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A B S T R A C T

A pseudo-velocity concept, based on the extension of a linear body, is defined by a special relativity experiment.
It suggests an analogy with the covariance properties of Wiener’s process, ultimately implying that the scaling
behavior of (Gaussian) polymer solutions can be derived from a Brownian Relativity theory, as it was formerly
put forward. An ad-hoc statistical interpretation of the resulting spacetime transforms may be given by the
central limit theorem.
Introduction

Brownian relativity (BwR) is the name given to a framework that
combines the conceptual structures of relativity and Brownian mo-
tion [1]. It propounds that time and space in a Brownian system can be
envisaged similar to the spacetime of Einstein’s relativity. To avoid mis-
interpretations, it is worth perhaps clarifying from the outset that BwR
does not concern or want to contribute to long-standing problems of
relativistic Brownian motion and heat transport, which deal with issues
as blue violations of the principles of covariance and causality by the
propagator of non-relativistic diffusion, the (non-)existence of Markov’s
processes and random space-like curves that are covariant upon the
(inhomogeneous) Lorentz group [2–4]. BwR was rather restricted to
studying (universal limits in) polymer solutions, building up a language
and analogies that would only conflict with the previous points if BwR
were extended or applied outside its formal and phenomenological
domains.

Accordingly, average size and characteristic time of a polymer
fluctuating in a liquid were derived similarly to a Lorentz–FitzGerald
length contraction and a time dilation rule, if the system is short-
range correlated (or uncorrelated), and by means of an equivalence
relation for geometry and statistics when correlations are long-ranged.
BwR predicts new universal laws for the relevant scaling exponents in
polymer solutions, i.e. for chain size (𝜈), diffusion coefficient (𝛿), char-
acteristic time (𝜎) and viscosity (𝜀), which are fulfilled by theoretical
and experimental values in both unentangled and entangled systems
(see e.g. reptation [5] and renormalization [6] theories, athermal, good
and 𝛩− solvents [7]), e.g. [1,8]:

𝛿 + 𝜈 = 3𝜈 − 𝜎 = − 𝜀
2 (1)
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Eq. (1) is holding in different chain unit number (𝑁 ≫ 1) and
volume fraction (𝜙) regimes, each of the above quantities behaving
proportionally to 𝑁𝑎 or 𝜙𝑎′ , with 𝑎 = 𝛿, 𝜈, 𝜎, 𝜖 and 𝑎′ = 𝛿′,
𝜈′, 𝜎′, 𝜖′. Such an agreement, based on the link that BwR settles
between molecular and macromolecular scales [9,10], can be of utmost
importance in disciplines such as turbulence in liquids, where the
idea to probe the statistical properties of a turbulent flow by large
molecules (whether they are called fibers, polymers, or material lines)
has attracted attention quite recently [11–13], or in life sciences, in
which BwR may be promising e.g. to the systems biologist’s work of
modeling cell pathways at any relevant spatiotemporal scale [14], in
the less developed field of intercellular processes or when diffusion is
slower than biochemical reactions [15]. Diffusing molecules must get to
specific absorbing sub-domains of cell membranes to trigger a reaction,
this being normally described by diffusion–reaction models and their
master equations [16,17].

Purpose of this letter thus is clarifying and delving into some of
the main aspects of the special version of BwR. To this end, the next
section describes a special relativity experiment representative of BwR,
where the pseudo-velocity = (linear body extension)/time is introduced
in analogy to the role played in BwR by a polymer molecule.

Observer’s velocity from a pseudo-velocity

In BwR the perturbation to the local diffusion coefficient induced
by a polymer chain in a liquid may be formulated to give rise to a
transformation conceptually similar to the Lorentz–Poincaré type. The
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light speed (𝑐) in Special Relativity (SR) is formally replaced here by the
diffusion coefficient of liquid molecules (𝐷

1
), taken to be a constant and

homogeneous diffusivity unit throughout the solution. That, clearly,
was only an analogy, as the following SR example is going to expound.
It had nothing to do with either the impassible limit introduced by the
second SR postulate, nor with the related causality prescriptions.

A pointwise observable and a rectilinear line of length 𝓁
0

move
uniformly between points 𝐴 and 𝐵, with 𝐴𝐵 = 𝛥𝑙. Let an extreme of
the line to lie on 𝐴, while the other falls within 𝐴𝐵. From a frame
K

0
at rest with 𝐴 and 𝐵, the point and the line reach the extreme 𝐵

at equal times (𝛥𝑡), with velocities 𝑣 = 𝛥𝑙∕𝛥𝑡 and 𝑣′ = (𝛥𝑙 − 𝓁
0
)∕𝛥𝑡.

