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Abstract: We investigate the analytic properties of the fixed charge expansion for a number
of conformal field theories in different space-time dimensions. The models investigated here
are O(N) and QED3. We show that in d = 3− ε dimensions the contribution to the O(N)
fixed charge Q conformal dimensions obtained in the double scaling limit of large charge
and vanishing ε is non-Borel summable, doubly factorial divergent, and with order

√
Q

optimal truncation order. By using resurgence techniques we show that the singularities
in the Borel plane are related to worldline instantons that were discovered in the other
double scaling limit of large Q and N of ref. [1]. In d = 4− ε dimensions the story changes
since in the same large Q and small ε regime the next order corrections to the scaling
dimensions lead to a convergent series. The resummed series displays a new branch cut
singularity which is relevant for the stability of the O(N) large charge sector for negative ε.
Although the QED3 model shares the same large charge behaviour of the O(N) model,
we discover that at leading order in the large number of matter field expansion the large
charge scaling dimensions are Borel summable, single factorial divergent, and with order Q
optimal truncation order.
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1 Introduction

Our understanding of Nature is seriously hampered by our limited knowledge of quantum
field theory (QFT) in the strongly coupled regime. Time-honoured examples range from
Quantum Chromodynamics (QCD) to the understanding of critical dynamics relevant for a
plethora of physical applications from condensed matter physics [2] to epidemiology [3–7].
Several tools have been developed to tackle strongly coupled dynamics including using weakly
coupled expansions to deduce non-perturbative information, see for example [8] for a review.
Being, in general, the perturbative series asymptotic, the non-perturbative information is
expected to be contained in the analytic structure of their Borel transform. A well-known
example is given by instantons singularities in the Borel plane, which have a semiclassical
interpretation in terms of non-trivial classical trajectories [9]. The mathematical framework
that systematizes the idea of inferring non-perturbative physics from perturbation theory
was developed by J. Ecalle in the ′80s [10–12] and takes the name of resurgence theory.1 In
the last years, many works have successfully applied these ideas to QFT [15–33] providing a
novel perspective on various non-perturbative phenomena such as renormalons, instantons,
and quark-hadron duality. Moreover, an intimate relation has emerged between resurgence
and phase transitions when the latter are seen as Stokes phenomena [34–39].

At the same time, an independent line of research is being developed and it is aimed at
the understanding of the strongly coupled regime of conformal field theories (CFT)s via a
large-charge induced semiclassical expansion [40]. Here one uses EFT methods [41–54]. In
fact, semiclassical expansions have shown to be useful even in resumming infinite series of

1See also [13, 14] for a physics-oriented review.
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Feynman diagrams thereby helping shed light on higher order computations in different
regimes [55–72]. The approach can be extended to non-conformal QFTs as illustrated
in [73–77], with possible physical applications such as the study of multi-boson production
processes in the Standard Model.

The potential effectiveness of the large-charge expansion for small values of the charge,
that seems to emerge by comparing predictions to lattice results [43, 47], partially mo-
tivated the first analysis implementing resurgence for the large-charge expansion of [1].
An interesting investigation of the exponentially small corrections to the large R-charge
expansion in N = 2 superconformal QCD appeared a few weeks later in [78]. In [1], the
authors considered the spectrum of charge Q operators for the critical O(N) model in d = 3
dimensions in the double-scaling limit

Q→∞ , N →∞ ,
Q

N
fixed . (1.1)

In this limit, the scaling dimensions of the lowest-lying operators with total charge Q assume
the form [55]

∆Q =
∑
j=−1

1
N j

∆j

(
Q

N

)
. (1.2)

By expanding the ∆j in the small Q
N limit, one recovers the ordinary 1/N expansion [79],

while for Q/N � 1, eq. (1.2) reproduces the general form of the large-charge expansion in
generic non-supersymmetric relativistic CFTs2 [40, 41, 48]

∆Q = Q
d
d−1

[
α1 + α2Q

−2
d−1 + α3Q

−4
d−1 + . . .

]
+Q0

[
β0 + β1Q

−2
d−1 + . . .

]
+O

(
Q−

d
d−1
)
,

(1.3)

which can be derived from the large-charge effective action without assuming the presence
of other expansion parameters apart from 1/Q. The central object studied in [1] is the
functional determinant of a free scalar field with mass equal to the chemical potential µ
(conjugated to the fixed charge Q) on R× Sd−1

log
(
det

(
−∂2

0 −∆Sd−1 + µ2
))

=
∑
`=0

n`

√
J2
` + µ2 , (1.4)

where ∆Sd−1 is the Laplacian on the (d − 1)-sphere, whose eigenvalues J2
` and their

multiplicity n` are given by

J2
` = `(`+ d− 2) , n` = (2`+ d− 2)Γ(`+ d− 2)

Γ(`+ 1)Γ(d− 1) . (1.5)

In fact, for technical reasons, the theory is Weyl-mapped to R× Sd−1, and, via the state
operator correspondence [80, 81], the energy levels on the cylinder are linked to the associated
spectrum of scaling dimensions. ∆−1 in eq. (1.2) is then obtained as the Legendre transform
of eq. (1.4) with respect to the chemical potential to express it in terms of the fixed charge Q.

2When d is even, one needs to include in the expansion Qp log(Q) terms, with p to be determined, induced
by the cancellation of UV divergences [48].
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The small Q
N expansion of ∆−1 is convergent with a radius of convergence related to

the appearance of a zero-mode in the spectrum. On the other hand, the large Q
N expansion

of ∆−1 diverges (2n)! factorially, and its Borel transform exhibits an infinite number of
singularities on the positive real axis which, according to resurgence theory,3 indicate the
emergence of non-perturbative corrections. The leading non-perturbative contributions
scale as e−

√
Q and stem from worldline instantons describing the geodesic motion of a free

particle with mass µ moving on close trajectories [83]. Since these corrections originate from
the geometrical properties of the compactification manifold, the authors of [1] conjectured
the above to be a general property of the large-charge expansion in the three-dimensional
O(N) CFT. It was envisioned to be a consequence of the effective action describing the
large-charge sector of the theory that is by itself an asymptotic series. The resulting optimal
truncation order, for any N , is nopt ≈

√
Q with the related error O

(
e−
√
Q
)
. The O(N)

model in d = 5 in the same double-scaling limit has been investigated in [77], reaching similar
conclusions. Here we add information on the convergence properties of the large-charge
expansion by addressing various models displaying very different large order behaviours.
Along our journey, we will encounter convergent, asymptotic but Borel summable, and
non-Borel summable series; in the first case we will investigate what one can learn on the
physics of the expansion from a finite number of coefficients. To this end, our main tool
will be the Darboux’s theorem [84, 85], which relates the behaviour of a function around its
non-analytical points to the rate of growth of the coefficients of its series expansion around
regular points. Physical applications were explored in [85–94].

