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D.; Pleić, N.; Vogrinc, Ž.; Gunjača, I.;
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Abstract: A decrease in serotonergic transmission throughout the brain is among the earliest patho-
logical changes in Alzheimer’s disease (AD). Serotonergic receptors are also affected in AD. Poly-
morphisms in genes of serotonin (5HT) receptors have been mostly associated with behavioral and
psychological symptoms of dementia (BPSD). In this study, we examined if AD patients carrying
different genotypes in 5HTR1B rs13212041, 5HTR2A rs6313 (T102C), 5HTR2C rs3813929 (−759C/T),
and 5HTR6 rs1805054 (C267T) polymorphisms have a higher risk of faster disease progression (as-
sessed by neuropsychological testing), are more prone to develop AD-related pathology (reflected by
levels of cerebrospinal fluid [CSF] AD biomarkers), or have an association with an apolipoprotein
E (APOE) haplotype. This study included 115 patients with AD, 53 patients with mild cognitive
impairment (MCI), and 2701 healthy controls. AD biomarkers were determined in the CSF of AD
and MCI patients using enzyme-linked immunosorbent assays (ELISA), while polymorphisms were
determined using either TaqMan SNP Genotyping Assays or Illumina genotyping platforms. We
detected a significant decrease in the CSF amyloid β1–42 (Aβ1–42) and an increase in p-tau181/Aβ1–42

ratio in carriers of the T allele in the 5HTR2C rs3813929 (−759C/T) polymorphism. A significantly
higher number of APOE ε4 allele carriers was observed among individuals carrying a TT genotype
within the 5HTR2A T102C polymorphism, a C allele within the 5HTR1B rs13212041 polymorphism,
and a T allele within the 5HTR6 rs1805054 (C267T) polymorphism. Additionally, individuals carry-
ing the C allele within the 5HTR1B rs13212041 polymorphism were significantly more represented
among AD patients and had poorer performances on the Rey–Osterrieth test. Carriers of the T allele
within the 5HTR6 rs1805054 had poorer performances on the MMSE and ADAS–Cog. As all four
analyzed polymorphisms of serotonin receptor genes showed an association with either genetic, CSF,
or neuropsychological biomarkers of AD, they deserve further investigation as potential early genetic
biomarkers of AD.

Keywords: Alzheimer’s disease; 5-hydroxytryptamine (serotonin); 5HT receptors; biomarkers;
cerebrospinal fluid; Mini-Mental State Examination; apolipoprotein E
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1. Introduction

The serotonergic system is severely affected in Alzheimer’s disease (AD) [1–4]. Indeed,
serotonin (5-hydroxytryptamine, 5HT) is an indoleamine released by serotonergic neurons
located in the brainstem raphe nuclei. These nuclei are divided into a rostral (B5–B9) and
a caudal (B1–B3) raphe group [5–8]. The main serotonergic nucleus, the dorsal raphe
nucleus (DRN, B7–B9), projects throughout the cerebral cortex (reviewed in [9]). Moreover,
5HT binds to serotonergic receptors. There are seven types of serotonergic receptors, with
several subtypes (5HTR1A-F, 5HTR2A-C, 5HTR3A-E, 5HTR4, 5HTR5A-B, 5HTR6, 5HTR7).
All 5HT receptors, except for 5HTR3, a ligand-gated ion channel, are G-protein-coupled
receptors [10,11].

Loss of serotonergic innervation of the hippocampus and neocortex [2,11–13], decrease
in the levels of 5HT and 5HT metabolites [14,15], and accumulation of AD pathological
changes in serotonergic nuclei [16] have all been reported in AD. In addition, the loss of
5HT receptors and 5HT receptor binding was observed in AD [17–19]. Polymorphisms in
genes for 5HT receptors have been associated with behavioral and psychological symptoms
of dementia (BPSD) [20–26]. The 5HTR2A rs6313 (T102C) and 5HTR6 rs1805054 (C267T)
polymorphisms were previously associated with AD, while the association of the 5HTR1B
rs13212041 and 5HTR2C rs3813929 (−759C/T) polymorphisms with AD was not previ-
ously noticed. This study assessed whether the levels of cerebrospinal fluid (CSF) AD
biomarkers, scores on neuropsychological tests, and genetic biomarkers of AD (apolipopro-
tein E (APOE) haplotype) differ between AD patients with various 5HTR1B rs13212041,
5HTR2A rs6313 (T102C), 5HTR2C rs3813929 (−759C/T), and 5HTR6 rs1805054 (C267T)
polymorphisms. CSF AD biomarkers serve as endophenotypes of AD as they reflect AD
pathological changes [27], while neuropsychological tests show potential in monitoring
disease progression [28]. CSF amyloid β1–42 (Aβ1–42) is an index of amyloid plaque de-
position [29], phosphorylated tau proteins reflect neurofibrillary tangles [30], and total
tau (t-tau) and visinin-like protein 1 (VILIP-1) are markers of neurodegeneration [31,32].
We tested the potential of such polymorphisms as genetic biomarkers of AD and certain
genotypes as representing a genetic predisposition to develop AD-related pathologies and
faster disease progression.