From another frame K𝑢, moving with velocity 𝑢 relative to K
0
, Lorentz–

Poincaré’s transform [18] returns two time intervals, for the point and
line, equal respectively to:

𝛥𝑡′ = 𝛾𝑢
𝑣 (1 − 𝛽𝑢𝛽𝑣)𝛥𝑙 (2)

𝛥𝑡′ = 𝛾𝑢
𝑣′ (1 − 𝛽𝑢𝛽𝑣′ )(𝛥𝑙 − 𝓁

0
) (3)

where 𝛾𝑢 = (1 − 𝛽2𝑢 )
− 1

2 is the Lorentz factor evaluated at the velocity 𝑢,
while 𝛽𝑢 = 𝑢∕𝑐, 𝛽𝑣 = 𝑣∕𝑐 and 𝛽𝑣′ = 𝑣′∕𝑐. By imposing that K𝑢 agrees
with the simultaneous arrival in 𝐵 of the point and line (𝛥𝑡′ = 𝛥𝑡′),
and defining the pseudo-velocity 𝛶

0
≡ 𝓁

0
∕𝛥𝑡 (in the same direction and

orientation of 𝑣), it turns out:

𝑣′ =
𝑣 − 𝛶

0

1 − 𝛽𝑢𝛽0
(4)

still with 𝛽
0
= 𝛶

0
∕𝑐. The velocity 𝑣′ belongs to an observer moving

in the space reduced by 𝓁
0
, between the extreme of the line closest

to 𝐵 and point 𝐵. The quantity 𝛶
0

resembles instead the speed of a
movement on the spot, traveling within the rectilinear rod. Let K𝑣 be
the frame that gets linked to the pointwise observer (𝑢 → 𝑣), Eq. (4)
returns the velocity composition law of SR, i.e.:

𝑣′ = 𝑣 ⊖ 𝛶
0

(5)

However, while 𝛶
0

has the dimensions of a velocity, from a conceptual
point of view it is not. Its limiting behavior for 𝛽

0
→ 0+ should comply

with time dilation length and contraction rules, 𝛶
0
→ (1 − 𝛽2𝑣 )𝛶 0

. More
generally, ∀𝛽

0
> 0, Eqs. (4) and (5) suggest an extended transformation

law given by:

𝛶 ′
0
=

1 − 𝛽2𝑣
1 − 𝛽𝑣𝛽0

𝛶
0

(6)

One may form now a new quantity, sum of measurements in Eqs. (5)
and (6), and observe that it points out an identity relation of the
Galilean type, holding ∀𝑣 ≤ 𝑐:

𝑣 − 𝛶 ′
0
= 𝑣 ⊖ 𝛶

0
(7)

or, identically:

(𝑣 ⊖ 𝛶
0
) + 𝛶 ′

0
= 𝑣 (8)

the light speed being the only value of velocity at which 𝛶 ′
0
= 0.

In conclusion, the observer’s 𝑣 is regained in Eq. (8) by summing
a pseudo-velocity contribution, of a motion in place or internal to the
body, to the velocity measurement (see sketch in Fig. 1).

Wiener’s process and Brownian relativity

The quantity 𝛶
0

is reminiscent of a self-correlation term for the
slower movement, pointing out the sought BwR analogy to SR. In what
follows, neither Itô’s calculus [19] nor a phase space representation
with momentum coordinates is necessary. It does suffice to recall a
fundamental feature of Wiener–Levy’s process (𝑊 (𝑡)), representing a
Brownian motion with time increments much larger than Rayleigh’s
2

Fig. 1. Scheme of the experiment bringing to Eq. (8).

damping times [20]. Without losing generalities, let a one-dimensional
motion and two time instants, 𝑡 > 𝑡′ ≥ 0. Since [21]:

𝑊 (𝑡)𝑊 (𝑡′) = min{𝑡, 𝑡′} = min{𝑊 2(𝑡),𝑊 2(𝑡′)} (9)

it turns out a relation having the structure of Eq. (8):

(𝑊 (𝑡) −𝑊 (𝑡′))2 +𝑊 (𝑡)𝑊 (𝑡′) = max{𝑡, 𝑡′} = 𝑡 (10)

with the first term accounting for the relative Brownian motion and the
second for the self-correlation. It can be applied to a molecule long 𝑛
units (𝑊𝑛(𝑡′)) and a liquid molecule (𝑊

1
(𝑡)) sharing the same paths:

𝑊 2
1
(𝑡) +𝑊 2

𝑛 (𝑡′) −𝑊
1
(𝑡)𝑊𝑛(𝑡′) = 𝐷

1
𝑡 (11)

because, let 𝑝𝑖(𝑠, 𝑥, 𝑦) = e−
(𝑥−𝑦)2
2𝐷𝑖𝑠 ∕

√

2𝜋𝐷𝑖𝑠 be the Gaussian transition
density, one obtains [22]:

∫ℜ2
𝑥𝑦𝑝𝑛(𝑡′, 0, 𝑥)𝑝1 (𝑡 − 𝑡′, 𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝐷𝑛𝑡

′ (𝑡 > 𝑡′) (12)

Eqs. (10) and (11) express how in BwR the time for a liquid molecule
to run across two (radial) positions is regarded as invariant, regardless
of chain paths in between. Eq. (10) may be also translated in random
walk terms by the total step number 𝑁 , step size 𝑙 and Kuhn’s length
𝑙′, e.g.:

(𝑁 − 𝑛) 𝑙2

𝐷
1

+ 𝑙′2

𝐷𝑛
= 𝑁𝑙2

𝐷
1

(13)

that reduces to an identity law for a Rouse ideal coil with 𝑙′ = 𝑙,
𝐷𝑛 = 𝐷

1
∕𝑛 accounting for the motion of its gravity center. These

natural assumptions will be kept below, upon the hydrodynamic limit
of large 𝑡 and the (real-valued) continuation (𝑁, 𝑛) → (𝑡, 𝑡′) of polymer
physics [5].

Sum of second and third addenda on the left side of Eq. (11) is the
zero mean of two uncorrelated increments, i.e. (𝑊𝑛(𝑡′)−𝑊

1
(0))(𝑊𝑛(𝑡′)−

𝑊
1
(𝑡)). One can perturb it by a random disturbance, and the two

sampling frames of reference K
1
, K𝑛 will measure:

K
1
(𝜏,𝑊 ∗) ∶ 𝐷

1
(𝑡 − 𝛥𝛼𝜏) +𝑊

1
𝛥𝛼𝑊 ∗ (14)

K𝑛(𝜏′,𝑊 ′∗) ∶ 𝐷
1
(𝑡 − 𝛥𝛼𝜏′) +𝑊𝑛𝛥𝛼𝑊 ′∗ (15)

the perturbation order being still unspecified, to be discussed later.
Eqs. (14) and (15) cannot be equated, as 𝛥𝛼𝜏 ≠ 𝛥𝛼𝜏′ and Eq. (11)
prescribe 𝑡 to be fixed. This is possible in the limit of large time
intervals, when the displacement between dynamic and static variances
in K∗

𝑛 :

𝛥𝛼𝜎2 (𝜏′,𝑊 ′∗; 𝑛) = 𝐷
1
𝛥𝛼𝜏′ −𝑊𝑛𝛥𝛼𝑊 ′∗ (16)

tends to the value taken on in K∗
1
:

𝛥𝛼𝜎2 (𝜏,𝑊 ∗; 1) = 𝛥𝛼𝜎′2 (𝜏′,𝑊 ′∗; 𝑛) . (17)

K∗
𝑛,1 indicate the two frames at the hydrodynamic limit, at which the

polymer scaling laws were formerly derived from BwR. They comprise



Results in Physics 34 (2022) 105202S.A. Mezzasalma

m
c

o

(

b

h

𝖽

E

𝐋

A
𝖽

a

F
w
l
a
A
B
t

o
m

a time, linked to dynamic fluctuations of a Brownian particle, and a
measure of space which stems from shape fluctuations (see Eq. (9)):

𝑊
1
𝛥𝛼𝑊 ∗ = (𝛥𝛼𝑊 ∗)2 ≡ 𝛥𝛼𝛿2

1
(18)

𝑊𝑛𝛥𝛼𝑊 ′∗ = (𝛥𝛼𝑊 ′∗)2 ≡ 𝛥𝛼𝛿2𝑛 (19)

The relative diffusivity is pointed out as usual by the first average on
the left side of Eq. (10), here evaluated at equal times and quantifying
how much the diffusive limit set by 𝐷

1
is displaced by the slower chain

olecule. To dismiss negative values, a time-ordering operation may be
arried out by introducing, for any 𝑊𝑘, the time 𝑇𝜖𝑘 = 𝑇 + 𝜖∕𝑘. Then

we can benefit from the continuity of Wiener’s process and take:

𝖣1
𝑛 =

1
𝑇 lim

𝜖 → 0+
lim

𝑡′→ 𝑇𝜖𝑛
𝑡 → 𝑇𝜖1

(𝑊
1
(𝑡) −𝑊𝑛(𝑡′))2 = 𝐷

1
−𝐷𝑛 (20)

This term conceptually replaces 𝑣2 in Lorentz–Poincaré’s transforms.
Eq. (18), however, denotes a spatial perturbation to the root mean
square traced by the liquid molecule, and generally is different from
zero.

