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ABSTRACT

We present a statistical mechanics theory of rubber-like elasticity in swollen and unswollen
polymer networks characterized by explicitly non-Gaussian distribution functions (Laplace’s,
Cauchy’s, and continuous Poisson’s in the exponential limit). An important outcome is the
derivation of new families of statistical and mechanical laws, including a discussion of energy
functions of strain invariants, which are reasonably simple for a model comparison with available
data on polymer networks. Accordingly, a theoretical-experimental approach based on LF-NMR
was devised to identify the most likely end-to-end length distribution in an arbitrary network.
When this strategy is applied to agar 1 %, alginate 1 %, and scleroglucan 2 % hydrogels, it turns
out that the end-to-end distribution should be never regarded as Gaussian even if, as in agar and
scleroglucan systems, the normal statistics is the best among those here regarded. Remarkably,
Poisson’s distribution is proved instead to be the most realistic for the alginate hydrogel.

1. Introduction
Rubber elasticity theory had probably the most enduring history in all of polymer disciplines, displaying a remark-

able size of discrepancies with experimental data which were intensively and contradictorily debated for decades (see
e.g. bibliography in Hild (1998)). The agreement one is usually left with is mainly qualitative and the probability dis-
tribution function governing the nascent network, whether it is swollen or unswollen, is generally unknown (Huang,
Szleifer and Peppas, 2002). A crucial question, which still remains, is a profound self-consistent description of micro-
scopic chain conformations versus macroscopic network deformations, as the basic properties of deformation processes
can only be explained qualitatively by means of topology arguments. Many disputes were on the roles of cross-link
junctions, their fluctuations, cooperative movements and constraints they exert on the (first) neighbouring chain confor-
mations (Candau, Bastide and Delsanti, 1982) and any relevant steric interaction, specially entanglements and various
types of network defects, like physical and intramolecular crosslinks (Gedde, 1995). Topological constraints are not
ascribable to chemical cross-links, they are very heterogeneous, act as interchain effects almost continuously along
the chain and ultimately interplay with elastic and osmotic forces (Priss, 1981; Panyukov and Rabin, 1996). Entan-
gled points, in particular, are temporary and of short duration (Hild, 1998). Mullins’ early hypothesis, to deal with an
apparent crosslink number summing chemical junctions and physical entanglements, was afterwards denied (Gedde,
1995).
Over the years polymer scientists complemented and/or corrected the classical theories by more realistic mechanisms
(Priss, 1981). Gaussian mean-field assumptions, in fact, are anyway restrictive (e.g. small elongations, networks pre-
pared by coalescing concentrated solutions with compressed or weakly stretched chains, etc.) and, normally, better
tolerated in the dry state, which is representative of dense neutral polymer systems where excluded volumes screen
out. On the other hand, swollen networks in good solvents are notoriously non-Gaussian, the most effective, yet elegant
analysis, being still given by de Gennes’ scaling theory, furnishing a universal description in terms of blob correlations
(de Gennes, 1979). Between dilute and Gaussian regimes, chain conformations behave as a random walk of blobs
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with correlation length equal to the average mesh size of semidilute solutions (see e.g. Mezzasalma (2008)). The
c∗ theorem, however, only holds in networks with almost regular topology and synthesized at the overlap threshold
between dilute and semidilute regimes (Panyukov, 1990), while real swelling phenomena are affected by topological
disorder and inhomogeneities (entanglements, dangling ends, closed loops, crosslink reactions), trapped in the prepa-
ration process, by heterogeneous fluctuations in the cross-link density, increasing beyond the thermodynamic values,
and by geometric effects (Johner, Vilgis and Joanny; Panyukov, 1989, 1990; Mezzasalma, 2001). Cross-link density
seems itself to be an ill-defined variable that, particularly in highly cross-linked states, strongly depends on the adopted
model (Valentín, Carretero-González, Mora-Barrantes, Chassé and Saalwächter, 2008). Even to define a consistent
measure for polymer volumes is not an immediate task, as the average network energy seems to scale with anomalous
exponents that are incompatible with mean-field approaches (Hadizadeh, Linhananta and Plotkin, 2011).
Besides statistical mechanics of networks, their topology and continuum mechanics, a second analysis level focuses
on chain conformations and chemical structure, like the quite recent inquiries into segmental orders show. In short,
vector order parameters, inaccessible to NMR, relates to the residual chain orientation, while tensor parameters from
multi-quantum NMR measurements characterize the fluctuation extents in segment orientations. The true network
elasticity follows in fact from the actual conformation space made available to chain portions, i.e. from the excursion
of individual segment orientations. The narrow dynamic profile that comes from local NMR measurements in elas-
tomers thus suggests that the single chain description relying on a purely affine model should fail (Saalwächter and
Sommer, 2007). Alongside Edwards’ second-moment tensor parameter, of flexible excluded-volume polymers in a
weakly good solvent, displays a inhomogeneous distribution decaying along the chain, with lower segmental orders
than in Gaussian statistics (Usatenko and Sommer, 2008). End-linked mono- and bi-modal networks were also studied
by means of Monte Carlo bond-fluctuation simulations. The vector order parameter of longer chains was twice as large
as in Gaussian systems, the shorter ones displaying a much lower value than expected (Sommer, J. -U. and Saalwächter,
K., 2005). Such discrepancies suggest that interchain effects may influence the bond orientation even in concentrated
states, where Gaussian statistics should be expected (de Gennes, 1979).
Motivated by this challenging picture, an alternative view is proposed here to formalize the effect of explicitly non-
Gaussian states in the distribution function of polymer networks, and then to devise an NMR-based discrimination
criterion. Experimentally, despite the large number of characterization techniques for cross-linked networks (such as
inverse gas chromatography, neutron scattering, osmometry, dielectric and mechanical analysis, see e.g. references in
(Valentín et al., 2008)), the most exploited remain NMR spectroscopy and equilibrium swelling. Attention will be paid
here to hydrogel behaviors, either interesting from the fundamental point of view, where distinct elasticity regimes can
occur according to polymer dilution (Gundogan, Okay and Oppermann, 2004), or for their notable large-strain features
(Gong, Katsuyama, Kurokawa and Osada, 2003; Webber, Creton, Brown and Gong, 2007). Theoretically, the present
work puts forward an intermediate model placing itself between the refinement of affine versus phantom theories and
the analysis of Gaussian versus non-Gaussian effects.
It is known in fact that two milestones of polymer elasticity theory, both based on (unentangled) Gaussian statistics in
an infinite network with no loose chain ends, are the ’classical’ junction affine and phantom models, related respec-
tively to the uppermost and lowermost chain deformation limits. The elastic response of rubber networks and swollen
systems is generally believed to be intermediate between such two extremes, with an uncertainty on cross-link densities
of ≈ 40% the phantom-like value (Valentín et al., 2008). In the former, macroscopic and microscopic deformations are
assumed to be practically the same, cross-links being fixed in space to positions imposed by the specimen deformation
ratio (�). Junction points in James and Guth’s phantom model are instead unrestricted, only a small fraction of them
being anchored to the boundary surface (Burak Erman, 1989) and chains in between being only constrained to the
forces they are subjected to (Flory and Erman, 1982). Crosslinks are modeled by holonomic constraints (Eichinger,
2015) to move affinely around the average positions prescribed by the macroscopic deformation (Gedde, 1995) and are
roughly confined to the root mean square end-to-end distance of a network strand (Gottlieb, 1982), i.e. much smaller
than the contour chain length but large enough to allow an overwhelming majority of possible conformations (Gedde,
1995). Fluctuations in this model are taken to be strain-independent, developing asymmetrically in deformed states and
reducing the strain below the value set by the experiment (Mark, 1992). One is therefore left with a chain functionality-
dependent (f ) non-affine transformation of instantaneous end-to-end distance and of mean gyration radius of elastic
chains (Candau et al., 1982). Microscopic deformations, especially in stiff or semiflexible chains, should become non-
affine below a certain length scale and/or above a certain deformation degree (Basu, Wen, Mao, Lubensky, Janmey
and Yodh, 2011; Curro and Mark, 1984).
Despite the affine hypothesis was afterwards discarded for the phantom network, the latter turns out to be still inaccu-
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rate (Hild, 1998). Furthermore, as the two theories rely on a number of alike assumptions (e.g. individual chain models
with only intramolecular effects and the same network forces (Gedde, 1995), chain vector distribution in undeformed
network equal to the single chain’s in uncrosslinked bulk Burak Erman (1989)), it is no surprise that both free energy
and stress-strain equations are similar, to the point of concluding that no essential difference between James-Guth’s
and Flory-Wall’s theories would take place (Eichinger, 2015). More rigorous constrained junction theories (Ronchi-
Allegra’s, Flory-Erman’s, Edward’s tube, non-affine and slip-link models Ronca and Allegra (1975); R.C., M., S.F.
and M. (1981); Flory and Erman (1982); Erman and Flory (1982a); Mergell and Everaers (2001); Rubinstein and Pa-
nyukov (2002); Erman (2010)) describe in detail the dependence of fluctuations on deformations to get the excess free
energy in comparison to classical (phantom) theories, where elasticity is only affected by network connectivity, and
time averages only transform with the macroscopic deformation. Overall, they were able to explain stress-strain data
in intermediate extension ranges (say, up to � ≈ 2), when fluctuations are far from being suppressed and deformation
makes cross-links more mobile (Gedde, 1995). On the contrary, for a network subject to small deformations or high
junction interpenetration, crosslinks are strongly hindered, their instantaneous position well approximating the affinity
condition to the external strain (Gottlieb, 1982; Ngai and Roland, 1994).
As the role of chain vector distributions is exceptionally important here, a number of non-Gaussian network models
were proposed to refine the theoretical predictions (see e.g. the overview in (Elías-Zúñiga, 2006)). The Gaussian dis-
tribution only corresponds to the first linear term in the force-extension relation for a single polymer chain (Treloar,
1973), it neither matches (very) short chains nor the limit of high enough elongations (e.g. (Gedde, 1995) � > 3), when
the mechanical response displays marked upturns (Burak Erman, 1989; Elías-Zúñiga and Beatty, 2002). A problem is
it doesn’t fall to zero at the contour length scale (Treloar, 1973), though an explanation in terms of limited extensibility
then was discredited. Experimental workers detected modulus upturns in natural rubbers only in networks undergoing
strain-induced crystallization at high elongations (Mark, 1992). Another issue is in the monomer number between two
cross-links, often ≤ 100, chains being not long enough to be regarded in the Gaussian limit (Huang et al., 2002). Poly-
mer scientists were traditionally employing analytical and semi-heuristic models, with expanded or perturbed Gaussian
distributions (e.g. Fixman and Alben (1973)), or combining finite chain extensibility with entanglement effects (e.g.
tube models Erman (2010)), rotational isomeric state models (Mark and Curro, 1983) and computations of short-chain
distributions (Curro and Mark, 1984). Again, it should be remarked that the agreement achieved by numerical simu-
lations of non-Gaussian systems may be only qualitative (Menduina, Freire, Llorente and Vilgis, 1986).
To the best of the authors’ knowledge, this is the first time a non-Gaussian statistics is used in explicit form in a rubber-
like elasticity theory. In Treloar’s words (Treloar, 1975) "Unfortunately the attempt to replace the Gaussian statistical
theory by a more exact treatment involves a considerable sacrifice of both simplicity and generality. ... The treatment
of this problem in a rigorous manner presents formidable mathematical difficulties." However, the final equations we
obtain are quite simple and lend themselves to a prompt check. To do so, a strategy relying on Low-Field NMR is
proposed to pseudo-experimentally infer the end-to-end distribution in real hydrogels. In this paper, we applied it to
alginate, agar and scleroglucan hydrogels, that is, three examples of amply used materials for biomedical use and drug
release (Matricardi, Alhaique and Coviello, 2016). It is important to remind the non-Gaussian character we refer to
is not associated to a polymeric network approaching its extensibility limit (upon swelling), a condition that requires
adopting the inverse Langevin’s function (or more conveniently some approximation of it, as proposed byWarner (Bird,
Armstrong and Hassager, 1990)) to model the swelling equilibrium (Coviello, Grassi, Rambone and Alhaique, 2001).
Our focus on the contrary is on the possibility that, just after crosslinking as well, the end-to-end chain distribution
function does not follow a Gaussian behavior, this being still one of the main limitations of Flory’s theory, as it was
further emphasized quite recently (Richbourg and Peppas, 2020).
The distributions chosen here as candidates for the network states of interest are Laplace’s, Cauchy’s and Poisson’s.
They have the two-fold purpose of formally mimicking the normal law but deviating from it to a quantitative extent
that can be regarded not only perturbative (see next Fig. 1). The former, in fact, was formulated by Laplace some
years before the ’second law of errors’ (i.e. the Gaussian) and takes place in a wealthy of stochastic applications, like
modeling sizes of sand particles, diamonds and beans (Kotz, Kozubowski and Podgorski, 2001). From a technical
viewpoint, in a similar way as to Lindeberg & Feller’s central limit theorem (Feller, 1991), it is shown that a suitably
normalized geometric sum of independent random variables converges in law to Laplace’s even though they are not
identically distributed (Toda, 2011). Poisson’s law represents the asymptotic regime of phenomena like waiting times,
extremes, quasi-stationary distributions and rare events (Peköz and Röllin, 2011). Mathematically, this turned out to be
the toughest distribution, but here it was also necessary to complete and discuss in more detail the statistical mechanics
picture raised by Laplace’s law. Getting explicit bounds on the error of the exponential limit may be notably difficult
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as well (Aldous, 1989). In between, the broad-tailed Cauchy’s law (or Cauchy & Lorentz’) is part of the extended
family of Lévy or stable distributions. It doesn’t possess a generating function, thence is an exception to the wealthy
of laws belonging to the attraction domain of the central limit theorem, which only requires the first two moments
to be finite. In spite of this anomaly, it keeps a central place in a number of physical and chemical topics, such as
Ornstein & Zernike’s theory of critical opalescence (Ornstein and Zernike, 1914), the lifetime broadening of spectral
lines (Thorne, 1988) and Lorentz’ model for the complex electric permittivity (Fox, 2001).
As a short outline, sections (2-4) of the paper deal with the statistical mechanics derivation of the theory whereas, in
the second part, the focus is shifted on a Low-Field NMR-based approach for deriving the realistic end-to-end distribu-
tion function in hydrogels. An analysis of the model outputs in light of experimental data is conducted in section (6).
In developing the theory, instead, we will stick to the conceptual route (and notations) devised by Flory in Chapters
(X-XI) of his seminal book (Flory, 1953), aiming to a generalization to polymer networks which are not ideal.