2. Materials and Methods
2.1. Subjects

This study included 168 patients recruited at the University Hospital Center Zagreb
and 2701 healthy controls (HC) from the “10,001 Dalmatians project” (part of the Croatian
Biobank program [33]). AD was diagnosed using the criteria of the National Institutes on
Aging–Alzheimer’s Association (NIA–AA) [34], while mild cognitive impairment (MCI)
was diagnosed using the criteria of Petersen et al. [35] and Albert et al. [36]. Participants
gave informed consent for participation in the study, and the Central Ethical Committee of
the University of Zagreb Medical School (case no. 380-59-10106-18-111/126, class 641-01/18-
02/01 from 20 June 2018), Ethical Committee of the Clinical Hospital Center Zagreb (case
no. 02/21 AG, class 8.1-18/82-2 from 24 April 2018), and Ethical board of the University
of Split, School of Medicine (case no. 2181-198-03-04-14-0031 and 2181-198-03-04-19-0022)
approved all procedures. Additionally, all procedures performed within this study were in
accord with the Helsinki Declaration [37]. Patients underwent neurological examination,
examination of thyroid function, and serology for syphilis and Lyme disease. The levels of
vitamin B12 and B9 (folic acid) were also determined in each patient. Table 1 summarizes
information on biomarkers and demographic data, while Table 2 summarizes information
on determined 5HTR and APOE genotypes.
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Table 1. Demographic data and biomarkers in different cohorts.

AD MCI HC

Measured biomarkers
CSF + + -

Genetic + + +
Neuropsychological + + −

n 115 53 2701

Age Median 73 70 55
(25–75th percentile) (67–77) (60–75) (43–66)

Sex F/M 62/53 27/26 1714/987

MMSE Mean ± SD 19.6 ± 5.2 25.1 ± 3 −
Aβ1–42 (pg/mL)

Mean ± SD

536.9 ± 296.9 723.4 ± 371.9 −
T-tau (pg/mL) 520.0 ± 394.4 246.4 ± 158.0 −

p-tau181 (pg/mL) 80.0 ± 47.8 57.6 ± 30.9 −
p-tau199 (pg/mL) 4.4 ± 3.5 3.4 ± 2.4 −
p-tau231 (U/mL) 3.9 ± 5.5 1.8 ± 3.2 −
VILIP-1 (pg/mL) 138.3 ± 88.5 94.9 ± 78.1 −

Aβ1–42, amyloid β1–42; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; F, female; HC, healthy controls; M,
male; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; p-tau181, tau phosphorylated at
Thr 181; p-tau199, tau phosphorylated at Ser 199; p-tau231, tau phosphorylated at Thr 231; t-tau, total tau; VILIP-1,
visinin-like protein 1.

Table 2. Number of APOE and 5HTR genotypes in different cohorts.

AD MCI HC

APOE
ε2ε2 10
ε3ε2 9 1 252
ε3ε3 58 36 1966
ε4ε3 36 14 421
ε4ε4 7 2 28
ε4ε2 5 24

5HTR2C rs3813929
(−759C/T)

CC 79 37
CT 24 12 −
TT 12 4

5HTR2A rs6313
CC 40 18 911
CT 56 27 1267
TT 19 8 523

5HTR1B rs13212041
CC 6 1 87
CT 38 16 648
TT 71 36 1966

5HTR6 rs1805054
(C267T)

CC 59 28 1834
CT 33 18 768
TT 2 1 99

5HTR2A, 5-hydroxytryptamine receptor 2A; 5HTR1B, 5-hydroxytryptamine receptor 1B; 5HTR2C, 5-
hydroxytryptamine receptor 2C; 5HTR6, 5-hydroxytryptamine receptor 6; AD, Alzheimer’s disease; APOE,
apolipoprotein E; HC, healthy controls; MCI, mild cognitive impairment.

