
Citation: Stanić, D.; Kojić, V.; Bohač,

M.; Čižmar, T.; Juraić, K.; Rath, T.;
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Abstract: Since the addition of BaTiO3 in perovskite solar cells (PSCs) provides a more energetically
favorable transport route for electrons, resulting in more efficient charge separation and electron
extraction, in this work we experimentally prepared such a PSC and used a modeling approach to
point out which simulation parameters have an influence on PSC characteristics and how they can be
improved. We added a layer of BaTiO3 onto the TiO2 electron transport layer and prepared a PSC,
which had an FTO/TiO2/BaTiO3/FAPbI3/spiro-OMeTAD/Au architecture with a power conversion
efficiency (PCE) of 11%. Further, we used the simulation program SCAPS-1D to investigate and
optimize the device parameters (thickness of the BaTiO3 and absorber layers, doping, and defect
concentration) resulting in devices with PCEs reaching up to 15%, and even up to 20% if we assume
an ideal structure with no interlayer defects. Our experimental findings and simulations in this paper
highlight the promising interplay of multilayer TiO2/BaTiO3 ETLs for potential future applications
in PSCs.

Keywords: perovskite solar cell; SCAPS-1D; optimization; simulation; power conversion efficiency;
BaTiO3

1. Introduction

Within the past decade, organometal halide perovskites have become the forerunning
thin film material for the development of next-generation solar cells. Synthesized by
chemical solution processing, the cubic perovskite structure shows remarkable properties
as an active layer in solar cell devices. Formamidinium-based lead perovskites have been
widely used for several years, characterized by an optimal optical band gap of 1.47 eV [1], a
high charge carrier mobility for polycrystalline films measuring 2.5 cm2 V−1 s−1, as well as
carrier diffusion lengths with values of 1 µm [2]. However, obtaining solar cells with high
efficiency still depends highly on the experience and craft of the research team. It is therefore
difficult for new groups to comprehend all the potential factors that can influence the quality
of perovskite films and solar cells. In that sense, numerical simulation can be a very useful
tool for studying solar cell performance. One of these tools is the SCAPS 1D software
(version 3.3.09), which has been shown to be useful for investigating various solar cell
parameters such as device thickness, resistance, and temperature [3], the theoretical impact
of novel hole transport layers [4], and multiple terminal tandem perovskite devices [5], or
even estimating the potential solar cell devices comprising chalcogenide-based perovskite
active layers [6].

Regarding the use of BaTiO3 in perovskite solar cells, its most prevalent application
is as an intermediate layer between the electron transport layer (ETL), e.g., TiO2, and the
perovskite active layer. As reported in the current literature, by adding the BaTiO3 interlayer,
depending on the layer parameters, e.g., thickness, there is an increase in efficiencies in
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regards to the un-modified perovskite cells. This is probably due to several phenomena.
The first group, to our knowledge, to investigate this complex ETL was Okamoto et al.
in 2016 [7]. They showed that the crystal size of the perovskite increases when prepared
on BaTiO3-modified TiO2, which leads to an increase in light absorption and a decrease
in the number of grain boundaries that serve as trap sites for photogenerated charges.
Several papers were later published [8–10] indicating that the addition of BaTiO3 onto
TiO2 reduces charge recombination and increases charge separation due to more favorable
energy alignments of conduction and valence bands of the different layers.

In a recent research study [11], we synthesized perovskite solar cells (PSCs) with bare
TiO2, which acts as an electron transport layer with a power conversion efficiency (PCE) of
7%, and showed that it can theoretically reach up to 15%. In that study [11], we discussed in
detail the experimental approach for the advancement of the parameters that could lead to
an improvement in the PCE. Since we found that the interface between layers considerably
influences the PSC, we continue our study in the direction of interface engineering.