To proceed, note that line elements in Eq. (17) should be formally
second-order’s and, physically, still dimensioned to a length squared.
Let the increment order be defined by:

𝛥𝛼𝑥 ≡ (𝛥 𝛼
√

𝑥)𝛼 𝛼 ∈ N, 𝑥 ≥ 0 (21)

ne may therefore set 𝛼 = 2:

𝛥𝜗)2 − (𝛥𝜚
1
)2 = (𝛥𝜗′)2 − (𝛥𝜚𝑛)2 (22)

eing 𝜗2 = 𝐷
1
𝜏, 𝜚2𝑚 = 𝛿 2

𝑚 . The case with 𝛼 = 1 anyway returns
consistent results [23] and reduces to 𝛼 = 2 upon 𝛥𝜏 ∼ 𝜏 (unless of
a proportionality constant, 1

4 , on both sides of Eq. (22)) [24]. On this
basis, the BwR transforms taking the place of Lorentz–Poincaré’s in SR
read:

𝛥𝜚𝑛 =
1

√

1 − 𝖽1𝑛

(𝛥𝜚
1
−
√

𝖽1𝑛𝛥𝜗)

𝛥𝜗′ = 1
√

1 − 𝖽1𝑛

(𝛥𝜗 −
√

𝖽1𝑛𝛥𝜚1 ) (23)

aving set the diffusion displacement in units of 𝐷
1
:

1
𝑛 =

𝖣1
𝑛

𝐷
1

= 1 − 1
𝑛

(24)

qs. (23) specify a unitary matrix connecting different domains, i.e.:

1
(𝛥𝜌

1
, 𝛥𝜗) = 𝐋′−1

𝑛 (𝛥𝜌𝑛, 𝛥𝜗′) . (25)

s expected, they are not defined for diffusion coefficients > 𝐷
1
,

1
𝑛 → −𝖽1𝑛, upon which they anyway admit the trivial solution 𝜚𝑚 = 𝜚𝑚
nd 𝜗′ = 𝜗. When 𝖽1𝑛 → 1−, two identity relations follow, express-

ing Einstein’s law of Brownian movement in both direct and inverse
transforms, i.e.

√

𝖽1𝑛 → −
√

𝖽1𝑛:

𝛿 2
𝑛 ∕𝜏

′ ∼ 𝛿 2
1
∕𝜏 ∼ 𝐷

1
. (26)

ig. 2 illustrates the view settled by Eq. (17), building up a frame-
ork that formally resembles SR. Note that Eqs. (23) indicate a re-

ationship between statistical domains. Obviously, they do not form
n ordinary Lorentz–Poincaré-covariant transformation of coordinates.
nother point to remark is that the relative motion in BwR is the
rownian motion of the displacement from 𝐷

1
(Eq. (20)). That is why, in

he former work, the new terminology ’diffusive horizon’ was adopted.
3

Fig. 2. Schematic BwR representation (3000 steps). A Brownian liquid molecule
fluctuates with diffusion coefficient 𝐷

1
until time 𝑡 (gray path). A chain molecule

(blackened snapshot) substitutes a portion of this path (0 < 𝑡′ < 𝑡) at a constant
diffusivity, similarly to the way the body in Fig. 1 extends within the trajectory, taking
up a part of distance to be traveled.

Universal scaling and Gaussian chain

A proof of consistency of the basic spacetime scaling in the polymer
picture stems naturally from the time dilation and length contraction
rules entailed by Eqs. (23). The limit 𝑛 ≫ 1 equals to annul the additive
constants (i.e. 𝜏 ∼ 𝛥𝜏), and the results are:

𝜚𝑛 =
√

𝐷1
𝐷𝑛

𝜚
1

𝜏 =
√

𝐷𝑛
𝐷1

𝜏′ (27)

whereas, for a system with molecularity 𝑚 = 1, one gets again the
trivial solution (i.e. 𝖽𝑚𝑚 → 0+). Eqs. (27) can be applied to 𝑛 molecules
f a liquid sub-ensemble, Kuhn’s step size being associated to a bare
olecular time scale 𝜏

0
. Let 𝜚

1
= 𝑛𝑙 and 𝜗 = 𝑛𝜏

0
, one gets:

𝜚𝑛 = 𝑛𝑙2

𝜏 = 𝑛2𝜏
0

(28)

that is, the random walk end-to-end size and Rouse’s longest relaxation
time of a chain molecule in solution [25]. These laws here come from
the insertion of polymer extension into the spacetime structure. As in
SR a length contracts and time expands as a consequence of motion,
conformation and characteristic time of a macromolecule undergo in
BwR an similar transform caused by a diffusive displacement from the
host liquid. This will have more profound implications in a general BwR
approach, when correlations are explicit, suggesting further scaling
laws and inquiries on the significance of universality [1]. Eqs. (1) come
themselves from a general version of BwR.

