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Abstract

Wastewater treatment plants (WWTPs) continuously release a complex mixture of municipal, hospital, industrial, and runoff
chemicals into the aquatic environment. These contaminants are both legacy contaminants and emerging-concern contami-
nants, affecting all tissues in a fish body, particularly the liver. The fish liver is the principal detoxifying organ and effects of
consistent pollutant exposure can be evident on its cellular and tissue level. The objective of this paper is thus to provide an
in-depth analysis of the WWTP contaminants’ impact on the fish liver structure, physiology, and metabolism. The paper also
gives an overview of the fish liver biotransformation enzymes, antioxidant enzymes, and non-enzymatic antioxidants, their
role in metabolizing xenobiotic compounds and coping with oxidative damage. Emphasis has been placed on highlighting
the vulnerability of fish to xenobiotic compounds, and on biomonitoring of exposed fish, generally involving observation
of biomarkers in caged or native fish. Furthermore, the paper systematically assesses the most common contaminants with

the potential to affect fish liver tissue.
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Introduction

Wastewater treatment plants (WWTP) continuously release
a complex mixture of municipal, hospital, industrial, and
runoff chemicals into the aquatic environment. These con-
taminants are of both long-standing and emerging concern
(Sauvé and Desrosiers 2014). The WWTP effluents also
comprise microorganisms and excess nutrients, along with
engineered nanomaterials, microplastic, metals, pharma-
ceutically active compounds, organic pollutants, endocrine-
disrupting chemicals, and a plethora of other compounds
(Mehdi et al. 2021; Lapointe et al. 2020; Tran et al. 2018;
Neale et al. 2013). We know that many of these contaminants
individually affect fish health, but the collective impacts of
chemical mixtures and associated bacteria on fish are still
unclear (Restivo et al. 2021).
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WWTPs have a significant role in the water cycle and
pollutant removal through primary, secondary, and advanced
treatments since pollutants circulate via effluents, sludge, and
air emissions (Ribeiro et al. 2020; Papa et al. 2016). These
treatments may alter the state and stability of pollutants. The
primary treatment mostly involves flocculation/coagulation
and sedimentation. The secondary one comprises biological
treatment, aggregation/sedimentation, sludge treatment, and
disinfection. The advanced treatment involves membrane
filtration and advanced oxidation processes, where appli-
cable (Neale et al. 2013). The contaminants in effluents are
therefore found at relatively low concentrations, and they
get further diluted in receiving waters (Wigh et al. 2018).
In addition, after WWTP treatment, some of these chemi-
cals may be of altered stability. They might interact with
household and industrial surfactants (Jarvie et al. 2009),
or be adsorbed onto naturally occurring aquatic colloids or
particulate matter, for example (Worms et al. 2010; Klaine
et al. 2008). Most WWTPs are not equipped with technology
to effectively remove contaminants of emerging concern,
including many consumer products (e.g., pharmaceuticals
and personal care products), which present a risk to water
quality, leading to the input of partially treated effluents to
surface waters and exposure of aquatic organisms (Franco
et al. 2020). Thus, the contaminants might be taken up into
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the tissues of fish and other aquatic organisms where they
can elicit adverse biological effects. In comparison with
mollusc and crustacean models, fish have a similar develop-
ment, anatomy, and physiology to higher vertebrates, which
makes them ideal models for monitoring of chemicals in the
aquatic environment (Schujit et al. 2021).

The routes of xenobiotic uptake depend on the dietary and
ecological circumstances of a particular fish species, as the
contaminants may occur in sediments, suspended material,
and food sources (James and Kleinow 2018; Livingstone
2001). They also depend on the season of the year, relative to
water temperature, and fish reproductive status (Soler et al.
2020). Responding to stressors through exposure to waste-
water, fish undergo physiological and biochemical tissue
processes in order to compensate for the imposed xenobiotic
challenge (Blahova et al. 2014). The consequences of these
processes can be observed across multiple levels of biologi-
cal organization, from metabolic to behavioral, to population
and community-level responses (Mehdi et al. 2021; Topié
Popovié et al. 2015a). Fish may react with acute responses to
contaminants, but as latter often occur at low environmental
levels, chronic effects are more prominent in contaminated
waters (Franco et al. 2020).

The liver of fish and other vertebrates is the principal
detoxifying organ and effects of consistent pollutant expo-
sure can be evident on its cellular and tissue level (Minarik
et al. 2014). The liver is also the major organ for the stor-
age of heavy metals (Ardeshir et al. 2017). Fish liver bio-
markers, conjugation enzymes, carboxylesterase activities,
and antioxidant defenses can confirm chemical exposure to
lipophilic microcontaminants, from dioxin-like chemicals to
drugs of broader nature (Soler et al. 2020). Biomarkers, as
biological endpoints, are used for the evaluation of tissues
at the cellular, biochemical, and molecular levels. They are
important as short-term indicators of long-term biological
effects and indicate the presence of contaminants (exposure
biomarkers) or the magnitude of the organismal response
(effects biomarkers) (Garmendia et al. 2015).

The objective of this paper is thus to provide an in-depth
analysis of the WWTP contaminants’ impact on the fish liver
structure, physiology, and metabolism. Furthermore, it sys-
tematically assesses the most common contaminants with
the potential to affect fish liver tissue.

Vulnerability of fish systems to wastewater
outfalls and environmental stressors

Fish vulnerability to xenobiotics is not a constant and
largely varies between individual organisms, but also within
an organism in relation to its genetic makeup, life stage,
development, gender, gonadal maturation, diseases, infesta-
tions, energy reserves, etc. Vulnerability also resides in the
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sensitivity and resilience of the system exposed to various
hazards (Rudneva et al. 2020; Turner et al. 2003). Besides
xenobiotics and pollutants, there is also many environmen-
tal stressors, which may affect fish communities: climate
change, coastal or riverine development, erosion, alterations
of hydrological systems, physicochemical changes of water
and sediment, pathogen burden, toxic algae, invasive spe-
cies, intra- and interspecific competitions, eutrophication,
fishing, and aquaculture leading to the altered food web and
habitat changes (Couillard et al. 2008). All these factors con-
tribute to the cumulative effects of the vulnerability burden.

WWTP outfalls can alter physicochemical properties of
water, depending on the inflowing sources. For example, the
sugarplant wastewaters and municipal wastewaters differ in
many physicochemical parameters which can dramatically
affect fish (liver) health (Topi¢ Popovi¢ et al. 2015a). The
sugarplant wastewaters mostly surpass the raw municipal
wastewaters inflowing the WWTP in values of many param-
eters, such as suspended solids, chemical oxygen demand
(COD), permanganate index (COD-Mn), biochemical oxy-
gen demand (BODn), nitrate, nitrite. Namely, increased
nitrogen may result in overgrowth of algae, which can
decrease the dissolved oxygen content of the water, thereby
harming or killing fish (Topi¢ Popovi¢ et al. 2016, 2015a).
Besides, continuous exposure to high levels of ammonia can
cause oxidative damage to the fish liver, where the degree
of liver damage increases with the prolongation of exposure
(Liu et al. 2021).

Wastewater outfalls generally enhance the presence of
omnivorous, non-native, and tolerant fish of a few spe-
cies. They may be attracted to the effluent or outfall habi-
tat because of nutrients, organic particulate matter, and
increased food availability (McCallum et al. 2019). How-
ever, the combination of a constant nutrient supply and tem-
perature of the effluent, particularly in the winter months,
might create an ecological trap for such fish, threatening
their reproduction and survival (Mehdi et al. 2021). The
toxic injury of such fish is based on the duration of exposure
and concentration of xenobiotic chemicals at the target site,
the number of available target sites, and the recovery capac-
ity of fish (Couillard et al. 2008). The toxicokinetic pro-
cesses such as uptake, distribution, metabolism, and excre-
tion control the concentration of xenobiotic chemicals at the
target sites. On the other hand, the toxicodynamic processes
such as the interaction between chemicals and target sites,
and repair mechanisms, modify their responses (Couillard
et al. 2008; Heinrich-Hirsch et al. 2001).

