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Davidović, D. Evolving Dispatching

Rules for Dynamic Vehicle Routing

with Genetic Programming.

Algorithms 2023, 16, 285.

https://doi.org/10.3390/a16060285

Academic Editor: Javier Del Ser

Lorente

Received: 12 May 2023

Revised: 29 May 2023

Accepted: 30 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Evolving Dispatching Rules for Dynamic Vehicle Routing with
Genetic Programming
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Abstract: Many real-world applications of the vehicle routing problem (VRP) are arising today, which
range from physical resource planning to virtual resource management in the cloud computing
domain. A common trait of these applications is usually the large scale size of problem instances,
which require fast algorithms to generate solutions of acceptable quality. The basis for many VRP
approaches is a heuristic which builds a candidate solution that may subsequently be improved
by a local search procedure. Since there are many variants of the basic VRP model, specialised
algorithms must be devised that take into account specific constraints and user-defined objective
measures. Another factor is that the scheduling process may be carried out in dynamic conditions,
where future information may be uncertain or unavailable or may be subject to change. When all of
this is considered, there is a need for customised heuristics, devised for a specific problem variant,
that could be used in highly dynamic environments. In this paper, we use genetic programming (GP)
to evolve a suitable dispatching rule to build solutions for different objectives and classes of VRP
problems, applicable in both dynamic and stochastic conditions. The results show great potential,
since this method may be used for different problem classes and user-defined performance objectives.

Keywords: vehicle routing problem; genetic programming; dynamic scheduling; time windows;
hyper-heuristics; dispatching rules

1. Introduction

In the transport industry, planning and scheduling are of utmost importance to min-
imise expenses and provide a consistent quality of service. To adequately model real-world
transportation and service delivery, a number of Vehicle Routing Problem (VRP) variants
have been formulated. The underlying mathematical representation of such problems in
operational research is dated from 1959 when it was defined in [1] as the “Truck Dispatching
Problem”. This model includes a fleet of vehicles that need to travel in order to provide
means of transportation or perform services at remote locations. VRP problems are a class
of NP-hard discrete combinatorial optimisation problems and hence unlikely to be solvable
in polynomial time [2].

In this paper, we focus on dynamic VRP scenarios [3,4], which include consideration of
two important aspects in real-life applications: the availability and reliability of information.
In most problem instances considered, all input is known beforehand, which corresponds
to information availability. Furthermore, the information is considered static, and it is
presumed that vehicle routes do not change while in execution.

In contrast to this, one can approach the problem with most of the input available,
while also allowing that part of the information is revealed dynamically during execution
(evolution of input data). This is considered to be a dynamic VRP, and may include

Algorithms 2023, 16, 285. https://doi.org/10.3390/a16060285 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2649-9236
https://doi.org/10.3390/a16060285
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060285?type=check_update&version=1


Algorithms 2023, 16, 285 2 of 23

additional information or changes in current requirements. Common sources of dynamic
change are arrivals of new customer requests, changes in travel time due to current traffic
conditions, as well as vehicle availability, such as the possible breakdown of vehicles.

Furthermore, regardless of the moment in time in which the information becomes
available, during the execution actual values of VRP variables may also be subject to
change. For instance, the expected travel time may be prolonged, or the customer request
constraints may be altered due to unforeseen events. In this case, the problem is also
considered to be stochastic, and final input and output values are only known after the
schedule is executed. While we do not use stochastic modelling in this paper, we propose
an approach that can also be used under stochastic conditions.

Dynamic conditions may also impose different criteria for schedule optimisation, such
as the number of serviced requests in time (throughput), minimisation of response time or
tardiness of service. Existing heuristics are not designed to optimise arbitrary criteria which
could be defined by the user; it would be necessary to design a new heuristic to handle
such a case. Therefore, selecting an appropriate algorithm and applying it in dynamic
conditions is generally not straightforward.

Instead of manually selecting (or even guessing) which heuristic would be suitable
in dynamic conditions, we propose to evolve (i.e., automatically generate) an appropriate
heuristic, in the form of a dispatching rule, with the use of genetic programming [5]. This
kind of approach is identified as a hyper-heuristic [6–8] since GP is searching the space of
possible algorithms, rather than the space of possible routes. Genetic programming can
evolve any form of an algorithm, provided a given definition of its building elements and
a measure of algorithm quality (the fitness function). With this approach, we may create
heuristics tailored to the problem at hand, regardless of the given performance objective
and specific constraints [9–11].

The hyper-heuristic approach presented in this paper aims at providing the following:

• applicability in dynamic and stochastic VRP environments;
• an approach of generating dispatching rules to optimise routes for arbitrary user-

defined criteria;
• possibility to generate solutions of acceptable quality for very large instances of VRP;
• the means of producing an initial solution that may be used for a subsequent decom-

position approach.

To be able to achieve this, we identify and propose the following main contributions:

• definition of schedule generation algorithms and a learning environment for automatic
development of VRP heuristics;

• definition of functional and terminal elements for two VRP variants: capacitated VRP
(CVRP) and VRP with time windows (VRPTW);

• automated development of dispatching rules for static and dynamic instances of CVRP
and VRPTW;

• automated optimisation of arbitrary criteria, such as soft constrained time windows
and minimisation of vehicle time travel deviation.

It must be noted that the aim of this approach is not the generation of optimal or
near-optimal solutions. If one is able to devote an arbitrary amount of time for creating the
schedule, more efficient solutions can always be obtained by using improvement heuristics.
However, if changes occur during the actual execution of the system (i.e., while vehicles
are on route), one may not have enough time available to rebuild the rest of the schedule
taking new information into account. Furthermore, most improvement heuristics are not
easily accommodated to the fact that a partial schedule is already underway, and only
the unfinished part must be optimised (constructive heuristics are readily applicable in
this case).

On the other hand, using the hyper-heuristic approach, one is able to find simple
heuristics that operate very fast and are suitable in both dynamic and stochastic condi-
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tions. Furthermore, by setting an appropriate performance measure, the user can generate
customised heuristics that perform well given specific constraints or requirements.

The rest of the paper is organised as follows; in the following section the motivation
and related work are briefly discussed. Section 3 describes the proposed approach and
is central to the paper. Sections 5 and 6 show the application of the hyper-heuristic to
CVRP and VRPTW variants, respectively. Section 7 offers a discussion about the scalability
and parameter sensitivity, as well as outlining some avenues for future research. Finally,
Section 8 concludes the paper.

