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1 Introduction

Understanding the dynamics of strongly coupled theories remains an open challenge making
it one of the most fascinating topics in theoretical physics. Partial progress has been made
both analytically and numerically via a number of tools developed in the past decades.
Quantum Chromo Dynamics (QCD), featuring three colors and several light flavors, has
been chosen by Nature as one of the pillars of the Standard Model of particle interactions.
QCD therefore stands out within the landscape of strongly coupled theories. However,
several relevant questions remain unanswered about its dynamics from the QCD physical
spectrum to the interplay between chiral symmetry breaking and confinement, to its phase
structure as a function of light matter fields (conformal window), temperature and matter
density. For example, knowledge about the phase diagram informs a number of physical
applications ranging from the inner structure of Neutron stars [2] to the thermal history of
the early Universe [3] and last but not least to applications beyond standard model physics
and cosmology (see [4, 5] and references therein). Another unsolved puzzle is the absence or
unexplained strong suppression [6, 7] of the otherwise legitimate presence in the theory of
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the topological term responsible for strong CP violation. Its possible resolutions in terms
of either the axion physics [8–15] or its alternatives such as the ones in which CP is broken
spontaneously [16–18] or models in which the emergent Goldstone boson is not an axion
(which would have a non-zero mass) [19] (see also [20]) are under active experimental and
theoretical investigation.

Reducing the number of colors from three to two provides a number of theoretical
advantages and increases potential phenomenological applications beyond the QCD tem-
plate. This is due, in a nutshell, to the symplectic nature of the matter representation that
enhances the quantum global symmetries for the light flavors from the SU(Nf)×SU(Nf)×
U(1)B to SU(2Nf). The enhancement of the quantum global symmetries (demonstrated
on the lattice in [21, 22]) has far-reaching consequences [23, 24], such as the possibility of
the minimal construction of composite Goldstone Higgs theories [25] to the natural intro-
duction of number changing operators (stemming from the Wess-Zumino term) crucial to
models in which dark matter genesis occurs within the dark sector itself [26–29]. When
discussing non-zero baryon charge the model allows for well defined lattice simulations be-
cause the action remains real, differently from ordinary QCD. For a review of the various
applications of the theory beyond the ones mentioned here we refer to [4, 5]. Last but not
least this model together with ordinary QCD has been one of the most studied theories
on the lattice as function of light flavors in the hunt for the predicted lower edge of the
conformal window [30–33] and its dynamical properties [21, 22, 34, 34–44], finite baryon
density [45–65] and last but not least the investigation of gravity-free asymptotic safety at
large number of matter fields (proven rigorously in [66, 67] for gauge-Yukawa theories) and
suggested for gauge-fermion theories in [68] investigated on the lattice in [69, 70].

The goal of our work is to go beyond the state-of-the-art by providing an in depth
analysis of the θ-angle and axion physics at non-zero baryon chemical potential of two-
color QCD. Earlier studies appeared in [71]. We organise our work by introducing in the
next section the two-color effective pion Lagrangian at non-zero baryon charge, including
both the θ-angle term as well as the axion field. In section 3 we will determine the vacuum
structure of the theory both in the normal and superfluid phase as a function of the different
number of matter fields. Here we will show how new phases emerge due to the interplay of
the θ-angle term, quark masses, and baryon chemical potential. We will also characterise
the type of phase transitions. In particular, we will study the dynamics of Nf = 2, 3, 6, 7, 8
flavors and unveil general properties depending on the even versus odd number of flavors.
We stop at eight flavours since around and above this number one expects the dynamics to
either become near conformal or conformal [33]. The analysis for near conformal dynamics
is performed in [1]. Here we discover that in the case of even flavors we observe a first order
CP phase transition for θ = π both in the normal and superfluid phase, except for the
case of Nf = 2 for which in the superfluid case the transition disappears as also discussed
in [71]. For the odd case, the normal phase still supports CP breaking at θ = π while
in the superfluid phase the θ = π is replaced by novel first order phase transitions for
θ = π

2 and θ = 3π
2 . We summarize the patterns of chiral symmetry breaking in the normal

and superfluid phases and determine the spectrum and associated dispersion relations in
section 4. We offer our conclusions in section 5.
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2 Two-color chiral Lagrangian

The Lagrangian of Nf Dirac fermions transforming according to the fundamental represen-
tation of two-color QCD reads:

L = − 1
4g2

~Gµν · ~Gµν + iQ̄σ̄ν
[
∂ν − i ~Gν ·

~τ

2

]
Q− 1

2mqQT τ2EQ+ h.c. . (2.1)

Here Gaµν and Gaµ with a = 1, 2, 3 are respectively the gluon field strength and the field
itself, τa are the Pauli matrices for the SU(2) color group, and Qc,iα is a two-spinor fermion
field transforming according to the fundamental representation of color with c = 1, 2 and
i = 1, · · · , 2Nf . In terms of qL,R, which are the original left and right handed quarks
stemming from the Dirac notation it reads

Q =
(

qL
iσ2τ2q

∗
R

)
. (2.2)

At zero fermion mass (i.e. mq = 0) the theory exhibits the classical U(2Nf) symmetry
broken at the quantum level by the Adler-Bell-Jackiw anomaly to SU(2Nf). The Dirac
mass term breaks explicitly the symmetry to Sp(2Nf) and the 2Nf × 2Nf matrix E reads:

E =
(

0 1
−1 0

)
⊗ 1Nf . (2.3)

At small number of flavors the dynamics is expected to be strong enough for a fermion
condensate to form breaking the SU(2Nf) global symmetry spontaneously to a smaller
subgroup expected to be the maximal diagonal one. However, only recently, first-principle
lattice simulations have been able to demonstrate this pattern of chiral symmetry breaking
in [21] which has been further confirmed in [22] for two Dirac flavors. Increasing the number
of flavors the dynamics can change and one expects the existence of a critical number of
flavors N∗f above which an IR interacting conformal fixed point emerges. This dynamics
has been investigated theoretically [33] and via first principle lattice simulations [72]. A
recent up-to-date review can be found in [5]. In fact, even the dynamics at very large
number of flavours is extremely interesting both theoretically and phenomenologically. It
is also being investigated on the lattice [69] searching for the existence of an interacting
non-perturbative UV fixed point [68] similar to the one shown to exist in [66, 67] for gauge-
Yukawa theories. For any 2 < Nf < N∗f it is therefore natural to expect the pattern of
spontaneous symmetry breaking to be SU(2Nf) → Sp(2Nf). Generalizing this theory to
arbitrary N while keeping the same global symmetries requires considering Sp(2N) gauge
groups and the associated conformal window has been discussed in [33]. The associated
chiral Lagrangian embodying the previous pattern of symmetry breaking reads [4, 23]:

Leff = ν2Tr{∂µΣ∂µΣ†}+m2
πν

2Tr{MΣ +M †Σ†} , (2.4)

with Σ transforming linearly under a chiral rotation as

Σ→ uΣuT , u ∈ SU(2Nf) , (2.5)
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and the democratic mass matrix M being

M = −iσ2 ⊗ 1Nf =
(

0 −1
1 0

)
⊗ 1Nf . (2.6)

2.1 Baryon charge

We can take into account a non-vanishing baryon charge by coupling it to a chemical
potential µ. The latter can be introduced as the zero component of a background gauge
field via the covariant derivative

∂µ 7→ Dµ = ∂µ − iµδ0
µB , B ≡

(
1/2 0
0 −1/2

)
⊗ 1Nf (2.7)

which reproduces the usual coupling of the chemical potential to the Noether charge in the
Dirac notation. In fact

q̄γ0q =
(
q∗L
q∗R

)T (1 0
0 1

)
⊗ 1Nf

(
qL
qR

)
= Q†

(
1 0
0 −1

)
⊗ 1Nf︸ ︷︷ ︸

≡2B

Q = 2Q†BQ . (2.8)

Notice that the baryon charge generator belongs to the su(2Nf) algebra being proportional
to the third Pauli matrix.

From the form of the B matrix, we see that for non-zero µ the Lagrangian is no longer
invariant under SU(2Nf) transformations. To fix the ideas, when the mass term is zero the
SU(2Nf) symmetry is explicitly broken as

SU(2Nf)
m=0, µ 6=0−−−−−−→ SU(Nf)L × SU(Nf)R ×U(1)B , (2.9)

conversely, for m 6= 0 one has

SU(2Nf)
m 6=0, µ 6=0−−−−−−→ SU(Nf)V ×U(1)B . (2.10)

By using the covariant derivative (2.7) into eq. (2.4), we obtain the effective Lagrangian
describing the theory at non-zero baryon charge

LB = ν2Tr{∂µΣ∂µΣ†}+ 4µν2Tr{BΣ†∂0Σ}+m2
πν

2Tr{MΣ +M †Σ†}

+ 2µ2ν2
[
Tr{ΣBTΣ†B}+ Tr{BB}

]
.

(2.11)

2.2 The θ-angle and the U(1) problem

In order to discuss the physics of the θ-angle and of the axial anomaly [73–75], we introduce
the topological charge density

q(x) = g2

64π2 ε
µνρσF aµνF

a
ρσ , (2.12)

which we incorporate in the effective Lagrangian as

Lq(x) = i

4q(x)Tr{log Σ− log Σ†} − θq(x) + q(x)2

4aν2 . (2.13)
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[SU(2)] SU(Nf)L × SU(Nf)R × U(1)V × U(1)A
qL � � 1 +1 +1
iσ2τ2q

∗
R � 1 �̄ −1 +1

[SU(2)] SU(2Nf) × U(1)A
Q � � +1

Table 1. Transformation properties of qL, iσ2τ2q
∗
R and Q under the action of the symmetry groups.

Here the new Σ is related to the old one that transforms only under SU(2Nf) via [76]

Σ→ Σe
i S√

2Nf
12Nf , (2.14)

with the S-field a singlet of SU(2Nf) transforming under the anomalous U(1)A, and it is
parent to the η′ particle in ordinary QCD.

The minimal choice to neglect orders higher than q2(x) is justified at large number
of colors, see discussion in [76, 77]. Here, to keep the same pattern of chiral symmetry
breaking the SU(2) of color generalizes to Sp(2N) and not SU(N). The linear term allows
accommodating for the U(1)A anomaly. The coefficient of the quadratic term in q(x) is
known as the topological susceptibility of the Yang-Mills theory. The coefficients of these
terms are coherently chosen such that we reproduce the axial anomaly ∂µJ

µ
5 = 4Nfq(x)

in two-color QCD with quarks in the fundamental representation [76]. Notice that q(x)
is a background auxiliary field introduced to implement the anomalous transformation at
the action level in linear fashion. It can, therefore, be integrated out via its equations of
motion, yielding the following effective Lagrangian

Lθ = ν2Tr{∂µΣ∂µΣ†}+ 4µν2Tr{BΣ†∂0Σ}+m2
πν

2Tr{MΣ +M †Σ†}

+ 2µ2ν2
[
Tr{ΣBTΣ†B}+ Tr{BB}

]
− aν2

(
θ − i

4Tr{log Σ− log Σ†}
)2

. (2.15)

The action of the symmetry groups is summarised in table 1 where the axial generator A
in our notation is

A = 1
2

(
1 0
0 1

)
⊗ 1Nf . (2.16)

2.3 The axion and the baryon charge

For the Standard Model three colors QCD there is no experimental evidence of strong
CP violation. This constrains the associated value of the effective theta angle θ̄ = θ +
arg det(M), withM the physical quark mass matrix, to be θ̄ < 10−10. The limit comes from
the bound on the neutron electric dipole moment |dn| = CEDMe θ̄ < 1.8× 10−26e cm [6, 7],
where CEDM = 2.4(1.0)× 10−16 cm [78] is related to the effective nucleon interactions with
the axion explained in the appendix of [76]. From a theoretical viewpoint, a tiny value of a
physical parameter unprotected by any symmetry requires an explanation. One solution for
the so-called strong CP problem was proposed in the 70s by R. Peccei and H. Quinn [8, 9].
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The proposal makes use of an additional U(1)PQ symmetry which is quantum mechanically
anomalous and spontaneously broken leading to the axion as an extra (pseudo-)Goldstone
boson. Axion physics has led to a great deal of both theoretical and phenomenological work
including active experimental searches beyond the original QCD axion [79]. An alternative
solution to the strong CP problem featuring new composite dynamics and heavier (if
not completely absent) axions was proposed in [19] and reconsidered in [20] and applied
extensively in model building in [80–82].

