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Abstract: We present a theoretical analysis of the refractometric sensitivity of a spherical microres-
onator coated with a porous sensing layer performed for different whispering gallery modes. The
effective refractive index of the modes is also calculated. The calculations are also made for a system
which has an additional high-refractive index layer sandwiched between the microsphere and the
porous sensing layer. The results of the calculation are discussed in regards to the applicability of the
studied systems for gas sensor construction.
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1. Introduction

Whispering gallery mode (WGM) resonators are very high Q-factor, low modal volume
optical resonators which have recently attracted a lot of interest in the scientific community.
Their high quality makes them very interesting for a number of applications [1] such as
lasing [2], frequency comb generation [3,4] and sensing. Sensing, in particular, has been a
particularly fruitful application of WGM resonators since 2002, when the first bio-sensor
based on whispering gallery modes was fabricated [5]. Since then, a number of papers on
bio-sensing using WGM resonators have been reported [6–8]. The principle of bio-sensing
using WGMs of a spherical resonator is to track the shift of the eigenfrequency of a particu-
lar resonator induced by the binding of an analyte molecule onto the sphere surface. The
basic sensing principle is refractometric: the analyte induces a change of the refractive index
of the resonator leading to the change of the optical path of the photon circulating in the
microresonator which in turn induces a change of the mode eigenfrequency. The drawback
of this method is that, when the analyte bonds to the surface, it can only interact with a very
small portion of the electric field of the WGM. The WGM is confined inside the resonator by
total internal reflection, making the electric field outside of the resonator an exponentially
decaying evanescent tail. This severely limits the refractometric sensitivity, although this
is somewhat offset by the fact that the high quality of the resonators makes possible the
tracking of very small shifts of the WGM frequency. Recently, a new approach to sensing
using WGM microresonators has been proposed which is particularly suitable for gas
sensing [9–14]. When a microresonator is coated with a thick porous layer, the electric field
of the WGM can be engineered to be confined inside the coating. The porosity of the coating
enables the molecules of the analyte to penetrate inside the coating where they can interact
with the WGM electric field, which is much stronger inside the coating than on the surface
of the sphere. This can greatly increase the refractometric sensitivity. In 2017, Mallik et al.
successfully used an agarose-coated microsphere to detect water vapors [9]. The same group
also managed to detect ammonia vapors using a porous silica-coated microsphere [10–12].
More recently, Zhivotkov et al. [13,14] managed to increase the refractometric sensitiv-
ity of the porous silica sol-gel-coated microsphere to more than 1000 nm/RIU, leading
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to ammonia detection sensitivity of more than 100 nm/ppm while retaining very high
Q-factor (between Q = 105–106). This value of 1000 nm/RIU is among the highest available
in literature so far for resonator-based refractometric sensors. If a microsphere without
any coating is used for sensing using the evanescent tail of the WGM at the surface of
the sphere, the refractometric sensitivity depends on the sphere diameter and is between
13 and 2 nm/RIU for sphere diameters between 60 and 300 µm. Microbubble resonators
with very thin walls have been recently used to achieve refractometric sensitivities between
18.8 nm/RIU with Q = 2.9× 106 [15] and 256.2 nm/RIU with Q = 4.67× 104 [16]. Microring
resonators have been produced achieving sensitivities of 70 nm/RIU with Q = 2 × 105 [17]
and 212 nm/RIU with Q = 1.8 × 103 [18]. The results reported in Zhivotkov et al. [13,14]
show higher sensitivity than microbubble, microring and uncoated microspheres while
still retaining high Q-factors. However, a detailed theoretical study on the refractometric
sensitivity of a microsphere coated with a porous material is still lacking in literature. The
theory of eigenfrequencies of a coated microsphere has already been studied for use in
modal dispersion compensation [19,20], thermo-optic coefficient tailoring [21] and refracto-
metric sensing using the evanescent field of the surface of the microresonator [22–24]. In
this paper we present the theoretical analysis of the refractometric sensitivity of a system
which consists of a microsphere coated with a porous layer and of a microsphere coated
with two layers: one high refractive index layer that is used for electric field profile tailoring,
and a porous layer that serves as the sensing medium.

