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Abstract: W-doped TiO2 nanotube arrays (WT) were fabricated by in situ electrochemical anodiza-
tion of titanium substrate. The results of the influence of different photo-deposited transition ions
(CrxFe1−x, 0 ≤ x ≤ 1) on the surface of WT on photoelectrochemical (PEC) water splitting and H2

generation are presented. The crystallinities, structural, elemental, and absorption analysis were
conducted by XRD, SEM, RAMAN, EDX, and UV–Vis absorption spectroscopy, which demonstrated
anatase as the main crystalline phase of TiO2, and the existence of CrxFe1−x (nano)particles/film
deposited on the surface of WT. The SEM images revealed that the deposition rate and morphology
are highly related to the ratio of Cr and Fe ions. Under visible light illumination, the entire photoelec-
trodes showed a very good response to light with stable photocurrent density. PEC measurements
revealed that the mixture of transition ions with a certain ratio of ions (Cr0.8Fe0.2–T) led to enhanced
photocurrent density more than that of other modifiers due to decreasing charge recombination as
well as improving the charge transfer. Moreover, PEC water splitting was conducted in an alkaline
solution and the Cr0.8Fe0.2–T photoelectrode generated 0.85 mL cm−2 h−1 H2, which is over two
times that of pristine WT.

Keywords: TiO2 nanotubes; in situ electrochemical anodization; transition metals; hydrogen; water
splitting

1. Introduction

Hydrogen (H2) as renewable energy has attracted significant attention to be the best
replacement for fossil fuels to move toward a decarbonized future owing to unique proper-
ties such as high efficiency and energy density (120–142 MJ/kg), the ability to obtain from
H2O and generate only H2O with its combustion [1,2]. Photoelectrochemical (PEC) water
splitting using sunlight is the most promising strategy to generate hydrogen. Early work on
TiO2 for water splitting and PEC H2 generation was reported by Fujishima and Honda in
1972 [3]. Since then, extensive efforts have been invested in exploring and introducing new
materials such as WO3, MnOx, Bismuth-based nanomaterials, and Fe2O3 [4–7]. Although a
large number of semiconductors have been inspected over the past few decades, TiO2 is still
particularly appealing because of suitable band-edge positions and relatively good stability
in different electrolytes as well as photo-corrosion resistance [8,9]. The TiO2 nanotube
(NTs) structures, as one-dimensional (1D) nanostructures, have been considered highly
promising candidates with high efficiency in PEC water splitting because of high specific
surface area, electron mobility, and mechanical strength [10,11]. However, pristine TiO2 is
still suffering from the utilization of less than 5% of sunlight, thanks to its wide band gap
(≥3.0 eV) [12] and its modification is necessary to improve photo-response in the visible
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range and enhance the efficiency of chemical solar energy conversion [13,14]. To achieve
this, many efforts have been made such as composites with other metal oxide and/or
carbon-based materials, metal or non-metal doping, and surface modification [13,15–17].
For example, composite with other semiconductors such as WO3 applied in this work, not
only enhances the visible light absorption but also increases the photo-generated charge
(e−/h+) separation [18]. Another simple and effective technique is through the TiO2 NTs
surface modification, especially with the transition metals. Transition metals can improve
PEC activities of TiO2 NTs through (i) decreasing the band gap by introducing new sub-
levels because of partially filled D-orbitals, and (ii) decreasing charge recombination by
trapping photo-generated charge (e−/h+) of TiO2 [9,19,20]. Suligoj et al. have recently
reported that deposited transition metal ion clusters on the TiO2, via surface modification,
can also act as co-catalysts and improve the photocatalytic activity of TiO2 [21].

There are several methods to deposit transition metal (oxide) particles on the surface
of TiO2 NTs such as sputtering, chemical bath deposition, electrodeposition, and photo-
deposition [13,21–25]. Among these, photo-deposition is one of the easiest methods that
does not need an elevated temperature or applied (bias) potential. Moreover, adjusting
some parameters in this method (metal precursor, pH, sacrificial reagent, time of deposition,
etc.), gives the possibility to control the size and geometrical distribution, and oxidation
state of the deposited (nano)particles [15,22,26].