Of course, when discussing the θ-angle physics here, depending on the physical appli-
cation of the model, we can allow for new sources of CP breaking, perhaps relevant for
some models of dark matter or Standard Model secluded sectors [79]. Nevertheless, it is
interesting to entertain the possibility that an axion is present in the theory and therefore
explore its finite chemical potential dynamics and impact. We denote by νPQ the scale of
U(1)PQ spontaneous symmetry breaking and by aPQ the coefficient of the U(1)PQ anoma-
lous term. We include the axion in our theory by extending (2.15) to the following effective
Lagrangian

Lâ = ν2Tr{∂µΣ∂µΣ†}+ ν2
PQ∂µN∂

µN †+ 4µν2Tr{BΣ†∂0Σ}+m2
πν

2Tr{MΣ +M †Σ†}

+ 2µ2ν2
[
Tr{ΣBTΣ†B}+ Tr{BB}

]
− aν2

(
θ− i

4Tr{log Σ− log Σ†}− i

4aPQ(logN − logN †)
)2

.

(2.17)
The details on how to construct the extended effective theory can be found in [76].

3 Determining the vacuum

In this section, we focus on the vacuum structure of theory (2.15) in the presence of the
θ-angle and finite baryon charge. In particular, we will first study the general conditions
determining the classical vacuum solution as a function of θ and µ. Armed with these
results, we then carefully analyze the properties of the vacuum in the concrete cases Nf =
2, 3, 6, 7, 8 and Nf arbitrary. To begin with, we notice that for vanishing θ the vacuum is
determined by the competition of mass and baryon chemical potential. In other words, the
ground state can be written as [83]

Σc =
(

0 1Nf

−1Nf 0

)
cosϕ+ i

(
I 0
0 I

)
sinϕ where I =

(
0 −1Nf/2

1Nf/2 0

)
, (3.1)

where the angle ϕ is determined by the equations of motion.
To study the effect of θ on the vacuum solutions it is convenient to introduce the

Witten variables αi as [84]

Σ0 = U(αi)Σc , U(αi) ≡ diag{e−iα1 , . . . , e−iαNf , e−iα1 , . . . , e−iαNf } . (3.2)

These variables reflect the possibility to generalize the mass matrix in (2.6) by replacing
the 1Nf with diag{e−iα1 , . . . , e−iαNf }. Each phase is the overall axial transformation for
each left-right quark pair. The reason why we cannot consider a single (odd number of)
Weyl fermion(s) at the time (as is the case for real gauge representations) is that one
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cannot write a mass term in this case and the theory overall suffers from a topological
anomaly [85].

We take the above to be the general ansatz for the vacuum. The Lagrangian evaluated
on this ansatz reads

Lθ[Σ0] = ν2
[
4m2

πX cosϕ+ 2µ2Nf sin2 ϕ− aθ̄2
]

(3.3)

where for later convenience we introduced

θ̄ = θ −
Nf∑
i

αi , X =
Nf∑
i

cosαi (3.4)

where θ̄ is the effective theta angle that enters physical observables. The equations of
motion read

sinϕ
(
Nf cosϕ− m2

π

µ2 X

)
= 0 (3.5)

2m2
π sinαi cosϕ = aθ̄ , i = 1, . . . , Nf (3.6)

and the energy of the system is

E = −ν2
[
4m2

πX − aθ̄2
]
, normal phase (ϕ = 0) (3.7)

E = −ν2
[
2N

2
f µ

4 +m4
πX

2

Nfµ2 − aθ̄2
]
, superfluid phase

(
cosϕ = m2

π

Nfµ2X

)
. (3.8)

Note that when a � mπ all the θ-dependence is contained in an effective pion mass
m2
π(θ) ≡ m2

πX
Nf

. For θ = 0 (i.e. U(αi) = 1) one has X = Nf and θ̄ = 0, and we recover the
results in [83]. In this case, a normal to superfluid phase transition occurs when µ = mπ,
i.e. when cosϕ = 1. For θ 6= 0 the θ-dependence of the energy may be different in the two
phases. Therefore, to find the conditions for the onset of the superfluid phase we first need
to determine the θ vacuum in both phases. To this end, we observe that in the normal
(superfluid) phase the energy is minimized when X (X2) is maximized. In the former case,
the Witten variables are related to θ by the well-known equation

2m2
π sinαi = aθ̄ = a

θ − Nf∑
i

αi

 . (3.9)

For the general solution we must have for any θ̄ fixed sinαi = sinαj . To solve for the αi
we consider the expansion in the parameter m2

π
a that we take to be small. Concretely, at

the leading order one needs to solve for θ̄ = 0 and the angles αi satisfy

αi =

π − α, i = 1, . . . , n
α, i = n+ 1, . . . , Nf

(3.10)

where α is the solution of the following modular equation

n(π − α) + (Nf − n)α = θ Mod 2π . (3.11)

– 7 –



J
H
E
P
1
1
(
2
0
2
2
)
0
8
0

The modulo comes from the fact that if a solution {αi} of eq. (3.9) is found, then it is
possible to build another solution as follows

α1(θ + 2π) = α1(θ) + 2π , αi(θ + 2π) = αi(θ) , i = 2, . . . , Nf . (3.12)

However, since the physics depends only on e−iαi , the dynamics is invariant under θ →
θ + 2π. The solution of eq. (3.11) can be written as

α = θ + (2k − n)π
(Nf − 2n) , k = 0, . . . , Nf − 2n− 1 , n = 0, . . . ,

[
Nf − 1

2

]
. (3.13)

The range for k above emerges because for k ≥ Nf−2n we repeat the solution for a given n.
Note that when n 6= 0, the vacuum spontaneously breaks Sp(2Nf) because of the different
phases for each quark flavour.

It is well-known that CP is preserved when θ̄ = 0. For equal mass quarks as con-
sidered here, this happens when mπ = 0 or θ = 0. On the other hand, for θ = π the
Lagrangian (2.15) possess CP symmetry but in the normal phase the latter is sponta-
neously broken by the vacuum [76, 86–88],1 leading to a strong θ-dependence near θ = π.
In fact, assuming that the ground state does not break Sp(2Nf) spontaneously (i.e. n = 0),
the vacua lie at [87]

U(αi) = e
i θ+2πk

Nf 12Nf . (3.14)

For θ = π one has X = cos
(

(2k+1)π
Nf

)
, which is maximized when k = 0 and k = Nf − 1,

that is
U(αi) = e

iπ
Nf 12Nf , U(αi) = e

− iπ
Nf 12Nf . (3.15)

The two solutions are related by a CP transformation U → U † and thus CP is spon-
taneously broken. For Nf > 2 the minima are separated by an energy barrier while for
Nf = 2 the leading order quark-mass induced potential vanishes,2 apparently leading to a
paradoxical situation according to which one has massless pions and no explicit breaking
of chiral symmetry. The paradox is simply resolved by going to higher orders in the mass
for the chiral Lagrangian. Once these corrections are taken into account they lift, as ex-
pected, the vacuum degeneracy yielding two minima separated by a barrier [89, 90]. The
spontaneous breaking of CP at θ = π is known as Dashen’s phenomenon [86] and has been
thoroughly studied in the literature [84, 87–92]. As we shall see, in the superfluid phase
CP may be violated or not at θ = π depending on the value of Nf . Once determined the
αi to the leading order in a

m2
π
, subleading corrections can be more easily computed. Note

that in the superfluid phase the equation of motion (3.6) becomes

2m4
π

Nfµ2X sinαi = aθ̄ , i = 1, . . . , Nf . (3.16)

Hence, in this case the natural expansion parameter is m4
π

aµ2 leading to an enhanced sup-
pression compared to the normal phase.

