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Abstract

Femtosecond laser-induced dynamics of molecules on metal surfaces can be seam-

lessly simulated with all nuclear degrees of freedom using ab-initio molecular dynamics

with electronic friction (AIMDEF) and stochastic forces which are a function of a time-

dependent electronic temperature. This has recently been demonstrated for hot-electron

mediated desorption of hydrogen molecules from a Ru(0001) surface covered with H and

D atoms [Juaristi et al., Phys. Rev. B 2017, 95, 125439]. Unfortunately, AIMDEF

simulations come with a very large computational expense that severely limits statis-

tics and propagation times. To keep ab-initio accuracy and allow for better statistical

sampling, we have developed a neural network interatomic potential of hydrogen on

the Ru(0001) surface based on data from ab-initio molecular dynamics simulations of

recombinative desorption. Using this potential we simulated femtosecond laser-induced

recombinative desorption using varying unit cells, coverages, laser fluences, and isotope

ratios with reliable statistics. As a result, we can systematically study a wide range of

these parameters and follow dynamics over longer times than hitherto possible, demon-

strating that our methodology is a promising way to realistically simulate femtosecond

laser-induced dynamics of molecules on metals. Moreover, we show that previously

used cell sizes and propagation times were too small to obtain converged results.

1 Introduction

The use of femtosecond laser pulses to induce the dynamics of molecules on metal sur-

faces has a wide range of applications, including materials processing and time-resolved

spectroscopy.1,2 Intense femtosecond laser pulses can also be applied in surface photochem-

istry and photocatalysis, where increased reaction cross-sections, different reaction pathways,

nonthermal product energy distributions, and even different products compared to those ob-

served under thermal conditions, are observed.1 Light pulses in the ultraviolet, visible, and

near-infrared ranges are absorbed by the metal, leading to electronic excitations that are
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then transferred to the lattice atoms through electron-phonon coupling. The interplay of

direct electronic and indirect phononic energy transfer to the adsorbates triggers a range of

photo-induced phenomena.2

One of the paradigmatic experimentally well-studied systems is femtosecond laser-induced

recombinative desorption of H2, D2, and HD from Ru(0001) surfaces covered with atomic

hydrogen or deuterium, see the detailed review in ref 3. Some of the conclusions of exper-

imental studies are that the desorption process exhibits a significant isotope effect, with a

higher probability of desorption for hydrogen (H2) than deuterium (D2). The desorption

yield increases according to a power law with increasing fluence. The desorbing molecules

have a velocity distribution that follows a Maxwell-Boltzmann distribution, but with a tem-

perature that is much higher than expected from a purely thermal desorption mechanism.

The translational temperature increases approximately linearly with fluence and is lower for

D2 than for H2. The energy partitioning into translational, vibrational, and rotational ener-

gies of the desorbing species is unequal, and there is a preference for one type of rotation over

the other. The ultrashort response time of the reaction, as observed in two-pulse correlation

experiments, along with these other characteristics, suggests an electronic, non-thermal re-

action mechanism. In addition, experiments using mixtures of the two isotopes found that

the desorption of D2 is facilitated by the presence of H at the surface, i.e., a dynamical

promotion effect was found,4 while the desorption of H2 is hindered by the presence of D.

Atomistic modeling of femtosecond laser-induced reactions on metal surfaces is complex,

as many degrees of freedom and electronic excitations should be considered. Due to compu-

tational complexity, usually, either dimensionality or the explicit inclusion of excited states

have to be sacrificed. Examples of such two models are quantum nonadiabatic approaches

realized by the Monte Carlo wave packet method in the framework of open-system density

matrix theory and the classical adiabatic approach that is realized with the help of frictional

Langevin dynamics with stochastic forces.5 In the quantum model only a few nuclear degrees

of freedom can be considered and both ground and excited states, while the classical model
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allows, in principle, all nuclear degrees of freedom, but only in the ground state. Being

a paradigmatic model, laser-induced recombinative desorption of hydrogen from Ru(0001)

was modeled in both fashions.5–11 In passing we note that in order to treat multidimensional

multi-surface dynamics for gas-surface problems, the independent-electron surface hopping

(IESH) method has been introduced,12 but so far not applied to surface photochemistry.