2.2. Neuropsychological Testing

Patients were neuropsychologically tested using the Mini-Mental State Examination
(MMSE), the Alzheimer’s Disease Assessment Scale–cognitive subscale (ADAS–Cog), the
Clock Drawing Test (CDT), the Rey–Osterrieth complex figure test (ROCFT), and the Visual
Association Test (VAT).
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2.3. Analysis of CSF Biomarkers

CSF was collected in AD and MCI patients by lumbar puncture between intervertebral
spaces L3/L4 or L4/L5. After the centrifuge at 2000× g for 10 min, CSF was stored at
−80 ◦C in polypropylene tubes. AD biomarkers were determined by enzyme-linked
immunosorbent assays (ELISA) using the following assays: Aβ1–42 (Innotest β-amyloid1–
42, Fujirebio, Tokyo, Japan), VILIP-1 (VILIP-1 Human ELISA, BioVendor, Brno, Czech
Republic), p-tau181 (Innotest Phospho-Tau [181P], Fujirebio, Tokyo, Japan), p-tau231 (Tau
[pT231] Phospho-ELISA Kit, Human, Thermo Fisher Scientific, Waltham, MA, USA), p-
tau199 (TAU [pS199] Phospho-ELISA Kit, Human, Thermo Fisher Scientific), and t-tau
(Innotest hTau AG, Fujirebio, Tokyo, Japan) (Table 1).

2.4. Determination of Polymorphisms

The salting-out method was used for the isolation of DNA from the peripheral
blood [38]. In the 168 patients recruited at the University Hospital Center Zagreb, sin-
gle nucleotide polymorphisms (SNPs) were determined by ABI Prism 7300 Real-Time
PCR System apparatus (Applied Biosystems, Foster City, CA, USA), using the following
TaqMan SNP Genotyping Assays (Applied Biosystems): 5HTR1B rs13212041, 5HTR2A
rs6313 (T102C), 5HTR2C rs3813929 (−759C/T), 5HTR6 rs1805054 (C267T), APOE rs7412,
and rs429358. APOE SNPs were measured to determine APOE haplotypes (APOE ε2, ε3,
and ε4) (rs429358 C allele and rs7412 C allele for ε4 variant, rs429358 T allele and rs7412
C allele for ε3 variant, and rs429358 T allele and rs7412 T allele for ε2 variant). SNPs
were determined using Illumina genotyping platforms (CNV370v1, CNV370-Quadv3, and
OmniExpressExome-8v1-2_A, Illumina, San Diego, CA, USA) in 2701 participants recruited
from the “10,001 Dalmatians project”.

2.5. Statistical Analysis

Statistical analysis was performed with SPSS 19.0.1 (SPSS, Chicago, IL, USA). The
level of statistical significance was set at α = 0.05. Levels of CSF biomarkers and scores on
neuropsychological tests were compared between groups using the non-parametric Kruskal–
Wallis test, while pairwise comparisons were conducted using a post-hoc non-parametric
test (that corrects p values for multiple comparisons). The frequencies of different diagnoses
and APOE genotypes among subjects with different 5HTR1B rs13212041, 5HTR2A rs6313
(T102C), 5HTR2C rs3813929 (−759C/T), and 5HTR6 rs1805054 (C267T) genotypes and
alleles were analyzed using a χ2-test, with applied correction for pairwise comparisons.
When analyzing frequencies of different diagnoses among subjects with different 5HTR
genotypes, we included only HC of 70 years old and older (n = 461).

