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Abstract

Ginzburg-Landau theory of continuous phase transitions implicitly assumes that mi-
croscopic changes are negligible in determining the thermodynamic properties of the
system. In this work we provide an example that clearly contrasts with this assumption.
We show that topological frustration can change the nature of a second order quantum
phase transition separating two different ordered phases. Even more remarkably, frus-
tration is triggered simply by a suitable choice of boundary conditions in a 1D chain.
While with every other BC each of two phases is characterized by its own local order
parameter, with frustration no local order can survive. We construct string order pa-
rameters to distinguish the two phases, but, having proved that topological frustration
is capable of altering the nature of a system’s phase transition, our results pose a clear
challenge to the current understanding of phase transitions in complex quantum sys-
tems.
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Ginzburg-Landau Theory (GLT) [1–3] is one of the pillars of modern many-body physics. It
constitutes an enormous reductionist criterion since it states that phases separated by a phase
transition can be distinguished by a local order parameter, thus simplifying the macroscopic
description of a system with many interacting degrees of freedom into a single emergent prop-
erty. The characterization of a system’s phase through its macroscopic order (or lack thereof)
is intimately related to the concept of a phase transition since such a collective property can
be changed only through a discontinuity in which the system is reorganized. In principle, one
can have a critical point that does not correspond to a rearrangement of the local order, i.e. a
transition separating two different disordered phases. However, such occurrences have never
been observed. Not in classical systems, but not even in quantum ones. In fact, when the
latter challenged standard GLT, it was quickly realized that it can be saved by extending the
concept of local order parameter to other types of orders, which are either not strictly local
(as, for instance, the nematic order [4,5]), or global (as is the case of topological order [6,7]).
Thus, even in the quantum cases, it is expected that a critical point separates two phases with
different macroscopic behaviors.
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Indeed, the non-local nature of quantum mechanics continues to surprise and to force us
to modify our paradigms to include new effects. One such recent realization is the observation
that certain boundary conditions can affect some physical behaviors even in the thermody-
namic limit [8–10]. GLT stands on the hypothesis that boundary conditions, due to a finite
correlation length, cannot influence the bulk behavior of a system. According with this assump-
tion, the prescription is to take the thermodynamic limit before any observable is calculated.
However, no truly infinite system exists in nature, and disregarding the total size as a possibly
relevant quantity might throw away part of the physics. In a series of recent works, this was
proven to be the case for one-dimensional spin chains with Frustrated Boundary Conditions
(FBC), that is, periodic boundary conditions with an odd number of sites in the loop [11–13].
In presence of antiferromagnetic interactions, such conditions induce a topological frustration
(TF) that generates a conflict between the locally preferred arrangement of staggered magne-
tization and the incompatibility of such order with the loop geometry with an odd number of
sites. Classically, this is the prototypical example of frustration and it is understood that the
conflict is resolved by a single defect, a domain wall, that can be placed anywhere in the chain
inducing a massive degeneracy, with the number of lowest energy states growing linearly with
the chain length [14,15].

In the quantum case, this degeneracy is generally lifted and the common picture is that the
ground state is a superposition of the domain wall states. Although this picture is largely cor-
rect, its consequences have not been appreciated until recently. In fact, because the standard
staggered order is not sustainable under FBC, the quantum ground state enforces different
patterns. In some cases a mesoscopic ferromagnetic magnetization is realized, vanishing al-
gebraically with the system size [11]. In other cases, the system arranges itself in an almost
staggered order in which neighboring sites are non perfectly anti-aligned and over the whole
chain the magnitude of the magnetization varies continuously [12]. Essentially, in the first
situation, the domain walls interfere destructively with one another, while in the second the
ground state can be seen as a superposition of two domain wall waves with different momenta
and the macroscopic behavior is the result of their interference. Moreover, introducing local
defects, other arrangements that do not reduce to standard AFM become possible, also far
away from the defects themselves [16]. Hence, FBC act very differently from other bound-
ary conditions (BC). They can affect the bulk, modifying the local order in unexpected ways
and even generating a (first-order) phase transition due to a level crossing that only exists with
these BC and marks the change between the different types of local order depicted above [12].

In this work, we point out the existence of an even more surprising effect associated with
the TF. Namely, we investigate the case in which the orders on both sides of a second or-
der quantum phase transition are “staggered” and thus both incompatible with the FBC. We
show that, in some cases, FBC generates a TF that prevents the emergence of any local or-
der, as quantified by observables spreading over a finite support and breaking a Hamiltonian
symmetry and hence the system remains locally disordered across the QPT. Since the scaling
dimensions of local observables close to the phase transition are usually one of the most im-
portant quantities to determine the universality class at criticality [17], we have that, without
local order, the quantum phase transition changes its nature in presence of TF with respect to
all other physical situations.

We will illustrate this new phenomenon through the example of an exactly solvable model,
but this phenomenology goes beyond it. In fact, as shown in a companion, more mathematical,
work [18], the killing of any local order by TF is a rather common occurrence in 1D. The ex-
ceptions are related to exact ground state degeneracies with states characterized by particular
sequences of momenta. Qualitatively, to understand these points, one can start from the usual
picture that interprets the effects of FBC as the introduction of a single delocalized particle ex-
citation in system. Typically, this excitation flips every spin as it travels through the system and
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in this way destroys any order. However, if the ground state is a superposition of two traveling
excitations, they can interfere constructively if their momenta differ by π in the thermody-
namic limit (at any finite size, an exact π momentum is not allowed by the quantization rules
imposed by FBC). Thus, if a system with FBC supports at least two degenerate ground state
vectors satisfying the momentum condition above, a finite order can ensue, which is locally
similar to the usual staggered one, but varies in an incommensurate way along the chain from
a finite value to zero. This is the case, for instance, in certain regions of the phase diagram of
the XY chain [12]. The analysis in [18] indicates through numerical empirical evidence that
systems with purely topological frustration can easily host ground states with momenta close
to±π/2 (thus supporting a finite incommensurate order), while spin chains with larger degree
of frustration (for instance, with competing next-to-nearest-neighbor interactions) show more
complicated patterns which typically result into vanishing local orders.