Due to the complex potential energy surfaces of molecules on surfaces, it is desirable

to consider all nuclear degrees of freedom. As this can be practically achieved using fric-

tional Langevin dynamics with stochastic forces, most of the recent studies use this ap-

proach.7,10,13–16 Historically, due to the associated computational cost, still, only a few se-

lected degrees of freedom were used. For the system of H/Ru(0001) Luntz et al.10 used a

three-dimensional model, and later Füchsel et al.7 extended it to six dimensions (all degrees

of freedom of two hydrogen atoms at a rigid surface). These studies used analytical poten-

tials with parameters fitted to density functional theory (DFT) calculations. It is not easy to

extend such analytical potentials to more than one molecule. Therefore, Juaristi et al.17 used

directly DFT forces in Langevin dynamics, the so-called ab-initio molecular dynamics with

electronic friction (AIMDEF) method that was later used to study different photo-induced

reactions.18,19 This method allows studying more than two adsorbate atoms per unit cell

with full dimensionality at the expense of orders of magnitude larger computational cost

that severely limits statistical sampling. Specifically, in ref 17 the laser-induced desorption

of hydrogen molecules from a (4×4) unit cell with 16 H (D) atoms was studied for a handful

of selected H/D isotope ratios, at a single laser fluence and over a limited propagation time

of 800 fs. In the present paper, we wish to go substantially beyond these limits in system

size, H/D ratios, laser fluences, and propagation times to allow for a more systematic study.

The key to do so is to make use of machine-learned potential energy surface.

In fact, an emerging tool in modeling dynamics is machine learning of interatomic po-

tentials that can approach both the accuracy of the underlying ab-initio method and the

speed of analytical potentials. For applications in simulations of femtosecond laser-induced
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desorption, some of us have recently used the embedded atom neural network method20 to

create a machine learning potential of CO/Pd(111) that accurately reproduced the ab-initio

results of ref 18 at a much lower computational cost.21,22 Since the ab-initio data for the

paradigmatic system of H/Ru(0001) already exist,17 we have used these data to create a

neural network potential. We then use this potential to simulate femtosecond laser-induced

desorption with longer integration times, larger cell sizes, more coverages and isotope ratios

as well as laser fluences than hitherto possible. This way, new and more detailed insight is

gained into a non-trivial surface photoreaction.

2 Neural network potential for hydrogen / Ru(0001)

A potential energy surface is fitted with the neural network (NN) as implemented in the

Atomistic Machine-learning Python Package (Amp).23 The potential energy is computed as

Epot =
∑
i

Ei (1)

from atomic energies Ei. As descriptors, we used Behler-Parrinello G2 and G4 symmetry

functions,24 given by

G2
i =

∑
j ̸=i

e−ηr2ij/R
2
cfc(rij), (2)

and

G4
i = 21−ζ

∑
j ̸=i

∑
j ̸=k

(1 + λ cos θijk)
ζ e−η(r2ij+r2ik+r2jk)/R2

cfc (rij) fc (rik) fc (rjk), (3)

where

fc (r) =


0.5

(
1 + cos

(
π

r

Rc

))
for r ≤ Rc,

0 for r > Rc.

(4)

Parameters η, ζ, and λ define the shape of symmetry functions, Rc is the cutoff radius, rij

is the distance between atoms with index i and j, and θijk is the angle between atoms i, j,
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and k.

Training datasets are AIMDEF trajectories of ref 17. More details on the AIMDEF

calculations can be found in that reference and in Sec. 3. Here it suffices to say that, all used

trajectories were run with a modified version of the Vienna Simulation Package (VASP),25,26

using DFT in the generalized gradient approximation to the exchange-correlation functional

by Perdew-Becke-Ernzerhof (PBE)27 and employing a plane wave basis. All trajectories used

for training are for a three-layer slab model of a (4×4) Ru(0001) surface cell, fully covered

with hydrogen, i.e., trajectories start with 16 H atoms in 16 fcc sites of the surface – see

Figure 2 below. In ref 17, all Ru atoms were kept fixed in their equilibrium position, a

reasonable approximation due to the large mass mismatch between H/D and Ru atoms. We

had access to more than 300 trajectories, each 8000 steps long with a time step of 0.1 fs. In

total, that is over 2 400 000 DFT energies. For the initial training dataset, we sampled every

50th step of 250 trajectories. For the initial validation set, we sampled every 150th step,

shifted for 20 steps compared to the training set. The training was performed on energies

only using root-mean-square error (RMSE) as a loss function.

