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PROŠIRENI SAŽETAK 

 

Apsorpcija elektromagnetskog zračenja omogućava brojne kemijske reakcije koje se u 

osnovnom stanju ne mogu odvijati ili imaju vrlo nizak prinos. Mehanizmi tih fotokemijskih 

reakcija odvijaju se preko pobuđenih stanja putevima koji nisu termalno dostupni te je 

njihovo razumijevanje predmet temeljnih istraživanja u kemiji. S teorijske strane takva 

istraživanja su otežana činjenicom da fotokemijske reakcije, po definiciji, uključuju više od 

jednog elektronskog stanja. To znači da tijekom reakcije dolazi do sloma Born-

Oppenheimerove aproksimacije na kojoj je bazirana većina polja kvantne kemije. 

Blizu koničnih presjeka (regija degeneracije ploha potencijalne energije) male promjene u 

valnom paketu jezgara uzrokuju velike promjene u elektronskoj strukturi zbog čega se ne 

mogu potpuno odvojiti elektronski i nuklearni stupnjevi slobode u Schrödingerovoj jednadžbi. 

Za teorijski opis dinamike kroz takve presjeke potrebno je uzeti u obzir neadijabatska 

sprezanja među elektronskim stanjima. Metode kojima se taj problem može tretirati uključuju 

metode kvantne dinamike te miješane klasično kvantne metode u kojima se jezgre razmatraju 

klasično (kao roj trajektorija), ali se neadijabatski efekti uključuju kao modifikacija plohe 

potencijalne energije. Među metodama kvantne dinamike najpopularnija je multi-

konfiguracijska vremenski ovisna Hartree metoda (eng. Multi-Configuration Time-Dependent 

Hartree, MCTDH) i njene varijante.1,2 Među miješanim klasično kvantnim metodama 

najpopularnija je Tullyeva metoda skokova među plohama s minimalno obrata (eng. Fewest-

Switches Surface Hopping, FSSH)3,4 u kojoj se ploha potencijalne energije mijenja 

„skokovima“ u različita elektronska stanja ovisno o neadijabatskim sprezanjima među 

stanjima. Uz navedene metode, često se koristi i ab initio metoda višestrukog stvaranja (eng. 

Ab Initio Multiple Spawning, AIMS)5,6 koja se prema razini aproksimacija nalazi između 

kvantnog i SH pristupa neadijabatskoj dinamici.7 
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Kod kvantnih metoda glavni problemi su njihovo skaliranje s brojem stupnjeva slobode te 

potreba za prethodnim generiranjem globalnih dijabatskih ploha potencijalne energije. 

Miješane klasično kvantne metode same po sebi nisu računalno zahtjevne (gotovo cijela 

cijena ukupnog računa su izračuni elektronske strukture) te imaju veliku prednost u činjenici 

da se mogu računati „u letu“. S druge strane, SH metode bazirane su na većem broju 

aproksimacija koje mogu značajno utjecati na kvalitetu dobivenih rezultata.13,14 Zbog rada s 

nezavisnim trajektorijama, SH metode ne uključuju dekoherenciju i kvantne efekte jezgara 

(eng. Nuclear Quantum Effects, NQE) kao što su energija nulte točka i tuneliranje. Zbog 

navedenih nedostataka, aktivno se radi na unapređivanju obiju vrsta metoda za neadijabatsku 

dinamiku. Tako su razvijene aproksimativne kvantne metode kojima se mogu tretirati veći 

sustavi (ML-MCTDH)8–10 ili se mogu računati „u letu“ (odnosno bez prethodnog računanja 

ploha), npr. varijacijski multi-konfiguracijski Gaussijani (vMCG).11,12 FSSH i slični algoritmi 

unaprijeđeni su: efikasnijim metodama za računanje neadijabatskih sprezanja,15–17 metodama 

za rješavanje numeričkih problema kod naglih križanja stanja,18–22 uključivanjem 

dekoherencije23,24 ili djelomičnim uključivanjem NQE. Među potonjima je obećavajuća 

kombinacija SH metoda s dinamikom polimera prstena (eng. Ring Polymer Molecular 

Dynamics, RPMD).25–29 

Također, važan je i razvoj metode nuklearnog ansambla za dobivanje opservabli iz roja 

trajektorija gdje je cilj iz što manje količine podataka (dakle s što manje računa elektronske 

strukture) dobiti što preciznije opservable.30–33 Dok se ovom metodom mogu jednostavno 

dobiti tražene opservable, razumijevanje ovih rezultata u terminima elektronskih svojstava 

sustava obično nije jednostavan. Razlog tome je da rad u adijabatskoj bazi koji omogućava 

računanje „u letu“ istovremeno otežava kasniju interpretaciju rezultata u terminima 

dijabatskih elektronskih stanja koja je lakše izravno povezati s promjenama elektronskih 

svojstava sustava i s eksperimentalnim zapažanjima.14 

Cilj ovog rada je evaluacija i unaprjeđenje postojećih miješanih klasično-kvantnih metoda. 