In this work, self-organized WO3 doped TiO2 NTs (WT) were successfully fabricated
through an optimized in situ electrochemical anodization of titanium substrate according to
our previous studies [13]. Then, Fe and Cr ions were chosen for the WT surface modification
via the photo-deposition method. Different mixtures of them, CrxFe1−x (0 ≤ x ≤ 1),
were also prepared for photo-deposition to clarify the effects of different ratios of two
transition metal ions. The CrxFe1-x–T (0 ≤ x ≤ 1) abbreviation has been used throughout
the manuscript; x stands for the molar ratio of Cr and Fe ions used in the photo-deposition
precursor for the WT surface modification. CrxFe1−x–T (0 ≤ x ≤ 1) photoelectrodes were
submitted for thorough material characterization, electrochemical and semiconducting
properties, and the activity in PEC water splitting for H2 evolution.

2. Materials and Methods
2.1. Materials

Titanium foils (Ti, 99%) with 1 mm thickness, sodium tungstate dihydrate
(Na2WO4 × 2 H2O, 99%), hydrogen fluoride (HF, 40%), nitric acid (HNO3, 65%), dimethyl
sulfoxide (C2H6SO, 99.5%), ethanol (C2H6O, 99%), potassium hydroxide (KOH, 499%),
ethylene glycol (C2H6O2, 99.5%), potassium chromate (K2CrO4, 99.5%), and iron (III) chlo-
ride hexahydrate (FeCl3 × 6 H2O, 99%) were purchased from commercial sources and
were used as purchased and without further purification. Solutions were prepared using
deionized (DI) water within this work.

2.2. In Situ Electrochemical Anodization Procedure

The TiO2 NTs were prepared by in situ electrochemical anodization with the two-
electrode system including Ti foil and platinum-coated titanium mesh electrodes as an-
ode and cathode electrodes, respectively. Prior to anodization, the surface of Ti sheets
(1 × 3 cm2) was polished with different emery types of abrasive papers and then cleaned
by rinsing with DI water. Afterward, Ti sheets were chemically etched with a mixture of
HF:HNO3:H2O in a volume ratio of 1:4:5 for 30 s at room temperature and then washed
with DI water. In situ electrochemical anodization was performed at 40 V for 8 h in a
solution of dimethyl sulfoxide as an electrolyte containing 12 mM of sodium tungstate
dihydrate, HF (2 vol%), and H2O (1 vol%). Finally, as-anodized amorphous W-doped
TiO2 nanotubes were annealed at 400 ◦C in air for 2 h, with a heating rate of 2 ◦C min−1

(F3L-1720, AZAR Furnaces, Tehran, Iran) (Figure 1A).
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Figure 1. Schematic presentation of fabrication of WT nanotubes by in situ electrochemical anodiza-
tion (A) CrxFe1−x–T by photo-deposition (B) and measuring H2 evolution from PEC water splitting
using an inverted burette (C).

2.3. Photo-Deposition Procedure

Surface modification of WT with CrxFe1−x (0 ≤ x ≤ 1) was accomplished using the
photo-deposition method. Briefly, the WT electrodes were soaked in 25 mL precursor of
K2CrO4 (10 mM), or FeCl3 × 6H2O (10 mM), and different molar ratio of Fe and Cr as
CrxFe1−x, (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1), containing ethanol (10 vol%). Photo-deposition
was performed by illuminating the solution in which WT electrodes were immersed with a
high-pressure mercury lamp (400 W) for 1 h. After the photo-deposition, photoelectrodes
were washed with DI water (Figure 1B). Accordingly, obtained photoelectrodes are denoted
onward throughout the manuscript as CrxFe1−x–T (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1),
corresponding to the used molar ratio of Fe and Cr in the photo-deposition precursor.

2.4. Material Characterization

A Philips XL30 (Eindhoven, The Netherlands) field-emission scanning electron mi-
croscope equipped with an energy dispersive X-ray (EDX) mapping port was used to
characterize the morphology and the elemental distribution of the microscopic region of
the materials. X-ray diffraction using a PMD Philips X-Pert (Panalytical, Almelo, The
Netherlands) was used for crystal structure characterization. The Raman spectra of the sam-
ples were obtained with a TakRam N1-541 (Tehran, Iran) Raman spectrometer. Moreover,
the UV–vis absorption spectra were measured by a JASCO V-570 (Tokyo, Japan) UV–vis
spectrophotometer.