The most vulnerable period in fish development is the
early life stage when they are more sensitive to xenobiotics.
In such a critical life stage, fish absorb higher concentra-
tions of xenobiotics, have undeveloped detoxification capac-
ity, and are less capable of avoiding contaminated areas
(Andersen et al. 2003; Vosyliene et al. 2003). Several fish



Environmental Science and Pollution Research

species are able to survive in environments with high lev-
els of multiple anthropogenic pollutants such as wastewater
outfalls. However, the synergistic impact of complex pollut-
ants in interaction with environmental factors, physical or
biological stressors, significantly exerts their effects on fish
health. Furthermore, deleterious effects of multiple stress-
ors on fish communities are challenging to detect in native
populations, which tend to be under constant or recurring
exposure causing a prolonged physiological response during
their acclimation (Topié Popovi€ et al. 2016).

Caged or native fish

For evaluation of the impact of WWTP effluents on fish,
a variety of strategies is used. Biomonitoring of environ-
mentally exposed fish generally involves observation of bio-
markers in caged or native fish. Laboratory studies, on the
other hand, often use the extreme exposure concentration
of a single xenobiotic or its mixtures (Gagnon and Rawson
2017). Laboratory studies can thus overestimate or some-
times underestimate the effects in wild populations. As the
concentrations used in laboratory studies may not relate to
their levels in field situations, the observations validated
with field studies are generally more reliable (van der Oost
et al. 2003).

Environmental exposures are often variable in both
duration and magnitude, but in standard acute and chronic
effects testing, they are maintained (Hamer et al. 2019). For
example, the avoidance response is one form of phenotypic
adaptation allowing fish to survive in the altered environ-
ment. Such behavior represents the final integrated fish
response to xenobiotic stress. The active withdrawal of fish
from polluted areas can affect their physiological migration,
distribution, and survival patterns (Vosyliene et al. 2003).
Interestingly, non-migratory species have higher interspe-
cies variability in contaminant burdens than fish that move
extensively (Marcogliese et al. 2015).

The native fish biomarker responses to effluents are
affected by a number of complex factors, such as the age of
the individual fish, length/weight ratio, sex, migration pat-
tern, adaptation mechanisms to chronic pollution, and pres-
ence of sentinel or endangered species (Catteau et al. 2021).
The variations in biological and physicochemical parameters
may influence the endpoint measurement unless applying
multiple collection times over seasons (Gagnon and Rawson
2017). In addition, fluctuations in the food supply related to
season, spawning, and migration affect food abundance or
deprivation, and the feeding rates of native fish. Therefore,
native fish with insufficient energy stores could have adverse
reactions to acute or chronic effluent exposures (Weinrauch
et al. 2021). Another problem of the field surveys is extrapo-
lating from observations on a few individuals in a limited

number of species to groupings of many individuals and
species and the need to consider how the relative sensitivity
of their individual responses reflect the response of popula-
tions, communities, and ecosystems (Galloway et al. 2004).

By choosing to use the caged fish for biomonitoring
studies, individual fish are selected according to their par-
ticular characteristics such as sex, age, or size. No fishing
effort allocated to catching the same species in the different
sampling sites is needed. Fish mobility is avoided which
removes a source of variability in the field study. The use
of fish from a hatchery avoids the possibility of sampling
pollution-adapted fish (Kosmala et al. 1998). Variability of
the responses can be reduced by controlling the distance of
the cage from the effluent source, the position of the cage,
season, or caging duration (Catteau et al. 2021). Therefore,
the use of cages offers precise information about their loca-
tion and exposure duration, gives control of the selection
of representative species and their particular developmental
stage and genetic background, yielding comparable results
over various sites (Cazenave et al. 2014). The most compre-
hensive evaluation of sublethal toxicity of contaminants is
achieved when studies are performed on fish in all stages of
development (Marcogliese et al. 2015), which advocates the
use of cages. However, caged fish may suffer from density
stress, which could increase cortisol levels and potentiate
induction of hepatic enzyme activity (Kosmala et al. 1998).
In any case, selecting the caged or native fish, the utilization
of a battery of complementary biomarkers is recommended
for the accurate estimation of fish responses during effluent
exposure.

Fish liver, oxidative stress, and biomarkers

The fish liver is microanatomically similar to livers of other
vertebrates. It is a reticulotubular gland, often with lobular
organization, covered with a serous membrane. Its hepato-
cytes are polygonal cells with round nuclei and a single,
prominent nucleolus, often containing lipid and glycogen
(Stoskopf 1993). Hepatocytes are in contact with blood
perfusing the hepatic parenchyma at their sinusoidal mem-
branes, at which blood-borne chemicals can be taken up
(Luckenbach et al. 2014). The liver is a key metabolic organ
for the storage and mobilization of energy, with several ana-
bolic and catabolic functions (Bernet et al. 2000). It converts
glucose into glycogen and lipids, which provide energy dur-
ing fasting, but it also produces and secretes glucose through
glycogenolysis and gluconeogenesis. The liver converts fatty
acids for extrahepatic tissues during fasting. Multiple nutri-
ent, hormonal, and neuronal signals regulate glucose, lipid,
and amino acid metabolism in the liver (Rui 2014). Since it
has a key role in digestion, storage, and protein production,
it is a target tissue for lesions related to wastewater-related
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contaminants. Upon exposure to contaminants, a metabolic
trade-off occurs as hepatic nutrient metabolism is altered
(Weinrauch et al. 2021). Energy allocation is disturbed since
large proportion of the ingested energy shifts from mainte-
nance to detoxification and repair mechanisms. These pro-
cesses result in rapid decrease of energy storage such as
ATP, phosphocreatine and glycogen, and rapid accumulation
of blood (Pi et al. 2016).

Upon exposure, increased levels of oxidative damage
occur, which stimulate the production of reactive oxygen
species (ROS) and other pro-oxidants (Hu et al. 2021).
The ROS generated by liver metabolism are eliminated
by activation of a variety of antioxidant defense mecha-
nisms, both direct and indirect. They include redox cycling,
redox reactions, autoxidation, oxidative and non-oxidative
enzyme induction, disruption of electron transport, deple-
tion of antioxidant defenses (Maria et al. 2009; Livingstone
2001). In addition, when the antioxidant defense system
cannot efficiently counteract the ROS, it triggers oxida-
tive stress leading to lipid peroxidation and DNA damage,
micronuclei, chromosome aberrations, and sister chromatid
exchanges in hepatocytes and other cells (Ardeshir et al.
2017; Livingstone 2001). In short, oxygen toxicity involves
the production of superoxide anion radical, hydrogen per-
oxide, and the hydroxyl radical, leading to enzyme inacti-
vation, protein oxidation, lipid peroxidation (formation of
malonaldehyde-like species and 4-hydroxyalkenals), DNA
damage, and even cell death (Jia et al. 2021; Winston and
Di Giulio 1991). Therefore, under pollution stress, fish liver
antioxidant enzymes and non-enzymatic antioxidants may
be altered. Their increased activity may be considered as
an adaptation in which the organism partially or completely
overcame the exposure stress. In addition, the inactivation of

the defense system by the chemically reactive species, which
act as antioxidant enzyme inhibitors reduce cell protection
and the organism’s fitness (Maria et al. 2009). Conversely, in
an undisturbed environment, a balance exists between pro-
oxidant and antioxidant processes, as the production of ROS
and other reactive species is controlled by the antioxidant
defense system.