3. Results
3.1. Polymorphisms in 5HT Receptor Genes and CSF Biomarkers

The CSF levels of Aβ1–42 were significantly decreased in AD patients with TT and
CT genotypes compared to those with the CC 5HTR2C rs3813929 (-759C/T) genotype
(U = 1080, Z = −2.063, p = 0.039) (Figure 1). P-tau181/Aβ1–42 ratio was significantly
increased in AD patients with TT and CT genotypes compared to those with the CC 5HTR2C
rs3813929 (-759C/T) genotype (U = 1056, Z = −2.121, p = 0.034) (Figure 1). There was no
significant difference in the levels of CSF biomarkers (Aβ1–42, t-tau, p-tau181, p-tau199, p-
tau231, VILIP-1, and p-tau181/Aβ1–42 ratio) between subjects with different 5HTR2A rs6313
(T102C), 5HTR1B rs13212041, and 5HTR6 rs1805054 (C267T) genotypes. No significant
difference in t-tau, p-tau181, p-tau199, p-tau231, and VILIP-1 levels was observed between
subjects with different 5HTR2C rs3813929 (-759C/T) genotypes.
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Figure 1. Levels of (A) Aβ1–42 and (B) p-tau181/Aβ1–42 ratio in AD patients with different 5HTR2C
rs3813929 (−759C/T) genotypes. * p < 0.05.

3.2. Polymorphisms in 5HT Receptor Genes, APOE Genotype, and AD Diagnosis

We observed a significantly higher number of APOE ε4 allele carriers among female
patients with the TT genotype compared to carriers of the CC and CT genotypes within
the 5HTR2A T102C polymorphism (χ2 = 7.453, df = 1; p = 0.006; Figure 2). This was also
confirmed with logistic regression (β = 1.364, SE = 0.151, p = 0.040).
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A significantly higher number of APOE ε4 allele carriers was also observed among
male patients carrying the CC and CT genotypes compared to carriers of the TT genotype
within the 5HTR1B rs13212041 polymorphism (χ2 = 7.064, df = 1; p = 0.008; Figure 3).
Additionally, a significantly higher number of individuals carrying the C allele within the
5HTR1B rs13212041 polymorphism was observed among AD patients (χ2 = 6.973, df = 1;
p = 0.008; Figure 3).
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Figure 3. Participants carrying the C allele within 5HTR1B rs13212041 polymorphism are (A) more
represented among AD patients, (B) have higher frequency of APOE ε4 carriers (in males older than
65 years of age), and (C) show poorer performances on ROCFT test. * p < 0.05.

A significantly higher number of APOE ε4 allele carriers was also observed among
individuals carrying the T allele within the 5HTR6 rs1805054 (C267T) polymorphism
(χ2 = 6.425, df = 1; p = 0.011; Figure 4).
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(shown in MCI patients). * p < 0.05.

3.3. Polymorphisms in 5HT Receptors, Genes, and Neuropsychological Tests

AD patients carrying the C allele within the 5HTR1B rs13212041 polymorphism had
poorer performances on the ROCFT test (U = 216.5, Z = −2.106, p = 0.035; Figure 3).

Carriers of the T allele within the 5HTR6 rs1805054 had poorer performances on the
ADAS–Cog (in MCI patients; U = 80.5, Z = −1.985, p = 0.046; Figure 4) and MMSE (in AD
patients; t = −2.015, df = 108, p = 0.046; Figure 4). In contrast, AD patients carrying the CC
genotype within the 5HTR6 rs1805054 had poorer performances on the VAT test compared
to TT and CT genotype carriers (U = 223, Z = −2.224, p = 0.026).