Although frustration can prevent the establishment of any local order, we expect that the
singularity at the QPT indeed signals a rearrangement of the system, although on lengths
scaling like the total system size. Exploiting the analytical solvability of the model in the
example we consider, we prove the existence and provide the explicit expressions for string
order parameters that replace the local ones in distinguishing the two phases. In this way,
we provide a path for an extension of GLT, in the sense that the transition indeed separates
different types of global orders. Thus, with TF the transition becomes akin to a topological
one, although we are not able to provide a definite characterization in this respect. In fact,
contrary to traditional topological transition, here the invariant does not seem to be defined
in a “mathematical” space (such as momentum space), but rather in real space, where the
invariant can be something like the Toulouse criterion, which counts the even/oddness of
AFM interactions over the loop.

A specific example: To illustrate this peculiar phenomenon we consider the so-called 2-
Cluster Ising model, in which a short-range two-body Ising interaction competes with a cluster
term acting simultaneously on four contiguous spins [19]:

H = cosφ
N
∑

j=1

σx
j σ

x
j+1 + sinφ

N
∑

j=1

σ
y
j−1σ

z
jσ

z
j+1σ

y
j+2 (1)

= cosφ
N
∑

j=1

σx
j σ

x
j+1 + sinφ

N
∑

j=1

OjOj+1 . (2)

Here and in the following σαj (α = x , y, z) stand for Pauli’s operators on the j-th spin,

Oj = σ
y
j−1σ

x
j σ

y
j+1 is the cluster operator [20] that allows to rewrite the cluster interaction

term in a form resembling a two body one, φ is a parameter that allows to tune the relative
weight between the two terms and the periodic boundary conditions imply that σαj+N = σ

α
j ,

as well as Oj+N = Oj .
Usually, this model displays a second-order phase transition between two different or-

dered phases [19], depending on whether the Ising or the cluster terms dominate. However,
by applying FBC (so, setting N to be an odd number), when the interactions favor an anti-
ferromagnetic alignment, TF sets in and the phase diagram modifies accordingly, as we will
discuss and is previewed by the phase diagram in Fig. 1

In addition to the aforementioned quantum phase transition, this model holds an impor-
tant symmetry, which is pivotal in our construction, namely, the Hamiltonian in eq. (1) is
invariant under the transformation σαj ↔ −σαj ∀α, which implies that, defining the parity

operators as Πα =
⊗N

l=1σ
α
l , we have

�

H,Πα
�

= 0 ∀α. Since we are considering the case of
odd N , different parity operators anti-commute (

�

Πα,Πβ
	

= 0 for α 6= β), implying that each
eigenstate of the model is, at least, two-fold degenerate. Indeed, if |ψ〉 is an eigenstate of H
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Figure 1: Relevant phase diagram of the 2-cluster-Ising model with Frustrated Bound-
ary Conditions and its comparison with the established phase diagram with other BC.

with Πz = 1, the state Πx |ψ〉 has the same energy, but Πz = −1. We stress that this global
SU(2) symmetry is quite generic with FBC and is typically violated by the presence of external
fields. Its importance is that it allows us to bypass the standard approach for the calculation of
order parameters through the application of a symmetry breaking field, since the ground state
degeneracy implies that any ground state vector breaks one of the invariances of the Hamilto-
nian and thus can display a finite magnetization in that direction. We will also use the fact that
the mirror symmetry, which is the invariance under the transformation σαj ↔ σα2k− j , where k
is the generic site of symmetry, implies that eigenstates either have 0 or π-momentum, or they
appear as degenerate doublets [12].

The Hamiltonian in eq. (1) also enjoys other properties that are convenient, but not neces-
sary, for our analysis. Indeed, this model can be mapped exactly, although non-locally, to a free
fermionic systems (see Supplementary Material) and exploiting this fact we can treat larger
systems or even get exact analytical results. Moreover, a duality symmetry, consisting in the
invariance of the Hamiltonian under the simultaneous exchange φ↔ π

2 −φ and σx
j ↔ Oj ,

relates the Ising and the nematic phases.
When φ ∈

�3π
4 , 7π

4

�

the dominant interaction favors a ferromagnetic alignment and thus
FBC do not induce any frustration, which sets in only in the remaining part of the phase
diagram. Here, a double degenerate ground state (due to the global SU(2) symmetry) is
separated by a finite energy gap from the other states and in the thermodynamic limit its
behavior is indistinguishable from that with open boundary conditions studied in [19]. At
φ = 5π

4 there is a quantum phase transition which separates two differently ordered phases.
When the Ising interaction prevails over the cluster one, i.e. forφ ∈

�3π
4 , 5π

4

�

, the system shows
a ferromagnetic phase characterized by a non-zero value of the magnetization along x. On the
other side of the critical point, when φ ∈

�5π
4 , 7π

4

�

, we have that the system is in a nematic
phase identified by the zeroing of the magnetizations in all directions and the simultaneous
rise of a non-vanishing value for the expectation value of the nematic operator Oj .