2.5. Photoelectrochemical (PEC) Characterization and PEC Water Splitting

PEC measurements were carried out in KOH (1 M, pH = 13.9) solution containing
ethylene glycol (5 vol%) with a potentiostat/galvanostat OGF 500 (Origsflex, Lyon, France).
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Linear sweep voltammetry (LSV), chronoamperometry (CA), and open circuit potential
(OCP) measurements were conducted in a standard three-electrode configuration includ-
ing as-prepared CrxFe1−x–WT photoelectrodes, Ag/AgCl electrode, and platinum foil as
working electrode, reference electrode, and counter electrode, respectively (Figure 1C).
All of these electrochemical tests were carried out in the presence, absence, and chopped
light. The photoelectrodes were illuminated by a 35 W Xenon (Xe) lamp (200 mW cm−2)
equipped with a UV cut-off filter (λ < 420 nm). The potential of the photoelectrodes was
reported versus (vs.) the reversible hydrogen electrode (RHE) using Equation (1):

ERHE = 0.1976 V + 0.059 pH + EAg/AgCl (1)

The electrochemical impedance spectra (EIS) were also performed on the electrochem-
ical workstation system Zahner Zenium Pro (Zahner-Elektrik, Kronach, Germany) in a
range of 100 kHz−100 mHz under 1.22 V vs. RHE and a DC voltage of 10 mV amplitude in
the dark and under illumination in the same electrolyte used in PEC measurements.

The same three-electrode configuration was used for PEC water splitting (Figure 1C).
CrxFe1−x–WT photoelectrodes were placed in the anodic chamber while immersed in KOH
(1 M, pH = 13.9) solution containing ethylene glycol (5 vol%) and irradiated by Xe lamp
(200 mW cm−2, and λ > 420 nm). A platinum-coated titanium mesh electrode as the cathode
was inserted into an inverted burette, where H2 was collected [27–29]. PEC water splitting
was continued by applying a constant external potential of 1.23 V vs. RHE. The volume of
the produced hydrogen gas was quantitatively measured via electrolyte displacement level
in the inverted burette at predefined time (Figure 1C).

3. Results and Discussion
3.1. Material Characterization

Our previous results revealed that highly ordered WT was fabricated through in situ
electrochemical anodization of Ti foil in an electrolyte containing Na2WO4. Although,
the concentration of Na2WO4 did not show a significant influence on WT morphology.
However, the PEC activity of fabricated WT can change and the maximum PEC activity
for WT was obtained using ~12 mM of Na2WO4 as an optimum concentration [13,30].
Hence, in this work, WT photoelectrode was fabricated according to the optimal conditions
established in our previous studies [13,30].

The surface morphology of pristine WT nanotubes can be seen in Figure 2. Uniform
and highly ordered nanotubes were observed with an average inner diameter and wall
thickness of about 110 nm and 25 nm, respectively. The surface modification of WTs
was then performed with the photo-deposition of CrxFe1−x (0 ≤ x ≤ 1) and their SEM
images have been compared in Figure 3. In the case of Cr0Fe1–WT, the precursor of photo-
deposition only consisted of Fe ions, particles with sizes of ≤200 nm × 200 nm were
observed on the WT surface (Figure 3A). Although particles are fairly homogeneously
distributed over the WT surface, some of them covered the top of the nanotubes (Figure 3A)
which might decrease PEC activity.
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Interesting effects can be observed regarding the different ratios of Fe and Cr ions in
the photo-deposition precursor (0.2 ≤ x ≤ 0.8, Figure 3B–F), particularly when comparing
with Figure 3A,G which correspond to using single metal ions, Cr0Fe1–WT and Cr1Fe0–WT,
respectively. Remarkably, with the introduction of a low ratio of Cr ions in the photo-
deposition precursor, in the case of Cr0.2Fe0.8–WT and Cr0.4Fe0.6–WT, smaller rounded
nanoparticles (diameter ≤ 25 nm) were deposited onto the edge of the WT nanotubes
(Figure 3B,C). However, with a more increasing Cr ratio, e.g., Cr0.5Fe0.5–WT, a well-
decorated amorphous composite of Cr and Fe as a uniform film on the top of WT was
observed (Figure 3D). In the case of Cr0.6Fe0.2–WT, a similar coated film is noticeable with
an agglomeration of nanoparticles on the top of the film (Figure 3E). In the case of Cr0.8Fe0.2–
WT, there is no trace of the above-mentioned film covering the WT surface. Nanoparticles
are homogeneously deposited on the WT surface and few partial agglomerations are ob-
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served on the WT surface (Figure 3F). It can be stated that the Fe photo-deposition rate is
higher than that of Cr (comparing Figure 3A,G) since, in the case of Cr1Fe0–WT, fewer and
smaller nanoparticles can be seen all over the edge of open-top WT nanotubes.