2. Network Entropy Function
2.1. General Formulation and Link to Mechanics

The analysis hereby presented is in line to the statistical mechanics tradition developed from the beginning until
recently, which assumes the work of deformation (i.e. the strain energy density U (Dietmar and Thomas, 2011)) to
be proportional to the change of entropy (S) on stretching the chains from the undeformed state. For an isotropic and
incompressible hyperelastic material, the principal Cauchy stress components (�k) then stem fromU as (Beatty, 2003):

�k = �k
dU
d�k

+ p (no sum over repeated indices) (1)

�k here denoting the principal elongation stretches (often also referred to as �k) and U being symmetric functions of
�k. The hydrostatic pressure term (p) comes from the incompressibility or constant volume condition (i.e. the Jacobian
J = 1 in the next Eq. 7), since it is no longer determined by the strain energy density and needs to be added explicitly
as a constraint on U . Evidently, any difference between two principal stresses:

�j − �i = �j
dU
d�j

− �i
dU
d�i

(2)

cancels out the effect of p. Eq. (2) then may undergo the fundamental conditions of mechanics, such as Baker-Ericksen
inequalities, (�j −�i)(�j −�i) > 0 (j ≠ i), postulating the larger principal stress to always establish along the direction
of the larger principal stretch (Baker and Ericksen, 1954; Wilber and Criscione, 2005). A fascinating aspect of rubber
elasticity is that a complex deformation curve can be rebuilt up bymeans of a mesoscopic analysis, in which the random
arrangement of monomer units (in an elastomer or in a gel) is modelled by a given statistical mechanics approach. The
relationship between randomness and mechanical response ultimately form the subject of the present investigation, the
entropy function representing the key property that needs to be in focus. Ignoring any enthalpic contribution, as usual
in these cases, the statistical thermodynamics function connecting Eq. (1) to the thermally driven state of a random
network is Helmholtz free energy F = −TS (T = absolute temperature) per unit referential volume (V

0
). If entropy

refers to a single chain, the number density of crosslinked strands (e.g. n∗) can be employed to tackle a polymer network
(Rubinstein and Colby, 2003; Huang, 2014; Arruda and Boyce, 1993):

U
(

{�k}
)

= F
V
0

(

{�k}
)

= − n∗TS
(

{�k}
)

(3)

Contributions from interchain interactions are basically thermodynamic and not expected to take any role in elastic free
energy calculations. Therefore, despite the main emphasis is given here to the elastic part of the entropy function, the
reader may remember that any statistical point of view on the network will correspond to a given strain energy density
(for a survey of phenomenological constitutive equations in rubber-like materials see e.g. Destrade, Saccomandi and
Sgura (2017); Puglisi and Saccomandi (2016)). When non-negligible heat transfers may develop, F is ceasing however
to be fully representative of the network behavior.
With this in mind, our starting point is Flory’s entropy decomposition into a configuration and an ideal gas contribu-
tions, that is, in Boltzmann’s constant unit (k

B
):

lnΩ = lnΩ
1
+ lnΩ

2
(4)
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where Ω and Ω
k
denote the respective partition functions (sums over microstates) with S = lnΩ and S

k
= lnΩ

k
.

What will matter is clearly the entropy change upon deformation, the differenceΔS between the initial and final states.
In what follows such two terms (Ω

1,2
) will be given a separate account, making the customary assumption to deal with

different overlaps of conformational domains, extensibility, steric and connectivity effects (Hermans, 1962) in terms
of three explicitly non-Gaussian statistics. While the Gaussian distribution alone cannot account for conformational
differences between unlike types of polymeric chains, it is known that stress-strain behaviors can be affected by the
chain structure even in very small deformation limits (Mark and Curro, 1983). Swelling networks then can display large
macroscopic deformation with no meaningful change of chain dimensions, this behavior being tough to be translated
in the language of classical theories (Candau et al., 1982).
Note again that, as Flory-Rehner’s hypothesis assumes the free energy to be additive, Eq. (4) doesn’t include interaction
and liquid-like terms, elastic contributions are the only ones depending on deformation (Flory and Rehner, 1943a).
The independence of spatial configurations of intermolecular interactions was thoroughly tested, especially by neutron
scattering experiments in undiluted amorphous polymers and classical rubbers, where steric interactions are short-
ranged and force fields are weak (see e.g. (Mark, 1992) and references therein) but was afterwards criticized by a
number of authors (Ball and Edwards, 1980; Edwards and Vilgis, 1988; Sommer, Vilgis and Heinrich, 1994; Vilgis
and Wilder, 1998; Baek and Srinivasa, 2004). However, while an inquiry into Flory-Renher’s hypothesis falls outside
the aim of the present study, classical or perturbed rubber elasticity models still find a wealthy of applications, including
the hydrogel systems that will form the subjects of our investigation (Koetting, Peters, Steichen and Peppas, 2015; Chan
and Neufeld, 2009). Also the thorny relation between statistical mechanics and continuum theory (Eichinger, 2015)
as well as explicit concentration effects on fluctuations of cross-link points (Candau et al., 1982) won’t be accounted
here for. Finally, in the spirit of a milestone work on non-Gaussian effects (James and Guth, 1943; Treloar, 1973), the
affinity assumption will be retained in the next elaboration of extension-force relationships (James and Guth, 1943;
Treloar, 1973). The perfect gas entropy term in Eq. (4) will then be generalized in compliance with the conformational
statistics, yielding a hybrid model that is able to retrieve the phantom limit behavior by means of local or microscopic
elasticity constraints.
In conclusion to this section, to further clarify our central aim, this work stems from a doubt that may have often
been quelled over the years. Is it permissible that, for some micro- or meso-structural reasons, presumably related to
physical chemistry or topology of monomer strands, the architecture of a polymeric network may be (explicitly) non-
Gaussian also in undeformed conditions ? Theoretical approaches generally involving the inverse Langevin function
(e.g. eight-chain and full network models) have already been known for decades to catch the stress-strain curve at large
deformations due to the finite extensibility of polymer chains (Wu and van der Giessen, 1992; Arruda and Boyce, 1993;
Bechir, Chevalier and Idjeri, 2010). Our point of view here is rather different. What would happen to the mechanical
response once the Gaussian hypothesis were somehow relaxed, or even dropped, near enough the low stretch regime ?
The present exploratory inquiry tries to open up a debate on this quest, nonetheless taking care to provide an adequate
theoretical background and a thorough experimental verification to the ideas hereby presented.

2.2. Configuration Term
The first entropic term quantifies the statistical mechanics effects of the distribution function for the end-to-end

chain displacement in the deformed state,W = W (r):

1
� lnΩ1

= ln J + ∫ℜ3
W (R) ln W (r)

W (R)
dR (5)

where � is the number of crosslinked strands, taken to be homogeneously distributed in the sample (Beatty, 2003). By
this density of probability, the local chain strain at the mesoscopic level is transferred to the macroscopic scale of the
contiguous particle-system (i.e. the continuum) hosting the process. For an undeformed system, undergoing a material
point transformation in the stretched state, R → r, the scalar quantity:

J =
|

|

|

|

|

|

|

|

)r
)R

|

|

|

|

|

|

|

|

(6)

is the Jacobian determinant of the deformation gradient F = ()r∕)R) (or, simply, the gradient of r). This mapping is
generally assumed to be a one-to-one and smooth function (for a rigorous introduction to these concepts, see e.g. Beatty
(1987)). The image (dr) of a tangent element to an undeformed material line (dR), pointing out the separation vector
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between two materials points in the reference state, then is set univocally by dr = FdR, irrespective of the deformation
gradient decomposition into pure stretch and rotation tensors. The square of the local change in separation distances
stems from the related right and left Cauchy-Green’s deformation tensors, e.g. dr2 = dR ⋅C ⋅dR with C = FTF (right
tensor). We won’t enter details of deformation tensors in the following as, to our purposes, it will suffice to represent
undeformed and stretched configurations in Cartesian coordinates (Flory, 1953) with respect to an orthonormal basis
{ek}, and set Xi = xi∕�i, i.e.:

J =
∏

i
�i , (7)

xi = ei ⋅r being the transformed coordinates ofXi = ei ⋅R, while �i ≡ �x, �y, �z are the positive elongation coefficients
or extension ratios, characterizing a pure homogeneous deformation gradient.
The termΩ

1
is only affected by the statistics of polymer molecules forming the elastic medium. In order to detect some

meaningful variation from classical results, the conditions of the central limit theorem should be somehow violated.
It is well known, in fact, that the Gaussian distribution,Wn(r) = (�∕

√

�)3 exp(−�2r2), leads to:

1
� lnΩ1n

= − 1
2

∑

i
�2i +

3
2 + ln J (8)

in which the constant �2 = 3∕(2Nl2) is only influenced by intrinsic polymer properties such as Kuhn’s segment
length l and monomer unit numberN (i.e. the chain displacement length). The above quadratic expression in �i may
be deemed as the signature of the ideal behavior. Clearly, if the probability density is no longer Gaussian, lnΩ

1
∕�

could sensibly deviate from Eq. (8). This is shown in Appendices A-B, reporting the calculations for three even and
continuous distribution functions that monotonically decrease in |xi| ∈ [0,∞). To this aim, we factorize W with
respect to each coordinate:

W (r) =
∏

i
Wi(xi) (9)

and make use of the following property:

∫ℜ3
W (R) ln W (r)

W (R)
dR = J−1

∑

i≠r≠s
�r�sIi (10)

with:

Ii = ∫

∞

−∞
Wi(Xi) ln

Wi(xi)
Wi(Xi)

dxi (11)

being a reduced configuration integral. Therefore, as:

∫ℜ3
W (R) ln W (r)

W (R)
dR =

∑

i

Ii
�i

, (12)

one can redefine:

Ii(�i;Wi) ≡ ∫

∞

−∞
Wi(Xi) lnWi(xi) dxi + ci�i (13)

ci ≡ − ∫

∞

−∞
Wi(s) lnWi(s) ds , (14)

and observe the most important (elastic) contribution to S
1
= lnΩ

1
, the one genuinely linked to the deformation, arises

from the first term on the right side of:

∫ℜ3
W (R) ln W (r)

W (R)
dR =

∑

i
Ii + ci (15)
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i.e. from the sum of reduced integrals like:

Ii(�i;Wi) = ∫

∞

−∞
Wi(t) lnWi(�it) dt , (16)

whereby:

Ii(1;Wi) = − ci (17)

stands for an entropic constant, representative of the undeformed state. As themechanical response that will be inquired
in an isothermal system stems from entropy variations, whenever the configuration integral is too complicated or does
not admit an explicit solution, one may start directly from the derivatives )Ii∕)�i. Obviously, the values for a Gaussian
network:

Iin + cin = − 1
2

(

�2i − 1
)

(18)

are recovered by settingWin ≡ Wn(xi) in Eq. (15). In the other cases, the first configuration integrals, recalculated in
Appendices A-B for three meaningful statistics (Laplace’, Cauchy’, Poisson’s), give us:

1
� lnΩ1L

= − (�x + �y + �z) + ln(�x�y�z) + 3 (Laplace) (19)

1
� lnΩ1C

= − ln(1 + �x)2 − ln(1 + �y)2 − ln(1 + �z)2 + ln(�x�y�z) + 6 ln 2 (Cauchy) (20)

1
� lnΩ1P

≈ 1
�

∑

i
lnΩ

i,1P
(Poisson) (21)

where, in the last equation, the sum:

1
� lnΩi,1P

= − (ln �i)2�i Ξ�i [1] + (ln �i)(ln �i) Ξ�i
[

t−1
]

+ (ln �i) Ξ�i
[

t−1 ln Γ(�it)
]

+ const. (22)

applies to a continuous Poisson’s density (Ilienko, 2013) with parameters approaching the exponential regime (�i ≪ 1),
and:

Ξ�
[

g
]

≡ ∫

∞

0
g(t) �t

Γ(t)
dt (23)

is a functional based on the gamma function (Γ). A comparison among Eq. (19), Eq. (20) and Eq. (21), which quantify
the configuration entropy function per polymer strand S

1
∕�, is reported in the section on results and discussion.

2.3. Perfect Gas Term
We recast here the combinatorial procedure leading to (the controversial) Flory’s logarithmic contribution to the

total entropy function. Despite James and Guth criticized it harshly, the theoretical view they put forward as an alter-
native would be devoid of a realistic unstressed state whether a log-term were neglected or absent (Eichinger, 2015;
Hild, 1998). Ronca and Allegra made the point it should appear instead in the free energy every time macroscopic
deformation and junction fluctuations couple to a non-negligible extent (Ronca and Allegra, 1975).
Second Flory’s contribution stems from the likelihood of finding all crosslinked units coupled throughout a network
with volume V

0
that deforms to V = JV

0
. We may begin from regarding the probability to find any of the (adjacent) �

units in an elementary (small) volume �v, regarded to be intrinsically constant. Adopting the framework of Bernoulli’s
trials, at a given step m, such a probability can be written as:

P
�m
=

(

'
�m

1

)

p q'�m− 1 (24)
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with '
�m
= � − 2m + 1 and p = 1 − q = �v

V . As p ≪ 1, then:

P
�m
≈ '

�m

�v
JV

0

(25)

and the number of states associated with this process in an ideal network is:

Ω
2n
=

�
2

∏

m=1
P
�m
≈

(�
2

)

!