On the contrary, when φ ∈ (0, π2 ), both the cluster and Ising interaction are “antiferromag-
netic”, and hence a TF is induced in the system. Similarly to the phenomenology discussed
in [12], the competition between two frustrated interactions increases the ground state de-
generacy to four. Denoting by |p〉 a ground state vector in the odd sector of the z-parity with
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Figure 2: (Color online) - Upper Panel: second derivative of the ground-state energy
density (i.e. the energy per site) as function of φ for different length of the system.
N = 81 Black dot-dashed line, N = 801 Red solid line, N = 8001 Green Dashed line.
Lower Panel: Dependence of the second derivative of the energy density evaluated
for φ = π/4 on the size of the system N .

lattice momentum p, the GS manifold is spanned by four states, two in the odd sector |±p〉,
and two in the even one Πx |±p〉. The value of p depends on the value of N mod 8 and takes
the value p ' π

4 or p ' 3π
4 . These states are surmounted by a band (of single particle) states

whose gap closes as 1/N2 for large N .
Local Order: As in absence of TF, the ground-state energy displays a critical point when

the relative weights of the two interactions coincide, see Fig. 2. On the contrary, several other
physical aspects are completely spoiled. To highlight this fact, among all the elements in the
manifold, we focus on two of them that capture two different spatial dependences of the order
parameters,

|g1〉 =
1
p

2

�

|p〉+Πx |p〉
�

,

|g2〉 =
1
p

2

�

|p〉+Πx |−p〉
�

. (3)

As we wrote before, in the unfrustrated regimes the role of the order parameters is played by
the expectation values of two operators, σx

j and Oj . They share the following properties: 1)
they are defined on a finite subset of spins; 2) they commute with Πx and anti-commute with
Πz . For an operator K j , satisfying both 1) and 2), we have that its expectation value in the
state |g1〉 reduces to 〈g1|K j |g1〉= 〈p|Πx K j |p〉 and, due to translational invariance we recover

〈g1|K j |g1〉 = 〈p|Πx KN |p〉 ∀ j. (4)
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Figure 3: (Color online) - Dependence of F1(KN ) = 〈p|Πx KN |p〉 (red dots) and
F2(KN ) = 〈−p|Πx KN |p〉 (black square) on the size of the system N at φ = π/8
for different choices of KN : upper panel KN = σx

N , displaying a power law behavior;
lower panel KN = ON = σ

y
N−1σ

x
Nσ

y
1 , showing an exponential decay. The data runs

from N = 9 to N = 505.

Hence, on |g1〉 the order parameters assume the same value on each site of the system. On
the contrary, |g2〉 is not invariant under spatial translation, and we obtain

〈g2|K j |g2〉 = cos(2 jp) 〈−p|Πx KN |p〉 . (5)

Therefore, on |g2〉 the order parameters show an incommensurate periodic behavior.
Hence, to study the order parameters in the thermodynamic limit it is enough to ana-

lyze the dependence on N of F1(KN ) = 〈p|Πx KN |p〉 and F2(KN ) = 〈−p|Πx KN |p〉. This can
be done borrowing the techniques developed in [11, 12] and applied to this case in the sup-
plementary material. The general behavior for the magnetic (KN = σx

N ) and the nematic
(KN = ON = σ

y
N−1σ

x
Nσ

y
1 ) order parameter for φ ∈ (0, π4 ) is depicted in Fig. 3 as function of

the (inverse) size of the system.
In accordance with the unfrustrated case, in the thermodynamic limit we would expect the

system to be in a magnetic phase in which either F1(σx
N ) or F2(σx

N ) assumes a non-zero value,
while both F1(ON ) and F2(ON ) vanish. However, while the exponential decay of the nematic
order parameter is in agreement with this picture, Fig. 3 clearly shows that, in the thermody-
namic limit, there is also no magnetic order since both F1(σx

N ) and F2(σx
N ) go to zero linearly

with the inverse of the size of the system. Therefore, while in the non-frustrated models the
system shows, in the region φ ∈ (0, π4 ), an antiferromagnetic order, the introduction of TF in
the system induces a zeroing of the magnetic order parameter. In the Supplementary Material
we also show that this behavior survives the introduction of an AFM defect in the chain, prov-
ing, in accordance with [16], that the phenomenology we discuss is not restricted to purely
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translational invariant systems. Moreover, recalling the duality symmetry held by the system,
the behavior of the magnetic order parameter for φ ∈ (0, π4 ) is mirrored by the nematic order
parameter for φ ∈ (π4 , π2 ). Hence, when FBC are imposed, the order parameters characteriz-
ing the two macroscopic phases of the unfrustrated models vanish at both sides of the critical
point, making them unable to characterize the phase transition.

But we can go further. Indeed, we can prove that not only the magnetization and the ne-
matic order parameter both vanish in both phases, but that this result extends to any possible
local order parameter, i.e. to any expectation value of a local observable that anticommutes
with at least one of the parity operators Πα. In fact, in [18], we have shown that a wide class
of topologically frustrated models, to which the 2-cluster-Ising also belongs, cannot exhibit a
finite local order parameter in the vicinity of the classical antiferromagnetic point (φ = 0),
unless the difference between the momenta of two ground states tends to ±π in the thermo-
dynamic limit. Since in our case we have that this difference tends to π/2, the expectation
values of all local observables that can play the role of order parameter vanish in the thermo-
dynamic limit close to the point φ = 0 and, hence, we expect that they stay equal to zero until
the quantum critical point at φ = π/4 is reached. Moreover, applying the duality arguments,
it follows that the expectation values of local observables must vanish also in the vicinity of
the point φ = π/2 and therefore also in the whole region φ = (π/4,π/2). As a consequence,
since the expectation value of all such local observables vanishes at both sides of the critical
point, there is no local order parameter that can characterize the quantum phase transition
at either sides. To our knowledge, this is the first case in which topological frustration, and
hence a change in the boundary conditions of a system, affects the thermodynamic phase of a
spin system so deeply up to completely remove the presence of local order parameters.