2. Materials and Methods

The overall sensitivity of any refractometric sensor can be separated into two parts:

∂λ

∂c
=

∂λ

∂n
∂n
∂c

(1)

where c is the concentration of the analyte, n is the refractive index of the sensing medium
and λ is the wavelength of a resonator mode. In Equation (1), ∂n/∂c is a property of
the chemical interaction between the analyte and the material the resonator is made of,
and in general cannot be tailored short of changing the chemistry of the materials in
question. On the other hand, ∂λ/∂n is a property of the resonator geometry and can be
tailored by changing the geometrical parameters of the resonator. To calculate ∂λ/∂n for
a microresonator coated with a porous layer we consider the following two cases. The
first system that we study is a microsphere with refractive index ns and radius R coated
with a porous layer with refractive index nc and thickness d. The second system is a
double-coated microsphere, which has an additional high-refractive index (nh) layer of
thickness dh sandwiched between the sphere and the porous coating. In both cases the
coated sphere is imbedded in a surrounding medium with refractive index n0. The two
systems are sketched in Figure 1.
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viewed as a change of the surrounding medium the sphere is embedded in (n0). In that case,
the corresponding refractometric sensitivity is equal to ∂λ/∂n0 [22–24]. In this paper, we
are considering such a case when the analyte molecules can diffuse into the interior of the
coating and change its refractive index (nc) so the corresponding refractometric sensitivity
is ∂λ/∂nc. For this, we first need to calculate the mode eigenfrequencies of the two systems

presented in Figure 1. The electric field
→
E in our system has to satisfy the vector Helmholtz

equation which can be solved using the Hansen method [25]. There exist two independent
physical solution corresponding to two possible light polarizations:

→
M =

→
∇φ×→r ,

→
N =

1
nk

→
∇×

→
M (2)

where φ is the solution to the scalar Helmholtz equation and is therefore equal to the
product of a spherical Harmonic Ylm(θ, ϕ) and of a linear combination of spherical Bessel
jl and Neumann yl functions ψl = Ajl(nkr) + Byl(nkr), where k is the wave propagation
vector in vacuum and n is the refractive index of the material. Therefore, the two solutions
→
M and

→
N can be written in spherical coordinates as:

→
M = ψl

(
1

sin θ
∂Ylm
∂ϕ θ̂ − ∂Ylm

∂θ ϕ̂
)

→
N = l(l+1)

nkr ψlYlm r̂− 1
nkr

∂(rψl)
∂r

(
∂Ylm

∂θ θ̂ + 1
sin θ

∂Ylm
∂ϕ ϕ̂

) (3)

The electric and magnetic fields that satisfy the vector Helmholtz equation have to be

constructed from vectors
→
M and

→
N. The usual way is to define the TE (TM) modes as the

modes for which the electric (magnetic) field is purely tangential to r̂ [26]:

→
ETE = E0n

→
M ,

→
BTE = E0

in2

c

→
N

→
ETM = B0

1
ic

→
N ,

→
BTM = B0n

→
M

(4)

where c is the velocity of light. The components of
→
E and

→
B perpendicular to r̂ have

to be continuous across all the boundaries between different materials. By looking at
Equations (3) and (4) it can be seen that this condition is satisfied if nψl and P∂(rψl)/∂r are
continuous across the boundaries where P = n for the TE and P = 1/n for the TM mode.
Since ψl must not diverge anywhere in space, its general form in our particular case will be
the Bessel function in the sphere core, a general linear combination of Bessel and Neumann
function in the coatings, and the Neumann function in the surrounding medium. With two
boundary conditions per each boundary, we will have in total four boundary conditions in
the case of a single layer and six in the case of two layers. To find the eigenfrequencies we
need to find the zeros of the determinants of the two boundary condition systems:∣∣∣∣∣∣∣∣

Sl(knsR) −Sl(kncR) −Cl(kncR) 0
PsSl

′(knsR) −PcSl
′(kncR) −PcCl

′(kncR) 0
0 Sl(kncRc) Cl(kncRc) −Cl(kn0Rc)
0 PcSl

′(kncRc) PcCl
′(kncRc) −P0Cl

′(kn0Rc)