(

2�v
JV

0

)
�
2

(26)

in which
(

�
2

)

! ≡ (� −1)(� −3) ... 1. The final calculation follows from application of Stirling’s formula under � ≫ 1:

1
� lnΩ2n

≈ − 1
2 ln J + const. (27)

We note that �v is an indivisible, ’pointwise’ volume, totally unaffected by chain configurations near interlinking sites.
So long as the experiment is isochoric, Eqn. (27) has no effect. However, based on our strategy to effectively compare
different statistics, a generalization of the perfect gas term is necessary to account for the involved probability density
at the junction scale, allowing crosslink points to fluctuate accordingly. In the discrete process Ω

2
, the functional

formW = W (r) thus will be regarded by means of a new perturbation term. Precisely, we reformulate �v∕V as the
likelihood that two network points belong for simplicity to a rectangular neighborhood with volume �V =

∏

i �xi
(i = x, y, z):

p =
∏

i ∫

�xi
2

− �xi
2

Wi(u) du (28)

and factorize it so to separate the contribution connected to �V , which now identifies the new probability to work with
(p→ P ), from its coordinate-dependent part. Calculus of probability may be framed still in the context of Bernoulli’s
trials, but this time with P in place of p, and with:

Π
�m
=

(

'
�m

1

)

P (1 − P ) '�m−1 ≈ '
�m
P (29)

in place of P
�m
. Mathematically speaking, the equation p (P ) = �v∕V now requires to be inverted, with P denoting a

generalization of p in terms of �xi (> 0). These calculations are carried out in Appendix C, where Flory’s result turns
out to be perturbed as follows (d = L,C,P):

lnΩ
2d
≈ lnΩ

2n
+ ln!

2d
(30)

where S
2d
= lnΩ

2d
is the recalculated perfect gas entropy function, S

2n
= lnΩ

2n
is Flory’s result and the second sum

over states on the right is a perturbation of statistical nature. One therefore obtains, minus some additive constant:

1
� ln!2L = �

L

∑

i
�−1i (Laplace) (31)

1
� ln!2C = �

C

∑

i
�−2i (Cauchy) (32)

1
� ln!2P = �

P

∑

i
�−1i (Poisson) (33)

The coefficients �d ≥ 0 couple the elementary volume scale, characteristic of crosslink fluctuations, to the background
elastic medium. A behavior of Cauchy’s type is found as well for the Gaussian distribution,!

2n
≈ !

2C
, while Laplace’s

and Poisson’s coupling terms turn out to coincide in the exponential limit and generally fulfill �
L
≤ �

P
(Appendix C).
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3. Notes on Strain Energy and Invariants
In subsection (2.1) it was shortly recalled that the Helmholtz free energy is the key concept to relate strain energy

to the entropy function. A question thus arises of which formal representations may be induced in all generality by the
statistical mechanics pictures in the former paragraphs. As a detailed analysis of constitutive laws in invariant tensor
form would take us too far from the central aims of this study, we will limit ourselves to discussing the strain energy
density for the present cases (Uj ; j = n, L, C , P ). We therefore suppose to deal with hyperelastic (or Green elastic)
elastomers, and there exists a function U = U ({�k}) so that the stress power per unit referential volume descends from
its material derivative. For simplicity, and uniformity with the previous analysis, the Cartesian notation k = x, y, z is
retained in what follows, though it could promptly be extended to any system of principal axes, say k → k′ = 1, 2, 3.
Then we know that for an isotropic sample, U = U (F) ≡ U [Ii(C), Iii(C), Iiii(C)], where:

Ii(C) = Tr(C) = �2x + �2y + �2z (34)

Iii(C) =
1
2

[

Tr2(C) − Tr(C2)
]

= �2x�
2
y + �2y�

2
z + �2z�

2
x (35)

Iiii(C) = Det(C) ≡ J2 = �2x�
2
y�
2
z (36)

are the linear, quadratic and cubic principal invariants of the Cauchy-Green right tensor (Spencer, 1971), expressed
on the right in terms of principal stretches. The incompressibility constraint reduces the strain energy dependence to
U = U [Ii(C), Iii(C)], for the Cauchy stress tensor reads:

T = −pI + 2
(

)U
)Ii

+ Ii
)U
)Iii

)

B − 2 )U
)Iii

B2 (37)

where I and B = FFT are respectively the identity and Cauchy-Green left (or Finger’s) tensors, the latter owing the
same eigenvalues and principal invariants of C (Amabili, 2018). Eq. (37) stems from the three-fold dependence of
U upon J = Det(F) = 1 and −2J ()U∕)Iiii) = p. Once the energy is explicited in terms of �k, it clearly identifies a
symmetric function of principal stretches, moreover, the principal Cauchy stress components get back to Eq. (1).
In summary, mechanical models are in a way complementary to mesoscopic approaches. To capture the stress-stretch
relation in homogeneous and isotropic (dry or swollen) elastomers, a free energy law can be set as a function of strain
tensor invariants, and a number of advanced models with highly complicated energy behaviors were put forward with
a number of phenomenological coefficients making up for the knowledge at the molecular level (Mihai and Goriely,
2017; Hossain and Steinmann, 2013). However, no one could ever rule out that different energy functions, provided
with the same parameters, may predict the mechanical response equally well (Okumura, Kondo and Ohno, 2016).
With this in mind, let us consider which strain energy forms turn out to be suggested by the found entropy functions. To
this end, it suffices referring to the configurational Eqs. (18-22) complemented by the perfect gas Eqs. (30-33), which
bring to Eqs. (52-55) of the next subsection (4.1). Fundamental aspects of constitutive theories, mostly mathematical
in nature (e.g. when quadratic form energies are positive definite in linear elasticity theory, or polyconvexity constraints
apply in nonlinear regimes) won’t be dealt with hereinafter, although they are reported to be often bypassed by the same
scientists working in the field (Puglisi and Saccomandi, 2016). Our Gaussian response, modified by the small scale
perturbation, points out the following dependence on the strain invariants:

1
� lnΩn

= − 1
2Ii +

1
2 ln

√

Iiii + �n
Iii
Iiii

(38)

thence, the strain energy form induced by an isochoric process is generally of the Mooney & Rivlin type (Mooney,
1940):

U
n
(Ii, Iii) = C

1

(

Ii − I∗i
)

+ C
2

(

Iii − I∗ii
)

(39)

the asterisk denoting the values taken in the undeformed state, I∗i = I
∗
ii = 3, the phenomenological constants C

1
and

C
2
being two material coefficients whose mechanical meaning is to be adjusted afterwards the best fit to experimental
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data (Puglisi and Saccomandi, 2016), with C
2
taking potentially negative values as well (Mihai, Woolley and Goriely,

2019). When �n = 0, the constitutive law becomes neo-Hookean (C
2
= 0) and 2C

1
identifies the classical shear

modulus (Amabili, 2018). It is interesting to note that, in the compressible case (Iiii ≠ 1), the ratio Iii∕Iiii appears in
Blatz & Ko model, proposed for a class of (isotropic) foam rubber materials (Blatz and Ko, 1962).
The other statistical mechanics views are somewhat more complicated, but may be expressed in terms of I

V
=
∑

i �i
and I

1∕V
=
∑

i 1∕�i, functions of principal stretches characterizing Varga’s model (Varga, 1966; Hill and Arrigo, 1995):

U
V
(Ii, Iii, Iiii) = C

1
(I

V
− I∗

V
) + C

2

√

Iiii (I1∕V − I∗
1∕V
) (40)

with reference values I∗
V
= I∗

1∕V
= 3 and, generally:

IiiiI
2
1∕V

= Iii + 2
√

IiiiIV = 1
2 (I

2
V
− Ii)2 (41)

Accordingly, in an isochoric transformation, the strain energy density in Laplace’s statistics is of Varga’s type:

U
L
(Ii, Iii) = U

V
(I

V
, I

1∕V
) (42)

A square root dependence on the quadratic invariant, I
1∕V

= (Iii+2IV )
1
2 , takes place in Carroll’s model for vulcanized

rubbers (Carroll, 2011). Strain functions I
V
, I

1∕V
are alsomet in Cauchy’s and Poisson’s statistics. The implicit relation

to be regarded in the former is:
∏

i
(1 + �i) =

√

Iiii (I1∕V + 1) + I
V
+ 1 (43)

so that:

U
C
(Ii, Iii) = C

1
ln(I

V
+ I

1∕V
− I∗

C
) + C

2
(Iii − I∗ii) (44)

with I∗
C
= 6. A logarithmic behaviour is classically found in Gent models for limited chain extensibility (Gent, 1996).

Poisson’s statistics display instead a constitutive law like:

U
P
(Ii, Iii) = U

L
(I

V
, I

1∕V
) + u

P
(45)

where u
P
is highly nonlinear, as it depends on theGamma function, and is hardly expressible in terms of strain invariants

straight away. For the moment, a most convenient way to focus on this behavior is to frame it between former Laplace’s
and a general Ogden model (see e.g. Ogden and Hill (1972)), being:

u
P
(Ii, Iii, Iiii) =

∑

pqℎ
Opqℎ(Ii − I∗i )

p(Iii − I∗ii)
q(Iiii − I∗iii)

ℎ (46)

for some tensor O of materials coefficients, and upon the isochoric constraint Iiii = I∗iii = 1. Concluding this section,
we may remark that all such constitutive relations point towards a necessary dependence on the second strain invariant
Iii, as it was also emphasized by other authors (Anssari-Benam, Bucchi and Saccomandi, 2021). The perturbation
to the perfect gas term, likely the most affected by network details at the junction scale (i.e. chemical functionality,
topology, etc.), breaks the neo-Hookean symmetry even in the (modified) Gaussian-like statistics. Except for this case,
however, strain energy laws in the other incompressible rubber-like models are not separable functions of Ii and Iii,
and seem to display a more complex behavior. Their analysis may thereby represent an interesting issue left for future
work. The matching between phenomenological coefficients and polymeric parameters will be addressed through the
experimental and numerical analysis of paragraphs 5 and 6. First we need to evaluate, in the next section, the actual
mechanical response in some cases of fundamental interest.
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4. Mechanical Properties of Unswollen and Swollen Networks
The expressions for lnΩ can be used to obtain the mechanical features (uniaxial) and shear stresses, � and �;

elastic and shear moduli, E andG) in uniaxial tensile deformation (D
U
) and pure shear deformation (D

S
) experiments.

In a swelling phenomenon, the material is characterized by an initial (�
0
, before swelling) and a final (�, before

deformation) value of polymer volume fraction, the quantity Q = �
0
∕� generalizing the former Jacobian condition,

i.e. J2 = Det C = (Det F)2 = 1 to:
∏

i
�i = Q (47)

If the initial network is in dry state (�
0
= 1), the former equation identifies the (equilibrium) swelling ratio in a fully

swollen permanent network (Q > 1), where mechanical modulus and osmotic (or mixing) pressure balance each other
without disrupting the essential skeletal structure (Flory and Rehner, 1943b). Otherwise, provided the polymer chains
are not too stiff, nothing forbids to work as well in the shrinking or collapse domain (Q < 1). In either case, we will
consider the following deformation geometries, representative of uniaxial (tensile) deformation (D

U
) and pure shear

(D
S
) (Arruda and Boyce, 1993; Flory, 1953):

D
U
(�i,Q) = {�i | �x ≡ Q

1
3 �, �y = �z = Q

1
3 �−

1
2 } (48)

D
S
(�i,Q) = {�i | Q

− 13 �x = Q
1
3 �−1y ≡ �, �z = Q

1
3 } (49)

both held at fixed temperature (T ) and volume. Stretch components in the previous two definitions define the deforma-
tion gradient F. We provide now with a separate account of such two mechanical frameworks, grouping the relevant
calculations in Appendix D. It should be reminded that, although swelling can induce cavity formations inside spher-
ical elastic matrices (Pence and Tsai, 2006), this possibility is disregarded here as we assume that (uniform) swelling
establishes without application of a load. It will be supposed, in other words, that swelling precedes the occurrence of
deformation implied by the external load.

4.1. Uniaxial Deformation
Consider a state of uniaxial stress (here, in the �x direction) and the related homogeneous deformation. The stress

component � ≡ �x produced by the elastic retraction force stems from differentiating the Helmholtz free energy, and
reads (Flory, 1953):

� = −
k
B
T

V
0
Q

() lnΩ
)�

)

T ,V
(50)

where the so-called engineering strain is related to the � value as " = � − 1, and equilibrium Young’s modulus in the
limit of small deformations is (� ≈ 1):

E ≈ �∕" (51)

In Eqn. (50), k
B
is still Boltzmann’s constant, T the absolute temperature and V

0
the reference volume in which the

crosslinking phenomenon occurred. We resume again the complete expressions of the configuration integral deduced
in each case, i.e. (minus some additive entropy constant):

1
� lnΩL

= − (�x + �y + �z) +
1
2 ln(�x�y�z) + �

L

(

�−1x + �−1y + �−1z
)

(Laplace) (52)

1
� lnΩC

= − 2 ln
[

(1 + �x)(1 + �y)(1 + �z)
]

+ 1
2 ln(�x�y�z) + �

C

(

�−2x + �−2y + �−2z
)

(Cauchy) (53)

1
� lnΩP

≈ −l
P

[

�x + �y + �z +
1
2 ln(�x�y�z)

]

+
∑

i
Ξ�

[

ln �
t ln Γ(�it)

]

+ �
P

(

�−1x + �−1y + �−1z
)

(Poisson) (54)
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where, in the last, l
P
= 1− 2l

ln � (l = 0.577 is Euler’s constant), the sum refers to an isotropic system (see Eqs. 22 - 23,
Eqs. B.18 - B.19) and its contributions to the mechanical response are worked out in Appendix D. In this framework,
ideal polymer networks would obey:

1
� lnΩn

≈ − 1
2

(

�2x + �
2
y + �

2
z

)

+ 1
2 ln(�x�y�z) + �

n

(

�−2x + �−2y + �−2z
)

(Gauss) (55)

which gets back to Flory’s expression upon P → p (!
2n

→ 1) e.g. when the coupling extent ’shrinks’ from an inter-
linking volume to a network point (�

n
→ 0). It is known in fact that mechanical features get normally reduced by larger

fluctuations (i.e. with increasing �d). Substituting Eqns. (52 - 55) into Eqn. (50) yields, upon Eqn. (48):

I. Laplace :

�
L
= 1

3EF
Q−

2
3 (1 − �−

3
2 )(1 − �

L
Q−

2
3 �−

1
2 ) (56)

E
L
≈ 1

3EF
Q−

2
3 1 − �

− 32

� − 1
(1 − �

L
Q−

2
3 �−

1
2 ) = E

F
Q−

2
3 [ 12 (1 − �LQ

− 23 ) +

− 5
8 (1 −

7
5�LQ

− 23 )(� − 1) + 35
48 (1 −

59
35�LQ

− 23 )(� − 1)2 − ... ] (57)

II. Cauchy :

�
C
= 2

3EF
Q−

2
3
⎡

⎢

⎢

⎣

1

1 + Q
1
3 �
− 1

�(
√

� + Q
1
3 )
− �

C
Q−1(1 − �−3)

⎤

⎥

⎥

⎦

(58)

E
C
≈ 2

3EF

⎡

⎢

⎢

⎣

Q−
2
3

� − 1

⎛

⎜

⎜

⎝

1

1 + Q
1
3 �
− 1

�(
√

� + Q
1
3 )

⎞

⎟

⎟

⎠

− �
C
Q−

5
3 �−3(1 + � + �2)

⎤

⎥

⎥

⎦

=

E
F
Q−

2
3

{

1

(1 + Q
1
3 )2

− 2�
C
Q−1 − 1

4

[

5 + 7Q
2
3

(1 + Q
1
3 )3

− 16 �
C
Q−1

]

(� − 1) +

+ 1
24

[

35 + 76Q
1
3 + 59Q

2
3

(1 + Q
1
3 )4

− 160 �
C
Q−1

]

(� − 1)2 − ...