We have performed a hyperparameter search and selected the final model parameters.

For the neural network architecture, the best-performing network had three hidden layers

with 40-20-20 nodes. Selected descriptor parameters are listed in Table 1.

Table 1: Parameters of symmetry functions. A total of 20 symmetry functions
are obtained from combinations of these parameters and permutations over two
atom types for 2- and 3-body descriptors.

Descriptor Rc (Å) η λ ζ
G2

i 4.5 0.05, 0.232, 1.077, 5.0
G4

i 4.5 0.005 1.0,-1.0 1.0, 4.0

Once we have determined hyperparameters and trained the neural network potential,

we evaluated the complete dataset and found the configurations with the largest errors in

forces. We expanded the training and validation sets to include the configurations with the

largest errors in forces. Final training and validation sets consisted of 90 000 and 26 000
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configurations and corresponding energies, respectively. The final potential was obtained by

retraining on this new training set of energies and corresponding configurations. Figure 1

shows errors of the neural network potential compared to DFT data on a complete trajectory

not included in the training set before and after retraining.

Figure 1: Comparison of DFT energies and neural network (NN) potential. Top panel: NN
trained on the initial dataset. Bottom panel: NN trained on the final dataset. Red (green)
lines are offset ± maximum error (RMSE) from perfect y=x line for which NN would predict
exactly the same energy as DFT.

Both RMSE and maximum errors decreased more than twice. It can be seen that over

the range of energies that span 5 eV (for the system of 16 H atoms), the RMSE of the refitted
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potential is 0.017 eV with a maximum error of 0.061 eV. This error of ∼ 1 meV per moving

atom is similar to the error achieved for the CO/Pd(111) neural network potential.21,22

Errors of the underlying DFT methodology are expected to be larger. This potential is used

for all calculations presented below. Since these energies correspond to a temperature of

adsorbates larger than 1000 K, this potential can be used also for other types of dynamics

at lower temperatures. The potential is freely available, see ref 28.

One of the advantages of interpolated potential is that it is easy to investigate it in detail.

Figure 2 shows a 2D cut of the potential as a function of the distance between two H atoms r

and the distance from the surface Z (elbow plot). All other degrees of freedom and all other

H and Ru atoms are fixed. Here, the two moving H atoms are initially in neighboring fcc

sites of a (4×4) unit cell, fully covered with 16 H atoms. The classical barrier for desorption,
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Figure 2: Potential energy surface as a function of distance between two H atoms, r, and
distance from the surface, Z, of two H atoms parallel to the surface. All other degrees of
freedom are fixed at the equilibrium positions of atoms adsorbed on the surface. Insets show
the (4×4) unit cell and the Z and r coordinates.

counted from the potential minimum, is 1.01 eV in this elbow plot with r = 0.79 Å and

Z = 2.04 Å, similar to previous studies.5,10,17

Nudged elastic band calculations29,30 as implemented in the atomic simulation environ-

ment (ASE)31 with default parameters were performed to find the minimum energy barrier
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Figure 3: Potential energy as a function of the minimum energy path calculated with the
nudged elastic band method for different unit cells at full (1 ML) coverage.

for recombinative desorption of two H atoms from neighbouring fcc sites in all dimensions

(with a rigid surface, however). The minimum barrier is 0.72 eV for r = 0.77 Å and

Z = 2.39 Å calculated for the (4 × 4) unit cell, i.e., the barrier is substantially reduced

when neighboring H atoms are allowed to rearrange along the reaction pathway. We have

checked that the barrier and minimum energy path remains the same for (6× 6) and (3× 3)

unit cells. As shown in Figure 3 there are also local minima in the minimum energy path

at 2 Å for (3× 3) and (4× 4) unit cells and at 3 Å for the (2× 2) unit cell. These minima

correspond to situation when two H atoms become close to each other (r≈ 0.8 Å), but still

close to the surface (Z≈ 2.7 Å).