In this paper, in order to increase the PCE of a FAPbI3-based solar cell, we added a layer
of BaTiO3 between the perovskite absorber and the TiO2 electron transport layer. This layer
should affect the local electric field, enhance the extraction of electrons from the perovskite
layer, and thus increase the current and performance of the PSC. Theoretical simulations
were performed using SCAPS-1D software, which is primarily made for the simulation of
thin film solar cells but is also widely used for modeling PSCs [12–14]. Using SCAPS-1D,
we modeled a PSC with an additional BaTiO3 layer and in the first calculations, we found
a PCE of 10%, which is 3% more efficient compared to the PSC we modeled without the
BaTiO3 layer in our previous work [11]. According to this result, we synthesized a new
PSC with a BaTiO3 layer between the perovskite and TiO2 layer and we produced a device
with an experimental PCE of 11%, which is even 1% higher than the previous simulation
result. Therefore, SCAPS was first used to fit the experimental curve, and we obtained
a simulated PCE of 10.7%. Then, further optimization of the PSC parameters that can
affect its performance (thickness of the BaTiO3 and absorber layers, doping, and defect
concentration) was performed, and the result indicated that the PCE could reach a value of
14.71%. If we further assumed an ideal structure of the PSC with a low impact of interlayer
resistivity, our device could theoretically reach over 20% PCE.

2. Materials and Methods
2.1. Preparation and Characterization of Perovskite Solar Cells

The prepared solar cells were comprised of a multilayer n-i-p architecture. On top of
the glass/FTO substrate, a planar TiO2 thin film was deposited using DC magnetron sput-
tering with an added spin-coated mesoporous BaTiO3 layer, which together served as an
electron transport layer (ETL). On top of the ETL, a formamidinium lead iodide perovskite
active layer was deposited using spin-coating. The hole transport layer (HTL), spiro-
OMeTAD (≥99%, Merk, Darmstadt, Germany), was also spin-coated on top of the active
layer. Finally, gold contacts were deposited using thermal evaporation. The perovskite so-
lution preparation, active layer, HTL layer, and gold contact deposition were all conducted
inside a nitrogen-filled glove-box (MBraun Labmaster system, Garching, Germany).

Prior to cleaning and magnetron deposition, the 15 × 15 mm FTO substrates (7 Ω/sq,
Sigma Aldrich, St. Louis, MO, USA) were patterned using a small amount of Zn powder
(p.a., T.T.T. Ltd., Sveta Nedelja, Croatia) and 2.5 M HCl (37%, p.a., Val-de-Reuil Carlo Erba
Reagens, France). The middle FTO strip (9 × 15 mm) was covered and preserved prior to
patterning using scotch tape, and cut to match the desired dimensions. The Zn powder was
applied onto the substrate and HCl was added dropwise until the powder was saturated
and started to react violently. This reaction was conducted in a fume hood and lasted for
about 1–2 min until the reaction stopped. The patterning resulted in a substrate with two
glass strips and an FTO strip in between, serving as the transparent contact of the cell. After
patterning, the scotch tape was removed and the substrates were rinsed with water. The
substrates were then cleaned in an ultrasonic bath submerged in acetone (99.9% Gram-mol
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Ltd., Zagreb, Croatia), then isopropanol (99.9% Gram-mol Ltd., Zagreb, Croatia) for 10 min
each. After sonication, the substrates were rinsed in water and ethanol (97% Gram-mol Ltd.,
Zagreb, Croatia), dried in a nitrogen stream, and finally cleaned in an L2002A2 UV Ozone
Cleaner (Ossila, Sheffield, UK) for 10 min to remove any residual organic compounds.

The compact TiO2 (c-TiO2) thin films were deposited using reactive DC magnetron
sputtering. The sputtering process was conducted using a 2” diameter Ti target (99.995%
Kurt J. Lesker, Saint Leonards-on-sea, UK) without additional heating at a set DC power of
100 W. Prior to the deposition, the magnetron chamber was evacuated to a high vacuum
base pressure of 1·10−6 mbar. The working gas that was introduced for the sputtering
procedure was a mixture of argon and oxygen (p(O2)/p(Ar) = 0.2), which increased the
pressure to 5 mTorr. The deposition lasted for 45 min, and afterward the samples were
annealed at 450 ◦C for 2 h to induce crystallinity (anatase TiO2).

The mesoporous BaTiO3 (m-BaTiO3) thin films were prepared on top of the magnetron
sputtered TiO2 thin films by spin-coating (H6-23 Spin Coater, Laurell Technologies Corpo-
ration, North Wales, PA, USA) a diluted BaTiO3 suspension at 4000 rpm for 30 s followed
by thermal annealing at 450 ◦C for 2 h. The BaTiO3 stock suspension was prepared by
mixing 170 mg of cubic BaTiO3 nanopowder (≥99%, Sigma Aldrich, St. Louis, MO, USA,
particulates <100 nm) with 85 mg of dioctyl sulfosuccinate sodium salt (96%, Alfa Aesar,
Kandel, Germany) and 850 mg of α-terpineol (90%, Sigma Aldrich, St. Louis, MO, USA).
This stock solution had a consistency of a paste and was mixed for 24 h and intermittently
sonicated to ensure good homogeneity. To prepare the suspension for spin-coating, 150 mg
of the stock suspension was diluted in 1 mL of ethanol (99.9%, Gram-mol Ltd., Zagreb,
Croatia) and was also mixed for 2 h and intermittently sonicated.