4. Discussion

The serotonergic system is highly affected in AD [1–4]. The main serotonergic nucleus
that projects throughout the cortex, the dorsal raphe nucleus (DRN, B7-B9), is affected early
by AD pathological changes, with neurofibrillary pathology in all of Braak stage I and
more than 20% of Braak stage 0 cases [16]. In addition, altered activity of DRN neurons
due to the accumulation of AD pathological changes is thought to cause BPSD in early
AD [39–41], which is compatible with a reported decrease in the serotonergic innervation
of the hippocampus and neocortex [2,11–13].
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Changes in serotonergic receptors are also detected in AD. Loss of 5HT1B/1D and 5HT6
receptors was observed in the frontal and temporal cortex of AD patients [17]. Reduction
in 5HT1A receptor binding [18] and loss of 5HT2A receptors [19] was observed in the
AD brain using positron emission tomography (PET) imaging. Additionally, reduced
binding to the 5HT1A receptor in the hippocampus and temporal neocortex, respectively,
correlates with cognitive decline [42], and aggressive behavior [43]. Activation of 5HT4,
5HT6, and 5HT7 receptors in experimental models of AD resulted in a decrease in Aβ
content [44–47], while injections of Aβ in the hippocampi of mouse models of AD [48,49]
leads to a reduction in 5HT2A receptor expression. Interestingly, serotonergic receptors
are potential targets for AD therapeutics [4] as their activation affects signaling pathways
involved in the production of Aβ and hyperphosphorylated tau protein [3]. Activation
of 5HTR4, 5HTR6, and 5HTR7 results in reduced production of Aβ (for details see [45]).
Additionally, the activation of various 5HT receptors can modify tau phosphorylation.
For example, the activation of 5HTR1A activates the phosphoinositide 3-kinase (PI3K),
phosphoinositide-dependent kinase (PDK), and protein kinase B (AKT) cascade. AKT
phosphorylates and consequently inactivates glycogen synthase kinase-3 (GSK3) that
phosphorylates tau protein. 5HTR2 could modulate GSK3 phosphorylation through protein
kinase C (PKC) [50] and β-arrestin-mediated signaling [51], while 5HTR4, 5HTR6, and
5HTR7 could modulate GSK3 phosphorylation through protein kinase A (PKA) [50]. Several
studies also observed an association between APOE and 5HT receptors. Shinohara et al.
showed that a 5HTR3 antagonist (ondansetron) increases apoE secretion through the liver X
receptor (LXR) and ATB-binding cassette protein A1 (ABCA1) pathway [52]. Additionally,
Chhibber and Zhao observed a significant difference in 5HT receptor expression levels
in mice carrying different ApoE genotypes [53]. Specifically, 5HTR2A protein expression
levels were higher in the cortexes of mice with human APOE4 gene-targeted replacement
than in mice with ApoE2 and ApoE3 genotypes. However, 5HTR1A protein levels did not
differ among mice with different ApoE genotypes [53].

In this study, we assessed whether the levels of CSF AD biomarkers, scores on neu-
ropsychological tests, and genetic biomarkers of AD (APOE haplotype) differed between
patients with various 5HTR1B rs13212041, 5HTR2A rs6313 (T102C), 5HTR2C rs3813929
(−759C/T), and 5HTR6 rs1805054 (C267T) polymorphisms. We observed a significantly
higher number of APOE ε4 allele carriers among individuals carrying the TT genotype
within the 5HTR2A T102C polymorphism, the C allele within the 5HTR1B rs13212041
polymorphism, and the T allele within the 5HTR6 rs1805054 (C267T) polymorphism. Addi-
tionally, individuals carrying the C allele within the 5HTR1B rs13212041 polymorphism
were significantly more represented among AD patients and had poorer performances on
the ROCFT test. Carriers of a T allele within the 5HTR6 rs1805054 had poorer performances
on the MMSE and ADAS–Cog, while a significant decrease in the levels of CSF Aβ1–42 and
an increase in the p-tau181/Aβ1–42 ratio was observed in carriers of a T allele in the 5HTR2C
rs3813929 (−759C/T) polymorphism.

Our study shows that AD patients carrying a T allele in the 5HTR2C rs3813929
(−759C/T) polymorphism have pathological CSF Aβ1–42 levels. The 5HTR2C -759C/T
polymorphism did not affect the expression levels of the 5HT2C receptor [54], and the effect
of the 5HTR2C −759C/T polymorphism on 5HT2C receptor expression in different tissues
is also not documented in the Genotype-Tissue Expression (GTEx) project database [55].
However, Buckland et al. observed that the C allele within the 5HTR2C −759C/T poly-
morphism shows less transcriptional activity compared to the T allele [56]. The association
of the 5HTR2C -759C/T polymorphism with AD was not previously reported. However,
in vitro [57] and in vivo [58] experiments showed that 5HT2C receptor activation stimulates
the release of soluble amyloid precursor protein (sAPP). Our study reveals that carriers
of the T allele in the 5HTR2C rs3813929 (-759C/T) polymorphism have pathological CSF
Aβ1–42 levels, and Buckland et al.’s study showed that the T allele within the 5HTR2C
-759C/T polymorphism increases transcriptional activity [56]. Thus, it is possible that this
polymorphism indirectly affects the release of sAPP and the amount of produced Aβ1–42.
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Additionally, this study shows that carriers of the T allele within the 5HTR6 rs1805054
(C267T) polymorphism have poorer performances on the MMSE and ADAS–Cog tests
and that a higher number of APOE ε4 allele carriers is observed among these individuals.
The 5HTR6 C267T polymorphism does not involve an amino acid change, but this silent
mutation could affect the splicing process [59]. According to the GTEx portal [55], this
SNP significantly affects the expression levels of the 5HT6 receptor, with carriers of the T
allele within the 5HTR6 rs1805054 (C267T) polymorphism having a lower expression of
5HT6 receptor mRNA in whole blood. The 5HTR6 C267T polymorphism was previously
associated with AD, albeit with conflicting results. Tsai et al. observed a higher frequency
of the CC 5HTR6 C267T genotype in AD patients compared to controls [60], while Kan et al.
observed an increased number of CT 5HTR6 C267T heterozygotes among AD patients [61].
Moreover, other authors did not find an association between 5HTR6 C267T polymorphism
and AD [59,62,63]. Our study did not observe a difference in the distribution of 5HTR6
C267T genotypes between AD patients and controls, but this SNP elucidated an association
between neuropsychological and genetic biomarkers of AD. The association between the
5HTR6 C267T polymorphism and cognitive decline in AD observed in this study is not
surprising given that several studies elucidated an association between this receptor and
AD (reviewed in [64]). In fact, the potential of 5HT6 receptor antagonists as therapeutics
for AD has been tested in a number of studies [65].