The elemental EDS and EDS-mapping images were provided in Figure 4A–C and
Figures S1 and S2 (Supplementary Materials), revealing the presence of Ti and O elements,
as well as W, Fe, and Cr which confirmed the successfully fabricated CrxFe1−x–WT photo-
electrodes. It can be clearly seen that the Fe and Cr were homogeneously distributed on the
surface of WT, as demonstrated by the elemental mapping (Figures S1 and S2 (Supplemen-
tary Materials)). The amount of Fe and Cr deposited on the surface of WT, listed in Table S1,
showed that Fe has a rather higher photo-deposition rate than that of Cr; comparing the
Cr0Fe1–WT and Cr1Fe0–WT. This result can explain the SEM results where bigger and more
agglomerations of Fe particles were obtained rather than that of Cr (Figure 3A,G).
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Figure 4. EDX (A–C), XRD (D), Raman (E), and Tauc plot (F) of CrxFe1-x−WT (x = 0, 0.5, and 1).

The X-ray diffractograms of TiO2 NTs, WT, Cr0Fe1–WT, Cr0.5Fe0.5–WT, and Cr1Fe0–WT
are shown in Figure 4D. Generally, similar XRD patterns were observed for all measured
photoelectrodes but Cr0.5Fe0.5–WT. Diffraction peaks can be assigned to metallic Ti substrate
and TiO2 at its anatase phase with evidence of the peaks at 2θ of 25.3◦, 37.8◦, 48.1◦, 53.9◦,
and 70.3◦ which could be attributed to the (101), (004), (200), (105), and (220) planes of
anatase, respectively (ICDD-JCPD: 01-086-1156). The crystalline phase of tungsten (W)
was not detected by XRD in the samples which can be due to the incorporation of a low
concentration of W into the TiO2 lattice since the radii of W+6 and Ti+4 are so close to
each other as explained in our previous reports [13,31]. In the case of Fe0.5Cr0.5–WT as
shown in the XRD pattern, the anatase peaks at 25.3◦ and 48.1◦ were not detected. That
can be attributed to deposited amorphous Cr0.5Fe0.5 film which covered the top of the
WT photoelectrode as mentioned in SEM results (Figure 3D). There is no sign of Fe or
Cr crystalline phase in XRD patterns. However, this result does not exclude the possible
deposited amorphous phase of CrxFe1−x at the surface of WT.
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Raman was employed to further structural analysis of CrxFe1−x-WT photoelectrodes.
The characteristic peaks observed at 159, 401, 520, and 637 cm−1 are consistent with those
of anatase TiO2; corresponding to Eg, B1g, A1g, and Eg, respectively (Figure 4E). No
crystalline phases related to other species were observed.

The optical properties of CrxFe1−x–WT photoelectrodes were also studied (Figure S3
(Supplementary Materials) and the band gaps of photoelectrodes have been estimated from
the Tauc plot (Figures 4F and S3). CrxFe1−x–WT (0 ≤ x ≤ 1) photoelectrodes exhibit better
visible region absorption than that of pristine WT, especially in the case of using Cr ions
for the WT surface modification. The estimated band gaps were found to be in the range
of 2.16–2.65 eV after the photo-deposition of CrxFe1−x, (0 ≤ x ≤ 1)) on the WT surface
(Table S2). As can be seen in Figure S3, in the case of Cr1Fe0–WT, a peak around 550 nm
was observed that belongs to the presence of Cr on the surface of WT photoelectrodes. This
kind of peak, λ > 500 nm, was also observed in other literature [26,32].