To prepare the perovskite thin films, 461 mg of PbI2 (99%, Sigma Aldrich, St. Louis,
MO, USA) and 172 mg of formamidinium iodide (FAI, ≥99%, Sigma Aldrich, St. Louis,
MO, USA) were dissolved in 1 mL of dimethylformamide/dimethyl sulfoxide (both ≥99%,
Merck, Darmstadt, Germany) mixture (V(DMF):V(DMSO) = 4:1) in order to prepare a
1 mmol/mL solution of the precursor. Perovskite films were prepared inside a nitrogen-
filled glovebox by spin coating 50 µL of the perovskite precursor on top of the m-BaTiO3
films. The spin-coating of the perovskite layer was performed using the two-step procedure:
for the first step, the solution was spin-coated for 10 s at a speed of 1000 rpm and an
acceleration of 200 rpm/s, after which the speed was increased to 6000 rpm (acceleration:
2000 rpm/s) for the next 20 s. During the last 10 s of perovskite spin-coating, 75 µL
of chlorobenzene (≥99% Merck, Darmstadt, Germany) was dripped onto the rotating
substrate. The as prepared substrates were annealed on a hotplate at 150 ◦C for 45 min.

The spiro-OMeTAD solution was prepared by dissolving 50 mg of spiro-OMeTAD in
498 µL of chlorobenzene and adding 18 µL of 4-tert-butylpyridine (tBP, 99% Sigma Aldrich,
St. Louis, MO, USA), 10 µL of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 99%
Sigma Aldrich, St. Louis, MO, USA) stock solution, and 4 µL of tris(2-(1H-pyrazol-1-yl)-
4-tert-butylpyridine)cobalt(III) tri[bis(trifluoromethane)sulfonimide] (FK209, 99% Sigma
Aldrich, St. Louis, MO, USA) stock solution. The stock solution molar concentrations
of LiTFSI and FK209 were 1.8 mmol/mL and 0.25 mmol/mL in acetonitrile (p.a. Merck,
Darmstadt, Germany), respectively. Before spin-coating the spiro-OMeTAD layer, the
spin-coater was dried with a continuous flow of nitrogen in order to remove residual DMF
and DMSO vapors left from the preparation of perovskite thin layers. Afterward, 50 µL of
the spiro-OMeTAD solution was spin-coated on the perovskite film (4000 rpm, 1000 rpm/s)
for 10 s. The substrates were left resting overnight in dark and dry air. For the final step,
100 nm of gold contacts were deposited on the substrates by thermal evaporation.

The J-V measurements were conducted in a nitrogen-filled glove box using a Keithley
2400 (Tektronix Ltd., Oldbury, UK) source meter and a DLH400D lamp (Dedo Weigert
Film GmbH, Munich, Germany) calibrated to 100 mW/cm2 using a reference silicon
cell. The area of one cell was 0.09 cm2 and the potential sweep was performed at a
scan speed of 20 mV/s in the range between −50 and 1100 mV. For this paper, a total of
12 solar cells were prepared (six cells at a time) and characterized. The successful cells had
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similar characteristics so one of them was used as the starting point for the modeling and
optimization of the photovoltaic system.

The layer structure of the prepared PSCs is illustrated in Figure 1a, while the energy
band diagram of the structure is shown in Figure 1b. This diagram shows a good matching
of ETL and HTL with the absorption layer (FAPbI3), which allows efficient extraction of
electrons and holes, respectively.
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2.2. Numerical Simulation

The simulation was performed by using the solar cell capacitance simulator SCAPS-1D,
which is based on solving one-dimensional continuity and Poisson equations [16]. It can
simulate solar cell structures and calculate their basic characteristics, such as band diagrams,
external quantum efficiency, generation and recombination profiles, cell current densities,
J–V characteristics including open-circuit voltages (Voc), short-circuit currents (Jsc), fill
factor (FF), and power conversion efficiency (PCE). For SCAPS simulations, the input
parameters are taken from the literature [2,11,17–27] and our experimental results, which
are listed in Table 1. The interface defects at ETL/absorber and absorber/HTL interfaces
are considered neutral and single. The work function of FTO and back gold contact are set
to 4.4 and 5.1 eV, respectively. All the simulations are performed at a working temperature
of 300 K using a series resistance of 1 Ω and under standard AM1.5G illumination.