We organize the work as follows. In section 2, we consider the critical g2(φiφi)3 theory
in d = 3− ε, which has been investigated in [57, 65] in the double-scaling limit

Q→∞ , g → 0 , gQ = fixed , (1.6)

resulting in the following semiclassical expansion

∆Q =
∞∑

j=−1
g∗j∆j(g∗Q) , (1.7)

where g∗ = g∗(ε) is the coupling at the Wilson-Fisher fixed point. We discover that the
small-charge (i.e. the small gQ) expansions of ∆−1 and ∆0 are convergent and share the
same radius of convergence. We observe that, as in [1], the leading singularity, which is
an algebraic branch point, occurs when the mass of a certain mode vanishes. Moreover,
the small gQ expansion of ∆0 provides an interesting example of how the program of
reconstructing the analytic structure of a function from a limited number of expansion
coefficients can fail. In fact, even the precise identification of the radius of convergence
requires more than one hundred expansion coefficients. However, we are able to make
progress by identifying the source of the problem in the occurrence of two coincident
singularities for which we can disentangle their contributions.

3Notice that a priori is not known whether QFT observables satisfy the axiom of resurgence theory, i.e
they are resurgent functions. In this work, we assume this condition. For a recent discussion on this point,
including counterexamples, we refer the interested reader to [82].

– 3 –



J
H
E
P
0
6
(
2
0
2
2
)
0
4
1

Additionally, ∆0 in eq. (1.7) is the functional determinant of the fluctuations around
the classical solution and, in O(N)-invariant theories in any d, receives contributions from
three types of modes [42, 58]: one massless conformal mode, one massive radial mode,
and N − 2 spectator modes. The computation of the large gQ expansion of the full ∆0 is
technically challenging and the approaches considered in the literature resorted to numerical
fits [45, 56, 57, 65, 66] and numerical evaluation of integrals [51], in order to determine the
first few coefficients. For the sake of simplicity, in this exploratory work we focus only on
the contribution of the spectator modes, which is given by the functional determinant (1.4)
in d = 3 i.e. it is exactly the same object considered in [1]. At the same time, due to the
different double-scaling limit considered, our large-charge expansion of eq. (1.4) differs from
the one considered in [1] but, not surprisingly, share all its features i.e. a (2n)! factorial
growth of the coefficients related to the same non-perturbative effects driven by worldline
instantons. We are, therefore, able to confirm the results of [1] in a different double-scaling
limit, providing strong evidence for the non-perturbative corrections due to worldline
instantons being a general feature of the large-charge expansion on R× S2.

Motivated by the geometrical origin of these non-perturbative corrections, in section 3,
we move to R × S3−ε and study the g(φiφi)2 O(N) model in d = 4 − ε dimensions in
the double-scaling limit (1.6), which has been previously considered in [56, 58, 66]. In
particular, an interesting diagrammatic argument that links the large order behaviour of
the coefficients of the small gQ expansion of ∆j for different j has been given in [56]. After
elaborating the consequences of this proposal for the analytical structure of the ∆j , we show
that the small gQ expansion of ∆0 contradicts it; the situation is completely analogous to
the d = 3 − ε case; the small gQ expansion of both ∆−1 and ∆0 is convergent, with the
radial mode becoming massless at the leading singular point. Moreover, ∆0 features two
coincident leading singularities. The branch point determining the radius of convergence lies
on the negative gQ axis and it is, therefore, possible to smoothly continue the small-charge
expansion to large positive values of the charge. On the other hand, this branch point is
related to the instability of the large-charge sector of the (metastable) ultraviolet FP of
the quartic O(N) theory in 4 < d < 6, which has been recently pointed out in [61, 69] and
related to a phase transition on the cylinder in [77]. In fact, this FP can be reached by
continuing the ε-expansion to negative values of ε [95] and occurs at negative g. Interestingly,
the type of the leading singularities in both ∆−1 and ∆0 is exactly the same in the d = 4− ε
and d = 3 − ε cases. Motivated by this observation we make a slight detour and study
the small-charge expansion in the cubic O(N) model in d = 6− ε and the U(N)×U(M)
model in d = 4− ε at the leading order of the semiclassical expansion (1.7). Intriguingly, we
discover that the structure of the leading singularity at the leading order of the semiclassical
expansion is shared among all these theories, despite the differences in d, matter content,
and symmetries.

In order to study the large gQ expansion of ∆0, we consider the contribution of the
spectator modes, leaving the remaining two modes for future work. As opposed to the three-
dimensional O(N) theory, we discover that the large gQ expansion of these contributions
converges. In the case of the spectator modes, this is traced back to the convergence of the
heat kernel expansion on odd-dimensional spheres [96]. Moreover, we are able to resum the
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large gQ expansion of the contribution of the spectator modes obtaining a simple analytical
expression not involving infinite sums. Its analytical structure reveals a previously unnoticed
branch cut on the negative gQ axis starting at gQ = 0, which makes the fixed-charge sector
of the O(N) theory in 4 < d < 6 unstable for any value of the charge. This differs from
previous investigations [61, 69], which observed such instabilities only above a critical (finite)
value of the charge.

In section 4, we return to R × S2 and study the analytical properties of the charge
expansion in QED3 with Nf two-component complex fermions,4 which has been thoroughly
studied in the last decades [98–108] due to its relevance for condensed matter (especially
for the description of algebraic spin liquids [109]) and its similarities with QCD in four
dimensions. In particular, we focus on the scaling dimension ∆Q of charge-Q monopole
operators, which create topological disorder by acting in a given position of the space-
time [101]. In general, their proliferation (occurring when the monopoles are relevant
operators in the RG sense) confines the gauge field [110, 111], but the screening produced
by the fermions can elude confinement and realize conformal dynamics in the infrared above
a critical value of Nf , 0 < Nf,crit < 10 [99, 100, 103, 108]. By virtue of the state-operator
correspondence, the scaling dimensions of monopole operators equal the ground state energy
of the theory on R× S2 in the presence of 4πQ magnetic flux across S2. The ground state
energy can then be computed semiclassically in the 1/Nf expansion resulting in

∆Q =
∞∑

j=−1

1
N j
f

∆j(Q) , (1.8)

where ∆−1 and ∆0 have been computed, respectively, in [101] and [107]. It can be shown that
the large-Q expansion of ∆Q reproduces the general large-charge formula (1.3), including
the correct value of the universal term scaling as Q0 [40]. Here, the relevant eigenfunctions
on S2 are given in terms of monopole harmonics [112, 113], generalizing the spherical
harmonics in the presence of the field generated by a magnetic monopole. Interestingly,
the properties of these harmonics (in particular the fact that their angular momentum is
bounded from below by the charge) lead to considerable differences with respect to the
O(N) theory on R× S2. In fact, we find that the large-Q expansion of ∆−1 is only n! (and
not (2n)!) factorially divergent, with an optimal truncation order nopt ≈ Q and related
error of order O

(
e−Q

)
. Moreover, the Borel transform B[∆−1](t) exhibits an infinite series

of equally spaced branch points at t = 4πm i, m ∈ Z, and, therefore, is Borel summable.
The Borel sum is given in terms of an infinite sum of modified Bessel functions of the second
kind, providing an alternative expression for ∆−1. Notice that, due to the properties of the
ground state, at the leading order in 1/Nf the addition of a Gross-Neveu (GN) interaction
term does not affect ∆Q [114]. Therefore, our findings trivially apply also to the critical
QED3 −GN model, which is relevant for the quantum phase transition between Dirac and
chiral spin liquids [115–117]. Finally, we give our conclusions in section 5.