3.2. PEC Characterization

LSV measurements were performed to examine the photo-sensitivity of CrxFe1−x–WT
by recording current density as responses of as-prepared photoelectrodes, through scan-
ning the voltage in the dark, under illumination, and by switching the light on and off
(Figures 5A,B and S4). The current density of CrxFe1−x–WT is near zero in the dark
(Figure 5A) and significant light sensitivity was observed under light illumination for
all CrxFe1−x–WT photoelectrodes. In some cases, particularly Cr0.5Fe0.5–WT, an anodic
peak centered at +0.75 V was observed which can be assigned to surface oxidation of the
deposited amorphous composite CrxFe1−x (0.5 ≤ x ≤ 0.6) film on the surface of WT pho-
toelectrode (see Figure 3D,E). Cr0.8Fe0.2–WT showed the maximum photocurrent density.
It achieved a value of 0.48 mA cm−2 at 1.23 V vs. RHE, which corresponds to a ~2 times
increase compared to the pristine WT (Figure 5B). The chopped light polarization curves re-
vealed that CrxFe1−x–WT (0 ≤ x ≤ 1) photoelectrodes have good repeatability and stability
during light irradiation (Figure S5).

Chronoamperometry (CA) measurement was conducted to evaluate the stability of
the photocurrent density of CrxFe1−x–WT (Figure 5C). The response of CrxFe1−x–WT
photoelectrodes to light is rapid and after the initial spike, the photocurrent decreases
due to the strong e−/h+ recombination and then stabilizes less than 60 s. Generally,
the current density of pristine WT was increased after the surface modification. The
photocurrent density of pristine WT was 0.43 mA cm−2 which enhanced to 0.63 mA cm−2

for the Cr0.8Fe0.2–WT photoelectrode at a bias of +1.62 V vs. RHE (Figure 5C). Highly
sensitive photocurrent responses were observed upon switching the light on and off. The
photocurrent was enhanced significantly under illumination and returned to near zero
value as the light was turned off (Figure 5D).

Open circuit potential (OCP) of pristine WT and CrxFe1−x–WT photoelectrodes were
investigated to study photovoltage as well as the lifetime of photo-generated e−/h+. Char-
acteristic behavior of an n-type semiconducting material was observed (Figure 6A); upon
illumination, the potential of CrxFe1−x–WT shifts to more negative values. Afterward, when
the light is turned off, the potential of CrxFe1−x–WT increases back to near initial values
prior to the illumination and a decay profile appears. In all CrxFe1−x–WT photoelectrodes,
a fast change in OCP was observed after the light is switched on which correlated with
the fast response to light in photocurrent measurements. The photovoltages are ≥ 400 mV,
which suggests a significant concentration of photo–generated electrons (Figure 6A). The
higher photovoltages for CrxFe1−x–WT were obtained rather than that of pristine WT,
suggesting a more remarkable photo response after the WT surface modification. Moreover,
it has been reported that the decay profile of OCP after turning the light off represents the
charge recombination kinetics (Figure 6B) [9,13].
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Then, by fitting OCP decay profiles with a bi-exponential function (Equation (2)), the
average recombination lifetime of photo charges was calculated.

V(t) = V0 + A1e
−t
τ1 + A2e

−t
τ2 (2)

where V, t, V0, A1 and A2 are potential decay, time, fitting constants, and τ1 and τ2 are
exponential lifetime components for recombination processes in the bulk and surface,
respectively.

The harmonic mean of decay lifetime (τm) is calculated by Equation (3) and the data
are summarized in Table S3.

τm = (A1τ1 × A2τ2)/(A1A2) (3)

The longest photo charge lifetime was obtained in the case of Cr0.8Fe0.2–WT photo-
electrode, indicating more efficient charge recombination suppression compared with other
CrxFe1−x–WT photoelectrodes.

To further confirm the e−/h+ separation and transfer of photogenerated carriers,
electrochemical impedance spectroscopy (EIS) was measured. EIS data under the dark
and light illumination have been plotted as Nyquist plots in Figure 6C,D, fitted by the
equivalent circuit model (the inset plot in Figure 6C) to simulate the Nyquist plots. Rs
is the uncompensated solution resistance, Rct denotes the charge transfer resistance, and
CPE is defined as CPE-T and CPE-P, representing the constant phase elements. The fitting
impedance parameter values are listed in Table 1.

Table 1. EIS fitting parameters of CrxFe1−x–WT photoelectrodes under illumination.