Table 1. Basic input parameters of the materials used in the PSC.

Parameter FTO
[17,18]

TiO2
[11,18,19] BaTiO3

FAPbI3
[17]

spiro-OMeTAD
[17,18,21]

Thickness (nm) 300 * 100 * 300 * 550 * 500 *
Band gap (eV) 3.5 3.26 3.2 [22] 1.51 2.9

Electron affinity (eV) 4.0 4.2 3.8 [23] 4.0 [25] 2.2
Dielectric permittivity 9 9 [20] 2500 [24] 6.6 [26] 3

CB effective density of states (cm−3) 2·1018 2.2·1018 2.2·1018 1.2·1019 [27] 2.2·1018

VB effective density of states (cm−3) 1.8·1019 1.8·1018 1.8·1018 2.9·1018 [2] 1.8·1018

Thermal velocity of electrons (cm/s) 107 107 107 107 107

Thermal velocity of holes (cm/s) 107 107 107 107 107

Electron mobility (cm2/Vs) 20 20 20 2.7 [2] 10−4

Hole mobility (cm2/Vs) 10 10 10 1.8 [2] 10−4

Shallow donor density ND (cm−3) 1019 5·1016 5·1016 0 0
Shallow acceptor density NA (cm−3) 0 0 0 1.9·1015 1018

Defect density Nt (cm−3) 1015 1015 1015 1.9·1016 1015

* Experimentally determined.
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3. Results and Discussion

Using the data from Table 1, we have simulated the current density–voltage (J–V)
characteristic of the prepared PSC. The results are shown in Figure 2, which compares the
experimental and simulated J–V characteristics. In addition, the comparison between the
main solar cell parameters is shown in Table 2. A good match between experimental and
simulation results is observed, which is a validation of our simulation model.
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lated PSC with the device architecture FTO/TiO2/BaTiO3/FAPbI3/spiro-OMeTAD/Au.

Table 2. Experimental and simulated parameters of the FAPbI3-based solar cell comprising a
BaTiO3 interlayer.

Parameter Experimental Simulated

Voc (V) 0.93 0.94
Jsc (mA/cm2) 20.44 20.80

FF (%) 57.62 54.29
PCE (%) 11.00 10.72

3.1. The Impact of the BaTiO3 Layer Thickness on the Performance of the PSC

There are several phenomena reported that improve the efficiencies of a PSC when
a BaTiO3 interlayer is added. When the perovskite layer is prepared on BaTiO3-modified
TiO2, its crystal size increases leading to higher light absorption and photogeneration of
charged pairs [7]. At the same time, the number of grain boundaries, which serve as trap
sites for photogenerated charges, decreases which lowers the recombination rate. Both of
these effects enhance the efficiency of PSC. Furthermore, adding BaTiO3 onto TiO2 causes
more favorable energy alignments of conduction and valence bands (Figure 1b) which
increases charge separation and reduces charge recombination leading again to enhanced
efficiency of the PSC. Recently, Zhang et al. [28] used ferroelectric properties of BaTiO3
material and increased the inner electric field of the PSC and the width of the depletion
layer. This can lead to enhanced separation of charges and better transport of the carriers,
which again raises the efficiency of PSC. On the other hand, it is difficult to synthesize
a transparent, defect-free, and homogeneous thin film of BaTiO3 at low temperatures
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(since high temperatures can result in the TiO2 layer forming an undesirable rutile phase).
This may induce a crystallization defect of the absorber layer which inhibits the expected
efficient charge separation and transport. The interplay of these factors defines the net
efficiency of the PSC.