}

(59)

III. Poisson :

�
P
≈ 1

3EF
Q−

2
3 (1 − �−

3
2 )(l

P
− �

P
Q−

2
3 �−

1
2 ) (60)

E
P
≈ 1

3EF
Q−

2
3 1 − �

−32

� − 1
(l
P
− �

P
Q−

2
3 �−

1
2 ) = E

F
Q−

2
3 [ 12 (lP − �PQ

−23 ) +

− 5
8 (lP −

7
5�PQ

− 23 )(� − 1) + 35
48 (lP −

59
35�PQ

− 23 )(� − 1)2 − ... ] (61)

the Gaussian results becoming:

�
Δ�

FQ

�
F

=
ΔE

FQ

E
F

= − 2�
n
Q−

4
3 (62)
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with Δ�
FQ
= �

nQ
− �

FQ
and ΔE

FQ
= E

nQ
− E

FQ
now denoting the variations between modified and pure Gaussian

values. Note that Flory’s relations are promptly recovered, i.e.:

�
FQ

�
F

=
E
FQ

E
F

= Q−
1
3 (63)

where, as usual:

�
F
= 1

3"EF
(1 + �−1 + �−2) , (64)

and:

E
F
= 3�k

B
T (65)

is Flory’s elastic modulus for an unswollen network as a function of the number density of polymer strands, � = �∕V
0
.

As expected, the original expressions for a Gaussian system are regained upon �n → 0 in Eqn. (62).

4.2. Pure Shear
Analogously to the former subsection, Helmholtz free energy (per unit volume) allows to connect the configuration

integral to the shearing stress as well (Flory, 1953):

� = −
k
B
T

V
0
Q

(

) lnΩ
)

)

T ,V

(66)

and hence to the equilibrium shear modulus in infinitesimal deformations, still related to the slope of stress-strain curve
near the zero-strain point (� ≈ 1):

G ≈ �∕ (67)

As the shear strain can be taken on to be  = � −1∕� (Flory, 1953), the expressions generated by Eqs. (52 - 54) under
Eq. (49) now are:

I. Laplace :

�
L
= G

F
Q−

2
3
�2 − 1
�2 + 1

(1 − �
L
Q−

2
3 ) (68)

G
L
≈ G

F
Q−

2
3

�
�2 + 1

(1 − �
L
Q−

2
3 ) = G

F
Q−

2
3 (1 − �

L
Q−

2
3 )
[

1
2 −

1
4 (� − 1)

2 + ...
]

(69)

II. Cauchy:

�
C
= 2G

F
Q−

2
3

[

�2

1 + �2

(

1

Q
1
3 � + 1

− 1

�(Q
1
3 + �)

)

− �
C
Q−1(�)

]

(70)

G
C
≈ 2G

F
Q−

2
3

[

�2

(�2 + 1)(Q
1
3 + �)(Q

1
3 � + 1)

− �
C
Q−1

]

=

G
F
Q−

2
3

[

1

(1 + Q
1
3 )2

− 2�
C
Q−1 − 1

2
1 + 4Q

1
3 + Q

2
3

(1 + Q
1
3 )4

(� − 1)2 + ...

]

(71)

III. Poisson :

�
P
= G

F
Q−

2
3
�2 − 1
�2 + 1

(l
P
− �

P
Q−

2
3 ) (72)
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G
P
≈ G

F
Q−

2
3

�
�2 + 1

(l
P
− �

P
Q−

2
3 ) = G

F
Q−

2
3 (l

P
− �

P
Q−

2
3 )
[

1
2 −

1
4 (� − 1)

2 + ...
]

(73)

where, with similar notations to Eqn. (62), the relationships:

Δ�
F

�
FQ

=
ΔG

F

G
FQ

= − 2�
n
Q−

4
3 (74)

�
FQ

�
F

=
G
FQ

G
F

= Q−
1
3 (75)

still represent modified Flory’s predictions for a swollen Gaussian network, with:

�
F
= G

F
 (76)

G
F
= 1

3EF
= �k

B
T (77)

Again, unperturbed results can be retrieved upon �n → 0 in Eqs. (74).

4.3. Theoretical Remarks
Figure (1) reports a sketchy relationship among Gaussian, Cauchy’s and exponential-like distributions in one di-

mension, the last category including Laplace’s and Poisson’s. Three main regions for the polymer end-to-end distance
can be crudely identified, delimited for simplicity by the probability axis and two vertical dashed lines. In comparison
with the Gaussian, polymer ends in Cauchy’s and exponential chains tend to be more spaced out both at small and
intermediate length scales. At small scales, exponential distributions stand for the most repulsive of the three classes,
Cauchy’s taking their place in the halfway region. Quite the contrary, the likelihood to find two Gaussian ends at larger
distances is the least, whereas Cauchy’s chains display the largest attraction. The specific way by which such mutual
statistical weights (or chain interactions) may emerge falls outside the aim of this study. What matters here is to point
out that, whenever the polymer network could be driven outside the Gaussian state, it would still be possible to resort
to a consistent and fairly applicable framework. Different mechanical responses than Flory’s then can be sensed and
analyzed at the experimental level.
Accordingly, expressing the previous results in units of �

F
or E

F
quantifies at once the discrepancies one would get

from adopting the other statistics in place of the Gaussian’s. Laplace’s and Poisson’s predictions differ as expected by
the coefficient l

P
= 1 − 2l∕ ln � > 1, determined in isotropic materials (�i ≡ �) at second order in the exponential

regime (see Appendices B and D). Since � ≈ (1.25 ⋅ 10−1 ÷ 5) ⋅ 10−2 implies l
P
≈ (1.15 ÷ 1.4), Poisson-like moduli

would be approximately ≈ (20 ÷ 40) % larger than the corresponding exponential values.
The terms �d are proportional to a mean coupling parameter of order ℎ, defined in Appendix C as �ℎ ≈

1
3
∑

i(�xi∕x0i )
ℎ

(ℎ = 2 for Gauss’s and Cauchy’s statistics, ℎ = 1 for Laplace’s and Poisson’s). An evaluation of it may be given
through relative fluctuation weights (or volume fractions), �ℎ ≈ (�V ∕V0 )

ℎ∕3, i.e. the portion of space swept out on the
average by crosslinked units owing to energy sources and constraints. Scattering experiments showed that cross-links
undergo simultaneous translational and orientational diffusion, not dissimilar in magnitude from the chain gyration
radius, and connecting its ends on the ns time scale (D. Stein, A. Hoffman, Frank and D. Fayer, 1992). By neglect-
ing elastic constraints produced by network connections, the variance of junction fluctuations can be derived from the
stiffness tensor (Erman and Flory, 1982b). However, Eq. (74) may be used to prompt a relationship with the cycle rank
in the phantom model (Rubinstein and Colby, 2003), G∕G

F
= 1 − 2∕f , adopted in the following as to set a Gaussian

reference state to which normalizing any other phenomenological coefficient. In a perfect network, with f∕2 strands
per crosslink, it evaluates the difference between the numbers of elastically effective strands and crosslinks, and is
believed to be suitable especially for diluted systems e.g. gels). In our case, confronting Eq. (74) with it identifies:

�
n
=
Q

4
3

f
(78)
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Figure 1: Gaussian (G, green), Cauchy’s (C, blue), Laplace’s (L, red) end-to-end distribution functions with zero average
and normalized in one dimension to Wk(xk = 0) = 1. As being a statistics of exponential type, Poisson’s should be regarded
in this scheme as to fall into the L category.

and, correspondingly:

�
L
=

√

3∕(2�f ) Q
2
3 (Laplace) (79)

�
C
= �

n
(Cauchy) (80)

�
P
= l

P
�
L

(Poisson) (81)

In imperfect networks, cycle rank should take the influence of dangling chains and loops into account. Network defects,
however, are not going to be examined here, nor chain dimension ratios or front factors. Conceptually, they don’t lead
to significant changes of classical theories (e.g. Flory’s (Eichinger, 2015)) and would not alter the conclusions we will
come to later.

5. Materials and Methods
The three hydrogels studied, based on alginate, agar and scleroglucan, find a wide spreading in biomedical field for

their peculiar properties such as biocompatibility and giving rise to strong and weak hydrogels in mild conditions (Ma-
tricardi et al., 2016). Alginate is a collective term to describe a family of polysaccharides isolated from brown seaweeds
and bacteria (Donati and Paoletti, 2009). Chemically, alginates are linear copolymers of 1 → 4 linked �-d-mannuronic
acid (MM) and its C−5 epimer, �-l-guluronic acid (GG), arranged in a blockwise pattern, with homopolymeric regions
of MM- and GG residues, indicated as MM-blocks and GG-blocks, respectively, and interspersed with regions of al-
ternating structure (MG blocks). The ability to form stable physical hydrogels upon treatment with divalent ions, such
as calcium’s (Draget, Smidsrand Skjåk-Bræk, 2005), have resulted in alginates being widely used in industrial and
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biomedical applications. For example, they have been used for encapsulation of insulin-producing Langerhans islets
for treatment of type I diabetes (de Vos, Bučko, Gemeiner, Navrátil, Švitel, Faas, Strand, Skjak-Braek, Morch, Vikar-
tovská, Lacík, Kolláriková, Orive, Poncelet, Pedraz and Ansorge-Schumacher, 2009) and as drug delivery systems
(Matricardi, Meo, Coviello, Hennink and Alhaique, 2013). The higher the GG content, the stiffer and more fragile is
the gel they form in water in presence of divalent cations. Alginate used in this paper (molecular weight ≈ 106 Da),
a kind gift from FMC Biopolymer Ltd, UK, was characterized by a high GG content (≈ 70 % GG and 30 %MM). In
order to prepare the hydrogel, a proper amount of alginate powder was slowly added to stirred distilled water contained
in a beaker at room temperature up to forming a homogeneous solution (alginate mass fraction 0.02; % mass fraction =
2%). A proper amount of alginate solution then was poured into a bottom flat beaker to get a film of thickness ≈ 1mm.
Subsequently, a CaCl2 water solution (Ca2+ concentration = 5 g/l) was rapidly sprayed on the gel surface to promote
alginate crosslinking (volume of sprayed crosslinking solution was approximately equal to the gel volume). After 5
min of contact, the solution was removed and the crosslinked film was immediately and gently cleaned by laboratory
paper. Upon formation, the gel was cut into 35 mm diameter disks (thickness ≈ 1 mm) by means of a stainless-steel
punch with the same diameter of the rheometer sensor. In case of LF-NMR tests, the gel was cut into ≈ 8mm diameter
disks (≈ 1 mm thick) and put inside the LF-NMR glass tube.
Agar is a gel forming polysaccharide with a main chain consisting of alternating 1, 3-linked �-D-galactopyranose and
1, 4-linked 3, 6 anhydro-�-L-galactopyranose units (Arnott, Fulmer, Scott, Dea, Moorhouse and Rees, 1974). It is
composed by agarose and agaropectin (Labropoulos, Niesz, Danforth and Kevrekidis, 2002). Agarose is a neutral
polysaccharide and represents the fraction with gelling capacity while agaropectin contains the charged polysaccha-
ride components. Agarose and agaropectin contents depend on the seaweed source which agar is extracted from and
affects physicochemical, mechanical and rheological properties of the gels (Labropoulos et al., 2002). It has been sug-
gested that the agarose network arises from double helix formation and subsequent aggregation into bundles, called
suprahelices (Labropoulos et al., 2002; Djabourov, Clark, Rowlands and Ross-Murphy, 1989). However, according to
molecular modeling studies (Kouwijzer and Pérez, 1998), agarose appears to be capable of creating both single- and
double- helical structures, which are left-handed and antiparallel-packed. As expected for a gel-forming polysaccha-
ride, all of the proposed crystal structures show enough available space (30 − 45 %) for water molecules. The agar
considered in this paper (molecular weight≈ 1.2⋅105 Da), supplied by Biokar (Diagnostics, France), was of alimentary
grade, i.e. essentially composed by agarose. Agar gel was realized by dissolving 1 g of polymer into 99 g of distilled
water at 90◦ C, so that the polymer mass fraction in final gels was 0.01 (% mass fraction = 1%). The solution was
homogenized and poured into proper vessels to allow gelation due to cooling at room temperature. For rheological
characterization, the vessel used was a cylinder ≈ 2 mm thick with a diameter of ≈ 50 mm. Again, the formed gel was
cut into 35 mm diameter disks by means of a stainless-steel punch with the same diameter of the rheometer sensor.
About NMR tests, the solution was poured directly inside the LF-NMR glass tube.
Scleroglucan is a nonionic polysaccharide secreted exocellularly by fungi of genus Sclerotium. Its primary structure
consists of a linear backbone of (1,3)-�-linked d-glucopyranosyl residues bearing a single (1,6)-�-linked d-glucopyranosyl
unit every three sugar residues of the main chain (Rinaudo and Vincendon, 1982). Both in aqueous solution and the
solid state, scleroglucan adopts a highly ordered, rigid, triple helical tertiary structure (triplex), which consists of three
individual strands composed by six residues in the backbone per turn. The three triplex strands are held together by
inter-strand H-bonds at the center of the triplex. The (1 → 6)-linked �-d-glucopyranosyl side groups protrude from
outside the triplex, preventing intermolecular aggregation and polymer precipitation (Bluhm, Deslandes, Marchessault,
Pérez and Rinaudo, 1982; Fariña, Sineriz, Molina and Perotti, 2001; Palleschi, Bocchinfuso, Coviello and Alhaique,
2005a). Triplex conformation is destabilized only in dimethyl sulfoxide or strong alkaline conditions, and character-
ized by a high rigidity, responsible for the peculiar properties exhibited by aqueous scleroglucan solutions in a wide
pH range and even at relatively high temperatures. As triplex clustering increases, the formation of three-dimensional
hydrogel networks takes place (this happens, typically, for a polymer mass fraction (Grassi, Lapasin and Pricl, 1996) ≥
0.0025). Owing to its rheological properties, scleroglucan is used as thickener and suspending agent in several indus-
trial sectors (Lapasin and Pricl, 1995). In addition, as it is biocompatible, biodegradable and bio-adhesive, it is widely
used in cosmetics and pharmaceutics fields, its main application being the release of bioactive molecules (Coviello,
Grassi, Lapasin, Marino and Alhaique, 2003; Grassi, Lapasin, Coviello, Matricardi, Di Meo and Alhaique, 2009; Ma-
tricardi, Onorati, Coviello and Alhaique, 2006; Viñarta, François, Daraio, Figueroa and Fariña, 2007). Scleroglucan
used in this study (Actigum CS11) was provided by Cargill (Minneapolis, MN, USA) and characterized by an average
molecular weight of 1.2 ⋅ 106 Da. The hydrogel (polymer mass fraction 0.02; 2%) was prepared by gradually adding
the polymer powder to distilled water under mechanical stirring at room temperature. Just after preparation, the system
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was kept in fridge at temperature of 8◦C for 24 h in order to promote the gel formation. The weak gel nature allowed
to easily put it in the rheometer sensor and LF-NMR glass tube by the aid of a spatula.