∣∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣∣∣∣∣∣

Sl(knsR) −Sl(knhR) −Cl(knhR) 0 0 0
PsSl

′(knsR) −PhSl
′(knhR) −PhCl

′(knhR) 0 0 0
0 Sl(knhRh) Cl(knhRh) −Sl(kncRh) −Cl(kncRh) 0
0 PhSl

′(knhRh) PhCl
′(knhRh) −PcSl

′(kncRh) −PcCl
′(kncRh) 0

0 0 0 Sl(kncRhc) Cl(kncRhc) −Cl(kn0Rhc)
0 0 0 PcSl

′(kncRhc) PcSl
′(kncRhc) −P0Cl

′(kn0Rh)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(5)

where Rc = R + d, Rh = R + dh and Rhc = R + dh + d, Sl and Cl are the Ricatti–Bessel
functions defined as: Sl(x) = xjl(x), Cl(x) = xyl(x). In general, Equation (5) will have
multiple solutions which we number using an integer index p. This makes each mode
defined by three integers p, l and m. The three quantities p, l-m and m correspond to the
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number of nodes in the radial, azimuthal and polar directions, respectively. The modes
themselves are frequency-degenerate in m. In all our calculations, for a given p we chose
the value of l to correspond to the mode whose wavelength is the closest to 1550 nm, this
being the widely used telecom wavelength. Once the eigen-wavelengths λ are obtained,
it is fairly straightforward to obtain the sensing sensitivity by calculating the quantity
∂λ/∂nc. For any sensor, the highest possible sensitivity is desired. However, in the case of
sensors that include porous coatings, the thickness of the coating needs to be also taken
into consideration. The thicker the porous coating is, the more likely it is for the porous
layer to deform, crack or even to collapse onto itself, which makes obtaining very thick
porous coating very challenging. Therefore, the aim of our calculations will be to obtain
the optimum parameters that achieve the highest sensitivity for lowest possible thickness
of the porous coating. The parameters which we vary are nc, R and d for the single layers
system, and are nc, R, d, dh and nh for the two-layer system. Since d is the parameter which
is the easiest to vary experimentally, in the graphs we will always plot ∂λ/∂nc in respect
to d for select values of other parameters. Without loss of generality, the results for the
TE modes are presented throughout the paper, while the TM modes are discussed only in
chapter 3.3. In addition to ∂λ/∂nc, the effective refractive index neff is also calculated for
each mode. The neff of a WGM mode is defined as [27]:

ne f f =
mλ

2π(R + d + dh)
(6)

where |m| < l.

3. Results and Discussion
3.1. Microsphere Coated with a Single Layer

In Figure 2, the dependence of ∂λ/∂nc on d is shown for nc = 1.4 which would
correspond to a porous silica layer with a porosity of 9%, a reasonable value for sol-gel
porous silica [13,14]. It is important to note that in this case nc < ns since in the opposite
case very different behavior is observed, as will be discussed later. It is clearly visible that
for a given sphere size, the modes with different values of p show different behavior. The
sensitivity of the p = 0 mode increases with increasing d until reaching a maximum value
of about 1100 nm/RIU. The thickness d for which the sensitivity reaches this maximum
value is higher for larger spheres. For example, for a sphere 60 µm in diameter (D = 60 µm),
90% of the maximum value is reached for d = 2.1 µm, while for D = 400 µm it is reached for
d = 6.9 µm. The reason for this effect is because the electric field of the WGMs for larger
spheres extends further into the interior of the sphere than in the case of smaller spheres.
This is a consequence of simple scaling: bigger spheres lead to a larger radial width of the
modes. Therefore a larger d is needed to confine the whole electric field of the mode inside
the coating. This is illustrated in Figure 3a, where the radial electric field profiles for the
p = 0 mode are shown for different sphere diameters for uncoated spheres.

