
Benchmark DPC++ code and performance
portability on heterogeneous architectures

Nenad Mijić∗, Davor Davidović∗
∗ Centre for Informatics and Computing, Rud̄er Bošković Institute, Zagreb, Croatia

{nenad.mijic, davor.davidovic}@irb.hr

Abstract—Source code portability is becoming increasingly
important in the development of new solutions in HPC due
to the wide diversification of hardware and heterogeneity
of systems. With Intel’s oneAPI suite of programming tools
and the Data Parallel C++ compiler, a single source code
containing both host and device code can leverage hardware
architectures from different vendors. Using the compiler’s
interoperability, it can be linked to existing libraries such as
MPI to run the program on a distributed memory system.

In this paper we benchmark and analyze the performance
that can be achieved with the Intel DPC++ compiler, using
the distributed Cholesky QR2 algorithm as an example and
comparing it with the native CUDA and C++ implementation.
The analysis shows that the performance degradation when
using SYCL is negligible when a smaller number of nodes
are used, but with the cost that some additional self-made
optimizations are required in SYCL code.

Keywords—code portability, DPC++, GPU, MPI, HPC,
Choleksy QR2

I. INTRODUCTION

HPC is currently based on extremely heterogeneous
systems, and there is no reason to believe that this situation
will change in the near future. The most powerful systems
in the TOP500 [1] supercomputers are dominated by such
systems, and it is enough to look at the list to see the
diversity of combinations of CPUs and accelerators. Intel,
AMD and Arm dominate in the field of central processing
units, while NVIDIA had a leading role for a decade in
the domain of GPU accelerators, and more recently AMD
has stepped forward by shipping systems with its GPU
graphic processors. AMD has taken the first step forward
by delivering the first exascale systems. In addition, thanks
to the rise of artificial intelligence, specialised accelerators
for AI are being developed and appearing on the scene.
For developers and researchers, writing portable code that
can run on a number of these architectures and maintain
performance is a real challenge.

The diversity of hardware brings along a variety of
programming models that achieve high performance using
different approaches. Low-level programming models for
heterogeneous systems are often completely vendor locked
and therefore do not provide portability. The low-level
architectural details are exposed directly by the program-
ming language that can exploit them explicitly, often
resulting in higher performance. For example, CUDA is
exclusive to NVIDIA GPUs while ROCm is exclusive to
AMD GPUs. The HIP programming model [2], provided
by AMD, is an abstraction layer for CUDA and ROCm,

targeting both GPU vendors. Opposite from previously
described low-level programming models, OpenCL stands
out as a portable solution but relies on the vendor to
provide and maintain the backend for runtime execution.

The models based on directives provide direct porta-
bility by using high-level pragma directives to instruct the
compiler to use different architectural implementations for
exposing parallelism and provide solutions for offloading
computation to the accelerator. They also handle memory
management and data transfer between the host and ac-
celerator. Notable examples include OpenMP, which was
originally developed for multicore architectures but now
supports offloading to the accelerator, and OpenACC [3].
All hardware vendors provide libraries and codes tuned
for their respective hardware.

High-level programming models are often abstraction
layers that enable the development of cross-platform porta-
bility, preferably from a single source code. They are
intended as C++ portable APIs mapped to the specific
backend for providing portability and features are of-
ten overlapped among these models. Such models take
advantage of different libraries, directive programming
approaches, and other languages to enable portability
and leverage hardware specifics providing abstractions for
parallel execution and data structures. The best known
examples are Kokkos [4], [5], Raja [6], and SYCL [7]
targeting shared memory systems. Kokkos and Raja in-
clude OpenMP, CUDA, Hip and SYCL backends. Celer-
ity [8] extends SYCL with MPI to distributed memory
systems and implements a task-based runtime system for
distributed memory. Celerity creates task-based graphs and
designates a master node to execute the schedule graph for
the entire cluster and oversees how data and compute load
is distributed.