U tu svrhu implementirane su FSSH i Landau-Zener metoda skokova među plohama (LZSH) 

te su detaljno ispitane kroz usporedbu s metodama kvantne dinamike.34 Također, razvijeni su 

efikasni algoritmi za računanje integrala preklapanja valnih funkcija35 koji su potrebni u 

FSSH algoritmu, ali i u novo razvijenoj metodi za analizu nuklearnog ansambla u terminima 

dijabatskih stanja.35,36 U konačnici, razvijene metode korištene su za dobivanje novih 

spoznaja o ključnim primjerima fotokemijskih procesa.37 
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Metode skokova među plohama 

Za propagaciju koordinata jezgara u klasičnoj adijabatskoj molekulskoj dinamici potrebni su 

samo energija i gradijent elektronskog stanja. Osim tih vrijednosti, za FSSH dinamiku su 

potrebna sprezanja među stanjima koja se mogu dobiti u obliku vektora neadijabatskog 

sprezanja ili u obliku skalarnih vremenski deriviranih sprezanja (eng. Time-Derivative 

Coupling, TDC). Ova dva oblika međusobno su povezana preko vektora brzine jezgara te u 

praksi daju gotovo jednake rezultate.15,38 Vektori neadijabatskog sprezanja mogu se izračunati 

za određenu geometriju te je njihov račun implementiran u raznim programima za elektronsku 

strukturu.39–42 S druge strane, TDC se moraju računati duž trajektorije zbog eksplicitne 

ovisnosti o vremenu, najčešće numerički metodom konačnih razlika koristeći integrale 

preklapanja valne funkcije u uzastopnim koracima.4,15,16 

Neovisno o vrsti sprezanja koja se koristi, jedan od ključnih problema FSSH metode je 

prepoznavanje i pravilno tretiranje brzih promjena neadijabatskih sprezanja. Energije i 

gradijenti elektronskih stanja mijenjaju se glatko između vremenskih koraka u dinamici te se 

bez straha od velikih numeričkih grešaka može koristi vremenski korak od 0.5 do 1.0 fs. S 

druge strane, neadijabatska sprezanja mogu se mijenjati na istoj vremenskoj skali, ali i mnogo 

brže. Čak i uz vrlo kratki vremenski korak, neadijabatsko sprezanje može unutar koraka 

značajno narasti i ponovno se smanjiti; kada je interakcija među stanjima zanemariva 

sprezanje među njima može nalikovati delta funkciji. Takve nagle promjene sprezanja 

nazivaju se trivijalni prijelazi. Do sada su razvijene brojne metode temeljene na računu 

preklapanja valnih funkcija koje dijelom ili potpuno rješavaju taj problem.18–22 Kako bi se te 

metode mogle ispravno koristiti potrebno je i pravilno pratiti fazu valnih funkcija između 

koraka u dinamici što u generalnom slučaju također nije jednostavan problem.43 

Za male sustave račun preklapanja valnih funkcija je značajno brži od samog računa 

elektronske strukture, ali skaliranje računa je lošije te bez aproksimacija ili efikasne 

implementacije može postati najskuplji dio ukupnog računa. Razlog za loše skaliranje je 

računanje integrala između funkcija koje su razapete različitim baznim skupovima (pomakom 

jezgara pomiču se i bazne funkcije), čije funkcije nisu međusobno ortogonalne niti pokrivaju 

isti prostor. Zbog toga je nužno uzeti u obzir valne funkcije u njihovoj potpunoj složenosti te 

eksplicitno računati preklapanja Slaterovih determinanti (SD) od kojih su valne funkcije 

građene.15,16 Računi takvih integrala nisu standardni dio alata u polju računa elektronske 
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strukture te ih je potrebno odvojeno implementirati (zajedno sa sučeljima za željene metode 

za elektronsku strukturu) u programima za neadijabatsku dinamiku. 

Ovaj korak je najsloženiji dio implementacije FSSH algoritma za nove metode i programe 

za račun elektronske strukture. Konkretno, neadijabatska sprezanja rijetko su dostupna u 

ranim implementacijama modernih metoda, a valne funkcije često nisu dostupne u obliku iz 

kojeg se mogu lako izračunati integrali preklapanja. Dok postoje pokušaji da se potrebne 

vrijednosti naprave lakše dostupnima iz samih programa za elektronsku strukturu,44–47 u 

praksi nedostatak standarda za ispis atomskih/molekulskih orbitala te koeficijenata valnih 

funkcija predstavlja značajnu prepreku u izradi sučelja između FSSH algoritma i različitih 

programa za elektronsku strukturu. 