1See also the discussion about the impact on the θ = π solution due to quark masses ordering provided
in the appendix of [76].

2As well explained in the work by Smilga [89] this phenomenon occurs because the trace of SU(2)
matrices are real.
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We now consider specific values of Nf to cover most of the phase diagram for which
chiral symmetry is expected to break spontaneously. In the companion paper [1] we will
re-examine the values of Nf that are expected to cover the near-conformal dynamics.

3.1 Nf = 2

We now focus on the case Nf = 2 which has been previously considered in [71] at the
leading order in m2

π
a . In this limit, the two angles {α1, α2} satisfy α1 + α2 = θ + 2kπ.

Additionally, because sinα1 = sinα2 we have

sinα1 = sin (θ + 2kπ − α1) (3.17)

yielding the solutions

sinα1 = sinα2 = sin
(
θ

2 + kπ

)
. (3.18)

Only k = 0 and k = 1 are independent solutions of the equations of motion and agree
with the general result in equation (3.13) for the αi for Nf = 2 that has the two solutions
corresponding to n = 0 and k = 0, 1 (i.e. {α1, α2} =

{
θ
2 ,

θ
2

}
and {α1, α2} =

{
θ+2π

2 , θ+2π
2

}
).

To determine the solution corresponding to the ground state for any value of θ we need to
consider the ground state energy. In the normal phase, the energy is linear in X and there-
fore the original equation of motion solutions cross at θ = π where Dashen’s phenomenon
occurs stemming from spontaneous CP symmetry breaking. Because in the superfluid
phase we have that the ground state energy is proportional to X2 the two solutions are
identical yielding a degenerate ground state. Interestingly this degeneracy is not lifted by
higher order corrections in m2

π
a . The θ-dependence in the two phases is shown in figure 1.

Additionally, when θ = π the effective mass m2
π(θ) ∼ m2

π

∣∣∣cos
(
θ
2

)∣∣∣ vanishes up to
correction of order O

(
m2
π
a

)
. Therefore, the mass term disappears from the Lagrangian and

the global flavor symmetry is again SU(4) consequently leading to massless Goldstones
when it spontaneously breaks to Sp(4) [71]. Nevertheless, there is no chiral symmetry
restoration in the fundamental Lagrangian. As mentioned, this apparent paradox is solved
by realising that SU(4) is still broken by higher order mass terms in the effective Lagrangian
also for a → ∞ [71, 87, 89]. By including the first two subleading corrections in m2

π
a , the

energy in the two phases reads

E(θ) = −8m2
πν

2
(∣∣∣∣cos θ2

∣∣∣∣+ 1
2
m2
π

a
sin2 θ

2 −
1
4
m4
π

a2

∣∣∣∣sin θ2 sin θ
∣∣∣∣
)
, normal phase

(3.19)

E(θ) = −ν2

4
(
m4
π cos2 θ

2 + µ4
)

µ2 + m8
π sin2 θ

aµ4 − m12
π sin2 θ cos θ

a2µ6

 , superfluid phase .

(3.20)
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Figure 1. θ-dependence of the energy for Nf = 2.

At fixed quark masses, the superfluid phase transition occurs at a critical value of the
chemical potential given by

µc = mπ(θ) = mπ

[√∣∣∣∣cos θ2

∣∣∣∣+O
(
m2
π

a

)]
, (3.21)

implying that it can be realized for tiny values of the chemical potential when θ ∼ π. To
estimate µc in the region θ ∼ π, we introduce φ ≡ θ − π and take into account the leading
correction in m2

π
a . As a result, we have that for small |φ| the critical chemical potential in

the region θ ∼ π reads

µc ∼ mπ

√
m2
π

a
+ |φ|2 , (3.22)

and vanishes for a→∞ and φ→ 0.
Still, in the superfluid phase the energy is an analytic function of θ. This can be better

appreciated by analysing the CP order parameter
〈
FF̃

〉
∝ −∂E

∂θ shown in figure 2 for the
two phases. The normal phase is characterised by a discontinuous CP order parameter at
θ = π while it is clear from the right hand panel of the figure that the superfluid phase
displays a smooth behaviour for any value of the θ-angle and vanishes for θ = π. The
discontinuity of the CP order parameter in the normal phase translates into a divergent
topological susceptibility χ = ∂2E

∂θ2 at θ = π. Note that the presence of the baryon chemical
potential suppresses CP violation for every value of θ as can be seen from the right panel
of figure 2. Finally, we study the effective θ̄ angle for θ = π at higher orders in m2

π
a for the

solutions of the equations of motion. We find

θ̄ = 2m2
π

a
sin θ2 =

θ=π

2m2
π

a
+O

(
m6
π

a3

)
, normal phase (3.23)

θ̄ = m4
π

aµ2 sin θ =
θ=π

0 , superfluid phase . (3.24)

Note that eq. (3.24) is exact to all orders in m4
π

aµ2 since the equation of motion (3.16) becomes

m4
π

aµ2 sin(2α) = π − 2α , (3.25)
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(b) CP order parameter for Nf = 2 in the su-
perfluid phase.

Figure 2. CP order parameter as a function of θ both in the normal and superfluid phase
for Nf = 2.

and has the solution α = π/2 (equivalent to α = 3π/2 under a shift θ → θ+2π). Therefore
to the present order in the chiral expansion, there is no spontaneous CP symmetry breaking
in the superfluid phase for θ = π.

3.2 Nf = 3

Compared to the previous subsection, the Nf = 3 case leads to a richer vacuum structure
as has been first pointed out in [89], who studied the physics in the normal phase. In fact,
we find the following four solutions for the set {αi} = {α1, α2, α3}

i.
{
θ

3 ,
θ

3 ,
θ

3

}
, ii.

{
θ+ 2π

3 ,
θ+ 2π

3 ,
θ+ 2π

3

}
, iii.

{
θ+ 4π

3 ,
θ+ 4π

3 ,
θ+ 4π

3

}
, iv.