This paper presents the code and performance porta-
bility of oneAPI solutions with respect to direct native
implementation on distributed HPC systems. MPI is used
for parallelization on a distributed memory system. The
original contributions of this research are as follows:

• achieved single source code portability across dif-
ferent hardware architectures (CPUs and GPUs from
different vendors),

• achieved performance portability for simple linear
algebra algorithms,

• implements inter-node communication library for dis-
tributed memory systems,

• code benchmarked and analyzed on different architec-
tures: AMD CPUs, Intel CPUs and NVIDIA GPU,

• detected several performance issues in Intel DPC++
compiler and libraries, and workarounds on how to
resolve them were proposed.

The paper is divided into the following logical order.
Section II presents related benchmarks for linear algebra
algorithms implemented using the SYCL programming
model. The distributed CholeslyQR2 algorithm used for
benchmarking is briefly described in Section III with an
overview of its implementation. Numerical results and
achieved performance portability are presented in section
IV, and the paper concludes with comments and an
outlook on future work in section V.

II. SYCL AND RELATED WORK

SYCL is an open standard published by the Khronos
group [7] to provide a unified programming model for
all heterogeneous architectures. The model is based on
modern C++ with a single-source code approach that
includes both host and device parts. Parallel part of code
is scheduled and executed with kernels object written
with lambda functions, offering several choices for parallel
construction. During compilation, kernels intended to run
on accelerators are extracted from code, compiled with a
compiler suitable for that architecture and embedded in
a single executable. It was developed with the intention
of providing a plugin interface for various programming
models. It is assumed that in the future the plugin in-
terface will allow easy integration and support of new
programming models that have not yet been announced
and thus provide long-term HPC support. The SYCL
runtime manages task scheduling, task dependencies and
synchronisation by creating task graphs through knowl-
edge of memory access while also being responsible for
memory and data management.

The interoperability of SYCL with built-in host_task
kernels allows the use of a common, unifying interface
for accessing non-SYCL libraries. Sycl has been imple-
mented by the following entities among others: Codeplay’s
ComputeCpp, hipSYCL [9] and Intel’s Data Parallel C++
(DPC++) [10]. ComputeCpp supports any OpenCL plat-
form that accepts SPIR/SPIR-V, and additionally NVIDIA
by using the PTX backend from LLVM. hipSYCL is
an open-source implementation led by the University
of Heidelberg based on existing compiler toolchains for
heterogeneous computing with Clang plugin via HIP or
CUDA toolchain for GPUs, Intel Level Zero for Intels
GPUs and OpenMP for CPUs. DPC++ is an open-source
implementation based on the LLVM compiler that adopts
the SYCL 2020 standard. Codeplay contributed to the Intel
project by providing an interface to CUDA that allows
direct programming for the NVIDIA GPUs. Lately, a beta
version interface for AMD GPU has been announced.

The SYCL standard provides 2 containers for control-
ling data during code execution. A buffer is a memory ob-
ject responsible for allocating or controlling the allocated

memory on the host or device and implicitly takes care of
transferring the memory between the devices and the host
during the computation. Unified Shared Memory (USM)
provides explicit control of memory allocation and transfer
with traditional pointers. USM distinguishes two memory
containers, one for the device and one for the host. Buffers
provide modern C++ style memory management, while
USM provides C style with fine-grained controls that
give developers precise control over memory management,
which can lead to better-optimized memory transfers.

Code portability has been tested in recent years due
to various occurring computing architectures, especially
in the area of high-performance computing. Most pro-
gramming models that guarantee portability work well
on different platforms, but often show unsatisfactory per-
formance portability. Extensive testings of various pro-
gramming models conducted in ([11]) showed at least
good code portability but have performance problems with
Kokkos and OpenMP models.