4We take Nf to be even in order to preserve parity and time reversal symmetry [97].
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2 The O(N) model in d = 3 − ε

In this section, we consider the sextic O(N) CFT in d = 3− ε with the Lagrangian

L = 1
2∂

µφi∂µφi + g2

8× 3!(φiφi)
3, (2.1)

where φi, i = 1, . . . , N , transforms as a O(N)-vector. This model exhibits an infrared stable
fixed point at [118]

g2

(4π)2 = 2ε
22 + 3N +O

(
ε2
)
. (2.2)

Interestingly, the beta function of the g coupling is non vanishing from two-loops, and the
model is, therefore, conformally invariant in d = 3 at the one-loop level. This property will
allow us to directly compare our results to those in [1] and link them to the large-charge
effective theory describing the three-dimensional O(N) CFT. In [65], the scaling dimension
of the lowest-lying operators5 with total charge Q has been computed in the double-scaling
limit (1.6), where one can perform the semiclassical expansion of (1.7). The leading order
∆−1 is given by evaluating the action on the non-trivial classical trajectory induced by
fixing the charge and it reads

∆−1(gQ) = gQF−1

(
g2Q2

2π2

)
, F−1(x) =

1 +
√

1 + x+ x
3√

2
(
1 +
√

1 + x
) 3

2
, x = g2Q2

2π2 . (2.3)

At the next-to-leading order of the semiclassical expansion (1.7), one needs to compute
the functional determinant of the fluctuations around the classical solution. This can be
formally written as

∆0(gQ) = ∆(a)
0 (gQ) +

(
N

2 − 1
)

∆(b)
0 (gQ) , (2.4)

with

∆(a)
0 (gQ) = 1

2

∞∑
`=0

n`[ω+(`) + ω−(`)] , (2.5)

∆(b)
0 (gQ) =

∞∑
`=0

n` ω∗(`) . (2.6)

Here

ω2
±(`) = J2

` + 2
(

2µ2 − (d− 2)2

4

)
± 2

√
J2
` µ

2 +
(

2µ2 − (d− 2)2

4

)2
,

ω∗(`) =
√
J2
` + µ2 ,

(2.7)

5It can be shown that in the perturbative regime, i.e. in absence of level-crossing, these operators
transform as traceless symmetric O(N) tensors and can be written as

TQ = t
i1...iQ
Q (φi) ,

where ti1...iQQ (φi) is a fully symmetric and traceless homogeneous polynomial of degree Q in the φi’s. For
instance ti1(φ) = φi and tij2 (φ) = φiφj − 1

N
δijφkφk. Physically, the ∆Q control the critical behavior of

O(N)-invariant systems subject to anisotropic perturbations, e.g. density-wave systems [119], magnets with
a cubic crystal structure [120], and superconductors [121].
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are the dispersion relations of the spectrum. The latter contains a massless mode ω−, (the
conformal mode), a gapped mode ω+ with mass ω+(0) = 2

√
2µ2 − (d−2)2

4 (the radial mode)
as well as (N − 2) gapped modes ω∗ with mass ω∗(0) = µ (the spectator modes). The above
expressions are explicit functions of the chemical potential µ, which is related to the ’t
Hooft coupling gQ through the equations of motion as6

µ = 1
2
√

2

√√√√1 +

√
1 + g2Q2

2π2 . (2.8)

After regularizing the sums over ` in eq. (2.6), one obtains the following final expression for
the functional determinants [65]

∆(a)
0 (gQ) = 1

4 − 3µ2 + 1
2

√
8µ2 − 1 + 1

2

∞∑
`=1

σ(a)(`) , (2.9)

∆(b)
0 (gQ) = −1

4 − µ
2 + µ+ 1

2

∞∑
`=1

σ(b)(`) , (2.10)

where

σ(a)(`) = (1 + 2`)[ω+(`) + ω−(`)]− 4l(l + 1)− 6µ2 + 1
2 , (2.11)

σ(b)(`) = 2(1 + 2`)ω∗(`)− 4l(`+ 1)− 2µ2 − 1
2 , (2.12)

are convergent sums.

2.1 The small-charge expansion

Equipped with the basic setup above we can now study the convergence properties of
the small gQ expansion of ∆−1 (2.3) and ∆0 (2.4). In this limit, ∆−1 is convergent with
a radius of convergence determined by the only non-analytical point at x0 = −1.7 It is
therefore instructive to determine how many coefficients of the small gQ expansion are
needed in order to fully characterize the singularity. This is achieved by making use of
the Darboux’s theorem which links the large order behaviour of the expansion coefficients
about one point (which we take to be x = 0) to the behaviour of the function in the vicinity
of its singularities. Concretely, if the perturbative coefficients of a function O(x) = ∑

cnx
n

grow as

cn ∼
1
xn0

[
f(x0)

(
n+ p− 1

n

)
− x0f

′(x0)
(
n+ p− 2

n

)
+ x2

0
2! f

′′(x0)
(
n+ p− 3

n

)
− . . .

]
+ . . . ,

(2.13)
then x0 corresponds to the closest singularity to the origin and further determines the
radius of convergence of the expansion around x = 0. Moreover, in the vicinity of x0, O(x)

6The chemical potential is measured in units of the compactification radius (which is fixed to unity) and
is, therefore, dimensionless.