This effect has to be taken into account when designing a WGM gas sensor. When
using a smaller sphere for gas sensor manufacturing, the applied coating does not need
to be very thick to reach high sensitivities. This would greatly ease the manufacturing
process, since thinner layers are less likely to crack and/or collapse during the coating
process. Any cracking of the layer can decrease the Q-factor of the sphere. Although
this would not decrease the sensitivity, it would decrease the smallest detectable shift of
the mode frequency, which would in turn reduce the detection limit. On the other hand,
the drawback of using smaller spheres is that they can be more difficult to produce. If
the standard method for WGM microspheres production based on melting the tip of a
telecom fiber is used, the production of spheres smaller than the diameter of the fiber
(usually 125 µm) would have to include an additional tapering step. For the p = 1 modes,
increasing d leads to an initial increase of ∂λ/∂nc until d reaches a local maximum, upon
which ∂λ/∂nc tends to decrease before reaching a local minimum, after which it increases
again until reaching the maximum value, which is about 1100 nm/RIU, the same as for
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the p = 0 mode. For the p = 2 modes the behavior is similar; the only difference is that the
sensitivity passes through two local maxima before reaching its maximum value which
is, again, 1100 nm/RIU. The reason the modes with different values of p show different
behavior is because of the different spreading of the modes into the interior of the sphere.
This is illustrated in Figure 3b for the particular case of D = 150 µm, d = 4 µm. The modes
with different p have different electric fields profiles, the modes with higher p spreading
deeper into the sphere. This means that in general, the modes with lower p will have
higher sensitivities. This is generally the case; the modes with lower p always reach their
maximum sensitivity for lower values of d. However, for particular values of d it is not
always the case that lower p means higher sensitivity. It is the confinement of the WGM
electric field in the coating that is the crucial parameter for determining sensitivity, and
sometimes even if one WGM is spread deeper into the sphere than another WGM, it can
have more of its electric field inside the coating. For example, in Figure 3b, the p = 2 mode
reaches deeper into the sphere than the p = 1 mode, however two out of three of its lobes are
entirely confined inside the coating, while regarding the two lobes of the p = 1 mode, the
lobe inside the coating has much smaller intensity than the lobe outside the coating making
∂λ/∂nc of the p = 2 mode higher than for the p = 1 mode, as can be seen from Figure 2. To
further explain this effect we can take a look at Figure 3c, where the electric field profiles for
the particular case of the p = 1 mode are shown for particular values of d that correspond
to the local minima and maxima of ∂λ/∂nc. For d = 1 µm, the thickness is very low, so
most of the electric field is located outside of the coating. For d = 2.5 µm we reach the first
local maximum, where one lobe is located entirely inside the coating (exterior lobe) and
one in the sphere core (interior lobe). Upon further increase of d, more of the interior lobe
starts entering the coating, thus increasing the sensitivity, while simultaneously the peak
intensity of the exterior lobe decreases in respect to the peak intensity of the interior lobe,
thus decreasing the sensitivity. This results in the sensitivity first reaching a local minimum
for d = 3.7 µm and then reaching its global maximum for d = 5.8 µm when the entire electric
field of both lobes is confined inside the coating. It is interesting to note that the value of
the first local maximum of ∂λ/∂nc increases with increasing sphere diameter: while for a
60 µm sphere the first maximum is only 38% of the global maximum, for a 400 µm sphere
it is as high as 97% of the global maximum. This means that for larger spheres, in practical
applications, it is the p = 1 mode that is more suitable for sensing application instead of the
p = 0 mode.