Since the liver is involved in the metabolism of xenobi-
otic compounds and their excretion (Bernet et al. 2000), a
number of hepatic biochemical, physiological, and meta-
bolic biomarkers were developed. They include biomark-
ers of exposure (biochemical response occurring following
exposure to a contaminant), biomarkers of effect (measur-
able biochemical, physiological or other alterations within
hepatic tissue or body fluids that can be associated with
health impairment), biomarkers of susceptibility (ability to
respond to exposure to a contaminant, including genetic fac-
tors and changes in receptors which alter the susceptibility
of fish to the exposure), and bioaccumulation markers (ana-
Iytical/chemical indicators, also referred to as body burden)
(Kroon et al. 2017; Hook et al. 2014; van der Oost et al.
2003) (Fig. 1).

It is a challenge to choose a suitable biomarker between
a plethora of biomarkers for assessing fish liver impairment.
To that end, selection criteria must be applied to refine the
extensive biomarker list. Namely, biomarkers of exposure
typically comprise biotransformation enzymes of phase
I, phase II, and co-factors (Weinrauch et al. 2021; Ogueji
et al. 2020; Kroon et al. 2017; Gagnon and Rawson 2017).
Oxidative stress parameters include a group of antioxidant
enzymes forming a part of a cellular defence system such
as superoxide dismutase, catalase, glutathione peroxidase,
and glutathione (Faheem and Lone 2018). Biochemical

Fig.1 Schematic representation
of wastewater treatment plant
(WWTP) treatment processes
and biomarkers for assessing
the links between contaminant
exposure, internal levels of
tissue contamination, and early
adverse effects in fish
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biomarkers of oxidative damage are also frequently used
to assess the consequences of oxidative stress, such as lipid
peroxidation quantifiable by the measurement of degrada-
tion products such as aldehydes, acetone, and malondialde-
hyde. Additionally, relevant biomarkers related to fish liver
function are stress proteins or heat shock proteins which
protect and regenerate cells in response to stress. Further-
more, multixenobiotic resistance prevents the accumula-
tion of xenobiotic compounds inside the cell, by removing
them via an energy-dependent transport protein (Wang et al.
2022; Kroon et al. 2017; Smital and Ahel 2014; Zaja et al.
2007). Hematological parameters, like serum transaminases,
provide general insights of the hepatic tissue health (Wang
et al. 2022; Fathy et al. 2019; Cai et al. 2018; Kroon et al.
2017). Endocrine parameters, notably vitellogenin, geno-
toxic parameters such as DNA adducts, secondary DNA
modifications, and irreversible genotoxic events, apoptosis,
and micronuclei are also valuable biomarkers (Haque et al.
2022; Laurent et al. 2022; Sim6-Mirabet et al. 2018; Casatta
et al. 2017). Liver structural alterations, as histopathologi-
cal biomarkers of effect, are important non-specific indica-
tors of fish health as they bear the effects of exposure to
various pollutants (Hinton et al. 1992). Acute alterations are
apparent at high contaminant levels, while chronic exposure
might induce sublethal aspects of tissue alterations. Many
of such alterations are irreversible and can be useful in the
determination of prior exposure to wastewater contaminants
(Hinton 1994). A list of major biochemical, physiological,
and metabolic biomarkers in fish liver reflecting exposure to,
or effects of pollutants, is presented in Table 1.

Macroscopic morphological liver changes

Morphological indices are often indicative of pollutant
exposure. Liver somatic index (LSI), a ratio between the
liver mass and the total fish mass, is one of such non-
specific indices (Sloof et al. 1983). The exposure to pol-
lutants, such as bleached sulfite mill effluent, may affect
the increase of fish LSI by two to three times in relation
to the LSI of control fish. Life cycle and long-term fish
exposure result in increased body size and increased liver
size (Parrott et al. 2007). Fish exposed to WWTP effluent
discharges, heavy metals, pulp mill discharges, urbanized
areas, had enlarged livers, and increased LSI (Long et al.
2020; Wang et al. 2019; Bahamonde et al. 2015; Batchelar
et al. 2013; Kosmala et al. 1998; Munkittrick et al. 1994).
Du et al. (2019) demonstrated that the exposure of fish to a
municipal WWTP induced liver enlargement for up to 35%
in both native and caged fish. The physiological compensa-
tions in the liver offset some of the detrimental impacts in
fish after exposure, particularly the increase of the cumula-
tive mitochondrial oxidative capacity of the liver.

Larger liver mass can also be affected by reproductive
status since the liver plays a central role in the process of
vitellogenesis (Long et al. 2020). However, since vitellogen-
esis does not usually occur in males, LSI in male fish can
be more informative of contaminant exposure (Duarte et al.
2017). The enlarged livers of fish from contaminated waters
can stem from hypertrophy (increase in cell size) (Sloof et al.
1983), and hyperplasia (increase in cell number) (van der
Oost et al. 2003). They are usually associated with the induc-
tion or stimulation of hepatic enzyme activities (Kosmala
et al. 1998). Larger liver mass relative to body mass, caused
by the increased metabolic activity to detoxify contaminants,
may thus be indicative of exposure to contamination, result-
ing in liver damage that ranges from increased liver weight
and fat content to cell necrosis (Samanta et al. 2018). Fatty
liver, or storage of large quantities of fats in the fish liver, is a
morphological tissue change visible macroscopically as mot-
tling or whitening of its surface. Lipid accumulation results
from the imbalance between the synthesis of fatty acids or
lipogenesis and fat catabolism or lipolysis in the liver tissue
(Wang et al. 2019). Another macroscopic pathology of the
liver is the formation of neoplasms. Neoplastic growths in
the liver are a common finding in chronically exposed fish.
Tumors might appear as small nodules up to lumps of sig-
nificant size, having a different coloration than the rest of
the liver tissue (Peters et al. 1987). Generally, larger/older
fish are at higher risk to be affected by liver tumors (Lang
et al. 2017).

Physiological and histological changes
of livers from exposed fish

A healthy fish liver has a very homogeneous structure in con-
trast to its heterogeneous physiology. It consists mostly of
parenchymal tissue formed from double layers of liver cells,
separated by liver sinusoids or capillary-like blood spaces.
Liver stores carbohydrates as glycogen and, especially before
spawning, fats. The polygonal hepatocytes under normal
conditions appear compact. Near the sinusoids, uniformly
distributed groups of pigmented phagocytic cells or mela-
nomacrophages can be found (Peters et al. 1987).
Aberrations from the normal structural tissue integrity
can provide valuable information on the integrated effects
of molecular, biochemical, and physiological changes deriv-
ing from exposure to pollutants. Liver physiological and
histological parameters represent higher-level responses
of exposed fish, generally indicative of irreversible dam-
age (Lang et al. 2017; Oliveira et al. 2015). Histological/
histopathological parameters of the fish liver are very useful
for assessing the chronic and sublethal effects of persistent
contaminants present at very low levels in waters affected by
the effluents. Such responses can be used as biomarkers of
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exposure and effects to contaminants related to the health of
individuals which also allow further extrapolation to popu-
lation/community effects (Chiang and Au 2013). Hepatic
lesions of fish exposed to contaminants, sorted by histo-
pathological categories, are listed in Table 2.