Since we added the BaTiO3 layer into our previous PSC structure [11] to improve its
performance, the influence of the BaTiO3 layer thickness on the performance of the PSC
was studied in order to find its optimal thickness. We simulated the performance in a range
of thickness of the BaTiO3 layer from 10 to 500 nm, and the results are presented in Figure 3.
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The open circuit voltage Voc and short circuit current Jsc stay almost constant with
an increase in the thickness of the BaTiO3 layer. The addition of the BaTiO3 layer onto
TiO2 causes more favorable energy alignments of conduction and valence bands. Once this
alignment is fully developed, increasing the thickness of the BaTiO3 layer will not change
it, and therefore Voc will stay constant. The charge separation will not be changed and Jsc
will also stay constant. Thus, the only parameter that can influence the PCE is the FF. For
this reason, the fill factor FF and the efficiency of the solar cell show the same saturation
behavior, with the PCE rising from 9.4 to 11%. Since our experimentally prepared PSC
device had a BaTiO3 layer with a thickness of 300 nm, and the PCE calculated from the
fitting curve was 10.7% (pretty near the experimental value of 11%), we decided to take
this thickness as an optimal value for further simulations. The experimental PSC with
a thicker BaTiO3 layer would improve the device performance by only 0.3%, but would
almost double the amount of BaTiO3 used in the production of the PSC.
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3.2. Effect of Changing the Absorber Doping Concentration

Doping of the absorber layer is another important parameter that can affect the
performance of the PSC, and we simulated the performance of PSC in the doping range
of NA from 1014 cm−3 to 1019 cm−3. The rest of the parameters were kept constant and
corresponded to the values indicated in Table 1. The simulation results of changing the
PSC parameters with NA are shown in Figure 4.
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Increasing the doping concentration can increase the electric field at the perovskite
interface and consequently enhance the process of charge separation. This can lead to
an increase in Voc, as can be seen in Figure 4. On the other hand, increasing the NA
concentration can cause an increase in the recombination rate that can negatively affect cell
performance. This can be found in the behavior of the other PSC parameters (Figure 4),
whose values decrease with increasing NA.

Experimentally, when a perovskite thin film was synthesized by using a single cation
(as is the case in this work where formamidinium as a single cation was used), the vacancies
behave as dopants. The synthesis parameters can influence the nature of the thin film, so
the crystallization of the active perovskite layer creates lattice strains, which can lead to
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vacancies or structural defects as is the case for polycrystalline thin films. The number of
present vacancies and the defect concentration depends on the ratio of lead (II) iodide and
formamidinium iodide in the precursor’s solution, as well as the choice of solvents [29] or
the length of thermal annealing [30]. In this way, doping concentrations can be changed by
changing the vacancy concentration without the necessity to add other cations.

The influence of raising the doping concentration on the recombination inside the
perovskite absorber material is presented in Figure 5a. The recombination rate is calculated
by solving the Poisson and continuity equations in SCAPS-1D software where the doping
concentration enters into the Poisson equation, as is described by Equations (1)–(5) in our
previous work [11] and explained in Burgelman et al. [16]. Raising the doping concentration
of NA increases the recombination rate that strongly affects the J-V curves, reducing the
performance of the device (Figure 5b).
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rates along the perovskite material. (b) Effect of increasing the doping concentration NA on J–V
characteristics of the PSC device.

Taking into account the PCE graph in Figure 4, the best performance of PSC is obtained
if the concentration of NA = 1016 cm−3 is used as the optimum one for further simulation.
Since the starting concentration of NA = 1.9·1015 cm−3, the result of the optimization tells
us that we need to increase the absorber doping concentration in order to get the higher
PCE of the cell.

3.3. Effect of Changing Absorber Layer Thickness

The thickness of the absorber layer is another parameter that can affect the behavior of
the PSC. In order to study its influence on the cell performance, the thickness is changed in
the interval from 100 nm to 1000 nm, and the results are shown in Figure 6.

Thinner absorber layers result in lower light absorption leading to lower values of
photocurrent, and consequently lower values of PCE. As the thickness is increased, the
amount of absorbed light is also increased, leading to higher values of current and PCE.
However, it also increases the recombination rates in the bulk (depending on the diffusion
length), saturating the Jsc and PCE values for absorber layer thicknesses higher than 600 nm.
Thus, this value is chosen as an optimum for the thickness of the absorber layer. The Voc
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also shows saturation for the higher values of the absorber thickness, while the FF is
decreasing to 53%.
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3.4. Effect of Changing the Defect Concentration Nt

In order to improve the PSC performance, the change in defect density was considered.
Polycrystalline films tend to have a larger number of defects in comparison to monocrys-
talline films, and synthesis techniques such as crystal-oriented growth [31] can influence
the concentration of present defects. The morphology and film quality of the perovskite
layer have an important influence on the performance of the perovskite solar cell [32]. Poor
quality and film coverage on mesoporous TiO2 have been shown to increase the charge
recombination inside the active layer [33]. The recombination is explained by the increase
in the defect density (Nt), which can impact the Voc of the solar cell.