2. Motivation and Related Work

Since contemporary VRP problem instances include hundreds or thousands of re-
quests, they are usually not amenable to be solved with exact methods. Instead, heuristic
methods or fuzzy systems [12,13] are commonly used to provide a good enough solution
which satisfies user-defined criteria. Heuristic methods may be further divided into two
categories: the first group consists of search-based algorithms which search the space of
solutions (routes) to find the best one. The second group are problem-specific constructive
heuristics that build the solution using some features of the problem.

Search-based methods (such as evolutionary algorithms, ant colony optimisation, particle
swarm optimisation, etc.) can be used to solve the VRP. Although the solutions obtained
are often of a good quality, these methods require a substantial computational time to reach
solutions of acceptable quality (since they search the entire solution space). Additionally, in
dynamic conditions the search based methods usually have to be adapted in some way. In
this case the search space considers only the pending requests, but the current condition
of the system (e.g., vehicles currently on the way) must be taken into account by adding
explicit or implicit constraints into the algorithm.

Constructive heuristics, on the other hand, directly build the solution and can therefore
quickly react to changes in the environment, making them usable in dynamic conditions,
since their computational complexity is almost negligible. However, it is often hard to select
the most appropriate heuristic for the given VRP variant, objective criteria and problem
instance, which is also evident in other problems, such as in scheduling [8,14].

A significant effort has been devoted to devising efficient solvers for the static variant
of the vehicle routing problem. Various algorithms, mostly based on metaheuristics, have
been used as optimisation techniques in the VRP domain [15]. Several survey papers
outline in more detail the research conducted in the area of VRPs [16–19].

In [20] a tabu search optimisation is used to tackle the VRP problem with soft time
windows, which means that lateness at a customer location is allowed but it incurs a certain
penalty. The authors introduced a new neighbourhood structure, which has allowed the
algorithm to achieve some of the best-known results on specific benchmark problems.
A simulated-annealing-like-based local search was proposed in [21], which was applied to
the VRP with time windows. The proposed method combined tabu search with simulated
annealing and obtained results suggest that the method is comparable to other metaheuristic
methods. Models describing different evolutionary methods for VRP were presented
in [22,23]. The latter also introduced a two phase approach, in which a problem specific
heuristic generates an initial solution in the first phase, which is then improved via local
search in the second phase. The method was tested on several large scale problems and
achieved a good performance on most of the problem instances. Ant-colony optimisation
was used in [24], where the proposed approach is based on a parallel local search algorithm,
once the solution space is decomposed into small enough instances. A decomposition
technique which reduces the number of vehicles and can also be executed in parallel was
described in several applications [25,26]. This approach requires a suitable initial solution
to be constructed beforehand, and that part is mostly performed by a constructive heuristic
method. Many of these solving procedures rely on a reasonably good initial solution, which
is then improved with metaheuristics [27,28], local search algorithms [29], decomposition
techniques and combinations of those. The incremental improvement approach is in most
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applications used only in static scheduling conditions, since the improvement algorithm
usually operates on a fixed problem instance while it searches for a better solution. In
this context, genetic programming was applied in [30] as a method for generation of new
heuristic functions that can be used for constructing initial solutions for VRP with time
windows, which were then improved with a decomposition approach. A hyper-heuristic
method which selects existing heuristics for creating and improving a solution is proposed
in [31]. The hyper-heuristic method is based on the iterative local search algorithm which
determines the actions that need to be performed on the initial solution in order to improve
it. The proposed method was compared to several approaches and the results show that it
achieved better overall performance.

In dynamic conditions, on the other hand, the static approaches cannot usually be
used without some adaptation. Since part of the customer information becomes available
during the system execution, the problem instance can only be completely described at the
end of the planning horizon. Therefore, no method can provide the optimal solution before
the schedule is completed; instead, “optimal” choices can only be given for the current
state of the system. Because of the previous, dynamic solvers usually rely on heuristic
approaches that are able to quickly obtain a solution to the current state of the problem.

It is possible to adapt the improvement metaheuristic methods for use in dynamic
conditions; in [32] the authors employ a parallel tabu search with many variants of possible
routes. The existing routes are compared to new customer requests and a decision is
made whether the request should be accepted or rejected. The authors experimented with
dynamic VRP with and without time dependent travel times [33], and a similar approach
was applied in [34]. A smaller number of applications also considered the stochastic variant
of the VRPTW [35], in which new customer requests arrive over time. In order to tackle
this problem the authors use probabilistic knowledge of the future and define a strategy
which introduces dummy customers to better cover the entire territory.

Genetic algorithms (GA) were extensively used to solve static VRP instances, but have
also been applied for the dynamic VRP [36] and pick up and delivery (PDP) problems [37].
In these applications, the GA is modified for use in dynamic conditions in the way that it
is in fact constantly running concurrently with the execution of the system. The solutions
produced by the GA are thus adapting on-the-fly to new information when it becomes
available. Another metaheuristic, Ant Colony System (ACS), has also been used to solve
the dynamic VRP in [38]. In this application, the scheduling horizon is a priori divided
into time slices of equal duration, and a separate ACS is run for each time slice. Only the
information related to the current time slice is taken into account, under the assumption that
the requests can be postponed. Similar modifications by using ACS are used in [39]. In [40],
an ACS is also applied for solving dynamic VRP with time windows, in a similar manner as
in the previous two papers. The proposed ACO algorithm uses a joint solution construction
mechanism, which constructs in parallel routes of the vehicles. The approach is combined
with a local search procedure in order to improve its performance. The authors test the
approach on problems with variable dynamics, which means that they vary the amount of
orders that are known at the beginning of the system and those that are released over time.
In [41] the dynamic VRP problem was tackled by using an evolutionary hyper-heuristic
method which uses three different types of simple heuristic procedures for constructing
and improving the schedule, and the order in which these heuristics are used and their
parameters are optimised by using an evolutionary algorithm. The dynamic VRP with
time windows and stochastic customers was considered in [42]. In order to tackle the
dynamic problem, the authors propose a new decision rule, called GSA, which at each step
chooses the next action to perform. The results demonstrate that the proposed method
produces results comparable to the state of the art and that it leads to better decisions in a
stochastic context. Genetic programming has also demonstrated its potential when applied
to the dynamic pickup and delivery problem in [43]. The paper compared several genetic
programming settings and problems with varying levels of dynamism, urgency and scale.
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The results show that the evolved heuristic obtained a competitive performance when
compared to traditional approaches.