Finally, stepping back from BwR to SR, we put forward that Lorentz–
Poincaré’s transformations of SR admit a statistical interpretation in

light of BwR and the previous experiment bringing to Eq. (4). We
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assume that proper lengths and times are expressible as sums of inde-
pendent aleatory variables, and compare the results of two observers,
one (K′) that moves with the rectilinear rod, the other (K) traveling
at velocity equal e.g. to −𝛶

0
, relative to K′. The length 𝓁

0
gives a

natural unit of measure for the time elapsed in this measurement, and
the spatial Lorentz–Poincaré transform becomes:

𝐗′
𝑛 = 𝛾

0
(𝐗𝑛 − 𝜆𝑛) (29)

where 𝛾
0

= 1∕
√

1 − 𝛽2
0

is Lorentz’ factor with 𝓁
0

≡ 𝑛𝜆. Letting
correspondingly 𝐱′𝑖 = 𝜆𝐳′𝑖 , the quantity:

1
𝜆𝐗

′
𝑛 =

𝑛
∑

𝑖=1
𝐳′𝑖 (30)

s a sum of independent random variables, characterized by:

𝐳′𝑖 = −𝛾
0
, Var(𝐳′𝑖 ) = 1 (31)

A natural application of the central limit theorem [26] now consists of
partitioning time as space (𝑡 = 𝑛𝜃) and forming the aleatory variable:

𝐋𝑛 =
√

𝜃
𝑡 𝐗𝑛 (32)

which converges in law to a Gaussian distribution upon 𝑛 → ∞:

𝑛

←←←←←←←→ 𝐋 ∼  (0, 𝛾−2

0
) (33)

s the unitary variance reduces to 1∕𝛾2
0
, one is left with Lorentz–

itzGerald’s length contraction, reinterpreted in a statistical fashion.
learly, the inverse transform i.e.:

𝐳′𝑖 = 𝛾
0
, Var(𝐳′𝑖 ) = 1 (34)

leaves Eq. (33) invariant, as it had to be.
A similar argument applies to the temporal domain. As usual in

deriving the time dilation rule, a rest clock is placed in K to measure
a distribution of (here, non-dimensional) times:

1
𝜃 𝐉𝑛 =

𝑛
∑

𝑖=1
𝐲𝑖 (35)

till with unitary variance, and mean values:

𝐲𝑖 = ±𝛽2
0
, Var(𝐲𝑖) = 1 (36)

In this dual case, the central limit theorem is applied to the random
variable:

𝐓′
𝑛 =

√

𝜆
𝑥 𝐉′𝑛 (37)

nd, since the unit variance now dilates by 𝛾2
0
, it returns the time

ilation rule:
′
𝑛


←←←←←←←→ 𝐓 ∼  (0, 𝛾2

0
) (38)

bserve that the Fourier transforms in non-dimensional time and space
alues () of the normal laws in Eq. (33) (𝑝

𝐿
) and Eq. (38) (𝑝

𝑇
) are

elated, e.g. symbolically, by:

0
−1

{

𝑝
𝑇

}

= 𝑝
𝐿
, 

{

𝑝
𝐿

}

= 𝛾
0
𝑝
𝑇

(39)

nd, interestingly, a tradeoff relationship takes place:

ar(𝐋) Var(𝐓) = 1 (40)

e thus see that BwR, connecting the theoretical structures of Brown-
an motion and relativity, may lead to the emergence of probabilistic
aws for time and space, as Eq. (40) provides with an example.

onclusions

It has been examined more in depth how a BwR approach can
odel scaling and universality in polymer solutions. A pseudo-velocity

oncept, for the length extension of a rectilinear body, is introduced
4

y a thought experiment, bringing back to a composition law of the
alilean type. The covariance behavior of Wiener’s process then is able

o hint an analogy with the second SR postulate. A statistical reading
f spacetime transforms is finally set by the central limit theorem.
nclusion of the extension of a body into kinematics may lead to a
ew picture with an extended notion of movement for material shapes,
ith given statistical mechanics or microscopic properties of their

onstituent matter.
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