental glyphosate peak positions (cm−1) observed in Raman and SERS spectra.

Raman
[43]

SERS
[43]

Raman
532 nm

SERS
532 nm

Raman
632 nm

SERS
632 nm

Raman 785
nm

(Portable)

SERS
785 nm

(Portable)

Raman 785
nm

SERS
785 nm

Tentative Assignment from
[39,45]

345 339 339

455 458 454 450 452 δ(PO3) + δ(NCCO) or
ρ(CH2) + δ(OH)

485 487 484 490
δ(HOPO) + ρ(PCN)+δ(NCC) +
δ(HOCO)+ρ(CH2) or δ(OH) +

ρ(CH2) + (PO2)

509 512 508 δ(HOPO) + δ(CNC)+δ(HOCO) +
ρ(CH2) or δ(OH) + δ(CH)

576 565
(broad) 578 576 573 560 574 δρ(PO3) + skel(NCCOO) or

δ(OH) + δ(HO-C=O)

605 606

646 650 ν(PC) + δ(NCC) + δ(COO)

720 ν(PC) or δ(NH) +
ρ(CH2) + ν(P-OH)

773 770 775 770 771 771 767 ν(PC) or δ(NH) +
ρ(CH2) + ν(P-OH)

798 799 801 ν(PC) + ρ(CH2) +
ρ(NH2) + ν(CCOO)

832 ν(P-OH)

889 ρ(CH2)

864 866 863 861 861 860 ν(C-C) or ρ(CH2) +
δ(NH) + ν(C-C)

917 920 917 915 914 CNCC skel.

933 936 935 933 930 νs(PO3) + ν(PC)

979 [46] 973 ρ(C2H2)

992 974 995 996 1010 988 1010
νs(PO3) + τ(CH2) + ρ(NH2) +

CNCC skel. or
ρ(CH2) + δ(OH)

1036 1023 1039 1032 1036 1025 1035 1036 1032 1036
ν(C-N)/CNCC skel. + νa

(HOPO2)/νa(POO) or νs(PO2) +
δ(OH)

1081 1051 1085 1081 1063 1079 νa(PO3) + ν(C-N) or
ν(C-N) + ν(C-OH)

1136 1140 1136 νa(POH)

1160 1161 1158 δ(CH2+NH2 +
CH2) + ν(COH)

1196 1189 1200 1198 1185 1193
δ(CH2+NH2 + CH2) + ν(COH) +

ν(CN) or
τ(CH2) + δ(OH)
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Table 3. Cont.

Raman
[43]

SERS
[43]

Raman
532 nm

SERS
532 nm

Raman
632 nm

SERS
632 nm

Raman 785
nm

(Portable)

SERS
785 nm

(Portable)

Raman 785
nm

SERS
785 nm

Tentative Assignment from
[39,45]

1238 1242 1241 ν(POH) + τ(CH2) + ν(COH) +
δ(CNC) or τ(CH2)

1255 1255 1259 1255 ν(PC) + ν(POH) +ω(CH2)
orω(CH2)

1281 1285 1281 ω(CH2) +ωτ(CH2) +
δ(COH) + ν(PC)

1340 1313 1343 1342
ωτ(CH2) + δ(COH) + δ

(CNC)/ν(POH) + . . . orω(CH2)
+ ν(C-C)

1400
1407

(shoul-
der)

1425 1409 δ(CH2) + ν(CCOH)

1427 1435 1431 1430 1425 1421 δ[C(2)H2] + δ(POH)
or δ(CH2)

1431
(shoul-

der)
1397

1436
(shoul-

der)

δ[C(4)H2] + δ(POH)
or δ(CH2)

1466 1469 1464 1479 1464 ν(CC) + δ(CNH)/τ(NH2)

1483 1487 ω(NH2) + δ(POH)

1566 1569 1568 1575 δ(NH2)

1610 1613

1714 1717 1710 ν(C=O)

1728 1732 1727 1735 ν(C=O)

s: symmetric; as: asymmetric; ν: stretching; δ: bending; ρ: rocking; ω: wagging; τ for twisting; skel: skeleton
vibration.

2.3. Colorimetric Assay

Further experiments were performed to investigate the possibility of colorimetric
detection and to determine whether better SERS signals of glyphosate are obtained when
cysteamine is used as the molecule through which it binds to Au or Ag NPs. In addition,
visual detection based on the color change of NPs is interesting because of its simplicity.