Our study also revealedan association of the C allele within the 5HTR1B rs13212041
polymorphism with genetic and neuropsychological biomarkers of AD and AD diagnosis
that has not been previously associated with AD. The effect of the 5HTR1B rs13212041
polymorphism on 5HT1B receptor expression in different tissues is also not documented in
the GTEx portal [55], although Jensen et al. showed that carriers of the T allele within the
5HTR1B rs13212041 polymorphism show reduced 5HTR1B expression compared to carriers
of the C allele [66].

Finally, we observed a significantly higher number of APOE ε4 allele carriers among
individuals carrying the TT genotype within the 5HTR2A T102C polymorphism. Accord-
ing to the GTEx portal [55], this SNP does not affect the levels of 5HTR2A in the brain,
although it significantly affected 5HTR2A expression in testes, muscles, and aortae. This
polymorphism is located within the first exon of the 5HTR2A gene and, being near the
promoter region, could be involved in gene regulation [67]. Li et al. recently showed that
the 5HTR2A T102C polymorphism increases the risk of AD [68]. Interestingly, the 5HTR2A
T102C polymorphism also showed an association with BPSD in AD [21–26], although
inconsistently among studies [69–72].

5. Conclusions

In this study, we observed differences in the distribution of 5HT receptor gene geno-
types and APOE genotypes between male and female participants. Gender difference in
the distribution of both APOE genotypes and 5HT receptor gene genotypes was previously
reported [73,74]. Namely, it was shown that elderly female APOE ε4 carriers are at higher
risk of developing AD [75], show stronger cognitive decline [76], weaker brain connectiv-
ity (detected using functional magnetic resonance imaging (fMRI) in the precuneus and
posterior cingulate cortex) [73], and lower brain metabolism [77] than males. In contrast,
Cacciottolo et al. showed that elderly males diagnosed with AD or MCI carrying the APOE
ε4 allele had a higher risk of brain microbleeds compared to females with the same geno-
type and condition [78]. Interestingly, a similar sex-dependent relationship between HTR2C
gene variants and suicidal behavior [79] and HTR1B polymorphisms and schizophrenia [80]
has been reported.

Our data reveal that all four analyzed polymorphisms of 5HT receptor genes had an
association with either genetic, CSF, or neuropsychological biomarkers of AD. As such,
considering the early involvement of the serotonergic systems in the progression of AD,
these polymorphisms represent interesting diagnostic and therapeutic targets and deserve
further investigation as potential early genetic biomarkers of AD.
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Annotation. Neuropathol. Appl. Neurobiol. 2009, 35, 532–554. [CrossRef] [PubMed]
2. Trillo, L.; Das, D.; Hsieh, W.; Medina, B.; Moghadam, S.; Lin, B.; Dang, V.; Sanchez, M.M.; De Miguel, Z.; Ashford, J.W.; et al.