{
θ−π , θ−π , 2π− θ

}
.

(3.26)
In figure 3(a) we show the value of the variable −X as a function of θ. Recalling that
in the normal phase, the energy is minimized when X is maximized, we observe that the
physical vacuum is ruled by the solutions i. and iii. which cross at θ = π where Dashen’s
phenomenon occurs [89]. In the superfluid phase the story changes since now the minimum
of the energy is achieved when X2 is maximized. The situation is depicted in figure 3(b):
here the relevant solutions are i., ii., iii. . Solutions i. and ii. cross at θ = π

2 whereas ii. and
iii. cross at θ = 3π

2 . Therefore, at θ = π we have a unique minimum and CP is conserved.
In other words, Dashen’s phenomenon at θ = π is again absent in the superfluid region.
However, two new non-analytic points occur, one at θ = π

2 and the other at θ = 3π
2 . These

are indications of two novel first-order phase transitions because the derivative of the free
energy (corresponding to the CP order parameter

〈
FF̃

〉
) jumps at these two values of θ.

Having determined the θ-vacuum in the two regions, we proceed by studying the
transition between the normal and superfluid phases. Since the U(αi) that minimizes
the energy depends on θ and differs in the two phases, one should determine the critical µ
by comparing the energies (3.7) and (3.8) in the given intervals of θ. We find that when the
superfluid solution exists (i.e. cosϕ ≤ 1) it is always realized. In turn, the critical chemical
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Figure 3. θ-dependence of the energy for Nf = 3.

potential is µc = mπ(θ), which is displayed in figure 4. Differently from the Nf = 2 case,
µc exhibits a mild dependence on θ and oscillates near the value µc = mπ.

The CP order parameter is plotted for the normal and superfluid phases in figure 5(a)
and figure 5(b), respectively. Finally, we show the value of θ̄ at θ = π for the ground state
energy. The expression in the m2

π
a expansion is

θ̄ =
√

3m2
π

a
− m4

π√
3a2 −

m6
π

6
√

3a3 +O
(
m8
π

a4

)
, normal phase (3.27)

θ̄ = 0, superfluid phase . (3.28)

3.3 Nf = 6

For the case of Nf = 6 we, at first, assume that chiral symmetry breaking occurs away from
a potential nearby (as function of flavors) conformal phase is discussed at length in [1]. The
full set of solutions is given by

Solutions i-vi : α1 = α2, · · · = α6 = θ + 2πk
6 , k = 0, . . . , 5

Solutions vii-ix : α1 = α2 = · · · = α5 = θ − π + 2πk
4 , α6 = π − α1 , k = 0, . . . , 3

Solutions x-xii : α1 = α2 = · · · = α4 = θ − 2π + 2πk
2 , α5 = α6 = π − α1 , k = 0, 1 .

(3.29)

Here the relevant solutions for U(αi) have α1 = α2 = · · · = α6 = α. Moreover, all the
solutions appear in pairs of degenerate energy in the superfluid phase as already observed
in the Nf = 2 case. This can be understood by noting that when Nf is even, then from a
given solution α of eq. (3.13) it is possible to build another solution as α+π that will lead
to the same −X2. As displayed in figure 6(a), in the normal phase the minimum of the
energy is achieved for α = θ

6 (defined as solution i) and α = θ+10π
6 (solution iii) with the

two solutions crossing at θ = π. This occurs also in the superfluid phase but now solution
i and iii are degenerate for every value of θ with α = θ

6 + π and α = θ+4π
6 , respectively. In

figure 6(b) we show the phase diagram of the theory as a function of θ and µ. Differently
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(a) The CP order parameter
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FF̃
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(b) The CP order parameter
〈
FF̃
〉
as a function

of θ in the superfluid phase for different values
of the chemical potential: µ = 5, 10, 15. We
consider mπ = ν = 1.

Figure 5. θ-dependence of the CP order parameter for Nf = 3.
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Figure 6. θ-dependence of the energy and of the critical chemical potential for Nf = 6.
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(a) The CP order parameter
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tion of θ in the normal phase. We consider
mπ = ν = 1.

μ=5

μ=10

μ=15

π

2
π

3π

2
2π

θ

-0.06

-0.04

-0.02

0.02

0.04

0.06

<FF
˜
>

(b) The CP order parameter
〈
FF̃
〉
as a function

of θ in the superfluid phase for different values
of the chemical potential: µ = 5, 10, 15. We
consider mπ = ν = 1.

Figure 7. θ-dependence of the CP order parameter for Nf = 6.

from Nf = 2 we still observe a Dashen phenomenon at θ = π and therefore CP breaks
spontaneously for this value.

In the Nf = 6 case we therefore have spontaneous breaking of CP at θ = π in both
phases as can be seen considering the CP order parameter represented in figure 7(a) and
figure 7(b).

Finally, we report the value of θ̄ at θ = π expanded in m2
π
a

θ̄ = m2
π

a
− m4

π

2
√

3a2 + 5m6
π

72a3 +O
(
m8
π

a4

)
, normal phase (3.30)

θ̄ = −
√

3m4
π

2aµ2 + m8
π

4
√

3a2µ4 + m12
π

48
√

3a3µ6 +O
(
m16
π

a4µ8

)
, superfluid phase . (3.31)

3.4 Nf = 7

For the Nf = 7 case we have thus 16 solutions of eq. (3.13) which are given by

Solutions i-vii : α1 = α2, · · · = α7 = θ+ 2πk
7 , k = 0, . . . , 6

Solutions viii-xii : α1 = α2 = · · · = α5 = θ−π+ 2πk
5 , α6 = α7 = π−α1 , k = 0, . . . , 4

Solutions xiii-xv : α1 = α2 = α3 = θ− 2π+ 2πk
3 , α4 = α5 = α6 = α7 = π−α1 , k = 0, . . . , 2

Solution xvi : α1 = θ− 3π, α2 = α3 = · · · = α7 = π−α1 .

(3.32)
The solution that minimizes the energy and their corresponding θ-dependence in the two
phases is shown in figure 8. As in the previous cases, the solutions that minimize the
energy have all equal angles, corresponding here to the first set of solutions in (3.32). In
particular, in the normal phase the minimum of the energy is achieved for α = θ

7 and
α = θ+12π

7 with the two solutions crossing at θ = π (in figure 8(a)). The θ-dependence in
the superfluid phase is analogous to the Nf = 3 case. In fact, the relevant solutions are
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Figure 8. θ-dependence of the energy and of the critical chemical potential for Nf = 7.