S druge strane, trivijalno je napraviti sučelje između bilo kojeg programa za elektronsku 

strukturu i metode kojoj nisu potrebna neadijabatska sprezanja u bilo kakvom obliku. U 

novije vrijeme razvijene su metode za neadijabatsku dinamiku koje koriste Landau-Zener 

(LZ)48–50 ili Zhu-Nakamura formule51,52 za čiju su upotrebu potrebne samo energije i 

gradijenti elektronskih stanja. Ove metode već se dugo koriste u proučavanju sudarnih 

procesa i jednostavnih modelnih sustava, ali interes za njih je obnovljen kada je LZ formula 

preformulirana u terminima adijabatskih ploha potencijalne energije čime je omogućeno 

njeno korištenje u jednostavnoj implementaciji neadijabatske dinamike „u letu“. 

Dok je jednodimenzionalni model s dva stanja iz kojeg je izvedena LZ formula ekstremno 

jednostavan, aproksimacije tog modela (uska regija interakcije između samo dva stanja, 

linearna promjena dijabatskih energija u području križanja, stalna brzina tijekom prolaska 

kroz križanje) su iznenađujuće dobro zadovoljene u velikom broju stvarnih sustava zbog uske 

lokaliziranosti koničnih presjeka. Metoda je metoda pokazala obećavajuće rezultate na 

modelnim sustavima, no još uvijek nedostaje detaljnih ispitivanja metode na realnim 

sustavima u punoj dimenzionalnosti. 

Evaluacija SH metoda  

Kako bi se potvrdila prikladnost miješanih klasično-kvantnih metoda za sustave koji će se 

proučavati, prvo je napravljena usporedba s kvantnom dinamikom na MCTDH razini za 

najbolji dostupni model ploha pirazina koji se može računati kvantnom dinamikom.34 Ovaj 

modelni potencijal uključuje tri najniža pobuđena stanja (𝐵𝐵3𝑢𝑢(𝑛𝑛π∗), 𝐴𝐴1𝑢𝑢 ∗ (𝑛𝑛π∗) i 𝐵𝐵2𝑢𝑢(ππ∗)) 

i devet najrelevantnijih vibracijskih stupnjeva slobode.53,54 
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Slika I prikazuje populacije stanja dobivene različitim metodama. Rezultati dobiveni 

FSSH i LZSH metodama međusobno se gotovo uopće ne razlikuju te obje metode 

kvalitativno odgovaraju referentnim rezultatima dobivenim MCTDH metodom (uz blago 

podcjenjivanje populacije 𝐴𝐴1𝑢𝑢(𝑛𝑛π∗) stanja). Nakon početnog prijenosa populacije u 𝑛𝑛π∗ 

stanja, vidljive su oscilacije populacije između tih stanja. Klasično-kvantne metode dobro 

reproduciraju i ove oscilacije. 

 
Slika I: Dijabatske populacije najniža tri pobuđena stanja pirazina dobivene MCTDH (crna), FSSH (zelena) i 
LZSH (crvena) metodama na modelnom potencijalu s tri stanja i devet nuklearnih stupnjeva slobode. 

Time je pokazano da, za ovu reakciju, LZSH dinamika daje jednako dobre rezultate kao i 

FSSH. Međutim, ovi početni rezultati dobiveni su za niskodimenzionalni modelni sustav koji 

je nastao regresijom na jednostavni polinomni oblik. Pravi ispit LZSH metode su računi u 

punoj dimenzionalnosti na realnim plohama potencijalne energije. U tu svrhu provedeni su 

računi neadijabatske dinamike pirazina na ADC(2)/aug-cc-pVDZ razini teorije FSSH i LZSH 

metodama. U ovom slučaju usporedba je rađena s dvije različite verzije FSSH algoritma, 

uobičajenom adijabatskom formulacijom (A-FSSH) te u formalizmu lokalne diabatizacije 

(LD-FSSH) prilikom propagacije elektronske valne funkcije (Slika II). 

Kao i kod modelnog sustava, vidljivo je gotovo potpuno slaganje između LD-FSSH i 

LZSH metoda. A-FSSH blago odstupa od ostalih metoda u tome što je potrebno nešto više 

vremena da bi se populiralo 𝑆𝑆1 stanje. Slaganje je vidljivo i u dijabatskoj bazi (u ovom slučaju 

određenoj na temelju velike razlike u oscilatorskoj snazi među stanjima) u kojoj su jasno 

vidljive i oscilacije u populacijama. 
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Slika II: (a) Adijabatske i (b) dijabatske populacije tri najniža pobuđena stanja pirazina dobivene A-FFSH 
(plava), LD-FSSH (zelena) i LZSH (crvena) metodama na ADC(2)/aug-cc-pVDZ razini teorije. 