7Since x0 < 0, one can trivially analytically continue the small-charge expansion to every positive value
of x and continuously connect the small- and large-charge expansions for any real value of gQ.
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small Qε large Qε
O(N) in d = 3− ε O(N) in d = 4− ε O(N) in d = 3− ε O(N) in d = 4− ε

∆j ∆−1 ∆(a)
0 ∆(b)

0 ∆−1 ∆(a)
0 ∆(b)

0 ∆−1 ∆−1

n 20 > 100 22 25 > 100 13 28 36

Table 1. Number of expansion coefficients needed to determine, with a 5 digits accuracy, the
position (x0), type (p), and amplitude (f(x0)) of the leading singularity in the coefficient functions
∆j in the O(N) model in d = 3− ε and d = 4− ε dimensions. In the case of ∆0, we separate the
contribution of ∆(a)

0 and ∆(b)
0 as in eq. (2.4). In order to accelerate the convergence, we made use of

the Richardson extrapolation [122], which in all cases performed better than other series acceleration
methods, e.g. Shanks transforms [123] and Padé approximants.

behaves as
O(x) = f(x)

(
1− x

x0

)−p
+ analytic , x→ x0 , (2.14)

with f(x) an analytic function near x0. Given the cn, the parameters entering eq. (2.13)
can be determined by considering various sequences which tend to them in the limit n→∞
and making use of acceleration methods to improve the convergence. For instance, the ratio
of consecutive coefficients cn/cn−1 converges to 1/x0 as n→∞,8 whereas p and f(x0) can
be found by considering the following sequences

p = 1 + lim
n→∞

n

(
x0

cn
cn−1

− 1
)
, (2.15)

f(x0) = lim
n→∞

cn(
1
x0

)n (n+p−1
n

) . (2.16)

In a similar manner, one can determine all the derivatives f (n)(x0) and relevant parameters
characterizing the subleading singularities [19, 84, 85]. As summarized in table 1, by
analyzing 20 coefficients of the small-charge expansion of ∆−1, we learn that they satisfy
eq. (2.13) with x0 = −1, p = −3/2, f(x0) = − 1

12
√

2 . With the same number of coefficients,
we find also that f ′(x0) = −0.051559(1), while computing higher derivatives of f(x) requires
an increasing number of coefficients. For instance, to obtain f ′′(x0) = −0.091150(1) and
f ′′′(x0) = −0.2467(1), we had to consider 46 and 89 coefficients, respectively.

Physically, when x = x0 the chemical potential takes the value µ(x0) = 1
2
√

2 and the
mass of the radial mode ω+ vanishes in d = 3. Therefore, as in the large-N analysis of [1],
the radius of convergence is dictated by the requirement of positive masses.

In order to study the small gQ expansion of ∆0 we consider separately ∆(a)
0 =∑

n=0 a
(a)
n xn and ∆(b)

0 = ∑
n=0 a

(b)
n xn. In the ∆(a)

0 case, the ratio test to determine the
radius of convergence exhibits a slow convergence while the sequence (2.16), fails to converge
even with more than one hundred coefficients. The poor performance of the approach
can be understood simply by inspecting the µ(x) dependence of ∆(a)

0 in eq. (2.9). Here
one immediately observes the emergence of two different singular behaviour at x0, one

8The radius of convergence can be found also by considering limn→∞|an|−1/n = x0. However, for the
series considered in this paper, the simple ratio test performs better.
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10 20 30 40 50 60 70

-1.0

-0.8

-0.6

-0.4

Figure 1. In this figure, we show the ratio of consecutive coefficients bn

bn−1
of the large gQ expansion

of ∆−1 for growing n. The blue line represents the original coefficients, while the red, orange, and
green lines denote, respectively, the first three Richardson extrapolations. The ratio tends to the
value 1/x0 = −1.

coming from the square root term (3rd term) that has a branch cut that goes like (1 + x)1/4

(corresponding to p = −1/4) while the rest of the expression has an expected branch cut
that goes like (1 + x)1/2 (corresponding to p = −1/2). Making use of this knowledge we
can accelerate the convergence process. We conclude that the slow convergence of eq. (2.16)
when considering the full a(a)

n is due to the presence of two coincident singularities.9 Being
all the terms in eq. (2.10), regular in µ(x0) the convergence of the various ratio tests is
much higher in the ∆(b)

0 case as shown in table 1. We conclude that near x0 = −1, ∆0
behaves as

∆0 = f(x) (1 + x)1/4 + g(x,N) (1 + x)1/2 + analytic . (2.17)

2.2 The large-charge expansion

As shown above, the small gQ expansion of ∆−1 and ∆0 is convergent. Here, we move to
investigate the large gQ expansion, which, as we shall see, in the case of ∆0 is asymptotic and
non-Borel summable. The large gQ expansion of ∆−1 = gQx1/4 ∑

n=−0
bnx
−n/2 is convergent

as can be seen from the ratio of consecutive coefficients, which is depicted in figure 1. The
radius of convergence is again determined by the singularity at x0 = −1. The number of
coefficients one needs to precisely characterize the singularity is similar to the small gQ
case, as shown in table 1.

For the large gQ expansion of ∆0 we focus on analytically determining the large-charge
expansion of ∆(b)

0 and leave ∆(a)
0 for future work. As we shall see later, due to the factor of

N in eq. (2.4), our conclusions will not be affected by the inclusion of radial and conformal
modes. In order to compute the large µ expansion of ∆(b)

0 , we follow [65] and separate the

9A possible strategy to deal with the lack of convergence due to nearby or coincident singularities consists
in dividing out the strongest singularity and considering the obtained coefficients [85].
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positive powers of µ as

∆(b)
0 = a−3µ

3 + a−1µ+
∑
l=0

(2`+ 1)
√
µ2 + `(`+ 1) . (2.18)

The value of a−3 = −2/3 and a−1 = 1/3 has been computed in [65] by performing a
numerical fit to ∆(b)

0 and will be confirmed below via an analytical computation. By
Taylor-expanding the square root and exchanging the two sums, we have

∆(b)
0 = a−3µ

3 + a−1µ+
∑
`=0

(2`+ 1)
√
µ2 + `(`+ 1)

= a−3µ
3 + a−1µ+

∑
k=0

(−1)kµ−2k−1Γ
(
k + 1

2

)
2
√
πΓ(k + 2)

∑
`=0

(2`+ 1)`k+1(`+ 1)k+1

= a−3µ
3 + a−1µ+ 1

µ

∑
k=0

akµ
−2k . (2.19)

By using that

∑
`=0

(2`+1)`k+1(`+1)k+1 =
k+2∑
n=0

(
k+2
n

)∑
`=0

`k+n+1 +
k+1∑
n=0

(
k+1
n

)∑
`=0

`k+n+2

=
k+2∑
n=0

(−1)k+n+1Bk+n+2
k+n+2

(
k+2
n

)
+
k+1∑
n=0

(−1)k+nBk+n+3
k+n+3

(
k+1
n

)
,

(2.20)

we obtain our final expression for the coefficients

ak =
k+2∑
m=1

(−1)k+1B2mΓ
(
k + 1

2

)
4
√
πmΓ(k + 2)

[
2
(

k + 1
−k + 2m− 3

)
+
(

k + 1
−k + 2m− 2

)]
. (2.21)

The coefficients ak diverge double-factorially, as can be seen from the ratio ak+1
k2ak

, which is
plotted in figure 2. In fact, in the k →∞ limit, they behave as

ak ≈ −π−2k−5Γ
(
k + 1

2

)
Γ
(
k + 5

2

)
. (2.22)

We can now employ resurgence arguments to infer the non-perturbative corrections to
∆(b)

0 . According to resurgence theory, given an asymptotic series φ(0)(z) = ∑
akz

k, we can
promote it to a transseries of the form

φ(z) = φ(0)(z) +
∑
j 6=0

σje
−Aj/z1/βj

z−bj/βjΦ(j)(z), Φ(j)(z) ∼
∞∑
i=0

a
(j)
i zi/βj , (2.23)

where the parameters βj , Aj and bj are encoded in the large order behaviour of the ak
coefficients as [13, 14]

ak ∼
∑
j

Sj
2πi

βj

A
βjk+bj
j

∞∑
i=0

a
(j)
i AijΓ (βjk + bj − i) . (2.24)
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Figure 2. In this figure, we show the ratio ak+1
k2ak

(with ak given by eq. (2.21)) for growing k. The
blue line represents the original ratio, while the red, orange, and green lines denote, respectively, the
first three Richardson extrapolations. The ratio tends to the value 1

π2 = 0.101321 . . . .