In all of these examples, the practitioner is bound by the time available to reach a
decision for the next state of the system. While the current solution can always be improved
given enough time, changes can occur in each moment after a single solution has been
chosen, and the reaction time may be crucial in some applications. In the next section,
we present the hyper-heuristic approach that aims to provide a solution in a negligible
amount of time, taking into account current conditions and user-defined criteria. After the
solution is obtained, it can also be modified using improvement heuristics if additional
time is available.

3. Hyper-Heuristic Approach for VRP

3.1. Capacitated Vehicle Touting Problem

The capacitated VRP (CVRP) is described as follows: a set of n customers must be
serviced from a central depot using vehicles of equal given capacity, denoted with Q.
Each customer must be served by exactly one vehicle. A customer is defined with the
following parameters:

• demand di;
• geographical data.

The scheduling task includes constructing a (minimal) number of routes, specifying
the order in which vehicles are servicing disjunct sets of customers. The goal is usually to
minimise the number of vehicles and the total distance, while the total demand for each
route may not exceed the capacity of the vehicle which serves that route. In other words,
for each route r the following condition must hold: ∑

m
i=1 di < Q, where m is the number of

customers on route r.

3.2. Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is an extension of the VRP,
defined in [44]. The VRPTW includes an additional constraint, which is that every customer
v ∈ V must be serviced within a given time window [ev, lv]. If a vehicle arrives earlier it
must wait for the window opening time; if the vehicle arrives after the end of the time
window, the solution is not valid. Every customer has the following parameters defined:

• ready time ev—window opening time;
• due date lv—window closing time;
• service time δv—time needed for the customer to be serviced;
• demand di—customer capacity;
• geographical data.

Waiting time may be induced at customer v if the vehicle arrives at the customer before
its window opening time. In both of these variants, usually two objective criteria are used:
the primary is to minimize the number of vehicles and the secondary to reduce the total
travel distance.

3.3. Generating Heuristics for VRP

The scheduling method applied in this work is priority scheduling, in which certain
elements of the system are assigned priority values. In the classic scheduling theory, the
typical elements are jobs (activities) and machines (resources), but the same logic can be
applied to VRP scheduling with customers and vehicles. The choice of the next customer
for a particular vehicle is based on the customer’s priority value, which may be determined
dynamically. This type of scheduling algorithm is also called, variously, ‘dispatching rule’,
‘scheduling rule’ or just ‘heuristic’.

The term dispatching rule (DR), in a narrow sense, often represents only the priority
function that assigns values to system elements [45]. For instance, in classic scheduling a
scheduling process may be described with the statement ‘scheduling is performed using
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the shortest processing time (SPT) rule’, in which case jobs are sequenced in increasing
order of their processing times. In VRP, a very simple heuristic may be the one that, for
every vehicle, chooses the current closest customer as the next one. In terms of priority
scheduling, we can say that the priority function applied to each customer is equal to that
customer’s current distance.

While the method of assigning vehicles to customers based on priority values may be
trivial, in some environments it is not necessarily so. This is particularly true in dynamic
conditions, where orders may arrive over time or may not be serviced before some condition
is met. Even when the priority function is defined, an additional procedure must be
defined dictating how customers are serviced based on their priorities and possible system
constraints.

In accordance to existing scheduling nomenclature, we name this component a meta-
algorithm [9,10,46], or alternatively a schedule generation scheme (SGS) [47,48], which is a
term commonly used in production scheduling. A meta-algorithm encapsulates the priority
function, but the same meta-algorithm may be used with different priority functions and
vice versa. In this work, the meta-algorithm is defined manually; the priority function, on
the other hand, is evolved automatically with genetic programming and represented using
appropriate functions and variables. This way, using the same meta-algorithm, different
scheduling heuristics best suited for various criteria can be devised.

We propose two meta-algorithms, which differ by the way they construct the entire
schedule, and consequently by the conditions they can be used in. The first meta-algorithm
is a serial one, which builds the schedule incrementally by constructing routes one vehicle
at a time. This approach is most commonly used in existing VRPs and is depicted in
Algorithm 1.

Algorithm 1 Serial VRP meta-algorithm

1: while customers there are customers to serve do
2: start new route;
3: while unvisited valid customers do
4: nextCustomer← customer with the best value of the priority function;
5: add nextCustomer to current route;
6: end while
7: end route by returning the vehicle to the depot;
8: end while

We emphasise that the same meta-algorithm may be used for any VRP flavor; at the
same time, the meta-algorithm does not depend on any concrete priority function, which
means that many different priority functions can be used with the given meta-algorithm.
As a consequence, the meta-algorithm can use priority functions which optimise different
objectives. Note that the condition “valid customer” may have a very different meaning
for different VRP variants. For instance, in CVRP this will only constrain the available
choices to those customers whose demand does not exceed the remaining capacity of the
current vehicle. For VRPTW, on the other hand, this will also constrain the choice to those
customers which can be serviced in the defined time frame. The selection of the next valid
customer to service is left entirely to the priority function. The definition of “best value” of
the priority function is quite arbitrary, but in this case we use the lowest returned value
as the best one (other options include the maximum value, minimum absolute value etc.).
For instance, if the priority function equals simply the distance to the customer, then the
same priority function will be evaluated for every possible customer, and the customer
with the lowest priority value (the smallest distance) will be selected as the next customer
for this vehicle.

Another meta-algorithm we propose is a parallel one that builds the schedule con-
currently for every vehicle. This variant is defined as Algorithm 2. The parallel algorithm
requires one important input, which is the current number of vehicles. If the given number
of vehicles is insufficient to construct a valid schedule, then this value can be increased
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and the algorithm rerun. However, in our simulations this is not needed for the following
reasons. While the serial meta-algorithm can be used in static conditions, where the sched-
ule is constructed beforehand, it cannot be used during the actual execution of the system,
for instance after an interruption has happened (such as a vehicle failure). In the case of
dynamic conditions, we can use the parallel meta-algorithm to construct the remainder
of the schedule, and in that case, the current number of vehicles is always known to the
algorithm. The presented approach with the parallel meta-algorithm can also be used for
stochastic VRP, where the actual parameter values are not known with certainty until the
related event occurs. While we do not model a stochastic VRP in our experiments, the
parallel algorithm can be readily applied in those conditions, since it builds the remainder
of the schedule starting from any given moment in time with an arbitrary system state.
Furthermore, for environments such as CVRP, the required minimum number of vehicles
can always be determined beforehand based on given demand, vehicle capacity and other
possible constraints.