From Figure 2 we can also see that, at fixed d, the ∂λ/∂nc can be very different for
different values of p. This means that to construct sensors which would operate at maximum
∂λ/∂nc, selective coupling to modes with a particular p is required. This can be achieved
by selectively coupling to modes with select values of neff using an experimental coupling
method which is selective to neff (for example prism coupling). In general, according to
Equation (6), the WGMs with the same l and p but with different m can have very different
values of neff ranging from the maximum for l = m to 0 for m = 0. In practice, however, the
m = 0 modes are never observed, since their electric field extends significantly across the
polar regions of the sphere, to one of which the stem that the sphere is attached to is located.
The stem, which is used for manipulating the sphere, introduces significant losses to the
WGM which degrades the Q-factor of the WGM enough to make it non-distinguishable in
the experimental setup used for sensing. However, modes with m < l where m is not too
low will be located mostly in the equatorial plane of the sphere, although they are slightly
more delocalized than in the m = l case. In general, it will be very difficult to distinguish
experimentally between, for example, the m = l and the m = l − 1 modes. In all subsequent
Figures we always plot neff for the m = l mode for a given p, although we have to always
take into account that neff can also be slightly smaller than for the l = m case. In Figure 2
(right), the calculated values of neff are shown for the same system for which ∂λ/∂nc is
shown in Figure 2 (left). We can see that in general the modes with higher p have lower
neff. This means that the p = 0 mode can always be selectively coupled to if we were to
couple using a neff that is smaller than neff for p = 0, l = m but larger than p = 1, l = m. This
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is fortunate, since for most spheres the p = 0 mode is the one that is the most useful for
real-life sensing application. However, as already mentioned, it is the p = 1 mode that is
better-suited for bigger spheres. For example, for D = 400 µm and d = 5.4 µm, the ∂λ/∂nc is
1060 nm/RIU for the p = 1 mode and only 104 nm/RIU for the p = 0 mode. Unfortunately,
for the same system according to Equation (6) the p = 1, l = m mode should have the same
neff as the p = 0 for l = 1156, m= 1148 which means that when targeting the p = 1 mode
we could also couple to the p = 0 mode. In Figure 2 it is also noticeable that for smaller
spheres the overall difference between neff of modes with different p is much larger than
for bigger spheres. For example, for D = 60 µm the neff for the p = 0 and p = 1 modes can
differ in magnitude up to 0.06 RIU while in the case of D = 400 µm this difference is less
than 0.01 RIU. The higher this difference between neff is, the smaller is the accuracy of the
experimental setup’s selective part (such as angle of incidence onto the prism in the case of
prism coupling) needed to distinguish the two modes. From all that was said above, we
conclude that in the case of a single coated sphere with nc = 1.4, the smaller the diameter of
the sphere is, the better suited the sphere is for sensing applications.
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p = 0; (e) D = 150 µm, d = 3 um, p = 1, nh = 1.9. The vertical lies correspond to the interfaces between
the ns, nh, nc and n0 layer.
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In Figure 4 the results of calculations of ∂λ/∂nc for nc = 1.5 are shown. Note that in
this case, nc > ns. We see that the results are vastly different than in the case of nc < ns.
While for nc = 1.4 the spheres with different diameters showed very different behavior, for
nc = 1.5 the ∂λ/∂nc dependence on d is almost identical for different sphere diameters. The
value of d needed to reach the maximum sensitivity is still increasing with D, however this
increase is much smaller than in the nc = 1.4 case. The maximum value of the sensitivity is
1000 nm/RIU which is a bit smaller than in the nc = 1.4 case. Additionally, the values of
the local maxima for p > 0 modes are much smaller than in the case of nc = 1.4. This means
that, for all practical purposes, for nc > ns it is the p = 0 mode that should be targeted for
sensor production. Additionally, the neff difference between the p = 0 and p = 1 modes is
much larger than in the nc = 1.4 case, ranging from 0.08 RIU for D = 60 µm to 0.05 RIU for
D = 200 µm. We can conclude that in the nc = 1.5 case, the coating thickness required to
produce an efficient sensor is much smaller than in the nc = 1.4 case. Additionally, while
the sphere diameter is a very important parameter for sensor design in the nc = 1.4 case, in
the nc = 1.5 case different sphere diameters all produce similar results, which significantly
simplifies the sensor design since the sphere diameter used can vary in a wide range. The
reason behind the vastly different behavior in the two presented cases is the fact that in
the nc >ns case the coating can serve as a wave-guiding structure, while in the nc < ns case
the coating serves as a cladding for the mode confined in the sphere interior. If nc > ns,
the coating is sandwiched between two lower refractive index layers, meaning that it can
serve as a waveguide if d is thick enough to support a wave-guiding mode. The thickness d
required to support a particular mode depends only on the refractive indices nc, ns and n0
and not on the sphere diameter. Because of this, the graphs in Figure 3 all show similar
behavior, regardless of sphere diameter. In the nc < ns case, the coating layer serves as
a cladding for the mode located in the sphere interior meaning that the mode cannot be
confined inside the coating. The radial spread of the mode will therefore be primarily
determined by the spread of the mode in the sphere interior which is, as was already shown
in Figure 3a, strongly dependent on the sphere diameter. This is illustrated in Figure 3d,
where the electric field profiles are presented for the particular case D = 150 µm, d = 3 µm.
While for the nc = 1.5 case the mode is completely confined inside the coating, in the
nc = 1.4 case the mode spreads far into the interior in the sphere in a similar manner, as if
the sphere was not coated at all.
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It is interesting to compare the ∂λ/∂nc dependence on d for p = 0 and fixed D for
different values of nc as is shown in Figure 5 for D = 150 µm. We can see that with
increasing nc the maximum sensitivity decreases, although the value of d needed to reach the
maximum is smaller. For example, for nc = 1.4, the maximum of ∂λ/∂nc is 1100 nm/RIU for
d > 4 µm, while for nc = 1.9 it is 800 nm/RIU for d = 1 µm. For practical applications, this four-
fold decrease in the operating thickness might be more important than the 20% decrease of
sensitivity. Producing sensors with slightly smaller sensitivity but with coating thicknesses
which are much easier to produce experimentally can be a reasonable compromise.
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3.2. Microsphere Coated with Two Layers