Therefore, the transseries can be mapped into the perturbative expansion up to a set of
j-dependent constants σj , which are known as transseries parameters [14].

For our purposes, it is enough to focus on the dominant non-perturbative correction
to the scaling dimension. The latter stems from the term with m = k + 2 in eq. (2.21).
Moreover, to ease the comparison with [1], we shift k as k → k − 2 and introduce

âk ≡ a
(m=k+2)
k |k→k−2 = −π−2k−1Γ

(
k + 1

2

)
Γ
(
k − 3

2

)
ζ(2k) . (2.25)

To rewrite âk in the form of eq. (2.24), we resort to the following identity

22kΓ
(
k + 1

2

)
Γ
(
k − 3

2

)
=
√
π

2

∞∑
i=0

γiΓ
(

2k − 3
2 − i

)
, (2.26)

where the coefficients γi diverge factorially and occur in Henkel’s expansion of the modified
Bessel function of the second kind. After some manipulations, we obtain

âk = − 1
4π2

∑
j=1

j−3/2

(2πj)2k−3/2

∑
i=0

γiΓ
(

2k − 3
2 − i

)
, (2.27)

which agrees with eq. (2.24) if

βj = 2 , bj = −3/2 , Aj = 2πj , Sj
2πia

(j)
0 = − γ0

j3/28π2 , a
(j)
i>0 = a

(j)
0

(2πj)i
γi
γ0
.

(2.28)

Taking into account the shift in k performed before, we have that the dominant non-
perturbative correction to ∆(b)

0 reads

∆(b)
0 ⊃

∑
j=1

e−2πjµµ3/2∑
i=0

a
(j)
i µ−i . (2.29)
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By using eq. (2.8), we can rewrite the above in terms of the charge as

∆(b)
0 ⊃ (gQ)5/4∑

j=1
exp

(
−
√
π

23/4 j
√
gQ

)∑
i=0

ai
(
27/4√π

)i
(gQ)−i/2 . (2.30)

The leading non/perturbative contribution to the scaling dimension scales as e−
√
Q, which

is the same result obtained in [1] for the three-dimensional O(N) model in the double-
scaling (1.2). Of course, this is not surprising, since we, similarly to [1], consider the same
functional determinant (1.4), whose transseries representation is unique. Below we will make
this connection more precise and explicitly show how eq. (2.30) matches the contribution
of worldline instantons computed in [1], corresponding to non-trivial saddle points of the
geodesic equations on the two-sphere. This can be achieved by re-deriving our results
using the Mellin representation of the functional determinant of the spectator modes. We,
therefore, rewrite eq. (2.6) as

∆(b)
0 (gQ) =

∞∑
`=0

n` ω∗(`) =
∞∑
`=0

(2`+ 1)
√
µ2 + `(`+ 1)

= 1
Γ(s)

∫ ∞
0

dt ts−1e−µ
2tTr

(
e∆S2 t

) ∣∣∣∣∣
s=−1/2

.

(2.31)

Since in the limit µ→∞, the integral over t is dominated by the contribution at t = 0, we
proceed by studying the small t expansion of the heat kernel Tr

(
e∆S2 t

)
. By using Poisson

resummation and the asymptotic expansion of the Dawson function F (z) for z →∞, we find

Tr
(
e∆S2 t

)
=
∞∑
`=0

(2`+ 1) e−`(`+1)t

= 1
2

∫ ∞
−∞
|ρ| dρe−

1
4 (ρ2−1)t + 1

2

∞∑
k=−∞

(−1)k
∫ ∞
−∞
|ρ| dρe−

1
4 (ρ2−1)t+iπkρ

= et/4

t
+

∞∑
k=−∞

(−1)ket/4
(√

t− 2πkF
(
kπ√
t

))
t3/2

= 1
t

∑
k=0

ckt
k , (2.32)

where

ck =
k∑

n=0

2−2k(−1)k+n+1
(
4k−n − 2

)
B2(k−n)

n!(k − n)! . (2.33)

By taking the integral over t in eq. (2.31), one recovers the correct ak coefficients (2.21),
including the coefficients of the positive powers of µ (a−3 and a−1) in eq. (2.19). Moreover,
the above shows that our expansion coefficients ak in eq. (2.21), stems from the Cauchy
product of the asymptotic expansion of [1] with the Taylor series of et/4. We again focus on
the leading non-perturbative correction to the heat kernel and consider

cn=0
k =

(−1)k+1
(
1− 21−2k

)
B2k

k! , (2.34)
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which, as expected, matches exactly the (full) coefficients of the heat kernel expansion in [1].
In particular, by using eq. (2.24), we have that the leading non-perturbative corrections to
the heat kernel have the following form

Tr
[
e∆S2 t

]
⊃ 2i

(
π

t

) 3
2

(−1)k+1|k|e−(kπ)2/t , (2.35)

which, of course, precisely matches the contribution of the worldline instantons calculated
in [1]. A few remarks are in order:

• Due to the mismatch in N of the contributions of ∆(a)
0 and ∆(b)

0 to ∆0, the non-
perturbative corrections to ∆(b)

0 found here, survive in the full ∆0 for every value of
N (except obviously N = 2 and at most another value of N for which there is an
exact cancellation with ∆a

0). In addition, there may be additional non-perturbative
effects coming from ∆(a)

0 , which may reduce the optimal truncation order below
nopt = O

(√
Q
)
.

• Both the authors of ref. [1] and we start from the functional determinant of the
spectator modes in d = 3 (2.6). However, due to the different double-scaling limits
considered, we obtain two distinct expansions. Technically, we expanded eq. (2.6) in
powers of µ which is the mass with respect to the Laplacian operator ∆S2 , which can,
in turn, be expressed as a (convergent) powers series in Qε via eq. (2.8). Conversely,
in [1], eq. (2.6) is expanded in powers of the massm =

√
µ2 − (d−2)2

4 with respect to the
conformal Laplacian ∆S2− (d−2)2

4 , which, in turn, can be expressed as an (asymptotic)
power series in Q

N . However, the transseries representation of ∆(b)
0 derived in [1] via

Borel resummation does not depend on such considerations and can be obtained from

eq. (2.31) by rewriting the heat kernel expansion as Tr
(
e∆S2 t

)
= et/4

t

∑
k

cn=0
k tk.