Photoelectrode Rct (kΩcm−2)
CPE

n Q (µFcm−2) C (µFcm−2)

WT 7.247 0.97 71.9 70.3
Cr0Fe1–WT 7.541 0.90 106 104

Cr0.2Fe0.8–WT 9.670 0.92 86.0 84.7
Cr0.4Fe0.6–WT 5.716 0.95 73.8 70.4
Cr0.5Fe0.5–WT 6.511 0.94 81.3 78.3
Cr0.6Fe0.4–WT 4.253 0.95 81.9 77.8
Cr0.8Fe0.2–WT 3.420 0.94 88.3 81.8

Cr1Fe0–WT 10.016 0.91 117 119

The diameter of the semicircle of the Nyquist plot represents the photoelectrode charge
transfer resistance and the smaller arc radius means better e−/h+ separation efficiency
(Figure 6C,D). The charge transfer resistances of photoelectrodes under light illumination
are much smaller than those obtained in the dark (Figure 6C). Moreover, the Cr0.8Fe0.2–WT
photoelectrode showed the smallest Rct value, indicating better charge separation and
faster charge transfer kinetics at the electrode interface.

3.3. PEC Water Splitting and H2 Generation

PEC water splitting using CrxFe1−x–WT photoelectrodes was conducted via an in-
verted burette setup (Figure 1C). The volume of H2 production was then quantitatively
recorded according to the variation of the electrolyte level in the burette every 5 min. As
can be seen (Figure 7A), the Cr0.8Fe0.2–WT photoelectrode produced more H2 than that of
pristine WT and other photoelectrodes in an alkaline electrolyte. Water splitting for H2
evolution using Cr0.8Fe0.2–WT conducted during four cycles of 60 min (Figure 7B) showed
no significant decrease in activity during consecutive cycles, which proves the good stability
of the as-prepared electrodes in the PEC water splitting. The PEC evolved H2 in this work
compared with some of the other materials used in PEC water splitting in Table 2.
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Table 2. Comparison of H2 evolution using TiO2-based nanomaterials.

Photoelectrode Electrolyte Light Source Rate of H2 Evolution Ref.

TiO2 NP MeOH + H2O 150 W halide 0.270 µmol g−1min−1 [33]
1Pt-3WO3 -TiO2 NTs H2O +20 vol% EtOH UV 5 µL h−1 [34]
Cr-doped TiO2 NTs NaOH Vis 9.70 µL cm−2 h−1 [35]

Pd-TiO2 NTs H2O +50 vol%
MeOH UV 70 µL cm−2 h−1 [36]

Ru-TiO2 NTs Na2SO4 (2 M) Vis 29 µmol cm−2 h−1 [37]
Fe-TiO2 NTs NaOH Vis 10 µL cm−2 h−1 [38]

Cu-TiO2 H2O +50 vol% EtOH UV 81.1 µmol g−1h−1 [20]
Cr0.8Fe0.2–WT KOH + 10 vol% EG Vis 0.85 mL cm−2 h−1 This work

4. Conclusions

A simple and effective surface modification was applied by photo-deposition of a
single ion of Fe, Cr, as well as dual ions (CrxFe1−x, 0 ≤ x ≤ 1) on the surface of WT to
fabricate CrxFe1−x–WT photoelectrodes. The determined band gaps of the photoelectrodes
using Tauc plots were in a range of 2.16–2.65 eV which is less than pristine WT. The ratio of
Fe and Cr showed a significant effect on the deposition rate. In some ratios, an amorphous
layer of CrxFe1−x (0.5 ≤ x ≤ 0.6) covered the WT surface which is unfavorable for the
separation of photo-generated e−/h+ and consequently decreases the PEC efficiency of
these photoelectrodes. The Cr and Fe doping individually might improve the photocurrent
by expended visible light absorbance as well as the effective separation of photo-generated
e−/h+. However, the ratio of dual co-catalysts should be carefully optimized. On the other
hand, Cr0.8Fe0.2–WT made a great improvement in PEC activities. Better PEC activity of
Cr0.8Fe0.2–WT can be due to less charge transfer resistance as well as a longer photo charge
lifetime. The maximum evolved H2 was also obtained for Cr0.8Fe0.2–WT photoelectrodes
which are over two times that of pristine WT.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su142013251/su142013251/s1, Figure S1: EDS mapping of Cr0Fe1–
WT, Figure S2: EDS mapping of Cr1Fe0–WT; Figure S3: UV–Vis spectra (inset: Tauc plot) of CrxFe1−x–
WT; Figure S4: LSV of CrxFe1−x–WT under chopped light; Table S1: The elements ratio obtained by
EDS in CrxFe1−x–WT; Table S2: The estimated band gap (BG) of CrxFe1−x–WT; Table S3: Parameters
obtained from OCP decay profiles according to a dual exponentials decay of CrxFe1−x–WT.
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