α = θ
7 , α = θ+6π

7 , and α = θ+12π
7 with the first two crossing at θ = π

2 while the second and
the third at θ = 3π

2 . As already described in the Nf = 3 section, the energy is characterised
by a unique minimum and CP intact symmetry at θ = π.

The critical chemical potential is displayed in figure 8(b). It oscillates with period 2π
between the values µc = mπ and µc = mπ(θ). Figure 8 leads us to further investigate the
physical meaning of the θ = π

2 and θ = 3π
2 points. As a consequence, we analysed the

CP order parameter which we show in figure 9 as a function of θ. As can be seen from
the figure, the aforementioned points are actually points of discontinuity of the CP order
parameter therefore it signals the occurrence of a first-order phase transition.

Finally, we provide the values of θ̄ at θ = π in the m2
π
a expansion

θ̄ =
2m2

π sin π
7

a
−

2m4
π cos 3π

14
7a2 +

2m6
π sin π

7

(
1 + 3 sin 3π

14

)
49a3 +O

(
m8
π

a4

)
, normal phase

(3.33)

θ̄ = 0, superfluid phase .
(3.34)

3.5 Nf = 8

We proceed with the general expression for the solutions of (3.13) for the Nf = 8 case

Solutions i-viii : α1 = · · · = α8 = θ+ 2πk
8 , k = 0, . . . , 7

Solutions ix-xiv : α1 = · · · = α6 = θ−π+ 2πk
6 , α7 = α8 = π−α1, k = 0, . . . , 5

Solutions xv-xviii : α1 = · · · = α4 = θ− 2π+ 2πk
4 , α5 = · · · = α8 = π−α1, k = 0, . . . , 3

Solutions xix-xx : α1 = α2 = θ− 3π+ 2πk
2 , α3 = · · · = α8 = π−α1, k = 0, 1 .

(3.35)
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(a) The CP order parameter
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(b) The CP order parameter
〈
FF̃
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as a function

of θ in the superfluid phase for different values
of the chemical potential: µ = 5, 10, 15. We
consider mπ = ν = 1.

Figure 9. θ-dependence of the CP order parameter for Nf = 7.
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Figure 10. θ-dependence of the energy and of the critical chemical potential for Nf = 8.

In line with our previous analyses, the θ-dependence of the energy is minimised by the
solutions with all equal angles. Figure 10 displays the behaviour of this minimum in the
range θ ∈ [0, 2π] as well as the phase diagram of the theory. The θ-dependence is analogous
to Nf = 6 case as it can be further deduced by studying the CP order parameter with its
behaviour shown in figure 11.

The value of θ̄ at θ = π in an m2
π
a expansion reads

θ̄ =
2m2

π sin π
8

a
− m4

π

4
√

2a2 +

(
1 + 3√

2

)
m6
π sin π

8

32a3 +O
(
m8
π

a4

)
, normal phase (3.36)

θ̄ = m4
π√

2aµ2 −
m8
π

8a2µ4 + m12
π

64
√

2a3µ6 +O
(
m16
π

a4µ8

)
, superfluid phase . (3.37)
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(a) The CP order parameter
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FF̃
〉
as a func-

tion of θ in the normal phase. We consider
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(b) The CP order parameter
〈
FF̃
〉
as a function

of θ in the superfluid phase for different values
of the chemical potential: µ = 5, 10, 15. We
consider mπ = ν = 1.

Figure 11. θ-dependence of the CP order parameter for Nf = 8.

3.6 Considerations for general Nf

Having analyzed in detail the physics for different values of Nf away from the conformal
window, we take a step back and consider the emerging structure hinting at structural
differences between the even/odd Nf cases in the superfluid phase. We start by noting
that solutions of the EOM are generally not periodic of 2π for θ. In fact, the periodicity
condition can be satisfied only if at least two solutions cross in the interval θ ∈ [0, 2π].
Taking U = e−iα12Nf , one can ask when two different solutions of the equation of motion
can have the same energy. This corresponds to requiring

cos
(
θ + 2πk1

Nf

)
= cos

(
θ + 2πk2

Nf

)
, normal phase (3.38)

cos2
(
θ + 2πk1

Nf

)
= cos2

(
θ + 2πk2

Nf

)
, superfluid phase . (3.39)

Both conditions are satisfied when k1 = − θ
π − k2 +Nf . Since k1, k2 are integers, it follows

that the energy can only be non-trivially equal for θ = π. Therefore to find the two
different solutions, in the normal phase, covering the full [0, 2π] interval for θ it is sufficient
to consider the case k1 = 0 that for [0, π] interval corresponds to the ground state energy,
furthermore at θ = π it forces the second solution to be k2 = Nf − 1. This result is in
agreement with the findings for the specific cases above for the normal phase.

In the superfluid phase, we have two additional solutions to the second condition (3.39):

• When Nf is even we have the solution k1 = k2 + Nf
2 which does not depend on θ. This

corresponds to the observation that the solutions for even Nf organize themselves in
pairs (α and α + π) with the same energy for every θ. Additionally, of course, we
still have the normal phase solution k1 = 0 and k2 = Nf − 1 together with their
superfluid degenerate partners. These two classes of solutions cross at θ = π except
for the special Nf = 2 case for which the crossing disappears. Note that the pairs of
completely degenerate solutions remain such to all orders in m2

π
a . In fact, given the
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EOM for a certain α
m4
π

aµ2 sin(2α) = θ −Nfα , (3.40)

we have the same EOM for α + π, upon shifting the θ-angle as θ → θ +Nfπ. Being
Nf even, this corresponds to a shift by an integer multiple of 2π.

• WhenNf is odd we have the solution k1 = −k2+Nf
2 −

θ
π which can be realized for θ = π

2
and θ = 3π

2 . Since the solution that minimizes the energy near θ = 0 is α = θ
Nf

, then
it will cross at θ = π

2 with the solution for θ > π
2 that becomes α = θ+2πk2

Nf
= θ−π

Nf
+ π.

The latter solution represents the minimum till θ = 3π
2 where its energy crosses with

α = θ−2π
Nf

. As a consequence, the vacuum is always non degenerate at θ = π where
CP is conserved. In particular, for θ = π, θ̄ vanishes to all orders in m4

π
aµ2 since the

equation of motion (3.16) admits the minimum energy solution α = θ = π. On the
other hand, we have two novel first-order phase transitions at θ = π

2 ,
3π
2 due to a jump

of the physical vacuum between the two minima and characterized by a discontinuous
CP order parameter.