Algorithm 2 Parallel VRP meta-algorithm
Input: number of vehicles to use

1: while there are customers to service and available vehicles do
2: wait until at least one vehicle is available (advance time);
3: if no valid customers then
4: end route by returning the vehicle to the depot;
5: end if
6: nextCustomer← customer with the best value of the priority function;
7: add nextCustomer to current route;
8: end while

The time complexity of priority scheduling depends on the meta-algorithm, but it is
in most cases negligible compared to search-based techniques, which allows using this
method for on-line scheduling [49] and in dynamic conditions. It should be noted that
the priority function must be previously evolved. The evolution process itself may take
several hours on average, but this can always be performed offline, before the actual
scheduling occurs.

3.4. Genetic Programming

Genetic programming [50] is an optimisation and machine learning method that
uses simulation of evolution to automatically discover symbolic solutions (functions and
programs) to the problem at hand. The main idea behind GP is that the solution to the
problem may be represented as a (computer) program, in most applications in the form
of a syntactic tree. The elements of the programs (tree nodes) must be predefined by the
user and must be sufficient to describe the solution to the problem (e.g., mathematical and
logical functions, variables, actions such as move forward, turn left etc.). In this case, we
restrict the solutions to priority functions consisting of arithmetical and logic operators,
as well as variables corresponding to the current VRP state. The algorithm randomly
generates a set of trees (potential solutions) and evaluates each one on a predefined set of
test cases. Test cases describe how well the candidate solution solves the given problem,
e.g., how well does the function represented in the tree describe the data. In this paper, test
cases will be represented by different VRP instances. Each potential solution thus receives
its quality estimate - the fitness value - which is then used in the selection process.

The selection process imitates natural evolution where weaker solutions (individu-
als) are eliminated, and better individuals survive. Additionally, better individuals also
participate in recombination, where two or more individuals are combined to form a new
one. The algorithm also incorporates a mutation mechanism, where a single individual
undergoes a random change, with a relatively small probability. The process continues,
building new generations from old ones until a suitable termination criterion is reached.
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Termination criteria usually include finding a solution of the desired quality, evaluating a
given number of potential solutions or running the algorithm for a predefined amount of
time. The examples of human competitive results of genetic programming may be found
in [51]. For priority functions evolution, the Evolutionary Computation Framework (ECF)
http://ecf.zemris.fer.hr/ (accessed on 3 October 2022) was used.

3.5. Creating Priority Functions with GP

In this paper, genetic programming is used to automatically create the priority function
used in the above meta-algorithms. The priority function is represented as a syntax
tree, where inner nodes are operators and leaves are terminals (function inputs, domain
variables). The operator and terminal set must be previously defined and they should give
the GP information needed to construct an adequate priority function. In this work, we use
the following operators (functional elements and inner nodes of a tree) listed in Table 1.

Table 1. Functional elements used by GP.

Function Definition

+ binary addition
- binary subtraction
* binary multiplication

/ a/b =

{

1, if |b| < 0.000001
a/b, otherwise

pos pos(a) = max(a, 0)

ifgt ifgt(a, b, c, d) =

{

c, if a ≥ b

d, otherwise

This function set is based on our previous experience with GP, as well as on a small set
of tuning experiments to estimate the efficiency of individual operators. Aside from these,
we define a separate terminal set (set of variables, tree leaves) for each considered VRP
variant. For example, all the variants will include the terminal dist, which simply gives
the distance of the current considered vehicle to the current considered customer. This
way, the GP is able to create new priority functions that match the current conditions and
user-defined criteria. GP uses the standard tree representation to encode priority functions.
An example of a random GP tree that denotes a potential priority function of a DR is shown
in Figure 1 (the terminal sets are defined below).

Figure 1. An example GP tree representing a priority function (dist + dist) ∗ pos(d).

GP creates a set of priority functions (individuals) in each generation, and each of
those must be evaluated. The initial population is generated using the standard ramped
half-and-half solution initialisation method. After the whole generation is evaluated,
genetic operators (crossover, mutation and selection) are performed, thus producing the
next generation of individuals (new candidate functions). The whole process is repeated
until a predefined stopping criterion is met.

http://ecf.zemris.fer.hr/
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The evolutionary algorithm in this work uses a steady-state selection process, shown
in Algorithm 3, where in each iteration only one individual from the population is replaced
with a new one. The selection of the individual to be replaced is performed in a tournament
of size three: the algorithm selects three individuals at random and eliminates the worst
of those. The remaining tournament survivors are then used as parents to create a new
individual using crossover. The crossover operators used are simple tree crossover, uniform
crossover, size fair, one-point, and context preserving crossover [5], selected at random
each time a crossover is performed. Following its creation, the new individual immediately
undergoes mutation, which depends on the mutation rate parameter. In our experiments,
this parameter equals 0.5, which results in five out of ten new individuals being mutated
on average, and the operator is sub-tree mutation [5]. This kind of algorithm is convenient
since it eliminates the need for specifying the crossover rate, and based on our previous
experience provides a steady rate of convergence. Regarding the choice of genetic operators,
in our previous experience with hyper-heuristic applications, different operators did not
have a significant impact. In summary, we use the parameters for genetic programming as
given in Table 2.

Algorithm 3 Steady-state tournament selection

1: while termination condition not satisfied do
2: randomly select k individuals;
3: remove the worst of k individuals;
4: child← crossover (best two of the tournament);
5: perform mutation on child, with given individual mutation probability;
6: insert child into the population;
7: end while

Table 2. Genetic programming parameters.