Ascending monoaminergic systems alterations in Alzheimer’s disease. Translating basic science into clinical care. Neurosci.
Biobehav. Rev. 2013, 37, 1363–1379. [CrossRef] [PubMed]

http://doi.org/10.1111/j.1365-2990.2009.01038.x
http://www.ncbi.nlm.nih.gov/pubmed/19682326
http://doi.org/10.1016/j.neubiorev.2013.05.008
http://www.ncbi.nlm.nih.gov/pubmed/23707776


Biomedicines 2022, 10, 3118 10 of 13
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67. Bortolato, M.; Pivac, N.; Mück Šeler, D.; Nikolac Perković, M.; Pessia, M.; Di Giovanni, G. The role of the serotonergic system at
the interface of aggression and suicide. Neuroscience 2013, 236, 160–185. [CrossRef]

68. Li, L.; Yang, Y.; Zhang, Q.; Wang, J.; Jiang, J. Use of deep-learning genomics to discriminate healthy individuals from those with
Alzheimer’s disease or mild cognitive impairment. Behav. Neurol. 2021, 2021, 3359103. [CrossRef]

69. Micheli, D.; Bonvicini, C.; Rocchi, A.; Ceravolo, R.; Mancuso, M.; Tognoni, G.; Gennarelli, M.; Siciliano, G.; Murri, L. No evidence
for allelic association of serotonin 2A receptor and transporter gene polymorphisms with depression in Alzheimer disease.
J. Alzheimers. Dis. 2006, 10, 371–378. [CrossRef]

70. Fehér, Á.; Juhász, A.; László, A.; Pákáski, M.; Kálmán, J.; Janka, Z. Serotonin transporter and serotonin receptor 2A gene
polymorphisms in Alzheimer’s disease. Neurosci. Lett. 2013, 534, 233–236. [CrossRef]

71. Craig, D.; Donnelly, C.; Hart, D.; Carson, R.; Passmore, P. Analysis of the 5HT-2A T102C receptor polymorphism and psychotic
symptoms in Alzheimer’s disease. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2007, 144B, 126–128. [CrossRef]

72. Wilkosz, P.A.; Kodavali, C.; Weamer, E.A.; Miyahara, S.; Lopez, O.L.; Nimgaonkar, V.L.; DeKosky, S.T.; Sweet, R.A. Prediction of
psychosis onset in Alzheimer disease: The role of depression symptom severity and the HTR2A T102C polymorphism. Am. J.
Med. Genet. B. Neuropsychiatr. Genet. 2007, 144B, 1054–1062. [CrossRef] [PubMed]

http://doi.org/10.1007/s00401-008-0451-6
http://www.ncbi.nlm.nih.gov/pubmed/18974993
http://doi.org/10.3233/JAD-2010-100117
http://www.ncbi.nlm.nih.gov/pubmed/20413853
http://doi.org/10.1016/j.neuropharm.2020.108118
http://doi.org/10.3389/fnmol.2011.00031
http://doi.org/10.3390/ijms20061488
http://www.ncbi.nlm.nih.gov/pubmed/30934555
http://doi.org/10.1186/s13195-017-0305-3
http://www.ncbi.nlm.nih.gov/pubmed/28934977
http://doi.org/10.1111/j.1440-1819.2009.02046.x
http://www.ncbi.nlm.nih.gov/pubmed/20015120
http://doi.org/10.1038/ng.2653
http://doi.org/10.1176/appi.ajp.162.3.613
http://doi.org/10.1074/jbc.271.8.4188
http://doi.org/10.1016/S0006-8993(02)03153-0
http://doi.org/10.1016/S0304-3940(02)00221-5
http://doi.org/10.1016/S0304-3940(99)00802-2
http://doi.org/10.1016/j.neulet.2004.09.007
http://doi.org/10.1007/s007020170007
http://www.ncbi.nlm.nih.gov/pubmed/11725820
http://doi.org/10.1016/S0304-3940(02)01425-8
http://www.ncbi.nlm.nih.gov/pubmed/12618306
http://doi.org/10.1080/13543784.2018.1483334
http://www.ncbi.nlm.nih.gov/pubmed/29848076
http://doi.org/10.1016/j.neuropharm.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/28711518
http://doi.org/10.1038/mp.2008.15
http://www.ncbi.nlm.nih.gov/pubmed/18283276
http://doi.org/10.1016/j.neuroscience.2013.01.015
http://doi.org/10.1155/2021/3359103
http://doi.org/10.3233/JAD-2006-10405
http://doi.org/10.1016/j.neulet.2012.12.020
http://doi.org/10.1002/ajmg.b.30409
http://doi.org/10.1002/ajmg.b.30549
http://www.ncbi.nlm.nih.gov/pubmed/17525976