First benchmark suite [12] written in SYCL has 71 tests.
To test all the capabilities of SYCL, the authors divided
the benchmark into microbenchmarks, runtime tests, and
application tests with ComputeCPP and hipSYCL. The
microbenchmarks tested the performance of code on GPU
devices targeting arithmetic or the memory subsystem.
Application tested were mainly linear algebra algorithms
gemm, syrk, syr2k, Gram-Schmidt QR, and axpy. For
testing the runtime performance the benchmark includes
tests that explicitly create complex inter-task dependen-
cies. They showed close to the peak performance of
microbenchmarks and divergent results for other tests with
different toolchains. The paper [13] extended the work
of SYCL-bench to 4 toolchain implementations showing
the difference in performance between them but indicat-
ing somewhat problems within runtime systems targeting
devices with non-optimal configuration.

In [14], the authors studied the performance of kernels
from the RAJA performance suite written in the SYCL
standard using the hipSYCL toolchain. The authors ob-
served the competitive performance of their implementa-
tion against the native CUDA implementation.

To test the performance portability on distributed sys-
tems, the authors of Celerity tested the runtime system
with a synthetic benchmark to evaluate performance porta-
bility. They observed negligible or slightly worse perfor-
mance compared to the SYCL+MPI implementation.

III. BENCHMARK ALGORITHM

One of the fundamental problems of linear algebra is the
QR factorization, which decomposes the matrix A with
linearly independent columns into an orthogonal matrix
Q ∈ Rm×n and an upper triangular matrix R ∈ Rn×n.
The importance of QR factorization is that most algorithms
are based on it, such as solvers for linear systems, least
squares solvers, eigenvalue and singular value solvers.

Numerically, the most stable algorithm for computing
QR factorization is the Householder algorithm, which or-

thogonalizes the matrix column-wise by applying a series
of Householder reflectors. Since the algorithm is mostly
vector-oriented, the majority of computational time is
spent on memory-bound BLAS2 operations (matrix-vector
operations) which cannot take advantage of available hard-
ware capabilities such as complex memory hierarchies. For
tall and skinny matrices, that have significantly more rows
than columns (m ≫ n), this algorithm becomes even more
challenging to achieve high performance.

The solution is the CholeskyQR [15] algorithm that
avoids the described problems when computing the QR
factorization of tall and skinny matrices and is based
on Cholesky factorization. For input matrix A, the
CholeskyQR algorithm first computes the Gram matrix
G = ATA ∈ Rn×n which is a positive definite matrix. The
triangular factor R (from QR decomposition) is obtained
as an upper triangular factor of the Cholesky factorization
of the matrix G. An orthogonal matrix Q is constructed
by solving the linear systems Q = AR−1. However, the
CholeskyQR algorithm is numerically unstable, especially
for ill-conditioned matrices. By repeating the CholeskyQR
twice, the orthogonality of Q can be significantly im-
proved, and the new algorithm is called CholeskyQR2.
Numerical stability is parameterized with condition num-
ber of input matrix κ(A) = σmax(A)/σmin(A) where
σ are the smallest and the largest singular values of
the matrix. The algorithm becomes numerically unstable
for condition number around 108, after which Cholesky
decomposition breaks down. The distributed algorithm
divides the matrix into block rows, distributes the blocks to
processes, and performs the computations independently
except for a single collective routine (Allgather) called
during the construction of the Gram matrix. This makes
the algorithm communication-avoiding and very easy to
parallelize on distributed systems. The total number of
operations is 4mn2 + n3 for non distributed version and
4mn2/P+n3 per process for the distributed version where
P is the total number of processes.

The CholeskyQR2 is implemented in both DPC++ and
CUDA C/C++ with algebra routines called from appropri-
ate external highly tuned libraries for specific computation
architectures. We chose DPC++ because of the widespread
use of Intel’s solutions, that currently allows code to
run on all architectures available to us. We emphasize
that hipSYCL also supports the same architectures, but
for simplicity, we have chosen DPC++. For the CUDA
version, the libraries used were cuBLAS and cuSOLVER,
and for DPC++, the routines are called from oneAPI open-
source MKL Interface library [16]. This library is an im-
plementation of oneMKL Data Parallel C++, following the
oneMKL specification, and is a part of Intel’s new oneAPI
framework. oneAPI consists of languages and libraries
for easy code portability between Intel’s hardware, with
the idea of providing uniform and consistent routine calls
(API). The oneMKL interface library follows the same
routine conventions and includes interfaces for multiple
backends that target underlying libraries, such as oneMKL,
cuBLAS, rocBLAS for BLAS functionality and oneMKL,

cuSOLVER, rocSOLVER for LAPACK functionality. List-
ing 1 shows Cholesky routine call from oneMKL interface
library.