The most common histopathological findings in livers of
fish exposed to pollutants are macrophage aggregates, also
known as melanomacrophage centers, and liver necrosis
(Oliveira et al. 2015). Necrosis is the direct toxic effect of a
pollutant and could be due to the infiltration of leucocytes
(Javed and Usmani 2013). In liver disease associated with
hepatic necrosis, serum AST and ALT are elevated even
before the clinical signs and symptoms of disease appear
(van der Oost et al. 2003). Melanomacrophages can serve as
non-specific indicators of environmental stress as they are
related to exposure to degraded environments. They usu-
ally contain a number of pigments including melanin, with
the primary function of iron capture and storage. Melanin
is a complex polymer that can absorb and neutralize free
radicals, cations, and other potentially toxic agents, deriving
from degradation of phagocytosed cellular material (Zuasti
et al. 1989). Other pigments usually found in melanomac-
rophages are lipofuscin (generally the most abundant), and
hemosiderin (Agius and Roberts 2003). The increase in
melanomacrophage numbers indicates humoral and inflam-
matory responses, and also detoxification of exogenous and
endogenous substances (Herraez and Zapata 1991; Peters
et al. 1987). The liver infiltration of defence cells is caused
by hyperemia, leading to increased blood flow in the liver,
and facilitating the transport of macrophages to the damaged
regions, thus improving oxygenation and possibly indicating
an auxiliary mechanism in detoxification (Vieira et al. 2019).

Energetic costs linked to exposure to contamination
mainly refer to glycogen depletion, which is a stress-induced
response. The decrease of glycogen content under effluent
stress is greater in liver than in muscle, as liver is the princi-
pal site of its synthesis and storage (Cazenave et al. 2014).
Lower liver glycogen can be associated with the inability to
increase plasma glucose following an acute stress exposure
(Javed and Usmani 2013, 2015). Such depletion of energy
reserves may have consequences in form of diminished
growth, survival and reproduction probability (Du et al.
2019; Sancho et al. 2010).

Biotransformation enzymes and xenobiotic
compounds

Most xenobiotic compounds undergo biotransformation
before being excreted. The most commonly involved organ
in (fish) biotransformation is the liver. In the first phase of
biotransformation, the lipophilic substrate is oxidized by
the cytochrome P-450 (CYP450) enzyme system, which

@ Springer

introduces a single oxygen atom into the molecule (Moutou
et al. 1998). In the second phase, the oxidized compound is
conjugated with an endogenous molecule such as glucuronic
acid, sulfate, glutathione, or amino acid, becoming less toxic
and readily excreted (Topi¢ Popovi¢ et al. 2012; Andersson
and Forlin 1992).

The P-450 (CYP) oxidase enzymes metabolize many
xenobiotics, and CYP1A1 and CYP3A4 are important mark-
ers of chemical exposure in fish (Table 1). Disruptions of the
activities of these enzymes, especially CYP3A4, may have
consequences in the metabolism of other compounds. The
CYP3A4 is one of the most important enzymes involved in
the metabolism of xenobiotics and oxidation of the largest
range of substrates (Topi¢ Popovic et al. 2007). The CYP1A
is best known as a major hydrocarbon-inducible CYP. Mem-
bers of the CYP1 family play a prominent role in the acti-
vation of many drugs and procarcinogens (Topi¢ Popovié¢
et al. 2015a). Many studies demonstrated an increase in the
CYPI1A levels in liver tissues of fish exposed to organic
trace pollutants, and particularly to PAHs, PCBs, PCDDs,
and PCDFs (Table 1). Single xenobiotic compounds can act
as inducers of specific isoenzymes, but also inhibit others,
which may result in variation of isoenzyme levels (Oost et al.
2003). However, measuring these proteins or their mRNA
levels can be time-consuming and costly for field studies, so
the determination of their catalytic activity is more common.
Thus, measurement of the CYP1A-catalyzed deethylation
of ethoxyresorufin to a fluorescent product resorufin via the
activity of EROD, or using benzo(a)pyrene as a substrate
in AHH assays, or measuring CYP3A-catalyzed activity
of BFCOD (7-benzyloxy-4-[trifluoromethyl]-coumarin-O-
debenzyloxylase), allow for their more feasible quantifica-
tion (Gagnon and Rawson 2017). For example, the increase
of EROD, AHH, and BFCOD activity in livers of native fish
sampled downstream from the WWTP indicate exposure to
dioxin-like compounds, organic trace pollutants, and drugs
of broader nature related to WWTPs (Burkina et al. 2021;
Catteau et al. 2021; Weinrauch et al. 2021; Soler et al. 2020;
Kosmala et al. 1998).

In the second phase of biotransformation, the conjugation
with glutathione (realized by the glutathione-S-transferase) is
the major pathway for electrophilic compounds and metabo-
lites, while the conjugation with glucuronic acid is the major
route for nucleophilic compounds (George 1994). The mecha-
nism of induction for most of the phase I enzymes is also reg-
ulated via the Ah-receptor, but their induction responses are
generally less prominent (van der Oost et al. 2003). In healthy
liver tissues, more than 90% of the total glutathione pool is in
the reduced form and less than 10% is in the oxidized form.
An increased oxidized-to-reduced ratio is indicative of oxida-
tive stress, resulting from the conversion of glutathione from
reduced to oxidized form as radicals with oxidative potential
are neutralized. These rations were significantly elevated in
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livers of fish exposed to WWTP outfalls, showing evidence
of oxidative stress (Jasinska et al. 2015). Also, in fish exposed
to environmental concentrations of diclofenac, the levels of
reduced glutathione and glutathione S-transferase activity
increased at all tested concentrations (Guiloski et al. 2017).

Predictors of adverse responses

In the past decades, high-throughput screening assays and
omics-based methods have been developed for studies of the
mechanisms of toxicity. Assays were developed for short-
term high-content and high-throughput prediction of toxic-
ity of numerous chemicals potentially found in the WWTP
outfalls. Responses at the molecular level, transcriptome
sequencing, proteomics, and metabolomics, may provide reli-
able biomarkers of exposure and stress induced by pollutants,
as well as their underlying mechanisms (Bai and Tang 2020).
In particular, biochemical changes revealed by metabolomics
are easily correlated to other measurements and can set a
path for unveiling the mechanisms of toxicity of various com-
pounds (Huang et al. 2019). Exposure of fish to pollutants
leads to changes in gene expression and protein production,
which are subjected to a number of homeostatic and feedback
mechanisms. These changes are amplified at the metabolome
level, which makes metabolomics analyses a significant tool
for assessing toxicity of environmental contaminants (Lanka-
durai et al. 2013). Such data aid to identify multiple impaired
pathways contributing to the overall adverse responses. Fish
from the two effluent-receiving sites in the work of Meador
et al. (2020) exhibited alteration in 31 different pathways,
related to metabolism and biosynthesis of amino acids, lipids,
fatty acids, purines, pyrimidines, and sugars. Many of these
are important for energy production, antioxidant defenses and
ammonia cycling (Meador et al. 2020).

Since molecular markers precede morphological altera-
tions, they are useful for a predictive aspect of toxicity test-
ing. Many of the genes measured in such studies are func-
tional orthologs of human ones involved in processes of
toxic responses and thus have an additional applied value
(Gongalves et al. 2020a). Namely, a higher expression of
gpx, hsp70, ucp2, and bax genes, as well as a lower expres-
sion of Bcl-2, mRNA levels of SOD and CAT genes in fish
can indicate to toxic effects of silver oxide and silver carbon-
ate nanoparticles (NP) before other biomarkers, and indi-
cate to a NP hazard (Mahjoubian et al. 2021). The balance
between the oxidative and antioxidant processes inside the
cells is related to several genes such as coxIV, prdx, ucp, sod,
cat, and hsp70 (Espinosa et al. 2017). The increase of the
fish liver ucpl and decrease of hsp90 expression can thus be
correlated to microplastics exposure (Espinosa et al. 2017).
Microarray studies established that the exposure to the
WWTP effluent can significantly affect gene transcription

in the fish liver, having altered expression in relation to the
unaffected site. These genes are mostly involved in mecha-
nisms of the fish immune system, lipid and retinol metabo-
lism, detoxification processes, cellular proliferation, and
membrane transport (Houde et al. 2014). Incorporation of
gene expression tools enables characterization of responses
even when the stressors are unknown, but calls for validation
with a phenotypic trait on an organ or a tissue level (Hook
et al. 2014).