Iako su populacije gotovo identične, razlika između LD-FSSH i LZSH metoda vidljiva je 

kada se promatraju sami skokovi. U LZSH dinamici se skokovi u prosjeku događaju kod 

manje razlike energija između stanja i gotovo nikada ne dolazi do skokova većih od 0,5 eV, 

dok u LD-FSSH dinamici (rijetko) dolazi do skokova i kada su stanja udaljena za 1 eV. Ova 

razlika je i očekivana, LZ vjerojatnost evaluira se samo u minimumu razlike energija stanja, 

dok je u FSSH dinamici neadijabatsko sprezanje različito od nule u širem području oko 

koničnog presjeka radi čega do skokova u prosjeku dolazi pri nešto višim energijama. 

Ovi rezultati daju obećavajuću sliku za LZSH dinamiku čime bi se omogućila istraživanja 

dinamike u pobuđenim stanjima uz račun samo energija i gradijenata elektronskih stanja. U 

tom slučaju, pojednostavljeno je korištenje modernih metoda za elektronsku strukturu gdje 

nisu razvijeni algoritmi za analitički račun neadijabatskih sprezanja te često nije jednostavno 

izraziti valnu funkciju u obliku iz kojeg bi se jednostavno izračunala preklapanja među 

susjednim točakama u dinamici. Međutim, slično ispitivanje za složeniji fotokemijski proces 

dalo je veće razlike između metoda što ukazuje da se LZSH metoda mora pažljivo 

primjenjivati na sustave u kojima ne dolazi do interakcije većeg broja stanja u uskoj regiji 

ploha potencijalne energije. 

Račun integrala preklapanja valnih funkcija  

Ključan dio ovog rada je vrlo efikasna implementacija35 računa integrala preklapanja 

pobuđenih valnih funkcija za konkretan slučaj valnih funkcija oblika konfiguracijske 

interakcije s jednostrukim pobudama (engl. Configuration Interaction Singles; CIS) što 

uključuje pomoćne valne funkcije dobivene vremenski-ovisnom teorijom funkcionala gustoće 

(TDDFT).55,56 Isti algoritam može se, uz zanemarivanje dvostrukih pobuda koje manje 
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doprinose valnoj funkciji, koristiti i za metodu algebarske diagramatske konstrukcije drugog 

reda (ADC(2))57–59 čime su pokrivene najčešće metode zasnovane na jednoj referentnoj 

konfiguraciji koje se koriste u računima neadijabatske dinamike. Ovi integrali imaju oblik 

𝑆𝑆𝐴𝐴𝐴𝐴 = ⟨Ψ𝐴𝐴|Ψ𝐴𝐴′  ⟩ = ��𝑑𝑑𝑜𝑜𝐴𝐴𝑑𝑑′𝑝𝑝
𝐴𝐴�Φ𝑜𝑜�Φ𝑝𝑝

′ �
𝑝𝑝𝑜𝑜

 

gdje indeksi 𝐴𝐴 i 𝐵𝐵 označavaju elektronska stanja s valnim funkcijama Ψ izgrađenim kao 

linearne kombinacije Slaterovih determinanti Φ𝑜𝑜 s koeficijentima 𝑑𝑑𝑜𝑜𝐴𝐴. Apostrofom su 

označene sve vrijednosti vezane za stanje 𝐵𝐵 koje je definirano na različitoj geometriji od 𝐴𝐴. 

Za CIS valne funkcije indeksi 𝑜𝑜 i 𝑝𝑝 označavaju sve moguće kombinacije pobuda iz okupiranih 

i virtualnih molekulskih orbitala za svako od stanja. Dakle, skaliranje ovog računa je 

𝑂𝑂(𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜5 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣2 ) gdje 𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜3  dolazi iz računa integrala �Φ𝑜𝑜�Φ𝑝𝑝
′ �. 

Prvi efikasniji pristup ovoj jednadžbi zasnovan je na činjenici da se većina Slaterovih 

determinanti koje se pojavljuju u gornjoj sumi razlikuje u samo jednom ili dva reda/stupca. Ta 

činjenica se može iskoristiti raspisivanjem determinanti u minore drugog stupnja te 

predračunavanjem tih minora u računu integrala (ovaj algoritam biti će označen s OL2M). 

Drugi algoritam baziran je na prikazu valnih funkcija u kompaktnoj bazi prirodnih prijelaznih 

orbitala (engl. Natural Transition Orbitals, NTO). U toj bazi CIS valne funkcije imaju oblik 

|Ψ𝐴𝐴⟩ = �𝜆𝜆𝑜𝑜𝐴𝐴
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜

𝑜𝑜

|Θ𝑜𝑜𝐴𝐴⟩  

gdje suma ide samo po okupiranim orbitalama zbog toga što prijelazne orbitale dolaze u 

parovima tako da je pobuda iz okupirane prijelazne orbitale 𝑜𝑜 moguća samo u virtualnu 

prijelaznu orbitalu 𝑜𝑜 (algoritam koji koristi ovu bazu biti će označen s ONTO). Time cijena 

računa jednog integrala preklapanja pada na 𝑂𝑂(𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜5 ). 