Listing 1 Dpcpp Cholesky routine call.

namespace oneapi::mkl::lapack {
void potrf(sycl::queue &queue,

oneapi::mkl::uplo upper_lower,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &scratchpad,
std::int64_t scratchpad_size)

}

Message Passing Interface (MPI) is used for intra-node
and inter-node parallelization. By using CUDA-aware MPI
and passing pointers to CUDA memory, it is easy to
bypass multiple staging of GPU buffers through host
memory and back to the device, leaving only memory
communication between MPI ranks. In addition, NVIDIA
Collective Communication Library (NCCL) is included
in place of CUDA-aware MPI for collective routines, as
its primitives are optimized for collective communication
between distributed NVIDIA GPUs.

For GPU versions, in the native CUDA, cuBLAS and
cuSOLVER handles to cuBLAS and cuSOLVER context
are initialize before the algorithm calls. These handles are
responsible for resource allocation and used for dispatch-
ing the computation to selected device. In the oneMKL
interface library, the same handles are created on the first
calls that require them, without the possibility of explicit
creation, resulting in a huge timing overhead. Accordingly,
in SYCL codes, simple trivial functions are executed
before the algorithm functions to avoid this overhead.

Here we describe implementations of SYCL that use
NCCL primitives optimized for NVIDIA GPUs for collec-
tive communication. When NVIDIA NCCL communicator
is used instead of MPI, NCCL uses the primary CUDA
context. The same context is used for all other NCCL
function calls. CUDA context is an object used to manage
the CUDA graphics coprocessor, encapsulates resources
and computation calls that are executed on it. The context
is unique to each device, so a kernel from one CUDA
context cannot run concurrently with a kernel from an-
other CUDA context without context switching and large
overhead. The first SYCL call creates a new context for
later use during runtime. The possible overhead of context
switching results in performance degradation.

To ensure that both NCCL and SYCL use the
same context, the SYCL context is created with the
use_primary_context property to force SYCL to
use the same primary context as NCCL. In addition, we
created a runtime interface library for communication that
wraps MPI or NCCL calls depending on the desired back-
end. In this way, we reduced the multiple communications
functions to a single function call.

IV. RESULTS

In this section, the code and performance portability
of the Intel oneAPI (DPC++) and SYCL environments
were benchmarked and analyzed with the CholeskyQR2
algorithm. The idea was to test and analyze the Intel
implementation of the SYCL standard on different CPU
and GPU architectures and compare its performance with
native implementations of the same code using standard
C/C++ and CUDA compilers.

The benchmarks and analysis were performed on two
testbed computing systems. The first is a local machine
called Orthus located at the Rud̄er Bošković Institute,
equipped with 2x Intel Xeon Gold 6240R processors with
a total of 48 cores (hyperthreading is disabled) and four
NVIDIA A100 GPUs. The second is a GPU partition of
the VEGA supercomputer at the Institute of Information
Science (IZUM). Each Vega node consists of two 64-core
AMD 7H12 CPUs and four NVIDIA A100 GPUs. All
tests were performed in double- precision arithmetic.

DPC++ (and SYCL in general) can target different
backends at runtime by using the device selector class
to select a device, or by using the environment variable
SYCL_DEVICE _FILTER to restrict the choice of devices
available to selectors. In this way, it is easy to switch
between the CPU and the GPU versions from a single
SYCL executable compiled from a single source code.
In the rest of the paper, the different variants of the
CholeskyQR2 algorithm are named as follows (with the
executing device in the brackets):

• Native C++ - the code implementation in C++ with
the calls to MKL library (CPU),

• Native CUDA - the code implementation in CUDA
(GPU),

• SYCL buffer - SYCL (DPC++) code using buffer
memory objects (CPU or GPU),

• SYCL usm - SYCL (DPC++) code using usm mem-
ory objects (CPU or GPU).