5.1. Low-Field NMR
The end-to-end distribution, of the polymeric network pervading the studied hydrogels, was determined by means

of Low-Field NMR, looking at the magnetic relaxation of hydrogen units of water molecules trapped in the network.
Information on the network architecture (mesh size distribution) thus was gained indirectly by recording the effect of
polymeric chains (the solid hydrogel component) on magnetically relaxing water hydrogens. Because of the very fast
process, magnetic relaxation of hydrogen units of polymer chains did not affect our measurements.
Water protons relaxation time T2 was measured by means of a Bruker Minispec mq20 (0.47 T, 20 MHz, Germany)
at 25◦C resorting to the CPMG (Carr-Purcell-Meiboom-Gill) (Meiboom and Gill, 1958) sequence {90◦[-�-180◦-
�(echo)]n-TR} with a 8.36 �s wide 90◦ pulse, � = 250 �s, TR = 10 s (sequence repetition rate), n being the number of
detected experimental intensities. The criterion to deem the relaxation process over and choose the value of n was to
wait for the FID (Free Induction Decay) intensity reaching about 2% of its initial value. Each relaxation experiment,
composed by n points, was repeated 36 times (four scans each of 9 repetitions performed). The continuous T2 distri-
bution was determined by fitting the experimental FID (Is(t)) by the following equation (Whittall and MacKay, 1989):

I (t) = ∫

T2max

T2min
a(T2) exp

(

− t
T2

)

dT2 (82)

where T2max and T2min indicate, respectively, the smallest and largest values of the continuous T2 distribution, a(T2)
is the unknown amplitude of the spectral component at relaxation time T2, while exp(-t/T2) represents the decay term.
In order to fit Eq. (82) to the experimental FID (Is(t)) and get the continuous T2 distribution (Ai vs T2i), the following
discretization scheme was adopted (Whittall and MacKay, 1989):

I (t) ≈
N
∑

i=1
ai exp

(

−t∕Ti2
) (

Ti+12 − Ti2
)

=
N
∑

i=1
Ai exp

(

−t∕Ti2
)

(83)

where the range of the T2 distribution (T2min - T2max) was logarithmically subdivided into N = 200 parts (larger N
values were proven to be unnecessary).
Because of some noise disturbing the measure of Is, the fitting procedure must not minimize the �2 statistics, but a
smoothed definition (Whittall and MacKay, 1989) of it (�2s ):

�2s =
N
∑

i=1

(

Is
(

ti
)

− I
(

ti
)

si

)2

+ �
N−2
∑

i=1

|

|

Ai+2 − 2Ai+1+Ai||
2 (84)

where �i is the itℎ datum standard deviation, and � is weighting the smoothing term as proposed by Provencher
(Provencher, 1982). Although different criteria can be followed for determining �, we adopted the strategy proposed
byWang (Wang and Ni, 2003), according to which the correct value is pointed out just below the heel (slope variation)
of the plot ln�s vs ln�.
The continuous T2 profile can be transformed into hydrogel mesh size distribution by resorting to the Fiber-Cell (Chui,
Phillips and McCarthy, 1995) and Scherer theories (Scherer, 1994). To this purpose, it was recently demonstrated
that, for a hydrogel polymer volume fraction �< 0.61, the average mesh size � deriving from the Scherer theory can
be properly approximated by (Abrami, Chiarappa, Farra, Grassi, Marizza and Grassi, 2018):

� = Rf

√

C1
C0

(

1 − 0.58�
�

)

(85)

where Rf is the radius of the polymeric chain (imagined to be a long cylinder), while C1 and C0 are two constants
depending on the mesh architecture which for a cubic mesh are equal, respectively, to 1 and 3�. In light of Eq. (85), the
Fiber-Cell theory (Chui et al., 1995) leads to the following relation between � and the average value of the reciprocal
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of relaxation time (1/T2)m:
(

1
T2

)

m
= 1
T2H2O

+ 2

�
√

C0
C1

(

1−0.58�
�

)

(86)

(

1
T2

)

m
=

N
∑

i=1

Ai
T2i

(87)

in which T2H2O is the bulk proton relaxation time (i.e. the water proton relaxation time in the absence of polymer,
the so-called free water relaxation time ≈ 3000 ms at 25◦C and 0.47 T) (Coviello, Matricardi, Alhaique, Farra, Tesei,
Fiorentino, Asaro, Milcovich and Grassi, 2013) and (length/time) is the ’relaxivity’, a parameter accounting for the
surface effect of polymer chains on water proton relaxation. In fact,  is the ratio between thickness and relaxation
time of the bound water layer adhering to the solid surface (Chui et al., 1995). While Eq. (86) holds, on average, for all
the polymeric network meshes, similar expressions can be written for meshes of different dimensions (�i) by assuming
 to be independent of the mesh size (Chui et al., 1995):

1
T2i

= 1
T2H2O

+ 2

�i

√

C0
C1

(

1−0.58�
�

)

(88)

T2i being the relaxation time of water protons trapped in polymer meshes of size �i. The bi-univocal correspondence
between T2i and �i only holds in the fast-diffusion regime, i.e when mobility of water molecules, expressed by their
self-diffusion coefficient (Holz, Heil and Sacco, 2000) D (2.09 ⋅ 10−9 m2/s at 25◦C), is large as compared to the rate
of magnetization loss, identifiable with Rc  (i.e. Rc/D ≪1). In fact in the slow diffusion regime, relaxation of
all water protons contained in the volume of a mesh of size �i is not described by only one T2i but a multiplicity of
T2i. Rc , indicating the radial distance from polymer chain axis at which the effect of polymeric chains on water proton
relaxation gets negligible, can be expressed by (Chui et al., 1995):

Rc =
Rf
√

�
(89)

The combination of Eqs.(86) and (88) allows to conclude that the ratio between �i and its maximum value, �max, is
influenced exclusively by the relaxation times T2i and T2max (apart from the free water relaxation time T2H2O):

�+i =
�i
�max

=

(

1
T2max

− 1
T2H2O

)

(

1
T2i
− 1
T2H2O

) (90)

Thus, as Eq. (90) yields a way to convert relaxation times into mesh size, it does not require the knowledge of the
two parameters Rf and �, whose determination is not always straightforward. Accordingly, the probability Pi(�i+) of
finding a mesh of size �i+ inside the polymer network writes:

Ai
(

�+i
)

= Ai
(

T2i
)

, Pi
(

�+i
)

=
Ai

(

�+i
)

∑N
i=1 Ai

(

�+i
)

(91)

where coefficients Ai(T2i) are known from Eq. (83) fitting the experimental relaxation data.

5.2. End-to-end Size Distribution
Starting from the distribution of cubic meshes in Eqs. (90) - (91), it is possible determining the end-to-end size dis-
tribution, i.e. the distribution of vectors moduli representing the length (end-to-end distance) of polymer segments
extending from a fixed crosslink to the next one along a given primary polymer molecule. To this aim, though other
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Figure 2: The polymeric network is generated by covering the ’seed cube’ (generation 0, size �i) by other identical cubes
(generation 1). This covering process, repeated up to generation ni, gives rise to a polymeric network with cubic mesh
size �i.

structures may be certainly regarded, let’s assume in accord with Eq. (85) that polymer meshes are cubical and the
entire network can be generated equivalently by “covering” the “seed cubic mesh” of size �i (generation 0; see Fig. 2)
by other cubic meshes of size �i (generation 1). Whilst generation 1 requires considering further 26 cubes (33 cubes
minus the seed cube), the number of new cube sides are not 26 ⋅ 12, as further cubes share several sides, and it is easy
to verify the additional sides are only 132. In order to further expand the network, we can repeat such an operation
by covering the cubic structure of size 3�i by other 26 cubes of size 3�i (generation 2) and so on, up to generation ni.
Accordingly, the number of additional cubes and sides at generation 2, 3, .. ni are those indicated in Table (1).

Generation Additional cubes Additional sides
0 1 12
1 26 132
2 26 ⋅ 33 132 ⋅ 3
3 26 ⋅ 36 132 ⋅ 32
ni 26 ⋅ 33(ni−1) 132 ⋅ 3(ni−1)

Table 1. Geometric characteristics of a network after ni generations.

Considering that a real network is not composed by meshes of identical size �i but, more realistically, it comprises
different meshes with sizes spanning from �1 to �N (�1 < �2 < .. �i .. < �N ), we assume it to come from summing
the meshes of all dimensions. On the basis of the discussion reported in Appendix E, it can be demonstrated that the
fraction of meshes (FMi) and sides (FSi) of size �i are related to the probability Pi(�i+) (Eq. 91) of finding a mesh of
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size �i+ in the polymeric network by:

FMi% =
Pi

∑N
i=1 Pi

(92)

FSi =
3
√

Pi
∑N
i=1

3
√

Pi
(93)

In conclusion, Eq. (93) allows to convert the mesh size distribution, as determined by LF-NMR characterization in
Eq. (90), into the end-to-end size distribution, as required by the rubber elasticity theory.

5.3. Rheology
Rheologicalmeasurementswere performed at 25◦Cby a stress controlled rotational rheometer (HaakeMars Rheome-

ter, 379-0200 Thermo Electron GmbH, Karlsruhe, Germany) equipped with parallel plate geometry (PP35, diameter =
35 mm, with serrated surfaces to avoid slippage at the wall) and a gap of ≈ (1 ÷ 2) mm. The measuring device was kept
inside a glass bell at saturated humidity conditions to avoid evaporation effects. In order to assess the shear modulus
(G) dependence on shearing deformation (), stress sweep tests, led at 1 Hz, were performed on each hydrogel. This
dependence is given by Eq. (67), where both shear deformation and stress (�) were experimentally determined.

6. Results and Discussion
6.1. Small deformations
It seems reasonable starting the theoretical comparison among the original Flory theory and the results derived in
this paper by focusing the three end-to-end distance distributions (i.e. Poisson, Laplace, Cauchy) in the limit of small
shear deformations. Fig. (3) shows the trend of the ratio between the new shear moduli (G, from Poisson’s, Laplace’s,
Cauchy’s statistics) and Flory’s (G

F
, Eq. 77) versus the swelling (Q > 1) or shrinking (Q < 1) ratio. This comparison

was performed by assuming vanishing shear deformations, a high functionality value (f = 45) and the same crosslink
density in crosslinking conditions (Q = 1; reference state). It can be seen that the ratio G/G

F
(see Eqs. 69, 71, 73)

decreases with increasing Q whatever the considered distribution is. Moreover, with Laplace’s and Cauchy’s statistics,
one always has G/G

F
< 1.

On the contrary, when Q ≤ 0.2, Poisson’s distribution yields a ratio > 1. It is important to underline that a similar
behavior is found for smaller f, even though the Cauchy distribution provides with physically consistent results in
the whole Q domain when crosslink fluctuations are rather small (large f values). In addition, owing to the small
deformation hypotheses (E = 3G, see also Eq. 77), all the above considerations hold with uniaxial deformations as
well. Finally, it is interesting recalling that the results shown in Fig. (3) can be seen from a different viewpoint that is
closer to the polymeric network architecture. In light of the equivalent network theory (Schurz, 1991), it is possible
indeed transforming the results in Fig. (3) in terms of the average network mesh size:

� = 3

√

6
�NA�x

(94)

NA being Avogadro’s number and �x being the molar crosslink density (crosslink moles per unit volume). Eq. (94)
implies:

�k
�
F

= 3

√

�
xF

�xk
(95)

where �
xF

and �xk indicate, respectively, the crosslink density in original Flory’s work and those in Laplace’s, Cauchy’s
and Poisson’s distributions, while �

F
and �k similarly denote the average mesh size descending from Flory’s and the

new statistical distributions. As the ratio �
xF
/�xk does not depend on Q, �k/�F is always equal to 0.765, 0.590 and

0.835, respectively (taking on lp = 1.3, see Theoretical Remarks). Adopting non-Gaussian statistics therefore reduces
the average value of mesh size, at least in the cases hereby regarded.
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Figure 3: Theoretical comparison amongst the shear modulus descending from the Gaussian theory (G
F
) and those (G)

in Eq. (69) (Laplace), Eq. (71) (Cauchy), Eq. (73) (Poisson) in the limit  → 0 (� → 1). It is performed in both
shrinking/swelling domains (Q = 1 stands for the crosslink density in the reference state) with a large functionality value
(f = 45).