Finally, we estimate the tension of the domain wall between the two degenerate vacua at
θ = π for even Nf in the superfluid phase. To this end, we consider the Lagrangian (2.15)
and look for solutions αi = αi(x) that interpolate between the two degenerate ground
states (3.15) at θ = π with x the coordinate orthogonal to the domain wall. By considering
the ansatz (3.2), we obtain the tension of the wall as

T = 2ν2
∫ ∞
−∞

dx

 Nf∑
i=1

α′i(x)2 − m4
π

µ2Nf

 Nf∑
i=1

cos
(
π

Nf
+ αi(x)

)2
 (3.41)

where we have shifted αi as αi → αi+ π
Nf

such that the boundary conditions are α(−∞) = 0
and α(∞) = π. As discussed in [87], the boundary condition fixes αi = α for i = 1, . . . , Nf−
1 and αNf = −(Nf − 1)α, leading to

T = 2ν2
∫ ∞
−∞

dx

[
(Nf − 1)Nfα

′(x)2− m4
π

µ2Nf

(
(Nf − 1) cos

(
α(x) + π

Nf

)
+ cos

(
π

Nf
− (Nf − 1)α(x)

))2
]
.

(3.42)
By introducing dimensionless coordinates as x̄ = xm

2
π
µ , we obtain that regardless of the

exact form of the wall’s profile, its tension scales as

T ≈ ν2m2
π

µ
(3.43)

and shows a suppression by a factor or mπ

µ compared to the normal phase result T ≈ν2mπ [87].

3.7 Ground state energy with the axion

The effective action for two-color QCD at finite baryon number in the presence of the
Peccei-Quinn axion field N is

Leff = −aν2

θ − Nf∑
i=1

αi − δ

2

−Λ4+4ν2m2
πX cosϕ+2µ2ν2Nf sin2 ϕ , 〈N〉 = e−iδ/aPQ ,

(3.44)
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whose equation of motion θ−∑Nf
i=1 αi− δ = 0 is solved for δ = θ and αi = 0. This solution

minimizes the energy and leads to X = Nf . Hence, the superfluid ground state energy in
presence of the axion corresponds to the known result at θ = 0 [83]

E = −2ν2Nf
µ2

(
m4
π + µ4

)
. (3.45)

4 Symmetry-breaking pattern and spectrum

In the section above we concentrated on determining the vacuum structure of the theory.
We now move to establish the associated symmetry-breaking pattern starting with the
theory without an axion. The pattern will allow us to disentangle the light degrees of
freedom of the theory. We will keep the analysis as general as possible so that it is applicable
also for the continuation of our work related to near-conformal field theories in the large-
charge expansion [1].

4.1 Symmetry-breaking pattern without the axion

The dynamics of the theory at hand depends on three parameters: the mass of the quarks
m, the chemical potential µ, and the scale of the axial anomaly a. The latter corresponds to
the energy at which the pseudo-Goldstone (the S-particle) emerging from the spontaneous
symmetry breaking of the axial symmetry acquires an anomalous mass. We are interested
in the low energy theory where S is kept into the spectrum. We, therefore, consider the
following hierarchy3

m�
√
a ≤ µ� 4πν , (4.1)

where the last inequality implies the validity of the chiral EFT. For m = µ = 0 and in
absence of the singlet S, the infrared spectrum consists of massless Goldstone bosons of
the spontaneously broken chiral symmetry as summarized below.

m = 0
µ = 0√
a� ν

SU(2Nf)
2N2

f−N f−1
 Sp(2Nf)

2N2
f−N f−1

Goldstones transforming under the
antisymm. representation of Sp(2Nf)

When setting to zero the anomaly, and in the absence of the quark mass, the S-field
becomes the Goldstone boson of the U(1)A.

We now provide the full spectrum of light particles in the following limits:
1. m 6= 0, µ = 0 and

√
a� 4πν.

Working in steps, one first considers the would-be pattern of spontaneous symmetry
breaking according to which SU(2Nf)×U(1)A breaks spontaneously to Sp(2Nf). Then
the associated 2N2

f −Nf Goldstone bosons acquire masses via the non-zero quark mass
and the anomaly.

3This hierarchy of scales is typical when modelling neutron stars in 2-color QCD at finite isospin chemical
potential [2].
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2. m = 0, µ 6= 0 and
√

a� 4πν.
The introduction of the chemical potential breaks explicitly the final Sp(2Nf) to
SU(Nf)L×SU(Nf)R×U(1)B while the anomaly breaks U(1)A. The relativistic Bose-
Einstein condensation leads to the further spontaneous symmetry breaking SU(Nf)L×
SU(Nf)R ×U(1)B  Sp(Nf)L × Sp(Nf)R. Therefore, the final spectrum is composed
of N2

f −Nf−1 massless Goldstone bosons the massive S state due to the anomaly, and
N2

f modes with mass proportional to the chemical potential. The latter belong to the
(Nf , Nf) irreducible representation of Sp(Nf)L×Sp(Nf)R whereas the true Goldstones
arrange themselves into three different irreducible representations: a singlet (1, 1), the(
Nf(Nf−1)

2 − 1, 1
)
representation and the

(
1, Nf(Nf−1)

2 − 1
)
. The sum of the degrees

of freedom adds to 2N2
f −Nf .

3. m 6= 0, µ 6= 0 and
√

a� 4πν.
The situation here is involved due to the competition between the quark mass term
and the baryon chemical potential. The chemical potential breaks Sp(2Nf) down to
SU(Nf)L × SU(Nf)R × U(1)B, which, in turn, is explicitly broken by the mass term
to its vectorial subgroup SU(Nf)V × U(1)B. Finally, the superfluid vacuum breaks
the latter symmetry group to Sp(Nf)V yielding to N2

f −Nf
2 massless Goldstone bosons

as summarized below

SU(2Nf)×U(1)A
2N2

f−N f
 Sp(2Nf)

SU(N f)V×U(1)B

µ

Sp(Nf)V

N2
f −Nf

2
superfluid phase

a, m

The case of our interest is the last one, where we have N2
f −Nf

2 Goldstones transforming
according to the antisymmetric representation of Sp(Nf)V plus a singlet. Additionally,
there’s the η′ like state S with mass of order

√
a.

The naive counting above of the number of Goldstone bosons holds correct here since
there are no Goldstone bosons of type II [93] in this case. The reason is that the dimension
of the representation of the Goldstone bosons is identical to the number of broken generators
(see discussion in [94]).