There is a number of molecular effects which need to be
extensively studied to investigate species-specific molecular
responses, response levels and typical inducers. The detri-
mental effects are often multifactorial and associated with
alterations in different pathways or subnetworks (Gongalves
et al. 2020b). Advances in high-content —omics screening
and bioinformatics enable surveying of multiple molecular
endpoints in single runs and revealing alterations in meta-
bolic pathways in complex ecosystems affected by pollution
(Cuevas et al. 2018).

WWTP-associated legacy contaminants
and emerging-concern contaminants
with affinity to fish liver

Pharmaceutically active compounds

Pharmaceutically active compounds (PhACs) are biologi-
cally active compounds designed to interact with specific
physiological pathways of humans and livestock in order to
evoke a desirable pharmacological response (Corcoran et al.
2010). In recent decades, PhACs have aroused an increas-
ing concern due to their ubiquitous presence in the aquatic
environment and negative ecological effects. Currently, over
4000 PhACs are being used all over the world for medical
and veterinary health care, as well as growth promotion of
livestock (Boxall et al. 2012). Excretion of PhACs occurs via
urine and feces, with 50-90% of oral doses generally being
excreted as a mixture of the parent compounds and their
metabolite forms (Kopping et al. 2020; Celiz et al. 2009).
PhACs enter the aquatic environment via numerous routes,
including direct discharge of raw and/or treated wastewater
from municipal, hospital, industrial WWTPs, where they
are often inefficiently removed. Secondary PhACs sources
should not be neglected, such as landfill leachate and surface
runoff from urban or agricultural areas where treated waste-
water is used for irrigation activities and/or sewage sludge
as a fertilizer (Tran et al. 2018).

PhACs are designed to be stable, thus the slow degra-
dation rate is usually exceeded by continuous release rate
(OECD 2019). For such reason, PhACs are being frequently
reported in freshwaters and groundwaters all over the world
in concentrations ranging from ng/L to pg/L (Tran et al.
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2018; Bielen et al. 2017; Corcoran et al. 2010), and even
mg/L (Larsson 2014). Although the occurrence of PhACs
and their concentrations in aquatic ecosystems depend on
the socioeconomic composition of the population, they are
strongly seasonally dependent and linked with increased
consumption during seasonal influenza and allergies, but
also farming practices (Vieno et al. 2005). Over the past
two decades, ecotoxicity studies have revealed a strong posi-
tive correlation between the most commonly used classes of
PhACs and their occurrence in the environment (Kiister and
Adler 2014; Corcoran et al. 2010). Regarding human medici-
nal products, antibiotics, hormones, analgesics, antidepres-
sants, and antineoplastics are the most frequently used/
found in the aquatic environment, while among veterinary
products, those are hormones, antibiotics, and parasiticides
(Corcoran et al. 2010). Although the majority of published
prioritization approaches already indicated high environ-
mental relevance of these compounds, in aquatic environ-
ments they occur as a mixture of various compounds whose
combined toxicity does not necessarily correspond to one
of the individual substances due to synergistic, antagonistic,
and/or additive interactions (do Amaral et al. 2019; Corcoran
et al. 2010).

Although PhACs uptake into fish may vary, i.e., through
the gills, dermal absorption from the surrounding water, and
dietary intake of food, tissue-specific accumulation can be
observed. PhACs are generally nonpolar and lipophilic, so
their accumulation mainly occurs in the organs with a high
lipid content, i.e., liver, brain, and muscle (Schnell et al.
2009). The liver is the major target and storage of PhACs
from distinct therapeutic groups, hence numerous studies
reported higher BCFs of such compounds in the liver than
in the remaining organs/tissues (Gomez et al. 2010). Sup-
porting this assumption, many authors reported the accu-
mulation of anti-depressants and their metabolites in the
liver of the fish inhabiting effluent-dominated streams/riv-
ers in concentrations ranging from 9.1 ng/g of tissue (for
norfluoxetine, the primary active metabolite of the antide-
pressant fluoxetine), 12.94 ng/g (for desmethylsertraline, an
active metabolite of the antidepressant sertraline), 80 ng/g
(for fluoxetine), up to 545 ng/g (for sertraline) (Ondarza
et al. 2019; Ramirez et al. 2009; Brooks et al. 2005). An
extensive study by Huerta et al. (2013) focused on evaluat-
ing twenty PhACs from seven commonly used therapeutic
families and their metabolites in the liver and muscle of
eleven fish species from four heavily impacted Mediterra-
nean rivers. The authors claimed the highest levels in trout
liver, with a maximum concentration of 18 ng/g for non-
steroidal drug carbamazepine, whereas the most ubiquitous
and recurring compound was analgesics/anti-inflammatory
drug diclofenac. Antibiotics, one of the most concerning
PhACs, are not an exception. Recently, Baesu et al. (2021)
detected lincomycin, sulfamethoxazole, and azithromycin

@ Springer

in fish livers at an average concentration of 30.3, 25.6, and
27.8 ng/g fw, respectively.

Although several analytical methods for the determina-
tion of PhAC:s in biological matrices have been developed in
the last decade, there is still a need for improvement toward
the higher sensitivity of used instruments and accuracy of
analytical methods, particularly for liver samples that are
loaded with lipids and proteins that may interfere with analy-
sis (Tanoue et al. 2014). The importance of such studies
does not reflect only in the determination of bioaccumulated
PhAC:s in the fish tissue, but indirectly enables an effective
screening of emerging contaminants in aqueous ecosys-
tems and determination of wastewater treatment efficiency,
which could ultimately result in establishing thresholds of
regulation. Erythromycin, a common over-the-counter anti-
biotic, was due to its ubiquity in the aquatic organisms (up
to 5.6 pg/kg in the fish liver; Ondarza et al. 2019) included
in the Drinking Water Contaminant Candidate List (CCL3,
US-EPA) and was identified as a “priority monitoring sub-
stance” by the European Union (Barbosa et al. 2016).

Receptors and signaling pathways are relatively con-
served across vertebrate phyla, so it can be concluded that
some PhACs purposely designed to induce an effect on
humans or livestock to have a high probability to produce
a similar or same physiological response in fish (Burkina
et al. 2015; Corcoran et al. 2010). Moreover, hepatocytes
among vertebrates are responsible for the majority of identi-
cal functions, i.e., metabolism of a plethora of endogenous
and exogenous compounds, synthesis of blood protein and
clotting factors, secretion of bile, storage of glycogen, ami-
noacids, fat, and iron (Field et al. 2003). Hence, by paral-
leling PhACs mode of action among fish and humans, this
review article further supports the undoubtful value of the
pinpointed topic. Moreover, such an approach can be utilized
to better interpret the mode of action of a single PhAC and
its mixtures.