String Order: However, the result in Ref, [18] does not apply to operators whose sup-
port scales with the length of the chain and this fact discloses the possibility that the two
macroscopic phases can be distinguished by string order parameters whose presence is nor-
mally associated with some kind of topological ordered phases [19–22]. We have not yet been
able to identify a strong, geometric criterion to define the string order connected with TF,
but, exploiting the microscopical structure of the model under consideration, we have indeed
succeeded in constructing two string operators that suit our needs, namely:

M=
I(N)
∏

k=1

�

σx
4k−2σ

x
4k−1

�

; N =
I(N)
∏

k=1

�

O4k−2O4k−1

�

, (6)

where I(N) depends on the length of the chain and it is equal to N−1
4 for N mod 4 = 1 and to

N+1
4 − 1 in case of N mod 4 = 3. Both operators commute with all the parity operators Πα. It

is easy to see that, defining F1,2(K)= 〈g1,2|K|g1,2〉 for a generic string operator K for which
[K,Πα] = 0 ∀α, we have F1(K)=F2(K).

These expectation values can be studied analytically using the asymptotic properties of
determinants studied in [13] (see also the Supplementary Material), and for K =M, N in
the region φ ∈ (0,π/4) we obtain

F1(M)
N→∞
' (−1)I(N)

1
2
(1− tan2φ)

1
4 ,

F1(N )
N→∞
' 0 . (7)

In the same region the finite-size results for F1(M) and F1(N ) are depicted in Fig. 4, where
it can be seen that the second goes to zero algebraically with the system size. In the ther-
modynamic limit the expectation value of the string operator goes continuously to zero at
φ = π/4, and can thus serve to characterize the quantum phase transition. This picture of
the continuous quantum phase transition is coherent with the one inferred from the second
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Figure 4: (Color online) - Dependence of F1(M) = 〈g1|M |g1〉 (Red dots) and
F1(N ) = 〈g1|N |g1〉 (Black squares) on the size of the system N at φ = π/8. The
data runs from N = 9 to N = 505 and shows the power law decay of one of the string
order parameters, while the other remains finite in the thermodynamic limit.

derivative of the ground state energy. Of course, taking into account that M and N are one
image of the other under the duality transformation, their behavior is mirrored in the region
φ ∈ (π/4,π/2).

Conclusions: We have shown how the presence of a TF, induced by the application of FBC
in a system with antiferromagnetic interactions, can change the nature of the phase transition
in a one-dimensional spin system. While in absence of such kind of frustration, the phases
at different sides of the critical point admit two different (staggered) local order parameters,
when TF comes into play such quantities vanish in the thermodynamic limit. And this fact
is not limited to the expectation value of the operators associated to the order parameters
without frustration, but extends to all the operators that can act as local order parameters. We
have focused on the example of the 2-Cluster-Ising chain to illustrate this phenomenology, but
the vanishing of local order with FBC is common in systems with interactions beyond nearest
neighbor which induce additional frustration [18].

These results lead to a deep rethinking within the standard approach to phase transitions.
Indeed, usually, approaching a phase transition, only one length scale becomes important: that
of the (dominant) correlation length (or the inverse mass gap). This is because the system size
is already considered bigger than any other length scale and thus irrelevant. However, this is
an idealization, since in practice it is much easier to reach a very large correlation length than
to have a truly infinite system. Thus, approaching a critical point, it would be important to also
consider scaling quantities that include the size of the system. While under all other boundary
conditions this turns out not to be necessary, in presence of FBC this is not the case, as also
already pointed out in Ref. [23], and the system size suppresses any local order. Nonetheless,
the divergences of the correlation length that causes the discontinuity in the second derivative
of the free energy can still be harvested to define an order (and disorder) parameter with
different behaviors across the transition, but requires an observable spreading through the
whole loop, that is, a string order. While we cannot guarantee that the string parameters
that we defined in eq. (6) are the optimal ones to classify the phases, nor we can provide an
interpretation for what they represent (indeed more work is required in this respect) in this
way, we have shown that the traditional elements of GLT mix differently in the presence of TF
and provide a completely unexpected phenomenology.

Before concluding, we wish to underline that our results are, to a large extent, resilient
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to the presence of a localized defect in the Hamiltonian, as we show in the Supplementary
Material, thus proving that the phenomenon we discussed in the present paper cannot be con-
sidered simply as resulting from fine-tuning in the system parameters and thus our prediction
can be tested under experimental conditions.
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Supplementary Material

Diagonalization of the Hamiltonian

Here we diagonalize the Hamiltonian of the 2-Cluster Ising Model eq. (1)

H = cosφ
N
∑

j=1

σx
j σ

x
j+1 + sinφ

N
∑

j=1

σ
y
j−1σ

z
jσ

z
j+1σ

y
j+2

= cosφ
N
∑

j=1

σx
j σ

x
j+1 + sinφ

N
∑

j=1

OjOj+1 ,

with a particular emphasis in the parameter range φ ∈ (0,π/2). The Hamiltonian can be
diagonalized exploiting the Jordan–Wigner transformation [24,25]

c j =
�

j−1
⊗

l=1

σz
l

�σx
j + ıσ y

j

2
, c†

j =
�

j−1
⊗

l=1

σz
l

�σx
j − ıσ y

j

2
, (8)

that maps spins into spinless fermions. We split the Hilbert space and the Hamiltonian in the
two Πz sectors as

H =
1+Πz

2
H+

1+Πz

2
+

1−Πz

2
H−

1−Πz

2
, (9)

and in each sector we Fourier transform the fermionic operators

bq =
1
p

N

N
∑

j=1

c j e−ıq j , b†
q =

1
p

N

N
∑

j=1

c†
j eıq j , (10)

using two sets of momenta q, depending on the parity,. We take q ∈ Γ+ = {2π
N (k+

1
2)} for the

even parity sector (Πz = 1) and q ∈ Γ− = {2π
N k} for the odd one (Πz = −1), with k running

over all integers between 0 and N − 1 in both cases. Then we make the Bogoliubov rotation

aq = cosθq bq + ı sinθq b†
−q, (11)

with the Bogoliubov angle defined as

θq = tan−1 | sinφ + cosφ eı4q| − sinφ cos(3q)− cosφ cos q
− sinφ sin(3q) + cosφ sin q