The CUDA native implementation has been written
by calling the cuBLAS and cuSOLVER libraries directly.
The SYCL buffer and SYCL usm versions denote versions
implemented with the DPC++ compiler using the oneMKL
interface library. Either the MPI or the NCCL library is
used for communication.

The test matrix used in all benchmarks is a tall and
skinny matrix of size 300000 × 3000, sufficiently large
to simulate the data of a real problem, and a condition
number 105 which guarantees the numerical stability of the
algorithm without breakdown. The data (blocks of rows)
are distributed among MPI processes. Without losing
generality, the number of MPI ranks per node is set to 4
and one MPI rank is assigned to a single GPU, where the
total number of MPI ranks per node equal to the number
of devices per node.

To capture the possible overheads of the SYCL imple-
mentation, the entire SYCL function calls are included in
the timing. Since SYCL implicitly transfers memory the

TABLE I: Numerical accuracy of the CPU code on Vega.

#MPI Native C++ SYCL buffer SYCL usm

ort res ort res ort res

1 1.6e-14 2.5e-15 1.6e-14 2.5e-15 1.6e-14 2.5e-15
2 1.5e-14 2.5e-15 1.5e-14 2.5e-15 1.5e-14 2.5e-15
3 1.4e-14 2.5e-15 1.4e-14 2.5e-15 1.4e-14 2.5e-15
4 1.4e-14 2.5e-15 1.4e-14 2.5e-15 1.4e-14 2.5e-15

TABLE II: Numerical accuracy of the CPU code on
Orthus.

#MPI Native C++ SYCL buffer SYCL usm

ort res ort res ort res

1 9.1e-16 1.1e-15 9.1e-16 1.1e-15 7.4e-16 1.1e-15
2 7.9e-16 1.1e-15 7.9e-16 1.1e-15 7.9e-16 1.1e-15
3 3.8e-16 1.0e-15 3.8e-16 1.0e-15 3.8e-16 1.0e-15
4 3.3e-16 1.0e-15 3.3e-16 1.0e-15 3.2e-16 1.2e-15

first time a memory object is called, it is hard to avoid
timing functions that also contain memory transfers. To
allow a fair comparison of the codes, the corresponding
memory transfers in the native codes are also included in
the timings.

A. Code portability

The code portability is tested by verifying the numerical
accuracy of the calculated Q and R factors. The obtained
accuracy of the SYCL-based codes should not be worse
than that of their native counterparts. Orthogonality of
obtained orthogonal matrix Q is computed as ||QTQ −
I||F /

√
n and residuals as ||A−QR||F /||A||F .

Tables I II show the obtained orthogonality (ort) and
residual (res) of the computed QR factorization of the
test matrix on a single node. The tables show no decrease
in numerical accuracy between the native implementation
and the SYCL versions. The slight difference in accuracy
between the testbed systems is the result of the different
versions of SYCL and oneMKL (MKL) thath were used.
The slight differences between the numerical results of the
two testbed systems are due to the MKL libraries being
optimized for different CPUs vendors (Orthus has Intel
CPUs, while VEGA has AMD CPUs). Furthermore, there
is no decrease in numerical accuracy when the number of
MPI processes is increased.

The same behavior is observed for the GPU versions
in the tables III IV. In the same system, the numerical
results between the versions are identical and differences
are observed only between the systems, which is to be
expected.

Performance portability

The performance portability of DPC++ versions to
native implementations in low-level programming models
is investigated by analyzing the execution time of the
algorithm. The execution time is divided into two parts,
the computation part and the communication part. The

TABLE III: Numerical accuracy of the GPU code on Vega.