In the case of a (2× 2) unit cell, the barrier is the same, but the minimum energy path

is significantly longer as shown in Figure 3. While for larger unit cells all H atoms but the

two desorbing ones remain still close to their equilibrium fcc sites, in the case of (2× 2) unit

cell, the third H atom that is closest to the desorbing atoms moves from fcc to hcp site.

This means that the configurational space leading to desorption is significantly different in

the case of the (2 × 2) unit cell. Note that this is the cell that was used for all previous

analytical potential constructions.7,10 Below, we discuss the influence it has on the results of
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laser-induced desorption simulations.

Even though the potential is trained on trajectories starting from full 1 ML (1×1) cover-

age, due to desorption, the potential is also trained on effectively lower coverages and can be

used for such simulations. Experimentally, it is known that H adsorbed on Ru(0001) forms

ordered structures for 1/3, 1/2, 3/4, and 1 ML.32 In Table 2 we have calculated associative

desorption energies, i.e., minimal barriers for the desorption of a hydrogen molecule, for each

of these structures in the (6×6) unit cell. It is seen from the table that the desorption energy

rapidly increases as coverage decreases. As discussed below, and observed in experiments,3

this also significantly decreases femtosecond laser-induced desorption for lower coverages.

Table 2: Associative desorption energy (the lowest desorption barrier) as a
function of coverage, obtained for (6×6) unit cells.

Coverage Structure32 Desorption energy (eV)
1/3 ML p(

√
3×

√
3) 1.39

1/2 ML p(2× 1) 1.01
3/4 ML (2× 2)-3H 0.81
1 ML (1× 1) 0.72

3 Molecular dynamics with electronic friction

Molecular dynamics simulations are performed using frictional Langevin dynamics with

stochastic forces as in earlier works7,10,13–16

mi
d2r⃗i
dt2

= −∇⃗V (r⃗i)− ηe,i(r⃗i)
dr⃗i
dt

+ R⃗e,i[Te(t), ηe,i(r⃗i)] , (5)

where V is the ground state potential energy surface, here modeled with the neural network

potential, and ηe,i is the electronic friction coefficient for atom i at position r⃗i, calculated

within the local density friction approximation (LDFA).33R⃗e,i is the corresponding random
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fluctuation force obtained through the fluctuation-dissipation theorem with variance

Var(R⃗e,i[Te(t), ηe,i(r⃗i)]) =
2kBTe(t)ηe,i(r⃗i)

∆t
, (6)

where kB and ∆t are the Boltzmann constant and the time-integration step, respectively.

Te(t) is the electronic temperature that is calculated within the two temperature model

(2TM).34 In the 2TM, we use the same material parameters for a Ru surface as in ref 17.

Figure 4 shows solutions to the 2TM for Ru(0001) upon excitation with two different laser

fluences, for laser pulses with Gaussian time-profile, full width at half maximum (FWHM)

of 130 fs, and a wavelength of 800 nm. The initial temperature was set to 170 K.
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Figure 4: Electronic and phonon temperatures upon laser excitation of the Ru(0001) sur-
face, calculated in the 2TM. Two different Gaussian pulses with FWHM=130 fs and wave-
length=800 nm but different fluences have been used. Pulse maximum is at t=0.13 ps. The
same material properties have been fed into the 2TM as in ref 17, and the same initial
temperature (170 K).

Even though the 2TM provides both electronic and phonon temperatures, Te(t) and

Tp(t), here we use only the electronic temperature. Ruthenium atoms are fixed as in ref 17.

Note that, if necessary, the methodology can be extended to include phonon temperature,

as shown for the CO/Pd(111) system,21,22 for example.

We implemented eq. (5) in ASE31 that we use for all dynamics calculations. In the LDFA,

ηe depends only on the electron density of bare Ru(0001) at the position of the adsorbate,
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r⃗i. We use the same DFT electron density of the bare Ru(0001) surface as in ref 17. The

integration time step in all dynamics simulations is 0.1 fs to ensure stable integration.
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Figure 5: Histograms of the kinetic energy (a) and H-surface distance (b) over 20 000 tra-
jectories with laser fluence of 60 J/m2.