(12)
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for q 6= 0,π and by θ0 = θπ = 0. The Bogoliubov angle also satisfies

eı2θq = eıq cosφ + sinφ e−ı4q

| cosφ + sinφ e−ı4q|
. (13)

Through these series of exact, non-local transformations, the Hamiltonian in each sector is
brought to the free-fermionic form

H± =
∑

q∈Γ±
εq

�

a†
qaq −

1
2

�

, (14)

in terms of the the Bogoliubov operators, where the energies εq associated to each mode with
momentum q ∈ Γ± are given by

εq = 2| cosφ + sinφ eı4q| ∀q 6= 0,π ;

ε0 = 2(cosφ + sinφ) q = 0 ∈ Γ− ; (15)

επ = −2(cosφ + sinφ) q = π ∈ Γ+ .

Depending on the value of φ, the energies of the modes with q = 0 ∈ Γ− and q = π ∈ Γ+

are different from the others because they can become negative. Without frustration, these
negative energy modes are responsible for the ground state degeneracy that allows for the
spontaneous symmetry breaking mechanism, while in presence of frustration they play a dif-
ferent and pivotal role in the emerging phenomenolgy. Indeed, for each φ the ground states
of the system can be determined starting from the vacuum of Bogoliubov fermions in the two
sectors (|0±〉), which, by construction, have positive parity Πz = 1, and taking into account
both the presence of modes with negative energy and the parity constrains.

When φ ∈ (−π,−π2 ) (both interactions are “ferromagnetic”), we have επ > 0 while ε0 < 0
and hence, in each parity sector, the state with the lowest energy, respectively |0+〉 and a†

0 |0
−〉,

fulfills the parity requirement. They are separated from the other states by a finite energy gap
that, in the thermodynamic limit becomes equal to −2ε0 = 2επ 6= 0. This is the same physical
picture that can be found also assuming open boundary conditions [19] and hence also the
thermodynamic behavior is the same. A quantum phase transition at φ = −3π4 separates two
different ordered phases. When the Ising interaction prevails over the cluster one, i.e. for
φ ∈ (−π,−3π4 ), the system shows a ferromagnetic phase characterized by a non-zero value of
the magnetization along x. On the other side of the critical point, when φ ∈ (−3π4 ,−π2 ), we
have that the system is in a nematic phase identified by the zeroing of the magnetization in all
directions and the simultaneous setting up of a non-vanishing value of the expectation value
of the nematic operator Oj .

On the contrary, when φ ∈ (0, π2 ), both the cluster and Ising interaction are “antiferro-
magnetic”, and hence we have TF in the system: in this region ε0 > 0 while επ < 0. As a
consequence of this, the two states with the lowest energy are, respectively, a†

π |0
+〉 in the

even sector and |0−〉 in the odd one. Both of them violate the parity requirements in (9) and,
therefore, cannot be eigenstates of the the Hamiltonian in eq. (1). Instead, the ground-states
belong to a four-fold degenerate manifold spanned by the states |±p〉 ≡ a†

±p |0
−〉 in the odd

sector and Πx |±p〉 in the even one, where the momentum p obeys

p =



















π
4 −

π
4N , N mod 8=1

3π
4 −

π
4N , N mod 8=3

3π
4 +

π
4N , N mod 8=5

π
4 +

π
4N , N mod 8=7.

(16)

These states are surmounted by a band states whose gap closes as 1/N2 for large N .
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The order parameters and their representation as determinants

In evaluating the order parameters it is useful to first define the Majorana fermions

A j =
�

j−1
⊗

l=1

σz
l

�

σx
j , B j =

�

j−1
⊗

l=1

σz
l

�

σ
y
j . (17)

The expectation values of interest will be expressed in terms of determinants of Majorana cor-
relation matrices, employing techniques similar to the ones used in [12] for the magnetization.
Among the states in the ground space manifold a special role is played by two of them, defined
as

|g±〉 ≡
1
p

2
(|p〉 ± |−p〉) , (18)

which are eigenstates of Πz with eigenvalue −1 and of the mirror operator with respect to site
N , denoted by MN , [12] with eigenvalue ±1 (respectively). Note that the site N is defined
with respect to the beginning of the Jordan-Wigner string in eq. (8).

As discussed in the main text, for an operator KN , that commutes with Πx and anticom-
mutes with Πz , the ground state expectation values depend on the matrix elements
F1(KN ) = 〈p|Πx KN |p〉 and F2(KN ) = 〈−p|Πx KN |p〉. Assuming MN KN MN = KN , we have both
〈p|KNΠ

x |p〉 = 〈−p|KNΠ
x |−p〉 and 〈−p|KNΠ

x |p〉 = 〈p|KNΠ
x |−p〉, so the matrix elements

can be expressed through the expectation values of the states in eq. (18) as

F1(KN ) =
1
2(〈g+|KNΠ

x |g+〉+〈g−|KNΠ
x |g−〉) , (19)

F2(KN ) =
1
2(〈g+|KNΠ

x |g+〉−〈g−|KNΠ
x |g−〉) .

Now, because the operator KNΠ
x commutes with Πz , the expectation values 〈g±|KNΠ

x |g±〉
can be obtained following a well known approach that applies to all operators that commute
with Πz and all ground states of well-defined parity [25,26].

The first step is to express KNΠ
x as a product of Majorana fermions. The second step

is to use Wick theorem (the same argument as in [12] can be used to justify the validity of
Wick theorem in these states) to express the expectation values as determinants of matrices of
two-point Majorana correlators. Adopting the short notation 〈·〉± = 〈g±| · |g±〉, we have that
〈A jAk〉± = 〈B jBk〉± = δ jk and

−ı 〈A jBk〉± =
1
N

∑

q∈Γ−
ei2θq e−iq( j−k) (20)

−
2
N

cos
�

p( j−k)−2θp

�

∓
2
N

cos
�

( j+k)p
�

.