Slika III prikazuje značajno ubrzanje računa preklapanja valnih funkcija razvijenim 

algoritmima. Dok neoptimiziranim algoritmi bez dodatnih aproksimacija postaju skuplji od 

TDDFT pa čak i ADC(2) računa elektronske strukture već za sustave s 20-30 atoma, ONTO 

algoritam, zahvaljujući manjem (𝑛𝑛5) skaliranju, može se koristiti i za sustave s 300 atoma 

odnosno 600 okupiranih orbitala prije nego njegova cijena postane usporediva sa standardnim 

TDDFT računom. Osim za velike sustave, oba razvijena algoritma pogodna su i za račune s 

velikim baznim skupovima. U tom pogledu, ONTO gotovo da uopće nema ovisnost o baznom 

skupu, dok OL2M tek za vrlo velike bazne skupove počinje pokazivati kvadratnu ovisnost o 

broju virtualnih orbitala (kada korak računa preklapanja iz minora postane skuplji od samog 
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računa minora). Na kraju se još ispituje i skaliranje algoritama s brojem stanja (dimenzijom 

matrice preklapanja). Kao što je očekivano, ONTO algoritam u ovom slučaju pokazuje 

kvadratnu ovisnost zbog toga što svako elektronsko stanje ima različite NTO. S druge strane, 

OL2M ima vrlo slabu ovisnost o broju stanja te se pokazuje kao brži algoritam kada je broj 

stanja dovoljno velik. To znači da se preporuča korištenje OL2M algoritma za sustave s 

velikom gustoćom stanja ili sustave koji se pobuđuju u visokoenergetska stanja. Vrijedi 

spomenuti i da se OL2M algoritam može dodatno optimizirati efikasnim ažuriranjem 

intermedijera tijekom računa determinanti minora. Nakon implementacije takvog ažuriranja60 

dobiva se otprilike deseterostruku ubrzanje algoritma čime isplativiji od ONTO već za 

značajno manji broj stanja. 

 
Slika III: Usporedba cijene izvođenja OL1M (crvena), OL2M (zelena) i ONTO (plava) algoritama. (a) Skaliranje 
s veličinom sustava (brojem peptide u lancu) za pet pobuđenih stanja. Dodatni testovi izvedeni su za sustav 
građen od 3 alanina (b, d) i 5 alanina (c, e). Vremena izvođenja su prikazana za pet pobuđenih stanja i različitim 
baznim skupovima od def-SV(P) pa sve do aug-cc-pVQZ (b, c) te s fiksnim baznim skupom i različitim brojem 
stanja (d, e). 
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Razvijeni algoritmi mogu se koristiti, uz zanemarivu cijenu, pri računima neadijabatske 

dinamike za bilo koji od sustava koji se danas proučavaju na TDDFT razini. Međutim, 

aktivno se razvijaju nove i efikasnije implementacije računa za elektronsku strukturu te se 

brzo pomiče granica veličine sustava koji se mogu proučavati.61–63 U slučaju kada račun 

preklapanja ponovno postane usko grlo u računu dinamike, mogu se bez problema uvesti 

aproksimacije. Jednostavan pristup je samo „skratiti“ valnu funkciju tako da se uzimaju 

najveći koeficijenti dok njena norma ne postane veća od zadanog praga. Ispitivanjem moguće 

greške u izračunatim neadijabatskim sprezanjima tijekom nasumično odabranih FSSH 

trajektorija pirola na ADC(2)/aug-cc-pVDZ i B3LYP/def2-TZVPD razinama, pokazano je da 

je srednja greška u izračunatim preklapanjima vrlo mala, ali da su u rijetkim slučajevima 

moguće i velike greške (reda 2√1 − 𝑡𝑡, gdje je 𝑡𝑡 norma odrezane valne funkcije). Unatoč 

tome, uz odabir dovoljno velikog praga za normu (0,999 ili više), mogu se dobiti precizni 

rezultati uz smanjenje broja determinanti koje se moraju izračunati za nekoliko redova 

veličine. Ovakva aproksimacija posebno je prikladna uz ONTO algoritam koji koristi 

kompaktni zapis valnih funkcija u terminima NTO gdje uvijek dominira mali broj prijelaza. 

Osim u neadijabatskoj dinamici, dobiveni integrali preklapanja mogu se koristiti općenitije 

u bilo kojem slučaju kada je potrebno pratiti pojedino elektronsko stanje kroz promjene 

nuklearnih koordinata, na primjer za asignaciju spektara generiranih metodom nuklearnog 

ansambla u slučajevima kada se više elektronskih stanja nalazi u istom energetskom rasponu. 