Due to the growing regulatory restrictions of conduct-
ing in vivo studies on vertebrates, the impact of PhAC is
frequently assessed in vitro using fish liver cell lines, such
as RTL-W1, PLHC-1. Thibaut et al. (2006) investigated
the interactions of fibrate, anti-inflammatory, and anti-
depressive drugs with CYP catalyzed pathways (CYP1A,
CYP3A-, CYP2K-, and CYP2M-like) and Phase II activi-
ties (UDP-glucuronosyltransferases and sulfotransferases)
involved in both xenobiotic and endogenous metabolism
in fish. Gemfibrozil, diclofenac, and three anti-depressive
drugs (fluoxetine, fluvoxamine, paroxetine) had the high-
est potential to interfere with fish metabolic systems. A few
years later, Schnell et al. (2009) reported toxicity of eleven
pharmaceuticals from different therapeutic classes (anti-
inflammatory drugs, serotonin re-uptake inhibitors, and lipid
regulators) individually and as a mixture on the rainbow
trout liver cell line RTL-W1. In accordance with Thibaut
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et al. (2006), anti-depressives (fluoxetine and paroxetine,
7-50 uM) showed the highest potential to induce toxicity
in RTL-W1 cells. Within a study, the combined toxicity of
tested mixtures was multiplied, mostly following the con-
centration addition concept (Schnell et al. 2009). Additional
PhACs group of particular concern are antifungals, such as
clotrimazole, ketoconazole, miconazole. It is well-estab-
lished that compounds containing an imidazole ring system
frequently interact with cytochrome P450 enzymes to inhibit
drug oxidation. Burkina et al. (2015) emphasized the abil-
ity of mentioned antifungal agents to affect the endocrine
system, induce a cascade of molecular and cellular events,
via stimulation/inhibition of CYP450.

Although in vitro cytotoxicity assays with fish cell lines
have multiple advantages, due to insufficient and heterog-
enous data a correlation between the results obtained with
such in vitro studies and in vivo toxicity of pharmaceuti-
cals still needs to be assessed and validated. For this reason,
recent studies shift focus from in vitro studies on cell lines
to PhACs exposure-directed studies that link to specific bio-
logical effects. With the conducted toxico-pathological and
stereological study, Madureira et al. (2012) gave a compre-
hensive overview of the effects caused by non-steroidal phar-
maceutical compounds in the zebrafish Danio rerio liver.
The mixture of environmentally relevant concentrations
of non-steroidal pharmaceuticals (carbamazepine, fenofi-
brate, propranolol hydrochloride, sulfamethoxazole, and
trimethoprim) shown qualitative and quantitative changes
in the selected liver cytohistological parameters. The vol-
ume-weighted nuclear volume of zebrafish hepatocytes
increased upon exposure, which together with the greater
cytoplasmic eosinophilia and changes in cytochrome P450
1A immunoreactivity, pointed to an increase in metabolic/
detoxification activity. Tested compounds interfered also
with the liver mass and normal liver histology, induced liver
VTG expression, and altered CYP1A expression, even at low
environmental levels (Madureira et al. 2012). Recently, Rojo
et al. (2021) reported the ability of carbamazepine, atenolol,
enalapril, and sildenafil present in waters influenced by the
sewage discharge to increase the EROD, BROD, and GST
activity in fish Pimelodus maculatus. The authors showed
a positive correlation between the distribution of PhACs in
a water body and the higher activity of hepatic enzymes.

While numerous studies employ some variant of com-
parative methodology, generally they are difficult to compare
due to different PhACs class-tested, differences in sensitivity
of the test organism, exposure times, concentrations, and
also selected endpoints. As a result, currently, it is difficult
to elaborate a more detailed and focused discussion toward
a mode of action of a single PhACs and their mixture and
to prioritize PhACs likely to pose a negative impact on fish
liver biotransformation and antioxidant enzymes, as well as
non-enzymatic antioxidants. For this reason, further studies

on establishing state-of-the-art standardized methods of
measurement that may result in a long-term recommenda-
tion regarding the presence of PhACs in the environment are
encouraged. Moreover, further investigation of the complex
interactions between receptors, transcription factors, and
other proteins in the regulation of expression and activity of
fish CYP 450 isoforms is needed.

Personal care products

Personal care products (PCPs) are an extraordinarily diverse
group of chemicals that comprises compounds used in cosmet-
ics, skin and hair products, sunscreens, toothpaste, soaps, etc.
The primary classes of PCPs include disinfectants, fragrances,
UV filters, insect repellants, preservatives (Pemberthy et al.
2020; Hopkins and Blaney 2016). Contrary to PhACs, PCPs are
intended for external use on the human body, thereby bypass-
ing metabolic alterations (Brausch and Rand 2011). Therefore,
large quantities of unaltered PCPs are introduced into the envi-
ronment either directly via wash-off from the skin, or indirectly
through (un)treated effluents (Pemberthy et al. 2020). Just as
PhACs, conventional WWTPs are not able to completely
remove PCPs, which has led to their detection in wastewaters
and effluent receiving systems at concentrations from ng/L to
pg/L (Roberts et al. 2016; Buchberger 2011). Despite its short
environmental half-life, continuous loading of these pollut-
ants into aquatic environments, even at low parts-per-trillion/
parts-per-billion concentrations, causes its pseudo-persistence
(Mottaleb et al. 2015; Ramirez et al. 2009). Thus, the expo-
nential introduction of new PCPs to the marketplace ultimately
results in perpetual life-cycle exposures of aquatic organisms.
Accompanied by a currently unknown toxicological mechanism
of action, the negative impact of PCPs can undergo undetected
until cumulative effects finally result in an irreversible change
in non-target aquatic organisms (Schnell et al. 2009).