• Unlike [1], where the large-charge expansion is asymptotic already at the leading order
of the semiclassical expansion (1.2), in our case, the (2k)! factorial growth shows up
only at the next-to-leading order of the semiclassical expansion (1.7), i.e. in ∆0. In
fact, due to the factor on N in eq. (2.4), the spectator modes contribute to the leading
order of the expansion (1.2) and to the NLO of (1.6).

• Our results strengthen the idea that the non-perturbative effects found in [1] stem
from the geometry of the compactification manifold and, therefore, do not depend on
the particular double-scaling limit considered. In the next section, we will, therefore,
change the manifold and study the O(N) model on R×S3−ε. This case is particularly
interesting since the heat kernel on odd-spheres is known to be convergent [96].
Moreover, in section 4, we will study the large-charge expansion in QED3 − GN
(Gross-Neveu) on R× S2. Interestingly, we will show that, due to properties of the
fixed-charge operators considered, the expansion is asymptotic but Borel summable.
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3 The O(N) model around four dimensions

In this section, we continue analysing the convergence of the large-charge expansion in the
O(N) model by moving from d = 3− ε to d = 4− ε, where we consider the renormalizable
action

S =
∫
ddx

(
(∂φi)2

2 + (4π)2g0
4! (φiφi)2

)
. (3.1)

It is well-known that this model exhibits a Wilson-Fisher infrared fixed point which is
weakly coupled when ε� 1. At the 1-loop level, the value of the coupling at the FP reads

g∗(ε) = 3ε
8 +N

+O(ε2) . (3.2)

As in the previous section, we consider the double-scaling limit (1.6) and write ∆Q as
in eq. (1.7). The first two coefficients of the expansion (1.7) have been computed in [58]
(generalizing the O(2) result of [56]). The leading order reads

4∆−1
g∗Q

=
3 2

3
(
x+
√
−3 + x2

) 1
3

3 1
3 +

(
x+
√
−3 + x2

) 2
3

+
3 1

3

(
3 1

3 +
(
x+
√
−3 + x2

) 2
3
)

(
x+
√
−3 + x2

) 1
3

, x ≡ 6g∗Q ,

(3.3)

while ∆0 is given by

∆0 = R

2

∞∑
`=0

n` [ω+(`) + ω−(`) + (N − 2)(ω∗(`))] , (3.4)

where

ω±(l) =

√√√√
J2
` + 3µ2 − 1

4(d− 2)2 ±

√
4J2

` µ
2 +

(
3µ2 − 1

4(d− 2)2
)2
, (3.5)

and
ω∗(l) =

√
J2
` + µ2 , (3.6)

are the dispersion relations of the fluctuations. J2
` and n` have been given in eq. (1.5).

The spectrum is analogous to the d = 3− ε case, with one conformal mode ω−, one radial
mode ω+ with mass

√
6µ2 − 1

2(d− 2)2, and (N − 2) spectator modes ω∗. Notice that the
dispersion relation of the spectators does not depend on d and is the same in the d = 3− ε
and d = 4−ε cases, i.e. its functional determinant is given by eq. (1.4) evaluated in d = 4−ε.
The chemical potential µ is related to the ’t Hooft coupling gQ as

µ =
3 1

3 +
(
x+
√
−3 + x2

) 2
3

3 2
3
(
x+
√
−3 + x2

) 1
3
. (3.7)

For later convenience, we separate the contribution of the various modes as

∆0(gQ) = ∆(a)
0 (gQ) +

(
N

2 − 1
)

∆(b)
0 (gQ) , (3.8)
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where, after performing regularization and renormalization, ∆(a)
0 and ∆(b)

0 can be written
in terms of convergent sums as [58]

∆(a)
0 (g∗Q̄) = −15µ4 + 6µ2 − 5

16 + 1
2

∞∑
`=1

σ(a)(`) +
√

3µ2 − 1√
2

, (3.9)

∆(b)
0 (g∗Q̄) = − 1

16
[
7 + µ

(
−16 + 6µ+ 3µ3

)]
+ 1

2

∞∑
`=1

σ(b)(`) , (3.10)

with

σ(a)(`) = (1 + `)2 [ω+(`) + ω−(`)]− 2`3 − 6`2 − 2µ2 − 2
(
µ2 + 2

)
`+ 5

(
µ2 − 1

)2
4` , (3.11)

σ(b)(`) = 2(1 + `)2ω∗(`)− 2`3 − 6`2 − (µ2 + 1)−
(
µ2 + 5

)
`+

(
µ2 − 1

)2
4` . (3.12)

In the following, we will unveil the large order behaviour of the small-gQ and large-gQ
expansions of ∆−1 and ∆0. In particular, we will show that, when neglecting ∆(a)

0 , both
expansions are convergent as opposed to the three-dimensional case considered in the
previous section.

3.1 The small-charge expansion

The small gQ expansion of ∆−1 is convergent and its radius of convergence is determined
by the only non-analytical point x = x0 = −

√
3. Notice that, being x0 negative, one can

smoothly connect the small- and large-charge expansions via analytic continuation. On the
other hand, as observed in [61], if one considers the model in 4− ε (with ε < 0) dimensions,
where the FP occurs in the UV at negative values of g, then the non-analytical point lies
on the positive Q axis and analytic continuing to large values of Q yields a complex ∆Q.
The onset of complex dynamics in the large-charge sector of the quartic O(N) theory above
four dimensions has been previously observed in the literature. In fact, in [61, 69], it has
been pointed out the existence of a critical value of the charge Qc above which ∆Q has a
non-vanishing imaginary part. In d = 4− ε (ε < 0), and using x = 6g∗Q supplemented by
eq. (3.2) we have

Qc
∣∣
1−loop = x0

(N + 8)
18ε = −N + 8

6
√

3ε
, (3.13)

in agreement with [61, 69].
By studying the coefficients of the small gQ expansion of ∆−1 we have that they

satisfy eq. (2.13) with x0 = −
√

3, p = −3/2, f(x0) = 1
9

√
2
3 (obtained with 25 terms),

f ′(x0) = 0.0014549(1) (with 60), and f ′′(x0) = 0.000256(1) (with 45). Therefore, in the
vicinity of the point x = −

√
3, ∆−1 behaves as

∆−1 = f(x)
(

1 + x√
3

)3/2
+ analytic . (3.14)

As in the d = 3− ε case, the radius of convergence occurs when the radial mode becomes
massless as can be seen from eqs. (3.5) and (3.7).
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By investigating the small-charge expansion of the next orders in the semiclassical
expansion we now test the claim made in [56] according to which the coefficients of the small
gQ expansion of ∆j , i.e. aj,n (i.e. ∆j =