4.2 Symmetry-breaking pattern with the axion

In this section, we analyse the symmetry-breaking pattern for m 6= 0, µ 6= 0, a� 4πν but
including the presence of the additional U(1)PQ symmetry discussed at the end of section 2.
The latter is classically exact but quantum mechanically anomalous and spontaneously
broken, leading to the existence of a new pseudo-Goldstone boson (the axion) with the mass
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of the order of the scale of the anomaly. We summarize below the pattern of symmetry
breaking

SU(2Nf)×U(1)A ×U(1)PQ
2N2

f−N f+1
 Sp(2Nf)

SU(N f)V×U(1)B

µ

Sp(Nf)V

N2
f −Nf

2
superfluid phase

m, a, aPQ

From the picture is clear that the spectrum of Goldstones remains the same as in the
case without the axion with an additional singlet massive state.

In the next section, we will study the dispersion relations of the light modes describing
the infrared dynamics by explicitly expanding the Lagrangian at the quadratic order in the
fluctuations around the ground state.

4.3 Fluctuations spectrum

To analytically determine the dispersion relations of the different relevant states around the
vacuum we consider the large a/m2

π expansion and stop at the leading order. We recover
eqs. (69) and (84) of [83] for θ = 0, and generalize them to include the θ-angle by taking it
into account via an effective quark mass matrix. We obtain

ω2
1 = k2 + µ2 ,

1
2Nf(Nf + 1) (4.2)

ω2
2 = k2 + m4

πX
2

µ2N2
f
,

1
2Nf(Nf − 1)− 1 (4.3)

ω2
3 = k2 + 2

(
µ4N2

f + 3m4
πX

2)
N2

f µ
2 +A , •+ 1

2Nf(Nf − 1) (4.4)

ω2
4 = k2 + 2

(
µ4N2

f + 3m4
πX

2)
N2

f µ
2 −A , •+ 1

2Nf(Nf − 1) (4.5)

ω2
5 = k2 +M2

S , • 1 (4.6)

where

A = 2
N2

f µ
2

√(
N2

f µ
4 + 3m4

πX
2)2 + 4N2

f µ
2m4

πk
2X2 , (4.7)

M2
S = aµ4N3

f + 2µ2m4
πX

2

2µ4N2
f − 2m4

πX
2

(
1− m4

πX
2

µ2N2
f

)
. (4.8)

The Young tableaux describe the irreducible representations of Sp(Nf) according to
which the states transform with • denoting the singlet representation. The number of de-
grees of freedom sum to dim

(
U(2Nf)
Sp(2Nf)

)
= Nf(2Nf−1), i.e. the number of pseudo-Goldstones
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of the chiral symmetry breaking plus the η′ like S-particle. For θ = 0 the first four dis-
persion relations reduce to the ones found in [83]. ω4 describes true Goldstone modes with
speed vG = 1 which parametrize the coset SU(Nf)

Sp(Nf) and correspond to the π modes considered
in [94]. These are the modes in which we will be mainly interested in the companion paper
of this work since they dominate the large-charge dynamics. In addition, we have modes
with a mass of order µ (ω1 and ω3) and modes with mass m2

πX
µNf

. If we include the axion in
our theory, the dispersion relations of the modes described by eqs. (4.2)–(4.5) remain the
same with X = Nf , i.e. we have the spectrum at θ = 0 as expected from the Peccei-Quinn
mechanism. On top of that, we have the modes stemming from the mixing between the
singlet S and the axion, which is described by the following inverse propagator

D−1 =

 ω2−k2

sin2 ϕ
−M2

S − a
√
NfaPQ

4
√

2νPQ sin2 ϕ

− a
√
NfaPQ

4
√

2νPQ sin2 ϕ
ω2−k2

4ν2 sin2 ϕ
−M2

â

 , (4.9)

where

M2
S =

(
aµ4Nf + 2µ2m4

π

)
2µ4 − 2m4

π

(4.10)

M2
â =

aµ4a2
PQ

16ν2
PQ (µ4 −m4

π) . (4.11)

The dispersion relations read

ω6,7 = 1
2

√
4k2 + 8ν2M2

â sin2 ϕ+ 2M2
S sin2 ϕ± 1

νPQ

√
2a2ν2Nfa2

PQ + 4ν2
PQ sin4 ϕ

(
M2
S − 4ν2M2

â

)2
.

(4.12)
As can be seen from the inverse propagator, the S particle and the axion decouple in the
anomaly-free limits a → 0 and aPQ → 0. In the former case, the S-particle describes a
pseudo-Goldstone mode with mass of order M2

S = µ2m4
π

µ4−m4
π
, while for aPQ → 0 we have

M2
S = aNf

2 for µ� mπ, in agreement with the Witten-Veneziano relation [73, 74]. On the
other hand, in the limit of vanishing anomalies, the axion is massless being the U(1)PQ
symmetry exact.

5 Conclusions

We investigated the spectrum, the pattern of chiral symmetry breaking and the dispersion
relations at low energy of two-color QCD as a function of the baryon chemical potential,
the topological term responsible for strong CP breaking as well as the quark masses. The
analysis is applicable to Sp(2N) gauge groups with fermions in the fundamental representa-
tion. We explicitly considered the dynamics stemming from two, three, six, seven and eight
light matter flavors and determined the normal and superfluid ground state. We showed
that the vacuum acquires a rich structure stemming from the presence of the CP violat-
ing topological operator and unveiled novel phases. We analysed these phases, studied
the dependence of the critical chemical potential on the θ angle, delineating the bound-
ary between the normal phase and the superfluid phase. By investigating the behaviour
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of the CP order parameter we characterised the order of the phase transitions which are
shown to be first order. The results are readily applicable, in the normal phase, to the
θ and axion physics of composite Goldstone Higgs models. In particular, a new compos-
ite strong source of CP violation can be relevant to investigating composite electroweak
baryogenesis [24, 95, 96] while the nonzero chemical potential analysis is useful for studying
asymmetric dark matter [24, 28, 29] and the interplay with CP violation. Our predictions
can guide and be tested by first principle lattice simulations at nonzero baryon chemical
potential but including also the effects of the topological susceptibility [97, 98].

We stress that the results are valid for a number of flavours below the lower boundary
of the conformal window whose value increases with the underlying number of colors of
the Sp(2Nc) gauge theory investigated here. In the large Nc limit the eta-prime becomes a
quasi-Goldstone boson and therefore validates the effective approach used here. The anal-
ysis is further performed respecting the hierarchies of scales of (4.1) allowing to consider
the impact of the chemical potential as a modification of the underlying pattern of chiral
symmetry breaking in the vacuum. In the future, higher derivative terms can be consis-
tently included in the framework such as the Wess-Zumino-Witten term and its possible
gauging [99] following [100].
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