Local Order Parameter: Following this approach, for KN = σx
N we get

〈σx
NΠ

x〉± = (−1)
N−1

2 detC(1), (21)

where the elements of the N−1
2 ×

N−1
2 matrix C(1) are equal to C(1)α,β = −ı〈A2αB2β−1〉±, for

α,β ∈ {1, 2, . . . (N − 1)/2}. Similarly, for KN = ON we obtain

〈ONΠ
x〉± = (−1)

N−1
2 detC(2), (22)

where C(2) is an N+1
2 × N+1

2 matrix. Its elements are given by C(2)α,β = −ı〈A f (α)B f ′(β)〉±,
where as α,β go over 1, 2, . . . (N + 1)/2 we have that f (α) and f ′(β) assume the values
f (α) = 1, 3,5, . . . , N − 4, N − 2, N − 1 and f ′(β) = 1,2, 4,6, . . . , N − 3, N − 1.
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String Order Parameters To define string operators that can be exploited to characterize
this quantum phase transition we started from an observation made in Ref. [21]. In that work,
the authors prove that in the thermodynamic limit of the unfrustrated cluster-Ising model,
the only Majorana correlation functions that are not zero are those for which the site indices
satisfy the relation i − j = 3k − 1 where k is an integer. Even if this observation was made
for a different model and in the absence of frustration, from the expression of the Majorana
functions it is easy to observe that a similar property holds also in our case. In fact, it is
possible to see that, in our case, all the Majorana correlation functions that do not satisfy
the property i − j = 4k − 1 vanish in the limit of large N . The presence of TF adds 1/N
corrections to Majorana fermions so it does not affect these properties, but it can affect the
values of order parameters because they are expressed in terms of determinants of Majorana
correlation matrices whose size grows with N . Hence, we tried to see if string operators,
whose expectation value depends only on Majorana correlators that do not become zero in
the thermodynamic limit, are able to characterize the quantum phase transition. Among all
the possibilities we focus on two of them that are one the image of the other after the duality
transformation, namely

M=
I(N)
∏

k=1

�

σx
4k−2σ

x
4k−1

�

; N =
I(N)
∏

k=1

�

O4k−2O4k−1

�

, (23)

where I(N) = N−1
4 for N mod4= 1 and I(N) = N+1

4 − 1 for N mod4= 3.
We can use the same approach as for the local operators for the evaluation of the expec-

tation values for two string order parameters, F1(M) and F1(N ), in terms of determinants.
With respect to the states |g±〉 they read

F1(K) =
1
2

�

〈K〉+ + 〈K〉−
�

, (24)

with K =N , M. In this case we have the determinant representation

〈M〉± = (−1)I(N) detC(3),

〈N 〉± = (−1)I(N) detC(4), (25)

where C(3) and C(4) are I(N) × I(N) matrices, with I(N) = N−1
4 for N mod4 = 1 and

I(N) = N+1
4 − 1 for N mod 4 = 3. Their elements are given by C(3)α,β = −ı〈A4α−1B4β−2〉±

and C(4)α,β = −ı〈A4αB4β−3〉±, for α,β ∈ {1,2, . . . , I(N)}.

Analytic evaluation of the string order parameter: The expressions in eq. (24) are efficient
for the numerical evaluation of the string order parameters. Here we show how to analytically
evaluate the value that the string order parameter F1(M) assumes in the thermodynamic
limit. To do so we express it in terms of Toeplitz determinants, using an approach similar to
the one used in [13,27] for other quantities. The string order parameter F1(N ) can be studied
in an analogous way.

We start by noting that the string order parameter is equal to

F1(M)=(−1)I(N)〈0−| ap

I(N)
∏

k=1

(−ıA4k−1B4k−2)a
†
p |0
−〉 (26)

and then we make Wick contractions in the vacuum state |0−〉. Adopting the short notation
〈·〉0 = 〈0−| · |0−〉, we have 〈A jAk〉0 = 〈B jBk〉0 = δ jk and

−ı 〈A jBk〉0 =
1
N

∑

q∈Γ−
ei2θq e−iq( j−k). (27)
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Moreover, since we can express the Majorana fermions as

A j =
1
p

N

∑

q∈Γ−
(a†

q + a−q)e
ıθq e−ıq j ,

−ıB j =
1
p

N

∑

q∈Γ−
(a†

q − a−q)e
−ıθq e−ıq j ,

(28)

we can easily find the contractions

−ı 〈apA j〉0 〈Bka†
p〉0 = −

1
N

eı2θp e−ıp( j−k),

−ı 〈apBk〉0 〈A ja
†
p〉0 =

1
N

e−ı2θp eıp( j−k).
(29)

Performing all the Wick contractions in eq. (26) and using the basic properties of determi-
nants, the string order parameter can be expressed as

F1(M) = (−1)I(N)
��

det C̃+ c.c.
�

− detC
�

, (30)

where C̃ and C are I(N)× I(N) matrices with the elements

Cα,β = −ı 〈A4α−1B4β−2〉0 ,

C̃α,β = Cα,β −
1
N

eı(2θp−p)e−ı4p(α−β),
(31)

for α,β ∈ {1,2, . . . , I(N)}, which give an alternative expression to eq. (24) for its analytical
evaluation.