Parameter Value

population size 500
selection tournament of size 3

mutation rate 0.5 per individual
number of runs 30

termination condition 25,000 evaluations

Finally, in all the experiments we evolve the candidate priority functions on the
learning set of problem instances, selected for the given VRP flavor. Each individual
is evaluated by optimising a selected criterion (number of vehicles, total distance, total
tardiness, or combinations of these criteria) on each instance in the problem set. The total
fitness value on the problem set is calculated as an aggregation of the individual fitness
values obtained on each of the problem instances. However, the final set of evolved priority
functions are evaluated on a separate test set of problem instances, which is a common
procedure in machine learning. This cross-evaluation estimates the generalisation ability of
the proposed approach, and separate learning and test sets are defined for every considered
problem variant.

4. Experimental Setup

To test the proposed approach of automatically designing DRs for the VRP, the GP
method described in the previous section is applied on two VRP problem variants: CVRP
and VRPTW. Furthermore, both variants are investigated under static and dynamic case.
The static case denotes the case in which all customers are known beforehand, meaning
that all the information about the problem is known at the start of solving. On the other
hand, in the dynamic case, not all customers are known at the start, but rather they become
available as time progresses. In this case, we investigate the influence of different level of



Algorithms 2023, 16, 285 10 of 23

dynamism on the performance of the method, 5%, 25%, and 50%, which denote the number
of customers that are not known up front and become available at a later point in time.

To test the approach for CVRP the problem instances proposed by Golden et al. are
used [52], whereas for the VRPTW variant the instances proposed by Solomon are used [42].
Both problem sets are divided into a training set, which is used by GP to evaluate the rules
during the evolution process, and a test set, which is used after training to evaluate the
quality of the evolved rules on unseen instances and compare the results. The division of
the problem sets is described in more detailed in the subsequent sections. The approaches
are evaluated across several criteria that are commonly considered in VRP problems, which
include the number of vehicles, total travelled distance, and total tardiness. These criteria
are combined in different ways using a weighted linear combination, as will be outlined
in more detail at the corresponding parts in the next two sections. Apart from these two
criteria, another criterion called the distance deviation (more details about which are given
in Section 6.3) is also used to demonstrate the ability of the approach to generate DRs for
an arbitrarily defined user criterion. The results obtained by the proposed method are
compared with the best known results for the problem instances known in the literature, as
well as with simple manually designed DRs which present the most similar approach from
the literature to the automatically developed DRs.

5. Solving CVRP with the Hyper-Heuristic Approach

In the optimisation used for the static variant of CVRP, a single objective criterion is
defined in Equation (1) with the goal to minimise the total number of vehicles, multiplied
with an arbitrary constant 10,000 and summed with travelled distance.

objectiveCVRP = (nVehicles× 10,000) + totalDistance (1)

Using such objective criterion forces the heuristic on generating solutions with minimum
number of vehicles and further minimising total travelled distance. Regardless of the
actual objective used, we emphasise that the proposed method of automatic evolution of
heuristics may be used with any conceivable performance measure.

5.1. Creating Dispatching Rules for CVRP

In addition to the functions defined in Table 1, in CVRP we define the following set of
terminals (variables) that GP can use in the creation of candidate priority functions; these
are shown in Table 3. All the terminals are self explanatory and correspond to the current
vehicle, for which the decision is being made of which customer to visit next. In the table,
the terminal ncc gives the value of the distance from the currently considered customer to
the closest unserviced customer; i.e., this may be the next customer the vehicle could visit
after the one being considered.

Table 3. GP terminals for CVRP.

Terminal Description

dist distance to the customer being considered
d customer demand
rc vehicle remaining capacity

drc ratio of demand to remaining capacity
ncc ‘next closest customer’

The experiments for CVRP were conducted on benchmark set from [52], which include
20 problem instances with 200 to 480 customers. Out of 20 instances, the first 10 were used
as a learning set, while the remaining 10 served as the test set. In accordance with classical
cross-validation used in other machine learning applications, the priority functions are first
evolved on the learning test set. After that, all the presented results were obtained using
only the instances from the test set.
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Every learning experiment is repeated in 30 GP runs, and the 30 best individuals
from those runs are evaluated on the test set. Both meta-algorithms were tested, but the
results for the parallel variant were significantly worse than for the serial counterpart,
so they are not presented in this section. This round of experiments is performed in
static conditions, where it is expected that the serial meta-algorithm will exhibit better
performance. Regardless of that, the parallel algorithm is the only choice when constructing
the schedule in dynamic conditions, and the priority functions evolved with the serial
algorithm can also be used in that case.

The results for 10 test cases from the dataset in terms of total travelled distance are
given in Table 4. Note that the proposed approach is not meant to generate optimal or
near-optimal solutions, but rather to produce adaptive schedules in a short amount of time.
This property is additionally examined in the next subsection.

Table 4. Total travelled distance—CVRP test set.

Test Instance 11 12 13 14 15 16 17 18 19 20 Total

best known 932.7 1137.2 881.0 1103.7 1364.2 1656.7 666.8 973.6 1338.7 1831.6 11,886.3
min 1178.2 1383.9 1060.4 1321.6 1674.7 2031.0 863.1 1251.3 1669.3 2230.2 14,843.1
median 1249.3 1470.8 1089.2 1422.4 1703.8 2098.5 938.8 1316.3 1837.5 2386.1 15,442.5
max 1318.8 1542.1 1135.1 1477.4 1778.8 2148.9 1003.6 1344.2 1875.1 2563.0 15,841.0

5.2. Evolved Heuristics in Dynamic CVRP

A dynamic VRP environment is simulated in the following manner: a given percentage
of customer orders is not revealed at the beginning, and only becomes known at a certain
point in time. Although there are many ways in which the dynamic environment could
be emulated, such as the breakdown of vehicles and changes in travel time, we chose
the commonly used variant as outlined in [40,42]. It should be noted that the proposed
approach can cope with any type of dynamic disruption, by using the parallel meta-
algorithm with the current number of vehicles (which can also be subject to change). For a
problem instance with 200 customers, a varying percentage of orders (5, 25, and 50 percent)
is only available at a later point in time, which corresponds to different levels of dynamism.
The routes are generated on the fly using the evolved priority functions. The GP evolved
solutions are compared with the “nearest neighbour” (NN) heuristic, which chooses the
closest customer for every vehicle at every decision point. The number of vehicles is fixed
to 15 according to [40]; because of this, the results in dynamic conditions show only the
total travelled distance, since the vehicle count is the same for both heuristics. The results
of this experiment are presented in Figure 2 and Table 5.