To study the influence of the defect density of the perovskite active layer on the cell
performance, the Shockley–Read–Hall recombination model (SRH) was used. The neutral
defects were set at the center of the band gap following the Gaussian distribution with the
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characteristic energy value of 0.1 eV, centered in the middle of the band gap. In the SRH
recombination model, the recombination rate R is given by [34,35]:

R =
np− n2

i

τp
(
n + NCe(EC−Et)/kT

)
+ τn

(
p + NVe(Et−EV)/kT

) , (1)

where n and p are the concentrations of the mobile electrons and holes, respectively. These
concentrations can be found by solving the continuity and Poisson equations. At positive
voltage values, where qV > 3 kT, the term n2

i , which explains the thermal generation, can be
neglected. Et represents the energy level of the trap defects, while Nt is their concentration.
τn and τp are the lifetimes of the electrons and the holes, respectively, and are given by the
following equations:

τn =
1

σnvthNt
, τp =

1
σpvthNt

, (2)

where σn and σp are the capture cross-sections of the electrons and holes, respectively, and
vth represents the thermal velocity.

The diffusion length l of the carrier is given by the equation:

l =
√

Dτ, (3)

where D is the diffusion coefficient defined by the equation:

D = µkT/q, (4)

where µ is the charge carrier mobility. According to Equation (2), when defect density
decreases, the charge carrier lifetimes increase, leading to longer diffusion lengths (Equa-
tion (3)) and a lower recombination rate (Equation (1)). These are the main factors influenc-
ing the improvement of cell performance.

The defect density Nt was investigated as a parameter in the PSC performance, and
the defect density values were changed from 1014 cm−3 to 1018 cm−3. The change in the
recombination rate (R) (Equation (1)) is shown in Figure 7a. It is clear that the reduction in
Nt lowers the recombination rate and at the same time increases the diffusion length l.
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Therefore, the reduction in defect density in the perovskite material can significantly
improve the performance of the PSC, which is consistent with the simulation results shown
in Figure 7b. The obtained simulated J–V characteristics reveal an improvement with the
reduction in Nt. The behavior of the PSC parameters with the change of the Nt concentration
is shown in Figure 8. The increase in Nt reduces all the parameters, especially Jsc and
PCE as soon as the Nt crosses a value of 1015 cm−3. The recombination rate increases and
reduces the charge concentration, which further decreases the current through the device.
The charge separation is reduced too, so the Voc also drops with increasing Nt, and the FF
shows similar behavior.
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The best performance was obtained with the lowest defect density of 1·1014 cm−3,
but it is very difficult to obtain such a low Nt in experiments due to the polycrystalline
nature of the perovskite films. Because of that, we set the optimized value of defect density
at 1·1015 cm−3. As can be seen from Figure 8, this value of Nt, gives the following PSC
parameters: Voc = 1.00 V, Jsc = 23.32 mAcm−2, FF = 62.87% and PCE = 14.71%. The J–V
curve with these optimized parameters is presented in Figure 9. Following the discussion
in our previous research [11], if we can make the ideal structure of the PSC with low series
resistivities and neglect the interlayer resistivities, we could have the ideal J–V characteristic
(Figure 9). Its parameters are Voc = 1.09 V, Jsc = 28.79 mAcm−2, FF = 66.45%, PCE = 20.79%.
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4. Conclusions

By adding a BaTiO3 layer in between the TiO2 ETL and the perovskite absorber
layer, we improved the PCE of a FAPbI3-based solar cell from 7% to 11%. According
to mentioned references, we consider that this improvement comes from influencing
the electric field, which facilitated better charge separation and transport, and from a
reduction in recombination processes. After using numerical simulation and optimization
processes with SCAPS-1D, the theoretical PCE rises almost up to 15%. In an ideal device,
the efficiencies can even reach 20%, verifying that the BaTiO3 layer can drastically improve
the PSC performance and can be used in future research as a promising material for
optoelectronic devices.
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K.J.; Visualization, D.S.; Writing—original draft, D.S., M.B., V.K., K.J. and A.G.; Writing—review &
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