∑
n

aj,n(gQ)n), should obey the following large-order

relation
aj+1,n−1
aj,n

≈ n . (3.15)

If the above were true it would imply the following large order behaviour:

aj,n = bj

( 1
−
√

3

)n(n+ j − 3/2
n

)[
1 +O

( 1
n

)]
, (3.16)

where bj are real numbers. Then, according to the Darboux’s theorem, all the ∆j would be
non-analytic in x = −

√
3 and in the vicinity of this point would behave as

∆j = fj(x)
(

1 + x√
3

)1/2−j
+ analytic . (3.17)

However, already for ∆0 the analysis of the coefficients of the small gQ expansion reveals
that the above is incorrect. In fact, as for the case with d = 3 − ε, near the singularity
∆0 reads

∆0 = f(x)
(

1 + x√
3

)1/4
+ g(x,N)

(
1 + x√

3

)1/2
+ analytic . (3.18)

In other words the arguments of [56] capture only, for ∆0, the essence of the second term in
eq. (3.18) but not the full singularity structure.

Interestingly, the nature of the leading non-analytical structure characterized by p in
both ∆−1 and ∆0 is identical in d = 3 − ε and d = 4 − ε dimensions for O(N) theories.
Intrigued by this observation, we studied the small Qε expansion of ∆−1 in other two
theories which have been previously investigated in the double-scaling limit (1.6), namely
the cubic O(N) model in d = 6− ε [61] and the U(N)×U(M) model in d = 4− ε [59, 60].
In both cases, we find that the leading singularity Q = Qc is tied to a vanishing mass for
the “radial modes” of the models. Around this point ∆−1 behaves as

∆−1 = f(Qε)
(

1 +
(
Q

Qc

)β)3/2

+ analytic , (3.19)

where β = 2 for O(N) in d = 3− ε and β = 1 for the other theories we investigated. The
difference in β should be traced, not in the space-time dimension, but in the fact that the
model investigated in 3− ε dimensions has one-loop vanishing beta function. Our results
hint at new universal behaviours in quantum field theories.

3.2 The large-charge expansion

The large gQ expansion of ∆−1 is convergent with a radius of convergence determined by
the non-analytical point at x = −

√
3. The number of expansion coefficients needed to

accurately characterize the singularity is larger (≈ 35) when compared to the small gQ case,
as shown in table 1.
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To analyze the large µ expansion of ∆0, we focus on the contribution of the spectator
fields defining ∆(b)

0 . In particular, our goal is to prove that the large gQ expansion is
convergent. We use the following Mellin representation to investigate the convergence
for ∆(b)

0

∆(b)
0 (gQ) =

∞∑
`=0

n` ω∗(`) =
∞∑
`=0

(`+ 1)2
√
µ2 + `(`+ 2)

= 1
Γ(s)

∫ ∞
0

dt ts−1e−µ
2tTr

(
e∆S3−ε t

) ∣∣∣∣∣
s=−1/2

=
∑
k=0

ak
Γ(−1/2 + k − 3−ε

2 )
−2
√
π

µ4−ε−2k , (3.20)

where the ak are the heat kernel coefficients on S3−ε, i.e. Tr
(
e∆S3−ε t

)
= ∑

k=0 akt
k+ 3−ε

2 .
For a given manifold, the heat kernel coefficients depend only on its geometrical properties,
e.g. a0 = Vol.S3−ε

(4π) 3−ε
2

. Due to the gamma function in the numerator of the equation above, the

terms with k = 0, 1, 2 diverge in the limit ε→ 0 and need to be renormalized. For example,
the term with k = 0 reads

− a0
Γ(−2 + ε/2)

2
√
π

µ4−ε =
[
− 1

8ε + 1
32(4γE − 5− 4 log(2)) + 1

8 log(µ) +O (ε)
]
µ4 . (3.21)

We checked that the 1/ε divergence cancels against a term arising from the renormalization
of ∆−1. As usual, the renormalization is connected with a logarithm of the relevant scale
that here is given by the chemical potential. By renormalizing the first three coefficients,
we obtain

∆(b)
0 (gQ) = 1

32µ
4(−5 + 4γE − 4 log(2)) + 1

24µ
2(1− 6γE + 6 log(2))

+ 1
80(11 + 10γE − 10 log(2)) + 1

8
(
µ2 − 1

)2
log(µ) + µ4 ∑

k=3
bkµ
−2k (3.22)

in agreement with the numerical results of [66]. The coefficients bk with k ≥ 3 can be
computed directly in d = 4. The heat kernel coefficients on the 3-sphere can be obtained as

Tr
(
e∆S3−ε t

)
=
∑
l=0

(l+1)2e−l(l+2)t

= 1
2e

t
∞∑

p=−∞
p2e−p

2t =
√
πet

4t3/2
+O

(
e−1/t

)
= t−3/2∑akt

k+O
(
e−1/t

)
, (3.23)

with ak =
√
π

4k! . Unlike the d = 3− ε case, the heat kernel expansion has an infinite radius of
convergence. By plugging the above in eq. (3.20), we obtain the coefficients of the large µ
expansion of ∆(b)

0

bk≥3 = − 1
4k(k − 1)(k − 2) . (3.24)
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Interestingly, we can resum the series and obtain a closed-form expression for ∆(b)
0 not

involving infinite sums. We have

∆(b)
0 = −5µ4

32 + µ2

6 −
1
20 + 1

8
(
µ2 − 1

)2
(

log
(
µ− 1

µ

)
+ γE − log(2)

)
. (3.25)

The analytic structure of ∆(b)
0 is as follows: there is an essential singularity at µ = 0 and

two logarithmic branch cuts which run, respectively, from µ = −1 to µ = −∞ and from
µ = 1 to µ = 0. However, from eq. (3.7), we see that µ 6= 0 for any value of gQ. Moreover,
µ(gQ = 0) = 1, and ∆0 is complex for any Q when g < 0, i.e. at the (metastable) UV
FP of the quartic O(N) theory in 4 < d < 6. Therefore, while the small-gQ expansion of
∆−1 reveals the existence of a critical value of the charge above which ∆Q is complex, the
analytic structure of ∆0 suggests a stronger statement, i.e. in 4 < d < 6 ∆Q is complex
for any value of Q. Away from four dimensions the situation can change due to different
asymptotic behaviours for even and odd dimensions of the O(N) CFT [77].

We have observed that the large gQ expansion of the ∆(b)
0 is convergent, in net contrast

with the (2n)! factorial growth found in three dimensions. Hence our result strengthens
the idea that the non-perturbative contributions to the functional determinant of spectator
fields (i.e. of free particles of mass equal to µ) have a geometrical origin and are, therefore,
absent on R× S3, where the WKB expansion of the heat kernel is exact [96].