In the previous section, it was shown that coating the microsphere with a low
refractive index layer can result in very high sensitivities while at the same time requiring
very thick coatings, especially for spheres with large diameters. To tailor the electric
field of a confined mode, a thin high refractive index layer can be introduced next to the
guiding layer. Even a very thin layer can be used to push out the electric field of a given
mode outside the structure in which the mode is confined, depending on the geometrical
parameters of the system in question. In our case, we can introduce a high refractive
index layer (nh) between the sphere and the sensing layer, as shown in Figure 1b. In
Figure 6, the calculated ∂λ/∂nc in dependence on d for ns = 1.44, nc = 1.4, nh = 1.9 are
shown for different values of dh and D.

We can see that, for the p = 0 mode, ∂λ/∂nc increases due to the additional layer
only for very small values of d. For example, for d = 1 µm and D = 150 µm an additional
layer as thin as dh = 100 nm increases ∂λ/∂nc from 143 to 321 nm/RIU. However, in the
range in which this increase happens, ∂λ/∂nc is always below the maximum value that is
1100 nm/RIU. On the other hand, the additional layer causes a significant increase of the
value of d needed to reach the maximum of ∂λ/∂nc. For p > 0 modes, the overall effect of
the added layer is more complicated. The most important conclusion that can be seen from
Figure 6 for the p > 0 modes is that the additional layer can greatly increase the ∂λ/∂nc
at its local maxima. For example, when using a thin additional layer of dh = 100 nm the
∂λ/∂nc for the p = 1 mode of a D = 150 µm sphere can reach 1000 nm/RIU for d = 3 µm,
even though without the additional layer its first local maximum would only reach 644nm
/RIU. For p > 1 modes this effect is also present, as summarized in Table 1. We can see that
the additional high refractive index layer can be used to decrease the thickness d needed to
achieve high values of ∂λ/∂nc, provided that we manage to selectively couple to higher
order modes.
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Table 1. Calculated ∂λ/∂nc for nc = 1.4, nh = 1.9, D = 150 µm at d corresponding to the first local
maximum for a given p for dh = 0 and for the optimum dh that maximizes ∂λ/∂nc at d.

p 0 1 2 3 4

d (µm) 4.1 3 2 1.56 1.31
dh (nm) 0 0 100 0 200 0 220 0 220

∂λ/∂nc (nm/RIU) 1100 644 1000 312 864 186 640 134 460

The reason that the high refractive layer has such a large influence on ∂λ/∂nc is
illustrated in Figure 3e for the particular case of D = 150 µm, d = 3 µm, p = 1. In this case
the p = 1 mode has two lobes: the exterior lobe located in the coating and the interior
lobe in the sphere core. The relative intensity of these two lobes is primarily dependent
on the refractive indices on the interface between the coating and the sphere which are
greatly modified by the addition of the thin high refractive layer between the sphere and
the coating. This is evident in Figure 3e where the increase of dh leads to a significant
increase of the intensity of the exterior lobe in respect to the interior lobe.