Table 5. Total travelled distance—dynamic CVRP.

Heuristic Static Dynamic 5% Dynamic 25% Dynamic 50%

nearest neighbour (NN) 3066.1 3805.1 4257.6 4280.2
GP—min 2980.6 3735.7 4158.6 4099.2

GP—median 2980.6 3768.2 4214.0 4274.1
GP—max 3065.9 3896.3 4269.4 4444.1

Since the dynamic differences include the appearance of new orders, we expect an
increase in the total duration relative to the static solution. Although most of the GP-
provided priority functions react better than the NN heuristic, there are some outliers
which perform worse in dynamic conditions. This indicates that the training instances for
GP should also be designed with a dynamic component, since all the training instances in
the previous section were taken from a static benchmark.



Algorithms 2023, 16, 285 12 of 23

Figure 2. Total travelled distance in dynamic CVRP—GP dispatching rules.

6. Solving VRPTW with the Hyper-Heuristic Approach

When considering the static VRPTW model, we use the fitness function denoted in
Equation (2) (same as for the CVRP) for optimisation of priority functions.

objectiveVRPTW = (nVehicles× 10, 000) + totalDistance (2)

The experiments for VRPTW were conducted on Gehring and Homberger benchmark [53]
containing problems with 200 to 1000 customers. For all problem instances, travel time and
distance are equal to the corresponding Euclidean distance [54]. Separate experiments were
conducted on groups with 200, 400, 600, 800 and 1000 customers; out of each group, 40 test
instances were selected as the learning set, and 10 of the remaining instances were used
as the test set. The learning process is performed in static conditions, while the dynamic
variant is evaluated in the following subsection.

In addition to functional elements in Table 1, we define the following terminals for GP
in the VRPTW environment, as given in Table 6. This terminal set is an extension of the
terminals used in CVRP, with the addition of time-dependent information for each vehicle.
The terminal waiting time denotes the amount of time the vehicle will have to wait for
customer’s ready time (window opening) if it selects this customer for servicing next.

After the learning phase, the resulting solutions were evaluated on the test set. Figure 3
shows the results obtained on a test set with 200 customers, but also presents the results
of each group of priority functions obtained by learning on different learning set sizes.
Since the results suggest that learning on a larger set of customers does not bring an
improvement, we have evaluated the solutions, obtained on the learning set with a given
number of customers, on each test set with a different number of customers. The purpose
of this cross-evaluation was to identify any dependence of the number of customers in
the learning phase on the effectiveness of priority functions on problem instances with
a different customer number. The results in terms of box plots on the test set are given
in Figure 4, with the circles representing outliers and the ’+’ symbol representing the
average value.
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Table 6. GP terminals for VRPTW.

Terminal Description

dist distance to the customer being considered
d customer demand
rc vehicle remaining capacity

drc ratio of demand to remaining capacity
ncc ‘next closest customer’
st customer service time

ttrt amount of time till the customer becomes ready
ttdd amount of time till customer due date
wt ‘waiting time’

Figure 3. Test results on VRPTW instances with 200 customers.

It can be observed that the number of customers in the learning set does not influence
the final effectiveness to a great extent, which can be considered a good trait for scalability
to larger instances. It is interesting to note, however, that the priority functions learned on
a smaller number of customers generally achieve the best results, regardless of the number
of customers in the test set. This is encouraging, since less time can be spent on learning
with smaller number of customers, and still be able to obtain solutions that cope well
with different problem sizes. To illustrate the absolute quality of the generated solutions,
we compare the obtained number of vehicles on the test set with best known results for
the chosen test set instances https://www.sintef.no/projectweb/top/vrptw/homberger-
benchmark (29 May 2023); the results are shown in Table 7.

Table 7. Number of vehicles—VRPTW test set.

Num Customers 200 400 600 800 1000

best known 100 199 296 394 493
min 109 214 327 428 534

median 112 219 333 437 545
max 117 225 345 452 566

https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark
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(a) 400 customers (b) 600 customers

(c) 800 customers (d) 1000 customers

Figure 4. Test results on VRPTW instances with different number of customers.

6.1. Evolved Heuristics in Dynamic VRPTW

Dynamic conditions for VRPTW are simulated in the same way as for the CVRP, where
a given percentage of orders (5, 25 and 50 percent) is not known at the beginning, but
revealed at a certain point in time. The dynamic scenario is simulated on the VRPTW test
case with 200 customers, based on Solomon’s type “RC” example as outlined in [40,42].
Following the same recommendations, the number of vehicles is set to 15. Apart from the
GP-evolved dispatching rules, we employ the “earliest first” rule (EF), which selects the
customer whose servicing can be started the soonest (also taking into account the travel
time to that customer), and the “most urgent first” rule (UF), which selects the customer
whose window closing time (due date) is most urgent. The results for the GP priority
functions in terms of total travelled distance are shown in Figure 5 and Table 8 along with
the EF and UF heuristics.

It can easily be seen that the GP-evolved priority functions manage to encapsulate
the dynamic changes and adapt to new information. In this particular case, the “nearest
neighbour” heuristic can also produce competitive travel distance, but at the same time
incurs a number of unserviced orders (up to 26 for the most dynamic scenario), which
makes it inappropriate in this setting.
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Figure 5. Total travelled distance in dynamic VRPTW—GP dispatching rules.

Table 8. Total travelled distance—dynamic VRPTW.

Heuristic Static Dynamic 5% Dynamic 25% Dynamic 50%

earliest first (EF) 3552.1 3736.4 3772.1 3393.9
urgent first (UF) 4414.3 4416.3 4358.3 4367.1

GP—min 2586.1 2600.9 2574.2 3051.5
GP—median 2964.5 2870.8 3004.2 3246.0

GP—max 3553.1 3480.1 3555.8 3602.1

6.2. Creating Heuristics for VRPTW with Soft Time Windows

As an example of adaptability of the proposed approach, we tackle the VRPTW
variant with soft time constraints [55,56]. In this case, we allow the requests to be serviced
outside the defined time window, but which induces additional cost. This cost is usually
proportional to the time window violation, but the actual cost estimate may be formulated
in any possible way.