Također, praćenje stanja je potrebno tijekom optimizacije viših pobuđenih elektronskih stanja 

čiji minimumi se vrlo često nalaze ispod koničnih presjeka s jednim ili više pobuđenih stanja 

koja se nalaze na nižoj energiji u FC regiji. Kako bi se takve optimizacije uspješno izvršavale, 

modificiran je standardni optimizacijski algoritam. Tijekom optimizacije se nakon svakog 

koraka računa preklapanje između valne funkcije ciljanog stanja u početnoj točci i svih stanja 

u trenutnom koraku te se optimizacija nastavlja uvijek prateći gradijent onog stanja čija je 

valna funkcija najbliža onoj traženog stanja. Slika IV prikazuje optimizaciju svijetlog 

𝐵𝐵2(ππ∗) stanja pirola koje je peto pobuđeno stanje prilikom vertikalne pobude, ali drugo 

pobuđeno stanje u minimumu. Koristeći modificirani algoritam, optimizacija bez problema u 

svakom trenutku prati traženo stanje te uspješno pronalazi njegov minimum bez potrebe za 

ručnim mijenjanjem stanja. 
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Slika IV: (a) Optimizacija 𝐵𝐵2(𝜋𝜋𝜋𝜋∗) stanja pirola na B3LYP/def2-TZVPD razini teorije s prijelazom kroz tri 
konična presjeka tijekom prvih 20 koraka. (b) Dominantne NTO kontribucije trenutnom ciljanom stanju duž 
optimizacijskog puta (u točkama označenim svijetlo plavim kvadratima). 

Dekompozicija izračunatih spektara 

Kao što je spomenuto u uvodu, FSSH i ostale metode koje računaju neadijabatsku dinamiku 

„u letu“ ne daju jednostavan način za promatranje rezultata u terminima dijabatskih stanja. Uz 

dostupne integrale preklapanja valnih funkcija na različitim geometrijama, ta se činjenica 

donekle može promijeniti. Glavna karakteristika dijabatskih stanja je da se ne mijenjaju 

(odnosno da se sporo mijenjaju) s promjenom nuklearne konfiguracije, a preklapanja valnih 

funkcija nam daju kvantitativnu mjeru te promjene. Stoga se, uz poznavanje stanja na jednoj 

geometriji stanja, na svim ostalim geometrijama mogu raspisati kao linearne kombinacije tih 

stanja što se može koristiti kao prva aproksimacija prijelaza iz adijabatske u dijabatsku bazu. 

Na temelju toga, definiraju se dvije metode za dekompoziciju opservabli dobivenih metodom 

nuklearnog ansambla. U prvoj, kao „dijabatska“ stanja uzimaju se samo adijabatska stanja na 

pojedinoj geometriji koja imaju najveće preklapanje sa stanjima na referentnoj geometriji koja 

su uzeta kao definicija dijabatskih stanja. U drugoj metodi, svako stanje na svakoj geometriji 

|Ψ𝐹𝐹(𝐑𝐑𝑣𝑣)⟩ doprinosi svim „dijabatskim“ stanjima, ali uteženo koeficijentom tog adijabatskog 

stanja u bazi referentnih stanja 𝑐𝑐𝐴𝐴𝐹𝐹(𝐑𝐑𝑣𝑣) = ⟨Ψ𝐴𝐴(𝐑𝐑0)|Ψ𝐹𝐹(𝐑𝐑𝑣𝑣)⟩. 

Ove metode iskorištene su za promatranje UV apsorpcijskih spektara nukleobaza DNK 

(adenina, timina, citozina i gvanina) u vodi. Konkretno, omogućena je analiza utjecaja okoline 
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na pojedina elektronska stanja sistematskim dodavanjem sve složenijih efekata u račun 

nuklearnih ansambala i energija pobude. 

Slika V prikazuje dobivene spektre koji su u vrlo dobrom slaganju s eksperimentalnim 

spektrima vodenih otopina tih molekula, pogotovo u slučaju adenina i timina. Prikazani 

linijski spektar sadrži informacije o prosječnim energijama i oscilatorskim snagama pojedinih 

stanja. Koristeći podatke o dominantnim NTO parovima, jednostavno je asignirati sve linije 

unutar spektara. Kod citozina primjećujemo najveća odstupanja od eksperimentalnih 

mjerenja, ali nešto bolji rezultati dobivaju se nakon optimizacije citozina u COSMO okolini u 

kojoj NH2 grupa prelazi iz piramidalne u gotovo planarnu konformaciju. 

 
Slika V: Eksperimentalni (crna linija) i simulirani (crvena linija, ADC(2)/aug-cc-pVDZ razina) spektri 
nukleobaza DNK u vodi. Linijski spektar prikazuje prosječne energije pojedinih stanja unutar ansambla. 