The neff calculated for the same parameters for which ∂λ/∂nc were presented in
Figure 6 are shown in Figure 7. We can see that the main effect of the additional high
refractive index layer is to greatly increase the difference in neff between the p = 0 and
p > 0 modes. For example, while for D = 400 µm the difference between the neff for the p = 0
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and p = 1 modes is only about 0.01 RIU, with the addition of a 200 nm high refractive index
layer this difference can be as high as 0.11 RIU. This would mean that the p = 1, l = 1156,
m = 1156 and the p = 0, l = 1239, m = 1156 modes have the same neff. In this case the l-m
difference for the p = 0 mode is 83, which means that the mode is significantly delocalized
towards the polar regions of the sphere. This is illustrated in Figure 8 where we can see
that while the p = 1, l = 1156, m = 1156 mode is located at the equatorial plane of the sphere
(within 10 µm of the equator), the p = 0, l = 1239, m = 1156 mode is distributed across the
sphere up to 70 µm away from the equator. By choosing the correct design of the sphere
and of the stem, the very delocalized p = 0 mode can be made to be so lossy as to effectively
cease to exist. In this manner, the p = 1 mode can be selectively coupled to by choosing
the neff of the coupler to correspond to the neff of the p = 1 l = m mode. By coupling to the
p = 1 mode we can obtain maximum ∂λ/∂nc using dh = 200 nm and d = 6 µm, while for the
p = 0 we would need d = 7.25 µm to reach the maximum ∂λ/∂nc. Unfortunately, Figure 7
also shows that the neff of all the p > 0 modes in the dh = 0–200 nm range tend to have very
similar magnitudes which would make it very difficult to selectively couple to the p > 1
modes. While the p = 2,3 . . . modes could offer a further decrease of the thickness needed
to reach high ∂λ/∂nc, it could prove very challenging to selectively couple to them.
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As expected, if we were to engineer a particular system with a pair of values of dh
and nh, we can obtain a similar system which has a smaller dh and a larger nh, or vice
versa. Changing nh has the effect of changing both the optical path length inside the layer
and the Fresnel coefficients of refraction at the ns- > nh and nh- > nc boundaries, but the
predominant effect is the optical path length change. This is illustrated in Figure 9 where
∂λ/∂nc is found to be almost the same when calculated for three different pairs of dh, nh
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for a particular mode. Therefore, a sensor whose response is tailored to operate at certain
values of dh, nh can be easily designed with the same sensitivity using a material with a
different nh by simply modifying dh.
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Figure 8. The electric field profiles for a 400 µm sphere with dh = 200 nm and d = 6 µm for the p = 1,
l = m = 1156 mode (left) and the p = 0, l = 1239, m = 1156 mode (right). The origin x = z = 0 is in the
center of the sphere. The z = 0 plane is the equatorial plane. The full lines represent boundaries between
different layers.
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3.3. Comparison of the TE and TM Modes

The same calculations that were made for the TE modes have also been carried out
for the TM modes. In the case of the sphere coated with one layer, the calculated ∂λ/∂nc
for the TE and TM modes are almost identical, as shown in Figure 10. In the case of the
sphere coated with two layers, the TM modes show qualitatively the same dependence of
∂λ/∂nc on d as the TE modes; the only difference is in the value of dh needed to achieve the
same behavior. For example, from Figure 10 it is visible that for dh = 100 nm, the TE and
TM modes have very different ∂λ/∂nc. However, the calculated ∂λ/∂nc for the TE mode
at dh = 100 nm is almost identical as for the TM mode and dh = 170 nm. This means that for
practical applications, the TE modes are the ones that should be targeted, since they can be
engineered to have the same ∂λ/∂nc as the TM modes but for smaller values of dh.
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4. Conclusions

We have presented a theoretical analysis of a sensing system based on a microsphere
coated with a porous sensing layer. We have found that the fact whether the refractive index
of the sphere ns is greater or smaller than the refractive index of the coating nc greatly affects
the sensing sensitivity. If nc < ns, the thickness needed to reach the optimum sensitivity
depends significantly on sphere diameter, making smaller spheres the preferred option
for sensor construction. On the other hand, for nc > ns, the diameter of the sphere is not
important, since it does not influence the overall sensitivity. We have found that, in general,
the p = 0 mode is the most suitable one for practical sensing application, although for larger
spheres (D > 400 µm) with nc < ns, the p = 1 mode is the more suitable one. In this case,
however, the problem of selectively coupling to the p = 1 modes needs to be solved. By
introducing an additional high-refractive index layer (as thin as 200 nm for nh = 1.9) the p = 1
mode can be engineered to have both an increased sensing sensitivity and an increased neff
mismatch with the p = 0 mode, which could facilitate selective coupling to the p = 1 mode.
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