To accommodate for soft time window constraints, the only change that must be made
is the definition of a “valid customer” in the meta-algorithm. Instead of disregarding all
customers that cannot be reached before the due date, we can introduce an additional
amount of tolerance. In our experiments, the maximum time window tolerance is set to
be twice as large as the denoted service time. This is completely arbitrary and may be
defined to match the customer preferences, and even be modeled after individual customer
constraints (e.g., delays at different types of customers incur different costs). Additionally,
a variable tard is added to the GP set of terminals; this variable represents the tardiness of
service if the current customer is selected (the value is zero if no tardiness is incurred if this
customer is selected).

With these changes, the user can define a modified fitness function to measure the
impact of tardiness of customers services. For the GP algorithm, the fitness function was
modified as outlined in Equation (3), in which totalTardiness denotes the amount of time
that the service at all customers has been delayed.

objectiveVRPTWS = (nVehicles× 10, 000) + totalDistance + wT × totalTardiness, (3)

The weight factor wT denotes the magnitude of tardiness in relation to travelled distance,
and equals 1 in this study. Note that this is also completely arbitrary and adaptive, since
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the tardiness cost may be additionally scaled to have a greater or smaller impact relative to
other elements in the fitness.

The learning process with soft time windows was repeated on the same learning set
as for the regular VRPTW. The results for this experiment were validated on the same test
set of 10 problem instances with 200 customers and are shown in Table 9. The results are
compared to best known values with hard time window constraints, as well as GP heuristic
results (given in the first two rows of the table). When soft time constraints are introduced,
we can perceive a slight decrease in the number of vehicles, which means the heuristic is
able to reduce vehicle count with the increase in total service tardiness. At the same time,
the total distance is not changed substantially, which shows the applicability of the devised
priority functions. To further reduce the number of vehicles, an appropriate scaling factor
associated with tardiness could be introduced by the user in the objective function.

Table 9. VRPTW test set, 10 instances with 200 customers each—soft time windows.

Measure Best Known Min Median Max

number of vehicles—hard TW 100 109 112 117
distance—hard TW 26,715.4 46,401 50,141.8 56,897

number of vehicles—soft TW / 107 109 111
distance—soft TW / 45,959.3 49,505.7 55,662.3

tardiness / 3278.7 8885.8 34,729.4

6.3. Evolving Heuristics for an Arbitrary Optimisation Criterion

Since existing heuristics were usually designed to address certain criteria, they may
not be appropriate for application under an arbitrary criteria defined in a concrete prob-
lem instance. Tackling an arbitrary optimisation criteria is possible with search-based
metaheuristics such as evolutionary algorithms, but they exhibit already-described disad-
vantages in the dynamic scheduling scenario. As mentioned before, the proposed approach
can produce routing heuristics for any conceivable objective measure, since the process
of evolution is guided with an arbitrary fitness function. To apply this approach with an
arbitrary optimisation criterion, the user must provide relevant parameters to calculate the
objective value. These parameters may include information about the vehicles, their travel
times and distances, or about servicing times at previous customers etc. In any case, we
presume the schedule maker is able to collect information that is relevant to its designated
criteria and provide that information to the learning algorithm.

To illustrate the applicability of this scenario, we introduce another optimisation
criteria that considers the deviation of travel time of individual vehicles; this may be
the case of a given fleet size, where vehicles should complete their respective routes in
approximately the same time. The choice of this particular objective is entirely arbitrary
and serves only as a case study. The objective function in this experiment is outlined in
Equation (4), where distanceDeviation is calculated as mean squared deviation from the
average travel time of all the vehicles in a single problem instance.

objectiveVRPTWD = (nVehicles× 10, 000) + distanceDeviation, (4)

The results of this experiment are shown in Table 10. The upper half of the table shows
the results obtained with the initial objective criterion for VRPTW, while the bottom half
presents results with the above objective (both sets of results correspond to GP heuris-
tics). It can be seen from the bottom half of the table that the travel time deviations are
indeed smaller than in the case of total distance minimisation. It is somewhat surprising
that this objective contributes to the decrease of total travelled distance; however, this is
accomplished with the increase in the number of used vehicles.
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Table 10. VRPTW test set—minimisation of travel time deviation.

Minimised Objective Measure Min Median Max

num vehicles +
distance (2)

num vehicles 109 112 117
distance 46,210 51,394.2 57,117.7

travel deviation 139.6 255.3 337.5

num vehicles +
distance deviation (4)

num vehicles 114 118 138
distance 40,354.8 42,261.9 46,182

travel deviation 98.7 173.1 283.7

7. Discussion

7.1. Scalability

To estimate the applicability of this approach in the case of larger VRP instances, we
apply a previously evolved priority function to different problem instances of increasing
size. The data in the tested instances were obtained by using a VRPTW setting and
randomly generating the input values for a given number of customers. A serial meta-
algorithm was then used to build the entire solution from scratch for the given instance.
The aim here was not to test the feasibility of the VRP solution, but rather to illustrate the
speed at which a single solution can be built using the proposed approach. The results of
this experiment are given in Table 11.

Table 11. Schedule construction time depending on the number of customers (VRPTW).

problem size 2000 5000 10,000 15,000 20,000 30,000
duration (sec) 0.2 1.5 6.3 11.7 24.1 53.8

It can be seen that the total duration approximately matches the quadratic dependency
on the number of customers, which follows from the complexity of the meta-algorithm.
Note that these results do not include the calculation of customer distances, which is
presumed to be available beforehand, and can also be approximated with other exist-
ing methods.

7.2. Optimisation of GP Parameters

In Table 2 the parameters of GP were presented; most of the parameter values
were chosen on the basis of our previous experience with GP. However, certain param-
eters related to the machine learning process were also tested in this context to estimate
their influence.

The first parameter we tested was the stopping condition criterion, since it can in-
fluence the generalisation ability of the GP. If the evolution is too short, we may not still
converge to an acceptable solution quality, and if it is too long, we may experience over-
fitting to the learning data set. Figure 6 shows the performance of the evolved priority
functions on the test set with regards to the number of fitness evaluations. It can be seen
that the termination condition does not have a significant impact, but the choice of 25,000
evaluations proved to be the most efficient one.