Colorimetric detection based on the color change of colloidal particle solutions is
often used as a simple analytical method because the addition of analytes leads to the
aggregation of NPs, which changes the localized surface plasmon resonance (LSPR) wave-
length. The higher the analyte concentration, the stronger the aggregation of NPs due to
the stronger interaction between the analyte and NPs modified with cysteamine. Here, the
aqueous solution of glyphosate was added to a previously prepared aqueous dispersion
of cysteamine-coated gold and silver NPs, resulting in the alteration of the surface prop-
erties of the NPs and thus a change in the color of the dispersion. The thiol group of the
cysteamine adheres to the surface of the NPs by forming a bond with the S atom, leaving
the amino group free for interactions. Furthermore, the glyphosate molecule (Table 1)
contains carboxyl (-COOH) and phosphonyl (-PO3H2) in its structure and shows strong
affinity for the amino group. The adsorption of glyphosate on Au NPs coated with cys-
teamine leads to crosslinking between the particles and thus to a red shift in the absorption
spectrum [47]. Citrate-coated NPs do not change color after the addition of glyphosate,
as reported in the literature [41,47]. For glyphosate detection, cysteamine-modified NPs
were mixed with different concentrations of glyphosate, and a red to purple color change
was observed for gold NPs and a yellowish to brownish color shift for silver NPs. The
UV–Vis absorption spectra of Au and Ag NPs modified with cysteamine and mixed with
different concentrations of glyphosate are shown in Figure 4. It can be seen that when Au
NPs were used, the SPR band shifted to higher wavelengths with increasing glyphosate
concentration, and a new additional absorption band appeared in the long-wavelength
region. It was also found that when glyphosate was added to Ag NPs modified with
cysteamine, a blue shift of the LSPR peak occurred. As the concentration of glyphosate
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increased, the intensity of the surface plasmon resonance band decreased. At the same time,
a broadening of the peak was observed with a shift of its maximum to the region of shorter
wavelengths, but no additional absorption bands appeared. This behavior is unusual since
the LSPR peak was expected to shift to higher wavelengths due to the formation of Ag
aggregates. According to Sahu et al. the blue shift of the LSPR peak could be explained
by the interaction between the collective longitudinal oscillation of the electrons and the
surrounding medium [48]. Several studies have shown that surfactants can reorganize
depending on the thermodynamic environment in which they are located [49].
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Figure 4. UV–Vis absorption spectra after the addition of different concentration of glyphosate for:
(A) Au NPs and (B) Ag NPs.

SERS Detection of Glyphosate in Colorimetric Assay

After the colorimetric measurements, the SERS signal of different glyphosate concen-
trations was determined for gold or silver NPs modified with cysteamine. Figure 5 shows
the SERS spectra of the corresponding glyphosate concentrations for 532, 632 and 785 nm
laser excitations. As the analyte concentration decreases, the intensity of the glyphosate
band at about 1030 cm−1 also decreases. Some other bands are also present in the spectra
(e.g., the band at 917 cm−1 when excited with 632 nm, or at 1002 cm−1 when excited at
with 532 nm), but their intensity does not change with concentration, and they cannot be
said to originate from glyphosate (or cysteamine).
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Figure 5. SERS spectra of different glyphosate concentrations with cysteamine-modified NPs:
(A) Ag with 532 nm excitation, (B) Au with 632 excitation and (C) Au with 785 nm excitation.
(cys: cysteamine powder).

Using NPs modified with cysteamine, good glyphosate bands at ≈1030 cm−1 were
obtained with Ag NPs and excitation at 532 nm and with Au NPs and excitations at
632 and 785 nm. This peak is present in all spectra, and its intensity decreases with
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decreasing concentration. Therefore, it can be used as a glyphosate indicator, and according
to the SERS data, the cysteamine-modified colorimetric assay increases the detection limit
to 10 µM in all three cases.

3. Materials and Methods
3.1. Materials

Gold(III)chloride trihydrate, trisodium citrate dihydrate, hydroxylamine hydrochlo-
ride, glyphosate (N-(phosphonomethyl)glycine) powder, sodium nitrate, and cysteamine
hydrochloride (≥98%) were provided by Merck. Silver nitrate was provided by Kemika
(Zagreb, Croatia). All chemicals were of analytical grade and were used without fur-
ther processing. High purity water with a resistivity of 18 MΩ cm−1 was used for
all experiments.

3.2. Synthesis of Nanoparticles
3.2.1. Synthesis of Silver Nanoparticles (Ag NPs)

The colloidal suspension of Ag NPs was synthesized by a modified Leopold, Lendl
method [50]. A total of 10 mL of AgNO3 (10 mM) was added to 90 mL of a hydroxy-
lamine hydrochloride solution (1.67 mM) containing 3.33 mM sodium hydroxide at room
temperature with stirring. The mixture was stirred for 15 min.

3.2.2. Synthesis of Gold Nanoparticles (Au NPs)

The colloidal suspension of Au NPs was synthesized by a modified Turkevich method
using sodium citrate as reducing agent and a loosely bound capping agent [51]. According
to the procedure, 200 mL of HAuCl4 (1 mM) was vigorously stirred and heated in a round
bottom flask with reflux condenser. Then, 10 mL of 38.8 mM sodium citrate was rapidly
added to the boiling solution and boiled for 15 min until the color changed from pale yellow
to wine red. The resulting 0.95 mM colloid solution was stable at 4 ◦C for several months.

3.2.3. Modification of NPs with Cysteamine

Cysteamine-modified NPs were prepared according to the protocol described in the
literature [41,52]. First, 50 µM cysteamine solution was added to the NPs solution in a
volume ratio of 1:100. The mixed solution was stirred for 2 h and then washed to remove
the excess cysteamine. The final cysteamine–NP product was redispersed in water and
stored at 4 ◦C. Next, 0.2 mL of 1 mM acetate buffer and 0.2 mL of cysteamine-NP were
mixed and incubated for 5 min at room temperature. Then, 0.2 mL of glyphosate solution
at different concentrations was added to the mixture and equilibrated for 10 min. UV–Vis
absorption spectra were recorded in the wavelength range of 350–800 nm.