Since the neural network potential is by orders of magnitude faster than DFT, it is easy

to run many more trajectories than in ab-initio molecular dynamics. In Figure 5(a) we follow

energies and positions of adsorbates over 20 000 trajectories which should be compared to

only 40 trajectories in the AIMDEF-DFT study17 per one experimental condition. In the

figure, we use the same (4× 4) unit cell covered by H atoms and the same laser pulse of 60

J/m2 as in ref 17 so that our results can be directly compared. Later, different fluences and

cell sizes will also be considered in the present work.

According to Figure 5(a), the kinetic energy of adsorbates rises rapidly upon laser pulse

excitation, reaching its maximum at about 0.37 ps after the pulse start. The maximum

average kinetic energy of 2.8 eV or 0.175 eV per each of the 16 adsorbates is in agreement

with Figure 5 of ref 17, confirming that our potential gives rise to similar dynamics and DFT

forces. However, our statistics with a very smooth average line is superior to the noisy line

of ref 17. From the color bar of Figure 5(a) it is also possible to see how probable is each

kinetic energy, showing that kinetic energy in rare cases can be twice as large as the average

kinetic energy at any given time.

Figure 5(b) shows the probability of distance from the surface for each H atom as a
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function of time. It can be seen that desorption events start as early as 0.2 ps after laser

excitation, while the highest number of atoms in the desorbing channel takes place when the

kinetic energy is the highest, between 0.3 and 0.4 ps after pulse excitation.

Next, we have also studied dynamics when deuterium (D) is mixed with hydrogen on the

surface. Figure 6 shows the desorption yield (Y) as a function of time for an equal ratio of H
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Figure 6: Desorption yield of H2, HD, and D2 for randomly placed H8D8 isotope mixture as
a function of integration time for the laser fluence of 50 J/m2.

and D randomly placed on the same (4× 4) surface unit cell (H8D8), now for a fluence of 50

J/m2. First, it can be seen that the integration time of 800 fs used in ref 17 does not result in

completely converged results. The integration time in that study was constrained due to the

associated large computational cost. Due to the speed of our potential evaluation, all our

results are calculated with an integration time of 2 ps for which yields are well converged.

Figure 7 shows desorption yields for different isotope mixtures on the surface as symbols.

Each yield is calculated over 2000 trajectories, each trajectory is initiated with a randomly

placed H and D in each adsorption site using the same (4 × 4) unit cell. The fluence was

50 J/m2 in all cases. Desorption of H2 is more likely and faster compared to HD and D2 as

also observed in experiments.35 The isotope ratio, defined as Y(H2)/Y(D2) is experimentally

found to be ∼20 for a fluence of 50 J/m2 while we obtain ∼1.6. Experimentally,4 a so-called

dynamical promotion / suppression effect was found, where desorption of D2 was larger and

desorption of H2 was smaller than expected from second order rate equations, in which a
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Figure 7: Desorption yield of H2, HD, and D2 for different isotope mixtures for the laser
fluence of 50 J/m2. Symbols are from the Langevin trajectories, solid lines from idealized
second order rate models (see text and ref 17).

desorbing molecule is assumed to be unaffected by neighboring adsorbates (see ref 17 for

details). The results of the second order rate equations are shown in Figure 7 as solid lines.

It is seen that the deviation of the Langevin molecular dynamics simulations from the rate

model are small, but a bit more H2 desorption and a bit less of D2 desorption is seen in

the former. These differences to experiments are discussed below after all comparisons to

experiments are made.

One of the hallmarks of short and intense laser-pulse-induced reactions at surfaces is

that their yield depends superlinearly on fluence. In Figure 8 we show the desorption yield

of H2 from a fully covered (4×4) cell, as a function of fluence for fluences in the range of

10-60 J/m2. Note that the training data is for fluence of 60 J/m2, so using larger fluences

would result in an extrapolation regime for our neural network potential. We observe a

superlinear behavior, with an exponent of about 1.8. One can also observe the onset of a

saturation regime for fluences larger than 40 J/m2. Before saturation, the exponent is around

1.9. Fitting experimental yields before saturation results in a slightly larger exponent of 2.8,

and saturation is reached only at around 100 J/m2.35

Further, in ref 35, no desorption for coverages lower than 0.5 ML was found. In Figure 9

we show, for a (4×4) cell, desorption yields for H2 and D2 as a function of coverage with either
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H or D atoms. Coverages between 1/8 (2 adsorbate atoms per supercell) and 1 (16 atoms

per supercell) are considered. We again obtain qualitative agreement with experiments,

but desorption is possible even for coverages of about 0.375 ML (or 6 adsorbate atoms per