Zanimljivo je i proučiti kako se ovi spektri, koji uzimaju u obzir gibanje jezgara oko 

minimuma te utjecaj otapala, razlikuju od energija vertikalnih prijelaza koje se dobivaju iz 

jednostavnog računa pobuđenih stanja iz geometrije minimuma u vakuumu. U tu svrhu 

izračunati su spektri nukleobaza koji postepeno uključuju sve složenije efekte okoline (Slika 
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VI) te su praćenjem preklapanja valnih funkcija asignirana stanja svake geometrije svakog 

ansambla. Kao prvi korak, prijelaz s geometrije minimuma na nuklearni ansambl pri 0K 

(uključenje energije nulte točke) pomiče sva stanja prema crvenom dijelu spektra, u prosjeku 

za ≈ 0,1 eV. Takav učinak je očekivan, pomaci iz minimuma osnovnog stanja u prosjeku 

osnovno stanje destabiliziraju više nego pobuđena stanja. Zatim je promatrana promjena 

temperature s 0 K na 298 K koja ima vrlo mali učinak na same spektre. 

 
Slika VI: Utjecaj temperature i okoline na energije pobude različitih pobuđenih stanja. Prikazani su pomaci od 
vertikalne energije pobude uz postepeno dodavanje (a) energije nulte točke, (b) temperature, (c) elektrostatskog 
učinka otapala, (d) efekta otapala na strukturu molekule te konačno (e) svih efekata zajedno. Za razlikovanje 
stanja različitog tipa, kao osi su korištene očekivane vrijednosti 〈𝑧𝑧2〉 dominantnih ispražnjenih i ispunjenih 
oribtala prema kojima se stanja jasno grupiraju u 𝑛𝑛𝜋𝜋∗, 𝜋𝜋𝜋𝜋∗, 𝜋𝜋Ryd i 𝑛𝑛Ryd tipove. Boje točaka označavaju pomak 
pojedinog stanja (u eV) u odnosu na odgovarajuće stanje u vakuumu. 

S druge strane, elektrostatski efekt otapala je vrlo značajan i nehomogen (Slika VIc). Kada 

se energije pobude iz ansambla na 298 K računaju u COSMO okolini dolazi do pomaka nπ∗, 

nRyd i πRyd stanja prema plavom dijelu spektra za 0,38, 0,69 i 0,34 eV dok s ππ∗ stanja 

blago pomiču (0.03 eV). Ovi pomaci najviše ovise o promjeni dipolnog momenta prilikom 

prelaska iz osnovnog u pobuđeno stanje. Veće promjene dipolnog momenta nisu povoljne u 

otapalu te se takva stanja više pomiču prema plavom. Uz elektrostatski doprinos, otapalo 

utječe i na ravnotežnu geometriju molekule. Taj efekt proučen je optimizacijom osnovnog 

stanja u COSMO okolini te generiranjem novog ansambla koristeći taj minimum (Slika VId), 

čime se prosječne energije pobude nisu značajno promijenile. 

Promatrani pomaci u spektru kvalitativno su jednaki za sve nukleobaze te se zaključci 

mogu primijeniti i na druge molekule sa istim tipovima pobuđenih stanja. Osim nabrojenog, 

iznimno važan utjecaj na spektar mogu imati i vodikove veze između molekule i otapala. 

Energije i oscilatorske snage stanja s pobudama blizu atoma koji tvore vodikove veze mogu 
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se vrlo značajno promijeniti. Međutim, za promatranje tog učinka potrebno je eksplicitno 

uključiti molekule otapala tijekom generiranja nuklearnog ansambla i računa elektronske 

strukture, što je van opsega trenutnog rada. 

Pirol 

Uz razvijene metode moguće je vratiti se na neke od osnovnih fotokemijskih reakcija i 

sagledati ih iz nove perspektive. Jedna od tih reakcija je disocijacija vodika putem πσ∗ stanja 

nakon pobude pirola UV zračenjem.64,65 Unatoč velikom broju radova koji su proučavali ovaj 

problem, dugo vremena je nedostajao kvantitativan opis ovisnosti brzine ove reakcije o valnoj 

duljini zračenja kojim je molekula pobuđena.66 

Ova reakcija istražena je simulacijama neadijabatske dinamike u širokom rasponu valnih 

duljina (200 − 250 nm)37 koristeći kombinaciju B3LYP/def2-TZVPD i ADC(2)/aug-cc-

pVDZ razina teorije. Za opis reakcije nakon pobude na 250 nm ključan je opis minimuma 

najnižeg stanja, 𝐴𝐴2(πσ∗), u koji se izravno pobuđuje molekula pri ovoj valnoj duljini. To 

stanje u regiji oko minimuma ima π3𝑝𝑝𝑧𝑧 karakter, ali izduživanjem N-H veze prelazi u 

disocijativno πσ∗ stanje (Slika VII). Pokazano je da TDDFT (koristeći razne funkcionale) ne 

može dobro opisati ovaj minimum, zbog čega u simulacijama dinamike uvijek daje previše 

brzu disocijaciju nakon pobude. 