#MPI
Native CUDA SYCL buffer SYCL usm

MPI NCCL MPI NCCL MPI NCCL

ort res ort res ort res ort res ort res ort res

1 1.6e-14 2.7e-15 1.6e-14 2.7e-15 1.6e-14 2.7e-15 1.6e-14 2.7e-15 1.6e-14 2.7e-15 1.6e-14 2.7e-15
2 1.5e-14 2.7e-15 1.5e-14 2.7e-15 1.5e-14 2.7e-15 1.5e-14 2.7e-15 1.5e-14 2.7e-15 1.5e-14 2.7e-15
3 1.4e-14 2.7e-15 1.4e-14 2.7e-15 1.4e-14 2.7e-15 1.4e-14 2.7e-15 1.4e-14 2.7e-15 1.4e-14 2.7e-15
4 1.4e-14 2.7e-15 1.4e-14 2.7e-15 1.4e-14 2.7e-15 1.4e-14 2.7e-15 1.4e-14 2.7e-15 1.4e-14 2.7e-15

TABLE IV: Numerical accuracy of the GPU code on Orthus.

#MPI
Native CUDA SYCL buffer SYCL usm

MPI NCCL MPI NCCL MPI NCCL

ort res ort res ort res ort res ort res ort res

1 1.3e-14 2.3e-15 1.3e-14 2.3e-15 1.3e-14 2.3e-15 1.3e-14 2.3e-15 1.3e-14 2.3e-15 1.3e-14 2.3e-15
2 7.1e-15 2.3e-15 7.1e-15 2.3e-15 7.1e-15 2.3e-15 7.1e-15 2.3e-15 7.1e-15 2.3e-15 7.1e-15 2.3e-15
3 5.3e-15 2.3e-15 5.4e-15 2.3e-15 5.3e-15 2.3e-15 5.4e-15 2.3e-15 5.3e-15 2.3e-15 5.4e-15 2.3e-15
4 3.4e-15 2.3e-15 3.5e-15 2.3e-15 3.4e-15 2.3e-15 3.5e-15 2.3e-15 3.4e-15 2.3e-15 3.5e-15 2.3e-15

computation part, as mentioned earlier, includes the mem-
ory transfer to the device and could show the overhead
introduced by SYCL. In terms of performance both CPU
and GPU versions, perform the same number of floating
point operations and a shorter execution time means better
performance.

Performance portability is also investigated by analyz-
ing the performance behaviour with strong scaling on the
Vega HPC system using the same matrix. The results are
plotted on a graph with execution time. For both the CPU
and GPU versions, the test configuration is set up with 32
threads per MPI rank (process) using a range of processes
up to 32. The results presented are based on the average
of 10 benchmark runs for each configuration.

Figure 1 shows the execution time for all 3 CPU
versions. As expected, the native implementation (Native
C++) achieves the best performance with the shortest ex-
ecution time. SYCL versions prove to be comparable to the
native implementation. In most tests, SYCL buffer shows
better times than the SYCL usm version, even though
memory transfers are explicitly handled with pointers. The
worst performance is observed for SYCL usm with 1 MPI
rank, which has significantly more execution time than
the other versions, which can be explained by the SYCL
overhead.

Finally, the portability of performance to GPU devices,
as shown in Figure 2, shows consistent performance in-
crease (i.e. decrease of the execution time) as the number
of processes (and GPUs) increases. As expected, NCCL
is able to outperform MPI in terms of communication
time for any number of processes. The native version
shows better overall performance and takes less time to
compute for both communication libraries, which means
that the SYCL introduces a slight overhead in the memory
transfers. The communication time varies considerably
and we assume that the results are caused by the test

1 4 8 12 16 20 24 28 32

0

10

20

30

40

50

60

Computation time

Communication time

Native C++

SYCL buffer

SYCL usm

Versions

ti
m

e
 [

s]

MPI communication

MPI ranks

Fig. 1: Time of execution of CPU version on Vega.

system (VEGA) itself and not by the additional overhead
of SYCL. In addition to the last arguments, testing on
the Orthus system with 4 GPUs shows more consistent
communication times (table V) in contrast to the VEGA
system, where the standard deviation for 4 MPI ranks is
larger than the average, showing a large discrepancy in the
values. When testing with a single process, communication
should be negligible, but significant communication time is
observed for the SYCL buffer with NCCL and all versions
with MPI.