Biomedicines 2022, 10, 3118 13 of 13

73. Damoiseaux, J.S.; Seeley, W.W.; Zhou, J.; Shirer, W.R.; Coppola, G.; Karydas, A.; Rosen, H.J.; Miller, B.L.; Kramer, J.H.; Greicius,
M.D. Gender modulates the APOE ε4 eEffect in healthy older adults: Convergent evidence from functional brain connectivity
and spinal fluid tau levels. J. Neurosci. 2012, 32, 8254–8262. [CrossRef] [PubMed]

74. Perry, L.A.M.; Goldstein-Piekarski, A.N.; Williams, L.M. Sex differences modulating serotonergic polymorphisms implicated in
the mechanistic pathways of risk for depression and related disorders: A mini-review: Sex Modulation of Genes in Depression.
J. Neurosci. Res. 2017, 95, 737–762. [CrossRef] [PubMed]

75. Payami, H.; Zareparsi, S.; Montee, K.R.; Sexton, G.J.; Kaye, J.A.; Bird, T.D.; Yu, C.E.; Wijsman, E.M.; Heston, L.L.; Litt, M.; et al.
Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: A possible clue to the higher incidence of
Alzheimer disease in women. Am. J. Hum. Genet. 1996, 58, 803–811. [PubMed]

76. Mortensen, E.L.; Høgh, P. A gender difference in the association between APOE genotype and age-related cognitive decline.
Neurology 2001, 57, 89–95. [CrossRef]

77. Sampedro, F.; Vilaplana, E.; de Leon, M.J.; Alcolea, D.; Pegueroles, J.; Montal, V.; Carmona-Iragui, M.; Sala, I.; Sánchez-Saudinos,
M.B.; Antón-Aguirre, S.; et al. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls. Oncotarget
2015, 6, 26663–26674. [CrossRef]

78. Cacciottolo, M.; Christensen, A.; Moser, A.; Liu, J.; Pike, C.J.; Smith, C.; LaDu, M.J.; Sullivan, P.M.; Morgan, T.E.; Dolzhenko,
E.; et al. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer’s disease of humans and mice. Neurobiol. Aging
2016, 37, 47–57. [CrossRef]

79. Molina-Guzman, G.; González-Castro, T.B.; Hernández Díaz, Y.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; Guzmán-Priego, C.G.;
Genis, A.; Pool García, S.; López-Narvaez, M.L.; Rodriguez-Perez, J.M. Gender differences in the association between HTR2C
gene variants and suicidal behavior in a Mexican population: A case & ndash; control study. Neuropsychiatr. Dis. Treat. 2017,
13, 559–566. [CrossRef]

80. Xia, X.; Ding, M.; Xuan, J.F.; Xing, J.X.; Pang, H.; Wang, B.J.; Yao, J. Polymorphisms in the human serotonin receptor 1B (HTR1B)
gene are associated with schizophrenia: A case control study. BMC Psychiatry 2018, 18, 303. [CrossRef]

http://doi.org/10.1523/JNEUROSCI.0305-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22699906
http://doi.org/10.1002/jnr.23877
http://www.ncbi.nlm.nih.gov/pubmed/27870440
http://www.ncbi.nlm.nih.gov/pubmed/8644745
http://doi.org/10.1212/WNL.57.1.89
http://doi.org/10.18632/oncotarget.5185
http://doi.org/10.1016/j.neurobiolaging.2015.10.010
http://doi.org/10.2147/NDT.S122024
http://doi.org/10.1186/s12888-018-1849-x

	Introduction 
	Materials and Methods 
	Subjects 
	Neuropsychological Testing 
	Analysis of CSF Biomarkers 
	Determination of Polymorphisms 
	Statistical Analysis 

	Results 
	Polymorphisms in 5HT Receptor Genes and CSF Biomarkers 
	Polymorphisms in 5HT Receptor Genes, APOE Genotype, and AD Diagnosis 
	Polymorphisms in 5HT Receptors, Genes, and Neuropsychological Tests 

	Discussion 
	Conclusions 
	References