Additionally, we experimented with different size of the learning set, i.e., the number
of problem instances the GP used in the evolution. The results on the same test set, with
different learning set sizes, are shown in Figure 7. Although the variations are not of
great magnitude, this parameter does have a significant influence, and it would seem that
the learning process benefits from a larger number of problem instances. Consequently,
one should provide the GP with a sufficient amount of diverse instances for the best
performance.
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Figure 6. Analysis of stopping criteria—test set performance by number of function evaluations.

Figure 7. Analysis of learning set size—test set performance.

7.3. Strengths and Weaknesses

As outlined through the text, the main advantage of the proposed approach is that it
can automatically design DRs for various variants of the VRP and different user defined
criteria, which can be nonstandard. This is important, since there is only a limited number
of manual DRs proposed in the literature for VRPs, such as the nearest neighbour (NN)
rule, earliest-first (EF) and urgent-first (UF) rule that were used as a baseline. Additional
heuristics are available for different VRP variants, such as the Clarke–Wright algorithm
that merges routes based on the saving distance [41], but which still needs to be adapted
for use in dynamic conditions with a given number of vehicles. It is also not uncommon to
use search-based methods in dynamic environments, but their utilisation depends on the
rescheduling time complexity and adaptation is usually not trivial for different components
of the schedule that are subject to change. Additionally, existing heuristics are tailored to
satisfy specific commonly optimised criteria and they might not be efficient for a specific
problem instance.
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The experimental results demonstrated that the proposed method was able to generate
DRs that perform better than existing rules. This is important as it shows limitations of
existing rules, and outlines the need to evolve rules specialised for certain VRP flavors to
obtain a better performance. Furthermore, the evolved DRs can be used both in static but
also in dynamic conditions as well, which gives them a larger flexibility over search based
methods (such as genetic algorithms and similar), which are usually mostly applied for
static problem variants. Finally, the execution time of the proposed methods is quite small,
even for larger problems, as opposed to other more sophisticated search-based methods.

However, the proposed methodology does not come without its issues. First of all, it
is required to specify the terminal nodes used to evolve the rule, which does require certain
domain knowledge, although it was demonstrated that already using simple operators
leads to satisfactory results. Furthermore, the evolutionary process, i.e., the generation
of new DRs is a time consuming process, which can take certain time to complete (up
to a few hours). However, it must be stressed out that the idea of this method is to
perform the generation of DRs prior to solving the problem, which then eliminates this
long execution times when directly solving the problem. Finally, the performance of
DRs when considering static problem variants is evidently worse than that of standard
search-based methods. However, this is expected due to the difference in which they
search for solutions. However, this problem can be amended by combining the proposed
methodology with other improvement methods, some of which are mentioned in the next
section as possibilities for future work.

8. Conclusions and Future Work

8.1. Conclusions

This paper presents an application of genetic programming for generating routing
heuristics for different variants of VRP. The proposed approach falls into the category
of hyper-heuristics, because a new heuristic is generated automatically for a given VRP
environment and user defined objective measure. The solution is comprised of two parts:
the first part is a meta-algorithm (or a schedule generation scheme), which is defined
manually. Two meta-algorithms are given which can be used according to the scheduling
conditions, under either static or dynamic conditions. The second part is the priority
function, used by the meta-algorithm, which serves to match a vehicle to a specific customer.
The priority function is created automatically using genetic programming, and can be
tailored to specific criteria.

The results of the presented approach are new priority functions that can be used
with an appropriate meta-algorithm, such as the two given in the paper. The priority
functions can be evolved to optimise any conceivable user-defined criteria, and multi-
objective optimisation is also possible. Once evolved, the priority functions can be used
to generate routes in a small amount of time, which makes this approach applicable in
on-line scheduling. While the goal of the approach is not finding the optimal solutions,
it is an attempt to provide competitive results in variants where heuristics are available,
and, what is more important, can help devise heuristics for new problem variants that
may arise in everyday practice, where there are no adequate algorithms. The advantages
of this approach are the applicability in dynamic as well as stochastic VRP environments
since no information about the future of the system is used to construct the routes. The
construction method is very fast, with a complexity quadratically dependent on the number
of customers, which makes it a viable choice for large scale and highly dynamic VRP
instances. Furthermore, the schedules obtained with this method may also serve as initial
solutions to improvement heuristics, which may be employed if additional time is available.

8.2. Future Work

There are a lot of possibilities for the improvement of this approach; for instance, in
our experiments we used only single-objective optimisation algorithms. Some problems
naturally lend themselves to multiobjective optimisation, which is also the case with VRP
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variants. Separate objectives that can be individually observed include the number of
vehicles, travel time and/or duration, customer response time and deviation, quality and
tardiness of service etc. Previous studies show that it is possible to obtain high quality
solutions that successfully optimize separate objective criteria and let the operator select
the most appropriate heuristic [57–59]. What is more important, multiobjective heuristics
can still manage to obtain solutions whose performance regarding a single criteria does not
deteriorate compared to the ones evolved with single criteria optimisation.

Another research direction is the incorporation of rollout approach with the evolved
constructive heuristics [60,61]. In this scenario, the meta-algorithm tests all possible de-
cisions at the current moment in time (e.g., all valid customers are considered), and all
subsequent decisions (later customers) are made using the priority function, creating the
schedule up to the planning horizon. After such multiple simulations, the immediate
decision that led to the best performance up to the planning horizon is made. Rollout can
significantly improve the performance of constructive heuristics, with relatively simple
modifications when creating a schedule. However, this is only possible under two condi-
tions: firstly, if information about future service requests is available, and secondly, if there
is additional time to spend on improving the initial solution. Still, this may prove to be one
of the most effective ways of improving the quality of automatically created heuristics.

The hyper-heuristic approach is also amenable to other representations of priority
functions: apart from the tree-based GP we used, other GP variants could be used to encode
the priority function, such as Cartesian Genetic Programming [62], Gene Expression Pro-
gramming [63], geometric semantic GP [64], dimensionally aware GP [65], and others [66].
Furthermore, different regression methods may be used instead of the GP representation,
such as neural networks or Support Vector Regression (SVR).

Moreover, since the evolution produces not one, but a set of potential candidates for
priority function, an ensemble approach can be utilised to try and improve the decision-
making process [67]. Here, instead of a single priority function that can misjudge a situation,
several functions combine their votes into a single decision for the next customer to service.
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