TABLE V: Communication time of GPU versions on
Orthus.

#MPI SYCL buffer

MPI NCCL

4 (810± 56)ms (26± 5)ms

SYCL usm

MPI NCCl

4 (786± 74)ms (31± 12)ms

Native CUDA

MPI NCCL

4 (876± 40)ms (40± 17)ms

V. CONCLUSION

In this work, we tested Intel oneAPI solutions and their
interoperability with current linear algebra and commu-
nication libraries to achieve code portability and perfor-
mance portability for distributed algorithm. The bench-
mark code was the CholeskyQR2 algorithm. We showed
that oneAPI solutions can be used for code portability,
focusing on a single source code running on different
architectures to simplify code maintenance and reduce
development time. Code performance are also achieved
with nearly the same performance as native solutions for a
small number of nodes. The DPC++ language is maturing
rapidly, as evidenced by the development of the compiler
and new hardware support. The major drawback is the lack
of and outdated documentation, but the open source code
provides the opportunity to contribute to development,
as evidenced by the large amount of support from the
open source community and third parties. Future work
would include other SYCL toolchains and extend the
architectures used.

In addition, two issues were identified during imple-
mentation and testing. When using cuSOLVER, a new
CUDA context is created each time a cuSOLVER function
or kernel is called, resulting in significant overhead. We
have implemented a solution by reusing solutions from
the cuBLAS backend of the oneMKL interface library.
The technical details of the improvement are beyond the
scope of this paper and are not described here. The second
problem was the reuse of the CUDA context created by
NCCL for SYCL. The solution was described in the paper
and a subsection is dedicated to it.

ACKNOWLEDGMENT

This work was supported by the Croatian Science Foun-
dation under grant number HRZZ-UIP-2020-02-4559. The
authors gratefully acknowledge the HPC RIVR con-
sortium (www.hpc-rivr.si) and EuroHPC JU (eurohpc-
ju.europa.eu) for funding this research by providing com-
puting resources of the HPC system Vega at the Institute
of Information Science (www.izum.si).

1 4 8 12 16 20 24 28 32

MPI ranks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Computation time

Communication time

Native CUDA

SYCL buffer

SYCL usm

Versions

ti
m

e
 [

s]

(a) NCCL
1 4 8 12 16 20 24 28 32

MPI ranks

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Computation time

Communication time

Native CUDA

SYCL buffer

SYCL usm

Versions

ti
m

e
 [

s]

(b) MPI

Fig. 2: Time of execution on Vega using NCCL (2a) and
MPI (2b) communication libraries.

REFERENCES

[1] H. Meuer, E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer,
“TOP500.” [Online]. Available: https://www.top500.org/

[2] AMD, “Introduction to HIP Programming Guide.” [Online]. Avail-
able: https://docs.amd.com/bundle/HIP-Programming-Guide-v5.3/
page/Introduction_to_HIP_Programming_Guide.html

[3] OpenACC, “OpenACC.” [Online]. Available: https://www.openacc.
org/

[4] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos:
Enabling manycore performance portability through polymorphic
memory access patterns,” Journal of Parallel and Distributed
Computing, vol. 74, no. 12, pp. 3202–3216, jul 2014.

[5] C. R. Trott, D. Lebrun-Grandie, D. Arndt, J. Ciesko, V. Dang,

https://www.top500.org/
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.3/page/Introduction_to_HIP_Programming_Guide.html
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.3/page/Introduction_to_HIP_Programming_Guide.html
https://www.openacc.org/
https://www.openacc.org/

N. Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez,
N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell, S. Raja-
manickam, M. Simberg, D. Sunderland, B. Turcksin, and J. Wilke,
“Kokkos 3: Programming Model Extensions for the Exascale Era,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 4, pp. 805–817, apr 2022.