The use of antimicrobials in PCPs has increased over the
last decade, reaching its maximum production/use during the
coronavirus disease 2019 (COVID-19) pandemic. Accord-
ingly, the concentration of antimicrobials in the aquatic envi-
ronment has nowadays become an emerging global concern
(Chen et al. 2021). Triclosan is ranked among the ten most
commonly detected PCPs in all environmental compart-
ments. This is not surprising since it is also one of the most
commonly used antimicrobials worldwide implemented in
soaps, toothpaste, deodorants, and hand sanitizers (Over-
turf et al. 2015). Its concentration in aquatic environments
ranges from 0.01 ng/L up to 27 pg/L (Overturf et al. 2015;
James et al. 2012). Triclosan, like most antimicrobials, is
lipophilic and has demonstrated the ability to bioaccumu-
late through the food chain. This was supported by Mottaleb
et al. (2009) that reported the presence of triclosan (up to
31 ng/g) in tissues of fish sampled from the effluent-domi-
nated stream in Texas. Due to the lipophilic and non-ionic
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properties of triclosan, systemic absorption and retention are
influenced by biotransformation in fish liver and intestine.
Triclosan has a phenolic hydroxyl group which is likely to be
a substrate for glucuronidation and sulfonation (James et al.
2012). A concerning effect of triclosan on zebrafish was
recently shown by Gyimabh et al. (2020). Authors reported
that sublethal concentrations of triclosan upon subchronic
exposure significantly decreased SOD, CAT, GPx, GSH, and
GSSH in the liver of adult zebrafish, and simultaneously
caused dose-dependent DNA damage in hepatocytes. Fol-
lowing triclosan exposure, Hemalatha et al. (2019) noticed
significantly enhanced glutamic oxaloacetic transaminases
(GOT), glutamic pyruvic transaminases (GPT), and GST
activity in the liver of Indian major carp Catla catla in a
dose- and time-dependent manner. Except for triclosan, there
are other antimicrobials often found in PCPs (triclocarban,
biphenylol, chlorophene, bromophene, etc.; Overturf et al.
2015), despite currently scarce ecotoxicological data.
Fragrances are one of the most widely studied classes of
PCPs used to scent various products including deodorants,
soaps, detergents, lotions, and perfumed household clean-
ers (Brausch and Rand 2011). The most commonly used
fragrances are synthetic musks, here sorted by frequency
of usage—polycyclic (celestolide, galaxolide, toxalide),
nitro (musk xylene, musk ketone), and macrocyclic musks
(Brausch and Rand 2011). After the application, a major part
of the musk compounds is carried by municipal wastewaters,
so their high concentration in untreated wastewaters is not a
surprise. Due to the worldwide production and usage, they
are ubiquitously distributed reaching up to 410 ng/L (for
nitro musks) and 10 pg/L (for polycyclic musks) in effluent-
dominated water bodies (Brausch and Rand 2011). The high
log Kow values (4.0-4.4 for nitro musks and 5.4-5.9 for
polycyclic musks) indicate their potential to bioaccumulate
in aquatic species, for example up to 10,000 pg/kg fat in
freshwater fish (Hopkins and Blaney 2016; Yamauchi et al.
2008). Following the exposure of medaka Oryzias latipes to
synthetic polycyclic musks, expression analysis of hepatic
VTG protein showed potential estrogenic effects indicative
of the induction of VTG synthesis. Furthermore, tonaline
and galaxolide induced the expression levels of hepatic ERa
and VTG mRNA/protein and modulated expression levels of
CYP3A40 mRNA in the livers of male medaka (Yamauchi
et al. 2008). Fish consumption could lead to ingestion of
musk substances in humans, causing currently unknown
consequences. Even though acute oral and dermal toxicity
for humans is low, results obtained with laboratory organ-
isms showed concerning negative impacts, including some
hints for the carcinogenic potential (Mottaleb et al. 2012).
Growing awareness of the harmfulness of UV radiation
led to the implementation of chemical UV filters in a wide
range of PCPs, including sunscreens, creams, lotions, and
other cosmetic products. Due to the type of application,
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these compounds enter surface waters directly via wash-
ing-off from the skin during recreational activities, or
indirectly via wastewater effluents (Overturf et al. 2015;
Brausch and Rand 2011). Their occurrence in aquatic
environments is ubiquitous, with the highest concentra-
tions found during the summer months (up to 2.7 pg/L).
At present, there are 27 UV filters allowed in cosmetics in
the European Union, including the most commonly used
benzophenones, p-aminobenzoic acid and derivatives,
salicylates, and cinnamates (Buchberger 2011). A com-
prehensive study by O’Malley et al. (2020) reported the
presence of UV filters in wastewater effluent samples from
33 WWTPs across Australia. Of the analyzed effluent sam-
ples, 95% contained at least one of the target compounds,
with the summed concentrations of UV filters ranging
from 130 to 8400 ng/L. Based on the removal efficiencies
data, the authors estimated that approximately 40% of the
total UV filter influent load remains in the effluent, result-
ing in a total of 20 kg per day of UV filters released into
the aquatic environment (mainly 2-phenylbenzimidazole-
Ssulfonic acid (PBSA) and benzophenone 4 (BP4)). It has
been documented that UV filters accumulate in the food
chain, therefore posing a potential risk to the reproduction
of fish species (Overturf et al. 2015). UV filters such as
PBSA, BP4, and 4-aminobenzoic acid (PABA) increased
the activity of certain P450 cytochromes and induce severe
oxidative stress in the liver of Oncorhynchus mykiss and
Danio rerio (Huang et al. 2020; Grabicova et al. 2013).

Although PCPs are positioned on the list of most com-
monly detected compounds in surface water throughout
the world, compared to PhACs, environmental concentra-
tions and toxicity of PCPs have been largely overlooked.
One of the most concerning facts is the PCPs’ potential
to bioaccumulate and consequently biomagnify at higher
trophic levels. Further, most of the studies have focused
on testing the toxicity of a single compound, even though
PCPs are present in the aquatic environments in very com-
plex mixtures which can produce synergistic or antago-
nistic effects.

Even though PCPs are being continuously released into
the aquatic environments, most studies conducted to date
focused on acute and sub-acute toxicity determination.
Although valuable, only chronic mixture studies accom-
panied with multigenerational approaches could accurately
identify the potential risk of PCPs. Undoubtedly, biomoni-
toring of PCPs in environmental compartments and further
research focused on toxicity and mode of action are of
considerable interest to the scientific community.

Heavy metals

Discharge of industrial, municipal, and agricultural waste-
waters and sewage into the aquatic and marine environment
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is nowadays strictly regulated in order to decrease the lev-
els of pollutants such as heavy metals in discharge effluents
(Frémion et al. 2016; Karvelas et al. 2003). WWTPs can
remove high amounts of heavy metals using different treat-
ment processes, including physicochemical methods, chemi-
cal precipitation, coagulation, flocculation, electrochemi-
cal treatments, etc. (Gunatilake 2015; Agoro et al. 2020).
Although some heavy metals are essential for fish growth,
such as copper (Cu), nickel (Ni), iron (Fe), and zinc (Zn),
they can be toxic if their concentration exceeds an optimal
limit. Contrarily, nonessential metals with no biological role
such as lead (Pb), mercury (Hg), and cadmium (Cd) are toxic
even at low concentrations while the most toxic environmen-
tally relevant heavy metals and metalloids include chromium
(Cr), arsenic (As), and manganese (Mn) (Ali et al. 2019;
Barakat 2011). Additionally, the emerging problem of plastic
in the environment also contributes to the accumulation of
toxic metals that latch onto plastic surfaces and enter the
marine environment and food chains (Rochman et al. 2014).

Trace metals are chemically highly reactive so their tox-
icity in fish is due to the catalytic activities of metalloen-
zymes (Fig. 2). The toxicity of metals may also be indirect,
by binding to other cellular components, which is particularly
important for metal ions that show similar chemical behavior,
such as Ag*, Cut, Hg*, Cd**, and Zn>* ions (Rainbow 1990).
Biota can accumulate various chemicals, and that uptake has
been extensively used to measure the effects of metals on
aquatic organisms as an essential indicator of water quality
(EI-Moselhy et al. 2014). The mollusks (Gupta and Singh
2011) and fish (Stankovic et al. 2014; Hauser-Davis et al.
2012a) are the most used organisms as bioindicators of metal
pollution in water.

Metal bioavailability controls their accumulation in
aquatic organisms (Gheorghe et al. 2017). External environ-
mental factors like metal speciation, the presence of organic
or inorganic complexes, and physicochemical properties of
water (pH, temperature, salinity, and redox conditions) (Bon-
nail et al. 2016) are the main factors that could modulate
metal toxicity. The ingestion uptake depends on the rate of

Fig.2 Representation of
essential and pollutant metals’
effects on cellular metabolism
with controlled intracellular
concentrations of essential
trace metals by homeostatic
mechanisms, and exceeded
concentrations when metal
becomes toxic. Inducible toler-
ance (detoxification systems)
raises the inhibitory thresholds,
but when exceeded, permanent
damage occurs

BENEFICIAL

Induced tolerance

feeding, intestinal transit time, and digestion efficiency (Jia
etal. 2017) as well as on the age and size (weight and length),
feeding habits, and body physiology of fish (Gheorghe et al.
2017). The degree of accumulation of heavy metals in vari-
ous tissues of fish is generally different depending on the
structure and function of tissues. Gills, liver, and kidney are
metabolically active tissues with a higher affinity to accumu-
late heavy metals than other tissues (Ali et al. 2019). This is
mostly explained by the induction or occurrence of metal-
binding proteins called metallothioneins (MTs) or some
other transporters which translocate metals across the plasma
membrane in these tissues upon exposure to heavy metals
(Ali et al. 2019; Hauser-Davis et al. 2012b).