Using eq. (13), approximating the sum in eq. (27) by an integral, and doing some simple
manipulations we get

Cα,β
N→∞
'

∫ 2π

0

f (eıθ )e−ıθ (α−β) dθ
2π

, (32)

where

f (eıθ ) =
1+ tanφ e−ıθ

|1+ tanφ e−ıθ |
. (33)

With this definition we can also write

C̃α,β = Cα,β −
1
N

f (eıθ0)e−ıθ0(α−β), (34)

where θ0 = 4p.
Thus for φ ∈ (0,π/4) the matrix C is a standard Toeplitz matrix, whose symbol is a non-

zero analytic function in an annulus around the unit circle, with zero winding number. Its
determinant can be computed in the standard way using strong Szegő limit theorem (see [28])
and we get

detC
N→∞
' (1− tan2φ)

1
4 . (35)

To compute the determinant of C̃ we need to use Theorem 1 from [13], which gives a correction
to Szegő theorem for this type of Toeplitz matrices. We get

det C̃
N→∞
'

�

1−
I(N)

N

�

detC
N→∞
'

3
4
(1− tan2φ)

1
4 . (36)

Finally, from eq. (30) we get the string order parameter

F1(M)
N→∞
' (−1)I(N)

1
2
(1− tan2φ)

1
4 . (37)

For φ ∈ (π/4,π/2) the symbol f has a non-zero winding number. It follows immediately
from Theorem 2 in [13] that the string order parameter is zero in the thermodynamic limit,

F1(M)
N→∞
' 0. (38)
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Effects of the presence of a defect

The scenario that we have depicted for the 2-cluster-Ising model is very peculiar, and it is
normal to wonder whether it is resilient to the presence of noise, or it is the result of fine-
tuning in the system parameters. Obviously, a complete analysis of the effects of the presence
of defects in our model is far beyond the scope of this paper and has been the subject of
analysis in [16], but for a different model. Here we discuss a simple example that shows that
the phenomenology that we have depicted in the main body of this work is quite resilient.

Hence let us take into account the Hamiltonian

H ′ = + sinφ
N
∑

j=1

σ
y
j−1σ

z
jσ

z
j+1σ

y
j+2 + (39)

+ cosφ
N−1
∑

j=1

σx
j σ

x
j+1 + cos(φ +δx) σ

x
Nσ

x
1 ,

that coincides with the Hamiltonian in eq. (1) except for the presence of a defect in the Ising
interaction, localized between the first and the last spin of the model. Such a presence implies
that the new Hamiltonian in eq. (39) is neither translationally invariant nor preserves the
mirror symmetries, except the one with respect to the (N + 1)/2-th spin, while it continues
to commute with all the parity operators. As a consequence, the ground state degeneracy
of H ′ is reduced to two, even in the region where H, without the defect, presents a four
dimensional manifold. However, independently of the parameters, H ′ always includes states
of both parities so we can continue to use the already described approach to evaluate directly
the order parameter.

Since H ′ is no more translationally invariant, it is now impossible to find an exact analytical
expression for the ground states. We are then forced to resort to an efficient numerical proce-
dure based on the fact that the Hamiltonian is, in each Πz sector, still quadratic in terms of the
fermionic operators and hence its eigenstates can be found following Ref. [16, 25]. We focus
on the odd sector (Πz = −1), since having the ground state |g ′−〉 of H ′ belonging to the odd
sector we can construct the ground state of H ′ belonging to the even sector as |g ′+〉= Π

x |g ′−〉.
We write H ′ in the odd sector as

H ′=
N
∑

j,k=1

�

c†
j S j,kck+

1
2

�

c†
j T j,kc†

k + h.c.
�

�

, (40)

where the matrices S= S† and T† = −T can be easily obtained by inspection from eq. (39). In
this approach, the ground state |g ′−〉 can be expressed in terms of the vectors Φk and Ψk, that
are the solution of the problem:

Φk(S− T)(S+ T) = Λ2
kΦk, (41)

Φk(S− T) = ΛkΨk, (42)

with the eigenvaluesΛ2
k sorted in descending order. From the knowledge of Φk andΨk it is easy

to recover the correlation functions of the Majorana operators. With respect to the odd-sector
ground state we have 〈g ′−|A jAk |g ′−〉= 〈g

′
−|B jBk |g ′−〉= δ jk and

−ı 〈g ′−|A jBk |g ′−〉=
N−1
∑

l=1

Ψl jΦlk. (43)

If we consider the ground state choice

|g ′〉=
1
p

2
(|g ′−〉+ |g

′
+〉) =

1
p

2
(|g ′−〉+Π

x |g ′−〉) , (44)
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x

=
−|φ|/10
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1/N
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10−5

φ = π/8

T σ
x

Figure 5: (Color online) Absolute value of the Discrete Fourier transform (DFT) of
the magnetization 〈g ′|σx

j |g
′〉 at φ = π

8 , as a function of the inverse chain length,
for chain lengths up to N = 1019. Data corresponds to the following different mo-
menta: green diamonds k = N±5

2 , red squares k = N±3
2 , and blue circles k = N±1

2 .
A ferromagnetic type defect (upper panel) yields a staggered AFM order, while the
presence of an antiferromagnetic one (lower panel) gives rise to an algebraic decay of
the magnetization, characteristic to the presence of TF (see the text for discussion).

we obtain that the site dependent expectation values of the magnetization and the nematic
order parameter are

〈g ′|σx
j |g

′〉 = 〈g ′−|Π
xσx

j |g
′
−〉 ,

〈g ′|Oj |g ′〉 = 〈g ′−|Π
xOj |g ′−〉 . (45)

These site dependent expectation values can present a complex pattern, from which the be-
havior in the thermodynamic limit might not be obvious. Hence, following [16] we resort to
their Discrete Fourier Transform (DFT)