6.2. Large deformations
With large deformations, one of the most interesting aspects is the dependencies of Young’s and shear moduli on

uniaxial (") and pure shear () deformations, respectively. To this purpose, it is worth remembering that in the original
Flory theory G

F
does not depend on  while the elastic modulus decreases with ". Combining Eq. (64) and Eq. (65)

and remembering that �x = �/NA, one explicitly has:

E∗
F
= RT�

xF
Q−

1
3

[

1 + 1
"+1

+ 1
("+1)2

]

(96)

It is interesting to study the trend of E/E∗
F
and G/G

F
versus deformation for the three distributions here considered

plus the one coming from the modified Flory theory, implemented by the factor �n (see Eq. 55) upon Q = 1 and f =
10. Fig. (4) makes clear that whatever ", Young’s modulus in Flory’s theory is always larger than any other (including
the modified Flory’s) and the ratio E/E∗

F
does not sensibly depend on � for all distributions except from Laplace’s, as

it increases with increasing �. For pure shear deformations (Fig. 5), the shear modulus from Flory’s theory is always
larger than in other distributions, the ratio G/G

F
being almost constant.

A most important aspect suggested by these non-Gaussian distributions is that shear modulus is affected by  . This
points out a clear generalization of Flory’s theory, setting E∗

F
to depend on " and G

F
to be -independent. Also in

these simulations, large junction fluctuations (f < 10) lead Cauchy’s distribution to return unrealistic results.

6.3. Determination of end-to-end distributions
To derive the end-to-end distribution requires Eq. (83) to be applied to experimental relaxation data (Is(t)), here

of agar, alginate and scleroglucan hydrogels as depicted, respectively, in Figs. (6), (7) and (8). This fitting reveals
the relaxation time distribution (A2i, T2i) is characterized by only one peak in agar (Fig. 6) and scleroglucan (Fig. 8)
hydrogels, while two main peaks are visible for alginate (Fig. 6). This is simply due to the fact that, after crosslinking,
the alginate gel tends to contract by expelling water (syneresis) that accumulates among the hydrogel disks filling the
LF-NMR glass tube. The position of the second peak shown in Fig. (7) is very close in fact to the free water relaxation
time at 25◦C (3000 ms, 0.47 T) (Coviello et al., 2013). Only the first peak is indicative of water molecules trapped
inside the polymer network, this being the reason why the second one will no longer be considered. On the contrary,
the single peak characterizing agar (Fig. 6) and scleroglucan (Fig. 8) time distributions are representative of trapped
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Figure 4: Dependence on the uniaxial deformation (") of the ratio E/E ∗
F
, between the Young modulus (E) implied by the

three distributions (Laplace, Eq. 57; Cauchy, Eq. 59; Poisson, Eq. 61) plus the ones from Flory’s theory implemented by
the �n factor (Eq. 55) and Flory’s E ∗

F
. Simulations were performed with swelling ratio Q = 1 and network connectivity f

= 10.

Figure 5: Dependence on the shearing deformation () of the ratio G/G
F
, between the shear modulus (G) in Eq. (69)

(Laplace), Eq. (71) (Cauchy), Eq. (73) (Poisson) and Flory’s Eq. (77) (G
F
). Simulations were performed with a swelling

ratio Q = 1 and network functionality f = 10.

water molecules, as they are very far from the free water relaxation time. Eqs. (90) - (91) allow us to convert the
relaxation time profile (A2i, T2i) into the mesh size (FMi, Eq. (92)) and the end-to-end (FSi, Eq. (93)) distributions
for the agar, alginate and scleroglucan hydrogels (depicted respectively in Figs. 9, 10, 11). FMi % and FSi % represent
the percentage probability of finding a mesh or an end-to-end length in the network that equals � i, according to Eq.
(92) and Eq. (93). The direct correspondence between relaxation time T2i and mesh size �i is guaranteed by the
fast diffusion conditions occurring in our hydrogels. In fact, as the water self-diffusion coefficient at 25◦C is (Holz
et al., 2000) 2.09 ⋅ 10−9 m2/s, Rf typically spans from (Amsden, 1998; Palleschi, Bocchinfuso, Coviello and Alhaique,
2005b) 0.5 to 2.2 nm and � is equal to 6.6 ⋅ 10−3, 5.7 ⋅ 10−3 and 12.6 ⋅ 10−3 respectively in agar 1% (density = 1520
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Figure 6: Best fitting Eq. (83) (I (t), thin solid line: left vertical axis) to experimental relaxation data (I s(t), open circles)
of agar hydrogel (smoothing factor � = 150). Best fit is represented by Ai vs T 2i relaxation time distribution (thick solid
line; right vertical axis).

Figure 7: Best fitting Eq. (83) (I (t)) to experimental relaxation data (I s(t)) for alginate hydrogel (� = 160). Symbols
and notations as in Fig. (6).

kg/m3) (De′ Nobili, Rojas, Abrami, Lapasin and Grassi, 2015), alginate 1% (density = 1770 kg/m3) (Pasut, Toffanin,
Voinovich, Pedersini, Murano and Grassi, 2008) and scleroglucan 2% (density = 1600 kg/m3) (Coviello et al., 2013)
hydrogels, then the dimensionless number Rc/D is always≪ 1 (∼ 10−5 - 10−6). Interestingly, from the Kolmogorov-
Smirnov test (Kolmogorov, 1933; Smirnov, 1948) and whatever the gel regarded, FSi% turns out not to be normally
distributed, thus the study of other statistical distributions would be anyway in order. We thus fitted the Gauss, Laplace,
Poisson and Cauchy laws with the pseudo-experimental FSi% profiles for the three systems, as Figs. (12), (13) and
(14) show:

F
F
% = 100

(

�
√

�

)3

e−�
2
(

�+i −�a
)2

Δ�+i (97)

S.A. Mezzasalma et al.: Preprint submitted to Elsevier Page 23 of 45



Non-Gaussian Rubber-like Elasticity

Figure 8: Best fitting Eq. (83) (I (t)) to experimental relaxation data (I s(t)) for scleroglucan hydrogel (� = 150). Symbols
and notations as in Fig. (6).

Figure 9: % mesh size (FMi%) and end-to-end (F Si%) distributions for agar hydrogel. �i and �max are, respectively, the itℎ

mesh size and the maximum mesh size values.
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Figure 10: % mesh size (FMi%) and end-to-end (F Si%) distributions for alginate hydrogel. Symbols and notations as in
Fig. (9).

where �+i = � i/�max is a dimensionless end-to-end length, F
F
%, F

L
%, F

P
%, F

C
% are the % probability of finding in

the network an end-to-end distance within �+i and �+i +Δ�
+
i , according to the Gauss (F), Laplace (L), Poisson (P) and

Cauchy (C) statistics, �a denotes the average value while, as in our former notations, �, L, � and C are parameters
which stem from adopting Gauss, Laplace, Poisson and Cauchy laws. Fig. (12) and Table (2) immediately reveal that,
while Poisson’s distribution cannot statistically fitFSi%data (F test failed), every other was able to (F test was positive).

Agar 1% hydrogel (Fig. 12)
GAUSS � = 2.34 ± 0.03 �a = 0.37 ± 0.01 F(1,51,0.95) < 181 AIC = - 86
LAPLACE L = 5.80 ± 0.31 �a = 0.50 ± 0.01 F(1,51,0.95) < 113 AIC = - 72
POISSON - - -
CAUCHY C = 0.13 ± 0.01 �a = 0.51 ± 0.01 F(1,51,0.95) < 53 AIC = - 48
Alginate 1% hydrogel (Fig. 13)
GAUSS � = 2.50 ± 0.02 �a = - 0.037 ± 0.006 F(1,104,0.95) < 933 AIC = - 341
LAPLACE L = 5.15 ± 0.17 �a = 0.154 ± 0.005 F(1,104,0.95) < 433 AIC = - 270
POISSON � = 0.015 ± 0.001 F(1,105,0.95) < 2881 AIC = - 526
CAUCHY C = 0.143 ± 0.007 �a = 0.167 ± 0.007 F(1,104,0.95) < 268 AIC = - 233
Scleroglucan 2% hydrogel (Fig. 14)
GAUSS � = 2.45 ± 0.03 �a = 0.20 ± 0.01 F(1,51,0.95) < 260 AIC = - 70
LAPLACE L = 6.36 ± 0.33 �a = 0.34 ± 0.01 F(1,51,0.95) < 1995 AIC = - 62
POISSON - - -
CAUCHY C = 0.118 ± 0.009 �a = 0.35 ± 0.01 F(1,51, 0.95) < 107 AIC = - 38

Table 2. Parameters for all distributions fitting the FSi% data shown in Figs. (12), (13) and (14). AIC is Akaike’s
number (Burnham and Anderson, 2004).

In order to statistically point out the best model, Akaike’s criterion (Burnham and Anderson, 2004) was adopted,
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Figure 11: % mesh size (FMi%) and end-to-end (F Si%) distributions for scleroglucan hydrogel. Symbols and notations as
in Fig. (9).

i.e. the model to be preferred will be characterized by the smallest Akaike number (AIC):

AIC = N ln
(

�2

N

)

+ 2

(

NF+1
) (

N − NF
)

N − NF−2
(101)

where N and NF are respectively the numbers of experimental data and fitting parameters, �2 being the sum of squared
differences between experimental data and best fit. This criterion would suggest the Gaussian’s as the best distribution
among those adopted (Table 2). For the alginate hydrogel (Fig. 13), all of the adopted distributions can better fit the
FSi% data but, on the basis of Akaike’s criterion, the best model turns out to be Poissonian. This may also be expected
from a visual inspection of Fig. (13) (dashed line). Finally, from Fig. (14) and Table (2), Poisson’s statistics turns
out to be unsuitable for scleroglucan data (F-test failed), whereas amongst the others Akaike’s test would select the
Gaussian law. However, as for the agar gel, none of the above distributions may be regarded as fully satisfactory (see
Fig. 14).

6.4. Determination of the average mesh size
Once the best end-to end distribution is identified for each hydrogel, we can proceed with the analysis of their rheolog-
ical behaviors via a proper expression for G = G (). In particular, for agar and scleroglucan hydrogels, we have found
that the best distribution among those here regarded is Gaussian while, for the alginate, is Poissonian. In the first two
cases, however, the Gaussian statistics is not very accurate and in fact G does not behave as a constant in an ample
 domain but starts to non-linearly decrease (Fig. 15) at rather low deformation values (scleroglucan 2%, �c ≈ 1.03;
agar 1%, �c ≈ 1.001), where network damaging is unlikely (here � = constant). A lower crosslink density relates in
turn with an increase of the average mesh size, as dictated by Eq. (77) and Eq. (94) (Q = 1):

� = 3

√

6RT
�NAG

(102)

where R is the universal gas constant and T (= 298.15 K) is absolute temperature. Assuming for G in the last equation
the average value of the linear part of G = G (), as shown by Fig. (15), (max = 4.1 ⋅ 10−3 for agar, max = 6.2 ⋅ 10−2
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Figure 12: Best fitting the Gauss, Laplace, Poisson and Cauchy distributions (continuous, dashed and dotted lines) to the
pseudo-experimental F Si% profile (open circles) for the agar hydrogel (�i and �max are, respectively, the itℎ mesh size and
maximum mesh size values).

Figure 13: Best fitting the Gauss, Laplace, Poisson and Cauchy distributions to the pseudo-experimental F Si% profile for
the alginate hydrogel. Symbols and notations as in Fig. (12).

for scleroglucan), we get:

�agarx = 1.16 mol∕m3 , �agar = 14 nm (103)

�scl.x = 6 ⋅ 10−2 mol∕m3 , �scl. = 38 nm (104)

In the alginate case, the G () expression that descends from Poisson’s statistics (Eq. 73) reads:

G = RT�x(lP − �P )
�

1+�2
, � = 1

2 (+
√

2+4) (105)

S.A. Mezzasalma et al.: Preprint submitted to Elsevier Page 27 of 45



Non-Gaussian Rubber-like Elasticity

Figure 14: Best fitting the Gauss, Laplace, Poisson and Cauchy distributions to the pseudo-experimental F Si% profile for
the scleroglucan hydrogel. Symbols and notations as in Fig. (12).

Figure 15: Dependence of shear modulus G on shearing deformation  for the three hydrogels here considered (symbols).
Dashed line denotes the G = G () trend produced by the Poisson distribution.

with �
P
still given by Eq. (81), and:

l
P
= 1 − 2 0.577

ln�
(106)

By setting � = 0.015 (see Table 2) and a wide range of network functionalities, f = (4 − 1000), Eq. (105) was used to
fit the dataset in Fig. (15) and deduce the fitting parameter �x . Eq. (105) works out well for � ≤ �c (≈ 1.01; alginate
1%), likely ascribing the recorded non-linearity of G = G () to Poisson’s law corrections at larger deformations. This
can be proved by limiting Eq. (105) to best fit the linear part of the experimental trend of G (dashed line in Fig. 15).
The onset of nonlinear behavior foreseen by Eq. (105) occurs in fact at larger deformations, � ≥ �c . For f still varying
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in the same interval, �x ranges between 15.8 and 5.1 mol/m3 and the average mesh size (�algin) between 5.8 and 8.5
nm, i.e. a quite moderate effect.