4 Monopoles in QED3

Here we consider the large-charge expansion in fermionic gauge theories. In particular, we
study the QED3 model with Euclidean action given by

S =
∫
d3x

[ 1
4e2FµνF

µν + ψ
i (/∂ + i /A

)
ψi
]
, (4.1)

where the flavor index runs over i = 1, . . . , Nf and Aµ is a U(1) gauge field with field
strength Fµν . The theory has a SU(Nf ) flavor symmetry and a U(1) global symmetry
associated with the current

Jµ = 1
4πεµνρF

νρ , (4.2)

which is conserved due to the Bianchi identity dF = 0. One can define the monopole
operators as the operators carrying the corresponding conserved charge Q =

∫
d2xJ0, which

is subject to the Dirac quantization condition Q ∈ Z/2. For large enough Nf , the theory is
believed to flow to a conformal field theory in the infrared [99, 100]. In this phase we can
relate the scaling dimension of the lowest-lying monopole operators to the ground state
energy on the cylinder as

∆Q = EQ ≡ − logZS2×R

[
AQ
]
. (4.3)

Here ∆Q corresponds to the scaling dimension of a monopole operator carrying the charge
Q, EQ is the ground state energy on the cylinder when there is 4πQ units of magnetic flux
across S2, AQ the associated background gauge field, and ZS2×R is the partition function
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of the theory. For large Nf , ∆Q can be computed via a semiclassical expansion in 1/Nf

yielding eq. (1.8). The leading order corresponds to the action evaluated on the classical
field configuration and reads [101, 107]

∆−1 = 4
∞∑

`=Q+1
`
√
`2 −Q2 , (4.4)

where ` labels the eigenvalues of the Laplacian on a 2-sphere with a charge Q at the center.
The corresponding eigenfunctions are the monopole harmonics [112, 113] and the presence
of the background monopole field bounds ` as ` ≥ Q + 1. The above expression can be
regularized and computed numerically, as explained in detail in [101, 107].

4.1 The large-charge expansion

Here we focus on the large Q expansion of ∆−1 (4.4). By shifting the sum over `, we can
rewrite ∆−1 as

∆−1 = 4
∞∑
n=0

(n+Q+ 1)
√

(n+ 1)(n+ 2Q+ 1)

= 4
√

2Q3/2
∞∑
n=0

√
n+ 1

(
n+ 1
Q

+ 1
)√

n+ 1
2Q + 1

= 4
√

2Q3/2
∞∑
k=0

(−1)k−18−k(2k)!
(2k − 1)(k!)2

[ ∞∑
n=0

(n+ 1)k+ 1
2

(
n+ 1
Q

+ 1
)]( 1

Q

)k

= 4
√

2Q3/2
∞∑
k=0

(−1)k−18−k(2k)!
(2k − 1)(k!)2

ζ
(
−k − 3

2

)
Q

+ ζ

(
−k − 1

2

)( 1
Q

)k
. (4.5)

Rearranging the terms of the expansion, we obtain

∆−1 = Q3/2
∞∑
k=0

ak
1
Qk

, (4.6)

where the ak coefficients are given by

ak = 2
π2k! (−1)k+1 1

(4π)kΓ
(
k − 3

2

)
Γ
(
k + 5

2

)
sin
(
π

4 (2k + 1)
)
ζ

(
k + 3

2

)
. (4.7)

Analysing the ratio of consecutive coefficients, which we show in figure 3, we find that
the series is asymptotic and, therefore, requires a summation prescription such as Borel
resummation. The Borel transform of eq. (4.6) is given by

B
[∆−1
Q3/2

]
(t) =

∞∑
k=0

ak
k! t

k

=
∞∑
m=1

(i− 1)√
2πm3/2

[
2F1

(
−3

2 ,
5
2; 1;− it

4mπ

)
+ i 2F1

(
−3

2 ,
5
2; 1; it

4mπ

)]
.

(4.8)

Here 2F1(a, b; c;x) denotes the Hypergeometric function, which can be analytically continued
in the complex plane along any path avoiding the branch points at x = 1 and x = ∞.
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Figure 3. In this figure, we show the ratio 4π
k(−1)k+1

ak
ak−1

, where the ak are given by eq. (4.7).
The blue line represents the original coefficients, while the red, brown, and purple lines denote,
respectively, the first three Richardson extrapolations.
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-40

-20

20
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60

Figure 4. The singularity structure of the Borel transform of ∆−1 (4.8). There are branch points
at t = 4πim, m ∈ Z.

Hence B
[

∆−1
Q3/2

]
(t) features an infinite series of branch points at t = 4πim, m ∈ Z, as shown

in figure 4. As a consequence, the series (4.6) is Borel summable and both lateral Borel
summations coincide

∆−1 = Q5/2
∫ ∞

0
dt e−QtB

[∆−1
Q3/2

]
(t) =

∑
m=1

2iQ2

πm

[
exK2(x)− e−xK2(−x)

]
, x ≡ 2iπmQ ,

(4.9)
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where K2 is the modified Bessel function of the second kind. Finally, the optimal truncation
order corresponds to the value of k such that ak/Qk has a minimum and reads

kopt ≈ 4πQ , (4.10)

with an error of order O
(
e−4πQ

)
. We conclude that, even if the QED3 model shares

the same universal large-charge behaviour (1.3) of the three-dimensional O(N) model, its
large-charge expansion behaves better than O(N), having a higher optimal truncation order
(i.e. ≈ Q rather than ≈

√
Q) and being Borel summable. Notice that, since at the leading

order in 1/Nf the scaling dimensions are not affected by the inclusion of a Gross-Neveu
interaction term, our results apply also to QED3 −GN [114].

5 Conclusions

In this work we studied the analytic structure of the fixed charge expansion for O(N) in
different space-time dimensions and QED3. We have seen that in d = 3 − ε dimensions
the contribution to the O(N) fixed charge conformal dimensions, obtained in the double
scaling limit of large charge and vanishing ε, is non-Borel summable. Additionally, we have
shown that the series is doubly factorial divergent and displays

√
Q optimal truncation

order. Resurgence technologies helped us show that the singularities in the Borel plane are
connected to worldline instantons that were found in the alternative double scaling limit of
large Q and N of ref. [1]. We have also explored the case of d = 4− ε and shown that in
the same large Q and small ε regime the next order corrections to the scaling dimensions
amount to a convergent series. The resummed series exhibits a new branch cut singularity
which we found to be relevant for the stability of the large charge sector of the O(N) model
for negative ε. In the future, it would be interesting to include the contribution of radial
and conformal modes to learn how they affect the analytic structure of the fixed charge
expansion. For the QED3 model we discovered that at leading order in the large number
of matter field expansion the large charge scaling dimensions are Borel summable, single
factorial divergent and with order Q optimal truncation order. It would be also interesting
to investigate whether a non-Borel summable expansion emerges at subleading 1/Nf orders
(∆0 has been computed in [107] for QED3 and in [114] for QED3 −GN).
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