Liver has a major role in the metabolism of lactate to
pyruvate and can store up to one-eighth of the total glycogen
stores. Glycogen content in the fish liver is a potent indicator
for changes in the activity of functional systems affected by
heavy metals (Javed and Usmani 2015). Another indicator in
hepatocytes is related to the increase in the number and size
of lysosomes to store pollutants and lipids, increased perme-
ability of the lysosomal membrane, and release of lysosomes
into the cytoplasm and nucleoplasm (Kohler 1991). Heavy
metals enter the fish gall bladder, to be excreted from the
organism (Ardeshir et al. 2017). Fish bile might thus also
serve as a target tissue for heavy metal exposure (Hauser-
Davis et al. 2012a) due to its role in the excretion of many
endogenous and exogenous substances (Grosell et al. 2000).

Fish liver damage due to heavy metal exposure has
been reported in various geographical sites (Kuton et al.
2021; Rubalingeswari et al. 2021; Weber et al. 2020;
Kumar Maurya et al. 2019; Luczyniskaa et al. 2018; Uysal
2011) indicating the importance of their monitoring and
evaluation. Kumar Maurya et al. (2019) revealed that
heavy metal accumulation in fish tissues is in the mag-
nitude order of liver > gill > muscle pointing out Ni, Cr,
Pb, Cu, Cd, Zn, and Fe as dominant metals influencing
toxicity in fish tissues (Rubalingeswari et al. 2021). How-
ever, the bioaccumulation magnitude is a species-specific
function (Spry and Wiener 1991) so the determination

Histopathological changes
(karyorrhexis, hepatic cell
degeneration, congestion,
hemorrhages, cytoplasmic
vacuolization and necrosis)

Positive antibody reactions for cytochrome
CYP1A and metallothionein
Elevated levels of liver enzymes (AST, ALT)

Lipid peroxidation
Antioxidant enzymes (SOD, CAT, GSH)
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of bio-concentration factors (BCFs) (Orata and Birgen
2016) of heavy metals in fish liver, which are the ratio
of the heavy metals in liver to the surrounding water, are
needed and often used to evaluate results within different
studies. In addition, it was observed that accumulation of
heavy metals in liver varies with the season from minimum
in winter to the maximum in summer with histological
changes such as cytoplasmic vacuolation, necrosis, and
sinusoid dilation (Mahboob et al. 2020). Partitioning
of the heavy metals was explained with Cd, which was
largely bound to heat-stable proteins including MTs and
metal-rich granules in two fish species. These elements
followed the Cd partitioning pattern, suggesting that they
are involved in antioxidant responses against Cd toxicity
(Gaél et al. 2019). Most recently, it was revealed that fish
exposed to heavy metals show tissue degenerations and
alterations become prominent as the duration of exposure
increases (Naz et al. 2021). This includes hematological
and histopathological changes under different concentra-
tions of Cu and Cd. Various impairments were observed by
histopathological examination of liver tissues like karyor-
rhexis, hepatic cell degeneration, congestion, and hemor-
rhages. Weber et al. (2020) pointed out that non-treated
wastewater from the mining industry with a high load of
Pb, Ni, and As is responsible for numerous impairments
in fish. Hepatic alterations, such as cytoplasmic vacuoliza-
tion and necrosis with the positive antibody reactions for
cytochrome P450 1A (CYP1A) and MT, are associated
with metal contamination. Thus, species more sensitive
to environmental modifications may not resist this highly
contaminated aquatic environment. Metal concentrations
in fish tissues have also shown a species-specific bioac-
cumulation pattern, with diverse histopathological altera-
tions (Omar et al. 2013). As mentioned, upon exposure to
heavy metals, liver metabolism generates ROS, so antioxi-
dant changes in liver are frequently used as a biomarker
of metal exposure. A recent study evaluated levels of liver
enzymes AST and ALT, with the focus on the antioxidant
status of liver (El-Shenawy et al. 2021). They determined
the TBARS levels as a direct response to lipid peroxida-
tion, in addition to antioxidant enzymes including SOD,
CAT, and GSH and concluded that the elevation of lipid
peroxidation in fish is connected to the increased activity
of endogenous antioxidants. Another study (Hossain et al.
2021) examined the changes in antioxidant enzymes as
well as histopathological damage in liver tissue after expo-
sure to heavy metals. Enzymes SOD, CAT, GPx, GST,
reduced glutathione, and MDA levels were significantly
increased. Severe hemorrhage, vacuoles, pyknotic space,
and evidence of lipid accumulation were also observed.
All provided studies have one main target—evaluation
of heavy metal accumulation and its impact on fish tissues
by implementing different analysis approaches. For liver
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damage evaluation, histopathological observation of tissue is
the most frequently used one, but since metals cause oxida-
tive stress, measurement of antioxidant enzymes gives valu-
able insight into acute and chronic toxicity. Such findings
need to be continuously introduced to the wider public, i.e.,
endpoint consumers, to acknowledge existing and further
problems regarding the constant heavy metal discharge into
the environment.

Conclusions and future directions

This review provided a comprehensive assessment of the
impact of WWTP effluents on fish liver damage. Continuous
release of (un)processed wastewaters with residual xenobi-
otics has greatly impacted the environment. The fish liver
represents one of the most used models to establish a link
between the concentration of pollutants and their bioac-
cumulation and detoxification within the organism. In this
review, a variety of sensitive fish liver biomarkers as suit-
able indices for health conditions was discussed referring to
the cellular, biochemical-physiological, and histopatological
levels. Detailed observation of these changes has been made
with a specific accent on legacy contaminants and emerg-
ing-concern contaminants such as pharmaceutically active
compounds, personal care products, and heavy metals. Our
results show that it is a challenge to identify a suitable fish
liver biomarker for assessing WWTP impacts. Furthermore,
suitable fish species need to be selected for such investiga-
tions, both for field studies and laboratory exposure stud-
ies. In that fashion, their applicability and specificity can be
assessed and standardized for targeted determination of the
impact of WWTP effluents on fish liver.

Furthermore, engineered nanoparticles occurring in
wastewater discharges raise concerns in toxicological assess-
ments. In particular, metal and metal oxide NPs can trans-
locate among organs and penetrate the blood-brain barrier,
accumulating in fish liver. Most studies on such NPs were
focused on acute toxicity. Therefore, more chronic toxicity
studies are required, particularly co-exposure studies. Addi-
tionally, systematic understanding of the transport, distribu-
tion and toxicological mechanisms of complex pollutants
in fish livers are still not sufficient. The research on toxic
effects of such NPs still principally focuses on pathologi-
cal effects such as body distribution, cell damage and organ
damage (Bai and Tang 2020).

Although a significant decrease in the concentration of
several persistent contaminants like Hg, PCBs, etc. can be
noticed in the last few decades, many other classes of con-
taminants that are currently being poorly studied are becom-
ing ubiquitous (new pharmaceuticals, personal care prod-
ucts, etc.). For such reasons, current bioaccumulation data
do not represent the actual impact of WWTPs on the aquatic
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ecosystem and consequent impact on non-target organisms.
All this indicates that continuous monitoring is essential,
while further research and improvement of treatment plants
can provide less contaminated discharge effluent with legally
controlled release or further treated disposal of effluent
sludge. Further research is required to confirm bioaccumu-
lation factor of emerging contaminants in aquatic organ-
isms and to reveal mechanisms of their toxicity. More focus
should be also put on determining their potential interaction
in water bodies which could enhance their hepatotoxicity.
Knowledge gaps, as well as research priorities, emphasized
in this review article may help to steer and prioritize future
research in this important field.
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