7. Conclusions
We studied the influence of explicitly non-Gaussian statistics on elastic properties (Young and shear moduli) of

hydrogels, accounting as well for the influence of possible swelling/shrinking processes after crosslinking. An account
of such effects in both swollen and unswollen states required a reformulation of the statistical mechanics problem of
rubber elasticity, either discussing the configuration integral or the so-called perfect gas term in formally different
statistical contexts from the Gaussian’s (Laplace’, Poisson’s, Cauchy’s). In the end, the inferred new families of sta-
tistical and mechanical laws are reasonably simple for a model comparison, with strain energy densities of Mooney &
Rivlin (modified Gaussian statistics) Varga (Laplace’s) and Varga & Ogden (Poisson’s) types. Cauchy’s statistics, on
the contrary, seems to put forward a new constitutive law.
Quite predictably, in all the non-Gaussian statistics here adopted, not only Young’s but also the shear modulus turns
out to depend on deformation, contrarily to the original Gaussian (Flory) model, where shear modulus is insensitive to
it. Furthermore, for small deformations and swelling ratios Q ≥ 1, the assumption of non-Gaussian distributions at a
constant crosslink density (�x0, crosslink reference state) yields smaller values of Young’s and shear moduli than the
original Flory’s predictions. Only when Q < 1 the Poisson distribution can imply larger moduli. At a fixed Young’s
or shear modulus, these findings bring to larger estimates of the crosslink density and smaller average values of the
network mesh size. In case of large deformations with �x0 and f held constant, such quantities result again smaller
than Flory’s values at whatever deformation.
To define a strategy to thoroughly check the statistical mechanics results and identify the most realistic end-to-end
length distribution in the hydrogel network, a theoretical-experimental inquiry based on LF-NMR was developed. For
every hydrogel hereby studied (agar 1 %; alginate 1 %; scleroglucan 2 %), statistics should be never regarded as Gaus-
sian (Kolmogorov-Smirnov test). This is interesting as, while it could be generally expected from polymer theory,
the Gaussian model still identifies the best distribution function in agar and scleroglucan gels. Quite surprisingly,
Poisson’s gives instead the best conformational statistics for the alginate hydrogel, especially in the low deformation
regime. The possibility to deduce the most probable distribution in light of new statistical mechanics models guides
the rheology interpretation by choosing the appropriate model for the mechanical moduli. Here, an onset of non-linear
response develops at rather low deformation values, where network breaking remains unlikely (alginate 1%, �c ≈ 1.01;
scleroglucan 2%, �c ≈ 1.03; agar 1%, �c ≈ 1.001). Let the number of crossinked strands to vary with the deforma-
tion, one should better understand to which extent such experimental deviations may be ascribed to conformational
statistics corrections or network damaging. This is an interesting issue left for future work. Alongside, our approach is
promising to get the most probable mesh size, that is, the starting point to build up a continuous mesh size distribution
of a polymer network. As a final remark, considering the number of increasingly complex polymer systems in the most
varied fields of natural and engineering sciences, we hope this study will suggest the rationale and stimulate the search
for new hypothesis in the field.
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Appendices
7.2. Appendix A

We collect here the calculations of lnΩ
1
for three end-to-end probability functions,W (r), including their contribu-

tions to the mechanical quantities of interest (shear stress � and elastic modulusG). They are carried out in accordance
with Eqs. (15-16) of the theoretical section (Configuration Term).

I. Laplace’s density. It is characterized by an exponential distribution of the form:

W
iL
(xi) =

1
2Lie

−Li|xi| (A.1)

where Li are normalization coefficients, playing the role of materials parameters. As it turns out:

I
iL
+ c

iL
= = − �i + 1 , (A.2)

Eq. (15) returns the Jacobian trace variation induced by the geometric transform:

∫ℜ3
W

L
(R) ln

W
L
(r)

W
L
(R)

dR = 3 −
∑

i
�i (A.3)

implying:

1
� lnΩ1L

= − (�x + �y + �z) + ln(�x�y�z) + 3 (A.4)

II. Cauchy’s density. For Cauchy’s distributions like:

W
iC
(xi) =

�i
�
(

x2i + �
2
i
) (A.5)

one gets instead:

I
iC
+ c

iC
= − ln(1 + �i)2 + 2 ln 2 (A.6)

and:

1
� lnΩ1C

= − ln(1 + �x)2 − ln(1 + �y)2 − ln(1 + �z)2 + ln(�x�y�z) + 6 ln 2 (A.7)

where, again, the intrinsic materials parameters (�i) do not play any role here. We remind, despite a resemblance to
normal distributions, Cauchy’s densities have no moment-generating function (i.e. due to their heavy tails, average
value and variance are also undefined).

III. Poisson’s density (continuous). Following some technical literature on this subject (see Ilienko (2013) in the main
text) consider the probability distribution:

F
(+)

i (xi) ≡
{

0 xi < 0
fi(xi) xi ≥ 0

(A.8)
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with:

fi(xi) ≡
Γ(xi, �i)
Γ(xi)

, (A.9)

where:

Γ(xi) = ∫

∞

0
txi−1e−tdt (A.10)

Γ(xi, �i) = ∫

∞

�i
txi−1e−tdt (A.11)

are, respectively, gamma and incomplete gamma functions, depending on a parameter �i > 0. Eq. (A.8) was introduced
to define a continuous analogue of classical Poisson’s law for non-negative values of the random variable, F (+)

i (xi) =
P {xi ≤ xi}. To extend it to the whole real axis, let us introduce:

Fi(xi) =
1
2

[

1 + F
(+)

i (xi) + F
(−)

i (xi)
]

(A.12)

the odd counterpart being provided by:

F
(−)

i (xi) ≡ − F
(+)

i (−xi) . (A.13)

Accordingly Fi(0) =
1
2 , and:

Wi(xi) ≡ 1
2

{

f ′i (−xi) xi < 0
f ′i (xi) xi ≥ 0

(A.14)

is the Poisson density function to be used in Flory’s configuration calculus. To improve its suitability for calculation
purposes, observe that:

{

Γ(xi, �i)
Γ(xi)

}′
= −

{

(xi, �i)
Γ(xi)

}′
(A.15)

prime denoting differentiation with respect to the independent variable (xi), while:

(xi, �i) ≡ ∫

�i

0
txi−1e−tdt = Γ(xi) − Γ(xi, �i) (A.16)

We now recall two theorems about Gamma-like functions:

Γ(xi) =
e−lxi
xi

∞
∏

k=1

e
xi
k

1 + xi
k

(A.17)

(xi, �i) =
�xii
xi
Φ(1, 1 + xi; �i) , (A.18)

l ≈ 0.577 being Euler’s constant and Φ standing for a confluent hypergeometric function:

Φ(1, 1 + xi; �i) = 1 +
�i

1 + xi
+

�2i
(1 + xi)(2 + xi)

+ ... (A.19)

and rearrange Eqs. (A.14-A.15) so to get:

W
iP
(xi) = − 1

2 e
−�iA

1
A
2
A
3

[

l + (lnA
2
)′ + (lnA

3
)′
]

(A.20)
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with:

A
1
= elxi , A

2
=

∞
∏

k=1
e−

xi
k

(

1 +
xi
k

)

, A
3
= �xiΦ(1, 1 + xi; �i) (A.21)

After some developments, the second term in the square parenthesis becomes:

(lnA
2
)′ = −xi

∞
∑

k=1

1
k(k + xi)

(A.22)

being:

∞
∑

k=1

1
k(k + xi)

= 1
xi ∫

1

0

1 − txi
1 − t

dt = 1
xi

[

 (xi + 1) −  (1)
]

, (A.23)

in which:

 (z) ≡ [ln Γ(z)]′ =  (1 + z) − 1
z

(A.24)

is the digamma function, and:

(lnA
2
)′ = −

[

 (xi) +
1
xi
+ l

]

. (A.25)

A
3
can be rewritten by a direct evaluation of the derivative Φ′, getting:

(lnA
3
)′ = ln �i −

�ie�i

(1 + xi)2
Φ̂
Φ

(A.26)

where, again, Φ = Φ(1, 1 + xi; �i), while the hypergeometric series at the numerator reads Φ̂ = Φ̂(1 + xi, 1 + xi; 2 +
xi, 2 + xi; −�i), i.e.:

Φ̂ = 1 +
(1 + xi)2

(2 + xi)2
(−�i)
1!

+
(1 + xi)2

(3 + xi)2
(−�i)2

2!
+ ... . (A.27)

Finally, by gathering all calculations and taking into account that Wi is an even function, the configuration calculus
can be carried out in terms of W̃

iP
= 2W

iP
over the only positive axis:

W̃
iP
(xi) =

(xi, �i)
Γ(xi)

{

 (xi + 1) +
�ie�i

(1 + xi)2
Φ̂
Φ
− ln �i

}

(A.28)

7.3. Appendix B
Since Eq. (A.28) is too complicated to get a closed-form result in Flory’s calculus, we concentrate hereinafter on

its exponential regime, pointed out by small parameter values, �i ≪ 1 (or, in the strongest sense, � → 0+). Whenever
possible in the next calculations indices i will be omitted.
A first point to make is that, as  , Φ and Φ̂ are all power series of �, then when � ≪ 1:

(t, �) =
∞
∑

n=0
(−1)n �n+t

n!(n + t)
≈ �t

t
, (B.1)

� Φ
Φ̂

→ 0 (B.2)
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and, neglecting  in comparison to | ln � |, one is left with:

W̃
P
(t) ≈ − �t ln �

tΓ(t)
(B.3)

The contributions to Flory’s integral, which only matter to the mechanical responses, become:

(ln �)−1I (�) ≈ −(ln �) � Ξ�[1] + (ln �) Ξ�
[

t−1
]

+ Ξ�
[

t−1 ln Γ(�t)
]

+ const. (B.4)

in which the functional notation in Eq. (23) was employed. Now:

1
Γ(z + 1)

=
∞
∑

k=0
�kz

k (B.5)

so that:

�n+1 = (n + 1)−1
n
∑

j=0
(−1)jsj+1�n−j , (B.6)

with �
0
= 1, while the coefficients:

sj =
{

l j = 1
� (j) j > 1 (B.7)

depend on Riemann’s zeta function � (j). Since:

Γ(z + 1) = zΓ(z) , (B.8)

one obtains:

Ξ� [1] =
∞
∑

k=0
�kΛk+1 (B.9)

in which, still for notational simplicity, we have set:

Λn ≡ ∫

∞

0
�ttndt = (−1)1+n

Γ(1 + n)
(ln �)1+n

> 0 (B.10)

Thus, as:

− �(ln �)2
∞
∑

k=0
(−1)k�k

Γ(k + 2)
(ln �)k+2

= −�
{

�
0
Γ(2) − �

1

Γ(3)
ln �

+ ...
}

, (B.11)

substituting Γ(n) = (n − 1)! and the values of �k, the first-order contribution in (ln �)−1 is:

− �(ln �)2 Ξ� [1] = −�
(

1 − 2l
ln �

)

+ O(2) (B.12)

To go ahead, note that:

Ξ�
[

t−1
]

=
∞
∑

k=0
(−1)k�kΛk (B.13)

from which:

(ln �)(ln �) Ξ�
[

t−1
]

=
(

−1 + l
ln �

)

ln � + O(2) (B.14)
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The last term in Eq. (B.4) rapidly converges in t ∈ [0, 1]. From the expansion ln Γ(�t) = − ln(�
0
�t + �

1
�2t2 ... ):

Ξ�
[

t−1 ln Γ(�t)
]

≈ −
∞
∑

r=0
�r ∫

∞

0
�ttr ln(�

0
�t)dt (B.15)

its dominant terms behave as ∼ ln �:

∫

∞

0
�ttr ln(�

0
�t)dt =

(−1)r

(ln �)r+1
{

r!
[

l + ln(− ln �) − ln(�
0
�)
]

+ const.
}

(B.16)

thus we don’t expect it is playing a significant role in experiments on isotropic media held at constant volume. However,
as it represents the main signature of this end-to-end statistics, we leave it at the moment as it is. In conclusion, from
the expression:

Ii(�i) ≈ −(�i + ln �i) +
l
ln �i

(

2�i + ln �i
)

+ (ln �i) Ξ�i
[

t−1 ln Γ(�it)
]

+ const. (B.17)

a ’ground state’ approximation may be written as:

1
� lnΩ

(1)

1P
≈ −

∑

i
�i +

∑

k
Ξ
(1)

�k

[

t−1 ln Γ(�kt)
]

ln �k + const. (B.18)

while, at next order:

1
� lnΩ

(2)

1P
≈ −

∑

i
�i + l

∑

p

2�p + ln �p
ln �p

+
∑

k
Ξ
(2)

�k

[

t−1 ln Γ(�kt)
]

ln �k + const. (B.19)

Observe the Jacobian-logarithmic term in Flory’s theory is replaced in Eqs. (B.18-B.19) by an integral of the logarithm
of Γ, whereas the Jacobian trace is typical instead of exponential (e.g. Laplace’s) statistics. Entropic constants are not
available in these equation models.
As a last remark to be made, as W̃

P
was tackled upon �i ≪ 1, its normalization condition should be rediscussed.

Nevertheless, a numerical check performed with �i
<∼ 10−2 returned:

∫

∞

0
W̃

P
(t; �i ≪ 1) dt = 1 + "(�i) (B.20)

with " ≤ 5 ⋅ 10−2, i.e. a reasonable agreement within a few percents.

7.4. Appendix C
We regard here the perfect gas term as a functional perturbed by polymer statistics. It relies on the analysis presented

in the second theoretical subsection and, in particular, on Eq. (28):

p =
∏

i ∫

�xi
2

− �xi
2

Wi(u)du (C.1)

which has to be Taylor-expanded in �xi. In the Gaussian case, we factorize for convenience �:

Wn(r; �) =
∏

i
Win(ei ⋅ r; �i) , �3 ≡

∏

i
�i (C.2)

obtaining:

p =

(

�
√

�

)3 [

1 − 1
2

∑

i
(�i�xi)2

]

�V + O(7) (C.3)
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so that (�∕
√

�)3�V identifies the probability P
n
and the functional form to adopt is:

P
n
≈ �v

V

{

1 − �
12

[

(�x
x

)2
+

(

�y
y

)2
+

(�z
z

)2
]}−1

(C.4)

As expected, the perturbation in square parenthesis formally resembles the dependence of lnΩ
1n
(�i), producing a

correction factor in the new configuration partition function (Ω
2N
):

Ω
2N
≈ !

2n
Ω
2n

(C.5)

which reads:

1
� ln!2n = − 1

2 ln

⎧

⎪

⎨

⎪

⎩

1 − �
12

⎡

⎢

⎢

⎣

�−2x

(

�x
x
0

)2

+ �−2y

(

�y
y
0

)2

+ �−2z

(

�z
z
0

)2
⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

(C.6)

and, finally:

1
� lnΩ2N

≈ 1
� lnΩ2n

+ �
24 �2

∑

i
�−2i (C.7)

where Flory’s lnΩ
2n
is still given by Eq. (27), while:

�
ℎ
≈ 1

3

∑

i

(

�xi
x
0i

)ℎ

(C.8)

introduces an average length-scale parameter of order ℎ, quantifying the coupling effect of network units to the me-
chanical response (at a scale∼ x

0i
). For simplicity, multiplicative factors in each perturbation term are grouped onward

into single coefficients (e.g. �
n
≡ �

24�2 ).
I. Laplace’s density. In this case:

∏

i

[

∫

0

− �xi
2

W
iL
(u < 0)du + ∫

�xi
2

0
W

iL
(u > 0)du

]

= (1 − 1
4

∑

k
Lk�xk)

∏

i

1
2Li�xi + O(5) (C.9)

and, letting P
L
= 1

2
∏

i Li�xi, one gets again a perturbation form conforming to Eq. (52):

P
L
≈ �v

V

[

1 − 1
2

(

�x
x
+
�y
y
+ �z
z

)]−1
(C.10)

With the same notations of Eq. (C.5):

Ω
2L
≈ !