(4×4) cell). Note that previous theoretical studies did not simulate coverage dependence

as previous analytical potentials by construction could not simulate it, and in DFT-based

dynamics, these simulations are expensive, especially when low yields are expected. In ref

35 the authors proposed that the results can be explained by the coverage dependence of the

binding energy and/or the electronic friction coefficient. In our methodology, the electronic

friction coefficient does not depend on the coverage, but as can be seen in Table 2, the
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desorption barrier indeed depends strongly on coverage. Since the barrier for desorption is

much higher for low coverages, desorption yields are much lower. Again, at a given coverage,

H2 desorbs easier than D2, and yields are larger for larger laser fluences.

In summary, our simulations, as well as simulations in ref 17 show qualitative, but not

fully quantitative agreement with experiments. As already explained in ref 17, differences

can largely be attributed to too low binding / activation energy predicted by PBE27 DFT.

In fact, in simpler, low-dimensional or effective models, the energy barrier to desorption that

agreed well with various experimental data was in the range of 1.042 eV in ref 8 to 1.35 eV

in ref 35, compared with our lowest barrier of 0.72 eV. Note that low barriers lead to larger

yields, hence to lower isotope ratios compared to experiment, (slightly) too low superlinearity

and, apparently lack of dynamical promotion / suppression effects.
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We have also performed molecular dynamics simulations for different cell sizes, from

(2×1) up to (8×8), always at full coverage. Results are shown in Figure 10. Clearly, simula-

tions using smaller unit cells severely underestimate desorption yields. One can rationalize

this result with a reduced configurational space, leading to desorption, in smaller unit cells

as shown in Figure 3. This shows that better agreement of theoretical studies with experi-

mental isotope ratios and desorption yields prior to ref 17, e.g. in ref 7, can be due to the fact

that in ref 7, a single moving H2/D2 in a (2×2) cell was considered and the somewhat too
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low desorption energy (1.042 eV compared to the effective barrier of 1.35 eV in ref 35) was

compensated with a reduced configurational space. Note that even the AIMDEF method-

ology using already, for DFT, very large (4×4) unit cells underestimates yields as much as

50%. Only with very large unit cells such as (6×6) and (8×8) we obtain convergence in

yields. Therefore, true first principles agreement with experiment should be achievable only

with the methodology presented in this manuscript, but trained on DFT data calculated

with more accurate exchange-correlation functional. Note also that in this particular case

DFT data corresponds to only 3-layer slab that does not provide fully converged results, and

all Ru atoms were fixed neglecting energy exchange with the surface.

4. Conclusion and Outlook

We have developed a neural network interatomic potential for H atoms interacting with a

Ru(0001) surface. The potential was trained on the data from ab-initio molecular dynamics

simulations of laser-induced desorption. As during these simulations, high adsorbate tem-

peratures in excess of 1000 K are achieved, the potential is expected to be useful also for

other studies involving lower temperatures.

Using this potential, we have simulated laser-induced recombinative desorption of H and

D that is experimentally well studied. We compared our molecular dynamics simulations to

previous ab-initio dynamics on which the potential was trained and to experimental data.

Our machine-learned potential agrees well with the one from ab-initio dynamics. Results of

both are in good qualitative, but not fully quantitative agreement with experiments. Namely,

the PBE-based dynamics and the corresponding NN potential predicts somewhat too small

desorption barriers, and as a consequence, too large desorption yields, too small isotope

effect, too low saturation fluence for superlinear dependence on fluence, and, also, too small

effects of a dynamic environment.

Due to the complex potential energy surface, a requirement for large unit cells, long
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propagation times, and many trajectories needed for reliable statistics, we suggest that state-

of-the-art simulations of short laser pulse-induced dynamics should follow our methodology.

The first step is the construction of machine learning interatomic potential that should

be trained on the configurations that sample well the configurational space explored in

dynamics. The second step is to converge the integration time, cell size, and the number

of needed trajectories. Once this is set, the final step is then to run Langevin molecular

dynamics simulations with electronic friction and stochastic forces that depend on the two-

temperature model.
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