3.3. SERS Sample Preparation

The stock solution of glyphosate was prepared in water. The colloidal suspension, the
solution of the inorganic salt, and the various dilutions of glyphosate prepared previously
were mixed in appropriate proportions. The glyphosate water solutions used for SERS
experiments were 10 mM, 1 mM, 100 µM, 10 µM and 1 µM. In previous experiments, it was
found that the best enhancement of the signal was obtained with the following ratios of
nanospheres: 80 µL nanospheres suspension, 10 µL pesticide sample and 10 µL aggregating
agent (1 M inorganic salt). SERS experiments were performed in two ways. In the first
method, the obtained colloidal suspension, aggregating agent (salt), and analyte molecule
at the appropriate molar concentration were vortexed for 10 s and then placed in a glass
tube, and the Raman signal was measured. In the second method, a drop (2 µL) of the
mixture was dropped onto the clean substrate and dried. The substrate was positioned
under the microscope of the Raman instrument.
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3.4. Nanoparticles Characterization

The size and size distribution of nanoparticles were studied using a UV–Vis spectrom-
eter (Cary, Agilent, Santa Clara, CA, USA) and a transmission electron microscope (JEM
1010, Jeol, Tokyo, Japan). For TEM measurements, the particles were dropped onto a copper
grid coated with Formvar and allowed to dry. ImageJ software was used to determine the
particle size distributions.

Dynamic light scattering (DLS) was used to further evaluate the diameter distribu-
tion. DLS measurements were performed using the Zetasizer Nano S, and zeta potential
measurements were performed using the Zetasizer Nano Z (Malvern, Malvern, UK). Size
distributions were reported as distributions by volume, and results are presented as the
mean of at least 3 measurements. Zeta potential was reported as the mean of three mea-
surements. The pH measurements were performed using a pH meter calibrated with 4.005
and 7.00 buffer solutions. All measurements were performed at room temperature.

Raman spectra were recorded using an inVia Raman spectrometer (Renishaw, Wotton-
under-Edge, UK) and the Cora 5001 (Anton Paar, Graz, Austria) fiber portable Raman
spectrometer. The Renishaw inVia micro-Raman spectrometer was connected to a Leica
microscope, and lasers with wavelengths of 532, 632, and 785 nm were used as excitation
sources, with the laser beam focused into a spot of 1–2 µm diameter on the sample. For
measurements at an excitation wavelength of 785 nm, the Cora 5001 was equipped with
a CCD detector cooled to subambient temperature and a diode laser with power up to
450 mW. The spectral resolution was 6 to 9 cm−1. The measurement times and laser
intensities are given in Table 1. To reduce photodegradation of the samples, the laser
excitation power was kept low for all excitations. The Raman spectra of the samples were
recorded with a ×50 microscope objective, and the experiments were performed at room
temperature. The range studied was between 300 and 2000 cm−1, and the Raman band of a
silicon wafer at 520 cm−1 was used to calibrate the spectrometers. Raman measurements
were made at several locations on the substrate surface, and the measurement was repeated
at the location where the SERS enhancement was best.

4. Conclusions

In this work, a comparison of glyphosate detection with Raman spectroscopy was
performed using three different excitation wavelengths (532, 632, and 785 nm). The obtained
Raman bands of glyphosate powder were compared with those from the literature. The
characteristic Raman glyphosate peak at ≈1030 cm−1 appeared in all spectra and was used
for glyphosate detection in further work. Most Raman bands were detected with a 532 nm
excitation wavelength.

Au and Ag nanoparticles were synthesized and used as SERS substrates. The SERS
spectra of different glyphosate concentrations were recorded with Ag nanoparticles at
532 nm excitation and with Au nanoparticles at 632 and 785 nm excitation. The most
prominent glyphosate band was found at ≈1036 cm−1. All SERS spectra showed reasonable
enhancement of the Raman signal when used for the respective excitation wavelength. The
best results were obtained with Ag nanoparticles at 532 nm excitation with a detection limit
of 1 mM and with Au nanoparticles at 785 nm excitation with a detection limit of 100 µM.

For colorimetric detection of glyphosate, cysteamine-modified NPs were mixed with
different concentrations of glyphosate, and change in the color was observed. When
cysteamine-modified Au NPs were used, the LSPR band shifted to higher wavelengths
with increasing glyphosate concentration, but when glyphosate was added to modified
Ag NPs, the position of the LSPR peak unexpectedly shifted to the blue spectral region.
The SERS spectra of glyphosate with cysteamine-modified silver NPs improved the de-
tection limit by two orders of magnitude for 532 nm excitation, i.e., up to 10 µM, and by
one order of magnitude for 632 and 785 nm excitation. The broader glyphosate band at
≈1030 cm−1 was observed and used to achieve the detection limit of 10 µM for all three
excitation wavelengths.
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