2L
Ω
2n

(C.11)

the interlinking perturbation now writes:

1
� ln!2L ≈

1
4

[

�−1x

(

�x
x
0

)

+ �−1y

(

�y
y
0

)

+ �−1z

(

�z
z
0

)]

(C.12)

yielding, with �
L
≡ 1

4�1 :

1
� lnΩ2L

≈ 1
� lnΩ2n

+ �
L

∑

i
�−1i (C.13)
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II. Cauchy’s density. Taylor’s series at leading orders of Gaussian and Cauchy’s distributions coincide upon �i → �−1i :

∏

i ∫

�xi
2

− �xi
2

W
iC
(u)du =

[

1 − 1
12

∑

k

(

�xk
�k

)2
]

∏

i

(

�xi
√

��i

)

+ O(5) (C.14)

i.e.:

P
C
= P

n
+ O(5) (C.15)

and, let �
C
≡ �

24�2 :

1
� lnΩ2C

≈ 1
� lnΩ2n

+ �
C

∑

i
�−2i (C.16)

III. Poisson’s density. Near the exponential limit, Taylor’s expansion resembles Eq. (C.9):

p = −

[

1 + 1
4

∑

r
lr(ln �r) �xr

]

∏

i

1
2 (ln �i)�xi + O(5) (C.17)

with the three semi-heuristic coefficients li = 1 −
2l
ln �i

> 1. On identifying P
P
= − 12

∏

i(ln �i)�xi, one obtains:

P
P
≈ �v

V

[

1 − 1
2

(

lx
�x
x

+ ly
�y
y
+ lz

�z
z

)]−1
(C.18)

that, consistently with the exponential domain of Poisson’s statistics, approaches P
L
as li → 1−. Proceeding as usual

with:

Ω
2P
≈ !

2P
Ω
2n

(C.19)

it turns out:

1
� ln!2P ≈

1
4

[

lx�
−1
x

(

�x
x
0

)

+ ly�
−1
y

(

�y
y
0

)

+ lz�
−1
z

(

�z
z
0

)]

(C.20)

or:

1
� lnΩ2P

≈ 1
� lnΩ2n

+ �
P

∑

i
�−1i (C.21)

where, let:

�∗
1
= 1

3

∑

i
li

(

�xi
x
0i

)

≥ �
1

(C.22)

the coupling coefficient in Eq. (C.21) reads �
P
≡ 1

4�
∗
1
.

7.5. Appendix D
We infer here the effect of the first configuration integral on the exponential limit of Poisson’s statistics, where

the experimental behavior deviates from Laplace’s by the perturbation Ξ in Eq. (23). For simplicity, calculations are
specialized to unswollen networks for �

L
, �

P
→ 0+, deducing the mechanical features of an isotropic system forQ ≠ 1,

� ≪ 1.
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In SH experiments, the lowest order displacement between the lnΩ
1
contributions (subindices 1) to the shear stress in

Poisson’s and Laplace’s statistics is given by:

�
1,P
− �

1,L
= − G

F

(

)
)�

)−1
∑

DS (�i,1)
ln �i

⎛

⎜

⎜

⎝

)Ξ(1)�i
[

t−1 ln Γ(�it)
]

)�

⎞

⎟

⎟

⎠T ,V

(D.1)

still comprising a sum at constant volume, to be constrained to D
S
(�i, 1) according to:

(

)Ξ�i
[

t−1 ln Γ(�it)
]

)�

)

T ,V

≡ Ξ�i
[

 (�it)
]

(D.2)

We work it out by evaluating the expansion:

 (z + 1) = − l +
k=2
∑

∞
(−1)k� (k)zk−1 (D.3)

at z = �it:

Ξ�i
[

 (�it)
]

= − 1
�i

∞
∑

k=0
�kΛk + �i

∞
∑

k=0
�k

∞
∑

m=0
(−1)m� (m + 2)�mi Λm+k+2 (D.4)

and, since Λr ≈ �−1−r, the leading term is:

Ξ�i
[

 (�it)
]

≈ (�i ln �i)−1 (D.5)

On the other hand, the derivative:

⎛

⎜

⎜

⎜

⎝

)Ξ�i
[

t−1 ln Γ( t� )
]

)�

⎞

⎟

⎟

⎟

⎠T ,V

= − 1
�2
Ξ�i

[

 ( t� )
]

(D.6)

cancels the perturbation in Eq. (D.1), i.e.:

Ξ
(1)

�x
[ (�t)] ln �x = − Ξ

(1)

�y

[

 ( t� )
]

ln �y (D.7)

getting back to the lowest-order responses as predicted in Laplace’s statistics:

�
1,P
= �

1,L
, G

1,P
= G

1,L
(�i → 0+) (D.8)

At the subsequent order, the behavior is generally anisotropic, as it is affected by each �i:

1
� lnΩ

(2)

1P
≈ −

∑

r
�r + l

∑

i

2�i + ln �i
ln �i

+
∑

p
Ξ
(2)

�p

[

t−1 ln Γ(�pt)
]

ln �p + const. (D.9)

i.e.:

�
1,P
≈ �

1,L
+ ��

P
+ �� (D.10)

The first perturbation comes from:

∑

DS (�i,1)

1
ln �i

( )
)�

[

2�i + ln �i
]

)

T ,V
= 2
ln �x

+
(

1
ln �x

− 1
ln �y

)

�−1 − 2
ln �y

�−2 (D.11)
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and reads:

��
P
= − 2l

1 + �2
G
F

[

�2

ln �x
+ �
2

(

1
ln �x

− 1
ln �y

)

− 1
ln �y

]

, (D.12)

while the second follows from Eqs. (D.2-D.5):

∑

DS (�i,1)
Ξ
(2)

�i

[

 (�it)
]

ln �i ≈
1
�

(

1 − l
ln �x

)

+ �
(

1 − l
ln �y

)(

− 1
�2

)

(D.13)

i.e.:

�� =
l�

1 + �2
G
F

[

(

ln �x
)−1 −

(

ln �y
)−1

]

(D.14)

To sum Eq. (D.12) to Eq. (D.14) cancels out �� , identifying the overall response:

��
A
≡ ��

P
+ �� = 2l

1 + �2
G
F

[

(

ln �y
)−1 − �2

(

ln �x
)−1

]

(D.15)

so that:

�
1,P
= �

�4 − 1

{

�2 − 1 + 2l
[

(

ln �x
)−1 − �2

(

ln �y
)−1

]}

(�) G
F

(D.16)

and, for an isotropic medium (�x = �y ≡ �, l
P
≡ 1 − 2l

ln � ) it turns out for � ≪ 1:

�
1,P
≈ l

P

�2 − 1
�2 + 1

G
F
> �

1,L
(D.17)

G
1,P
≈ l

P

�
�2 + 1

G
F
> G

1,L
(D.18)

We have thus inferred that passing from Laplace’s to Poisson’s statistics in the unperturbed exponential limit (�
L
,

�
P
→ 0+, � ≪ 1) requires to multiply the shear mechanical properties by the factor l

P
. Perturbation effects then are

additive in �k, as it comes from Eqs. (52, 54).
Regarding the dependence on the swelling factor, consider the reduced configuration integral:

I
HP

= �
∑

DS (�i,1)
∫

∞

0
W̃

iP
(�, t) ln W̃

iP
(�, �it) dt (D.19)

and the corresponding shear modulus expression, near � ≈ 1:

G
1,P
≈ −

k
B
T

V
0


() ln I
HP

)

)

T ,V

(D.20)

i.e.:

G
1,P
∝ ∫

∞

0

�t

Γ(t)

[

(t (t) − 1) (t) −
tΓ′′(t)
Γ(t)

+ ln �
]

dt =
{

Ξ
[

t 2(t)
]

− Ξ [ (t)] − Ξ
[

t (t)(ln Γ(t))′
]

+ (ln �) Ξ [1]
}

(D.21)

the proportionality constant, function of G
F
and ln �, being unimportant to the present aim. The algebraic sum of the

first three terms on the rightest side turns out to be negligible, and one is left with the only Ξ[1] contribution. In fact:

Ξ [ (t)] ≈ −�
0
Λ
0
− �

1
Λ
1

(D.22)
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Ξ
[

t 2(t)
]

≈ �
0
Λ
0
+ �

1
Λ
1
+ 2l�

0
Λ
1

(D.23)

Ξ
[

t (t)(ln Γ(t))′
]

≈ 2(�
0
Λ
0
+ �

1
Λ
1
) + 2l�

0
Λ
1

(D.24)

and:

Ξ
[

t 2(t)
]

− Ξ [ (t)] − Ξ
[

t (t)(ln Γ(t))′
]

= O(3) (D.25)

WhenD
S
= D

S
(�i,Q ≠ 1), Ξ[1] is linearly multiplied byQ

1
3Q−1 (see Eq. B.4), rescaling Eq. (D.21) by means ofQ−

2
3 ,

still in accordance with Eq. (73). The same factor will also rescale any value of �
L
and �

P
, in the presence of finite

perturbations. By adopting an akin procedure, it can be equally shown that Laplace’s and Poisson’s uniaxial stresses
and elastic moduli of unperturbed deformation experiments, D

U
= D

U
(�i,Q ≠ 1), stand in the same proportionality

relations, bringing to Eqs. (68-69) and Eqs. (72-73) of the main text.

7.6. Appendix E
Based on Fig. (2) and Table (1) of the main text, one can conclude that the number of cubical meshes (NTMi) and

sides (NTSi) in the polymeric network at generation ni are given, respectively, by:

NTMi = 1 + 26
ni
∑

k=1
33(k−1) (E.1)

NTSi = 12 + 132
ni
∑

k=1
3(k−1) (E.2)

Considering that a real system is not composed bymeshes of identical side �i but, more realistically, comprises different
meshes with sides spanning from �1 to �N , (�1 < �2 < .. �i .. < �N ), we assume that the polymeric network is the result
of summing up meshes of all dimensions. Thus, the fraction of meshes (FMi) and sides (FSi) of length �i is given by:

FMi=
1 + 26

∑ni
k=1 3

3(k−1)

∑N
i=1

(

1 + 26
∑k=ni
k=1 3

3(k−1)
) (E.3)

FSi=
12 + 132

∑n1
k=1 3

(k−1)

∑N
i=1

(

1 + 132
∑k=ni
k=1 3

(k−1)
) (E.4)

In order to make the model more flexible, it is convenient moving from the discrete mesh (Eq. E.3) and side (Eq. E.4)
distribution to a continuous one. Thus, differentiation of Eqs. (E.1) and (E.2) leads to:

dNTMi
dk

= 26⋅33(k−1)lne (3) ⋅ 3 (E.5)

dNTSi
dk

= 132⋅3(k−1)lne (3) (E.6)

while integrating Eq. (E.5) and (E.6) yields:

NTMi = ∫ dNTMi = 26⋅lne (3) ⋅3∫ 33(k−1)dk = 26
27
33(ni−1) + CM (E.7)
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NTSi =∫ dNTSi = 132⋅lne (3)∫ 3(k−1)dk = 132
3
33ni + CS (E.8)

where CM and CS are two integration constants that follow from imposing that Eqs. (E.7) and (E.8) give the same
estimation of NTMi and NTS i, as provided by Eqs. (E.1) and (E.2), respectively. Accordingly, we have:

26
27
33(ni−1)+CM = 1 + 26

ni
∑

k=1
33(k−1) (E.9)

CM = 1+26
27

(

33ni − 33ni
)

+ 26
27

ni−1
∑

k=1
33k = 1 + 26

27

ni−1
∑

k=1
33k (E.10)

132
3
33ni+CS = 12 + 132

ni
∑

k=1
3(k−1) (E.11)

CS = 12+
132
3

(

3ni − 3ni
)

+132
3

ni−1
∑

k=1
3k = 12+132

3

ni−1
∑

k=1
3k (E.12)

On the basis of Eqs. (E.10) and (E.12), Eqs.(E.7) and (E.8) become:

NTMi = 1+
26
27
33ni+26

27

ni−1
∑

k=1
33k (E.13)

NTSi = 12+
132
3
3ni+132

3

ni−1
∑

k=1
3k (E.14)

Assuming ni ≥ 1, it is easy to verify that the sum of the first and third term (summation) of Eq. (E.13) is negligible in
comparison to the second one, so that:

NTMi ≈
26
27
3 3ni (E.15)

In Eq. (E.14), instead, prevailing terms are the second and first of the summation, thence:

NTSi% ≈ 132
3

3ni + 132
3

3(ni−1) = 132⋅3(ni−1)
(

1 + 1
3

)

(E.16)

and, in light of Eqs. (E.15) and (E.16), Eqs. (E.3) and (E.4) can be written as:

FMi% ≈ 33ni
∑N
i=1 3ni

(E.17)

FSi% ≈ 3ni
∑N
i=1 3ni

(E.18)

where now ni are real numbers ≥ 1, whose determination comes from the experimental values of FMi, i.e. the proba-
bility Pi of finding a cubical mesh of size �i (see Eq. 91):

P2
P1
=
FM2
FM1

= 33(n2−n1) ,
Pi
Pi−1

=
FMi
FMi−1

= 33(ni−ni−1) (E.19)
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Eq. (E19) allows to determine ni in terms of n1:

ni = ni−1 +
1
3
ln3

(

Pi
Pi−1

)

= n1 +
1
3
ln3

(

Pi
P1

)

(E.20)

and, finally, Eq. (E.20), Eq. (E.17) and Eq. (E.18) become:

FMi% ≈ 33ni
∑N
i=1 33ni

= 3
3
(

n1+
1
3 ln3

( Pi
P1

))

∑N
i=1 3

3
(

n1+
1
3 ln3

(

Pj
P1

)) = 3
(

ln3
( Pi
P1

))

∑N
i=1 3

(

ln3
( Pi
P1

)) =
Pi

∑N
i=1 Pi

(E.21)

FSi% ≈ 3ni
∑N
i=1 3ni

= 3
(

n1+
1
3 ln3

( Pi
P1

))

∑N
i=1 3

(

n1+
1
3 ln3

(

Pj
P1

)) = 3
(

1
3 ln3

( Pi
P1

))

∑N
i=1 3

(

1
3 ln3

( Pi
P1

)) =
3
√

Pi
∑N
i=1

3
√

Pi
(E.22)
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