TK≡
1
N

N
∑

j=1

〈g ′|K j |g ′〉 e
2πı
N k j , k=1, . . . , N , (46)

that allows a quantitative analysis of their behavior in the thermodynamic limit.
In Fig. 5 we focus on the analysis of the magnetization, presenting the results obtained for

its DFT Tσx as a function of the inverse chain length. We see that for δx > 0 (upper panel)
all sampled values go towards finite values in the thermodynamic limit, hence reproducing
the typical behavior of the DFT of the staggered AFM order [16]. On the contrary, changing
the sign of δx , the DFT goes to zero for all k, hence signaling zeroing of the magnetization
independently of the site taken into account. The effect of a negative defect (δx < 0) for
φ > 0 is to strengthen the AFM interaction, so reinforcing the topological frustration, while
a positive defect (δx > 0) weakens the Ising term, so reducing the effect of the frustration
and, as a consequence, allowing the existence of a macroscopic phase characterized by a local
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Figure 6: (Color online) Dependence of the absolute value of the ground state expec-
tation values F(M) (blue circles) and F(N ) (red squares), for the string operators
defined in eq. (23), on the inverse chain length, for chain lengths up to N = 1019,
at φ = π

8 . We observe that, while F(M) tends to a finite value, F(N ) goes to zero.
For both types of defects we have thus qualitatively a behavior as in Fig. 4. The exact
asymptotic value for large N depends on δx : F(M)' 0.95 and F(M)' 0.17 in the
upper and lower panel respectively.

magnetic order parameter. This implies that, while it is possible to remove the peculiar phase
that we have found by the presence of a localized defect as the one we have considered, this
fact depends on its sign and hence our results are, at least partially, resilient to the presence
of a defect.

To further strengthen this result in Fig. 6 we have also analyzed the behavior of the ground
state expectation values of the two string order operators, F(M)≡ 〈g ′|M |g ′〉= 〈g ′−|M |g ′−〉
and F(N ) ≡ 〈g ′|N |g ′〉 = 〈g ′−|N |g ′−〉, as a function of 1/N . In the figure we can appreciate
that, regardless of the sign of the defect, F(M) remains finite in the thermodynamic limit.
This result is in strong agreement with the fact that the phases discovered in the 2-Cluster-
Ising model are partially resilient to the presence of a localized defect.
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[18] V. Marić, S. M. Giampaolo and F. Franchini, The fate of local order in topologically frustrated
spin chains, Phys. Rev. B 105, 064408 (2022), doi:10.1103/PhysRevB.105.064408.

[19] S. M. Giampaolo and B. C. Hiesmayr, Topological and nematic ordered phases in many-body
cluster-Ising models, Phys. Rev. A 92, 012306 (2015), doi:10.1103/PhysRevA.92.012306.

17

https://scipost.org
https://scipost.org/SciPostPhys.12.2.075
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevB.74.020403
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1103/PhysRevB.41.9377
https://doi.org/10.1103/PhysRevE.91.042123
https://doi.org/10.1088/1742-5468/2016/11/113102
https://doi.org/10.1088/2399-6528/ab3ab3
https://doi.org/10.1088/2399-6528/ab3ab3
https://doi.org/10.1088/1367-2630/aba064
https://doi.org/10.1038/s42005-020-00486-z
https://doi.org/10.1088/1751-8121/abcd55
https://doi.org/10.1088/1751-8121/abcd55
https://doi.org/10.1088/0022-3719/10/18/008
https://doi.org/10.1088/0022-3719/10/18/008
https://doi.org/10.1103/PhysRevB.103.014429
https://doi.org/10.1093/acprof:oso/9780198509233.001.0001
https://doi.org/10.1103/PhysRevB.105.064408
https://doi.org/10.1103/PhysRevA.92.012306


SciPost Phys. 12, 075 (2022)

[20] G. Zonzo and S. M. Giampaolo, n-cluster models in a transverse magnetic field, J. Stat.
Mech. 063103 (2018), doi:10.1088/1742-5468/aac443.

[21] P. Smacchia, L. Amico, P. Facchi, R. Fazio, G. Florio, S. Pascazio and V. Vedral,
Statistical mechanics of the cluster Ising model, Phys. Rev. A 84, 022304 (2011),
doi:10.1103/PhysRevA.84.022304.

[22] M. den Nijs and K. Rommelse, Preroughening transitions in crystal surfaces and
valence-bond phases in quantum spin chains, Phys. Rev. B 40, 4709 (1989),
doi:10.1103/PhysRevB.40.4709.

[23] P. Li and Y. He, Ring frustration and factorizable correlation functions of critical spin rings,
Phys. Rev. E 99, 032135 (2019), doi:10.1103/PhysRevE.99.032135.

[24] P. Jordan and E. Wigner, Über das paulische Äquivalenzverbot, Z. Phys. 47, 631 (1928),
doi:10.1007/BF01331938.

[25] E. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Ann.
Phys. 16, 407 (1961), doi:10.1016/0003-4916(61)90115-4.

[26] E. Barouch and B. M. McCoy, Statistical Mechanics of the XY Model. II. Spin-Correlation
Functions, Phys. Rev. A 3, 786 (1971), doi:10.1103/PhysRevA.3.786.

[27] J.-J. Dong, Z.-Y. Zheng and P. Li, Rigorous proof for the nonlocal correlation function
in the transverse Ising model with ring frustration, Phys. Rev. E 97, 012133 (2018),
doi:10.1103/PhysRevE.97.012133.

[28] P. Deift, A. Its and I. Krasovsky, Toeplitz Matrices and Toeplitz Determinants under the
Impetus of the Ising Model: Some History and Some Recent Results, Comm. Pure Appl.
Math. 66, 1360 (2013), doi:10.1002/cpa.21467.

18

https://scipost.org
https://scipost.org/SciPostPhys.12.2.075
https://doi.org/10.1088/1742-5468/aac443
https://doi.org/10.1103/PhysRevA.84.022304
https://doi.org/10.1103/PhysRevB.40.4709
https://doi.org/10.1103/PhysRevE.99.032135
https://doi.org/10.1007/BF01331938
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1103/PhysRevE.97.012133
https://doi.org/10.1002/cpa.21467

	References