[6] D. A. Beckingsale, T. R. Scogland, J. Burmark, R. Hornung,
H. Jones, W. Killian, A. J. Kunen, O. Pearce, P. Robinson, and B. S.
Ryujin, “RAJA: Portable Performance for Large-Scale Scientific
Applications,” Proceedings of P3HPC 2019: International Work-
shop on Performance, Portability and Productivity in HPC - Held
in conjunction with SC 2019: The International Conference for
High Performance Computing, Networking, Storage and Analysis,
pp. 71–81, nov 2019.

[7] Khronos, “SYCL™ 2020 Specification (revision 6) | Enhanced
Reader.” [Online]. Available: https://registry.khronos.org/SYCL/

[8] P. Thoman, P. Salzmann, B. Cosenza, and T. Fahringer,
“Celerity: High-Level C++ for Accelerator Clusters,” Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 11725 LNCS, pp. 291–303, 2019. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-29400-7_21

[9] A. Alpay, T. Applencourt, G. Brown, R. Keryell, and G. Lueck,
“Using interoperability mode in SYCL 2020,” pp. 1–1, may
2022. [Online]. Available: https://dl.acm.org/doi/10.1145/3529538.
3529997

[10] Intel Corporation, “Data Parallel C++ Language.”
[Online]. Available: https://www.intel.com/content/www/us/en/
developer/tools/oneapi/data-parallel-c-plus-plus.html

[11] T. Deakin, S. Mcintosh-Smith, J. Price, A. Poenaru, P. Atkinson,
C. Popa, and J. Salmon, “Performance Portability across
Diverse Computer Architectures,” 2019. [Online]. Available:
https://doep3meeting2019.lbl.gov/agenda

[12] S. Lal, A. Alpay, P. Salzmann, B. Cosenza, A. Hirsch,
N. Stawinoga, P. Thoman, T. Fahringer, and V. Heuveline,
“SYCL-Bench: A Versatile Cross-Platform Benchmark Suite for
Heterogeneous Computing.” [Online]. Available: https://github.
com/bcosenza/sycl-bench

[13] B. Johnston, J. S. Vetter, and J. Milthorpe, “Evaluating the Perfor-
mance Portability of Contemporary SYCL Implementations.”

[14] B. Homerding and J. Tramm, “Evaluating the Performance of
the hipSYCL Toolchain for HPC Kernels on NVIDIA V100
GPUs,” 2020. [Online]. Available: https://doi.org/10.1145/nnnnnnn.
nnnnnnn

[15] T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, and Y. Yamamoto,
“CholeskyQR2: A Simple and Communication-Avoiding Algorithm
for Computing a Tall-Skinny QR Factorization on a Large-Scale
Parallel System,” Proceedings of ScalA 2014: 5th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems -
held in conjunction with SC 2014: The International Conference for
High Performance Computing, Networking, Storage and Analysis,
pp. 31–38, 2014.

[16] M. Krainiuk, M. Goli, and V. R. Pascuzzi, “OneAPI Open-Source
Math Library Interface,” Proceedings of P3HPC 2021: Interna-
tional Workshop on Performance, Portability and Productivity in
HPC, Held in conjunction with SC 2021: The International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, pp. 22–32, 2021.

https://registry.khronos.org/SYCL/
https://link.springer.com/chapter/10.1007/978-3-030-29400-7_21
https://dl.acm.org/doi/10.1145/3529538.3529997
https://dl.acm.org/doi/10.1145/3529538.3529997
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html
https://doep3meeting2019.lbl.gov/agenda
https://github.com/bcosenza/sycl-bench
https://github.com/bcosenza/sycl-bench
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

	Introduction
	SYCL and Related work
	Benchmark algorithm
	Results
	Code portability

	Conclusion
	References