 
Slika VII: Presjek ploha potencijalne energije duž koordinate N-H istezanja pri čemu su sve ostale koordinate 
optimizirane u S1 stanju na ADC(2)/aug-cc-pVDZ razini teorije. 

S druge strane, na ADC(2) razini zbog prevelikog miješanja ππ∗ (valentnog) i π3𝑝𝑝𝑥𝑥 

(Rydberg) karaktera nije dobro opisana dinamika nakon pobude u svijetlo 𝐵𝐵2 čiji je minimum 
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bolje opisan na TDDFT razini. Ovo stanje je peto pobuđeno stanje u geometriji minimuma 

osnovnog stanja, ali na TDDFT razini se može vidjeti da gradijent vodi ovo stanje mimo 

ostalih stanja u toj regiji dok ne postane S2 stanje, poviše samo 𝐴𝐴2(πσ∗) stanja. Od tu je 

moguća vrlo brza interna konverzija izravno iz 𝐵𝐵2(ππ∗) u 𝐴𝐴2(πσ∗) stanje. Taj mehanizam 

vidljiv je u dinamici promatranjem elektronskih stanja duž reprezentativnih trajektorija (Slika 

VIIIb). 

 
Slika VIII: Potencijalne energije osnovnog stanja i devet najnižih pobuđenih stanja pirola duž reprezentativne 
TDDFT/B3LYP/def2-TZVPD trajektorije. Trenutno populirano stanje prikazano je crvenim točkama, a 
dominantne virtualne NTO tog stanja u različitim trenutcima prikazane su ispod. 

Pirazin 

Iduća fotokemijska reakcija koja se promatra je interna konverzija u nakon pobude pirazina u 

𝐵𝐵2𝑢𝑢(ππ∗) stanje.67–70 Za ovu konverziju dugo se smatralo da ide direktno u najniže stanje, 

𝐵𝐵3𝑢𝑢(nπ∗), te je zbog svoje jednostavnosti često korištena za testiranje novih metoda za 

kvantnu dinamiku. Međutim, u novije vrijeme otvorena je rasprava o sudjelovanju još jednog 

stanja u fotokemijskom procesu, 𝐴𝐴𝑢𝑢(𝑛𝑛π∗) stanja koje dio teorijskih metoda smješta između 

ova dva dobro istražena stanja.53,54,71–73 Sudjelovanje ovog stanja do sada nije promatrano u 

punoj dimenzionalnosti, jer predstavlja problem za koji je potrebno dobiti dijabatske 

populacije iz simulacija neadijabatske dinamike u adijabatskoj bazi. 

Stoga je napravljena dinamika za ovaj sustav na ADC(2)/aug-cc-pVDZ razini te su 

izračunate „dijabatske“ populacije stanja gore opisanom metodom (Slika IX). Iz ovoga se 

jasno vidi da je 𝐴𝐴𝑢𝑢(𝑛𝑛π∗) stanje populirano vrlo brzo tijekom procesa i to u jednakoj razini kao 

i 𝐵𝐵3𝑢𝑢(nπ∗) stanje.  
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Slika IX: Dijabatske populacije pirazina duž ansambla FSSH trajektorija na ADC(2)/aug-cc-pVDZ razini. 

Uz činjenicu da su oba stanja populirana, primijećeno je da su koeficijenti ovih stanja na 

različitim geometrijama slični. To se može objasniti promatranjem minimuma S1 stanja (Slika 

X) u kojem su ova dva stanja potpuno pomiješana. Do ovog miješanja dolazi zbog promjene 

energije orbitala prilikom izduživanja dvije nasuprotne C-N veze u minimumu čime se 

stabiliziraju π∗ orbitale s čvorovima na tim vezama. 

 
Slika X: a) Energije S1 i S2 stanja na putu od minimuma osnovnog stanja pirazina D2h simetrije do minimuma S1 
stanja Ci simetrije. Gibanja duž puta prikazana su unutar slike. b) Virtualne NTO S1 i S2 u geometriji minimuma 
osnovnog stanja. c) Put između dva ekvivalentna minimuma S1 stanja s prikazanim virtualnim NTO S1 i S2 
stanja koja se mogu dobiti miješanjem orbitala iz minimuma osnovnog stanja. 
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Naravno, uvijek je moguće da su ova zapažanja rezultat krivog opisa ploha potencijalne 

energije na odabranoj razini teorije. Kako bi se potvrdilo da to nije slučaj, potrebna je 

usporedba s eksperimentalnim zapažanjima. 

Zaključak 

Cilj ovog rada bio je unaprijediti miješane klasično-kvantne metode za proučavanje 

fotokemijskih procesa. 

Napravljena je modularna i fleksibilna implementacija LZSH i FSSH algoritama te su 

metode evaluirane kroz usporedbu s kvantnom dinamikom i međusobno. Unatoč 

jednostavnosti LZSH metode, pokazano je da za slučaj interne konverzije u pirazinu daje 

rezultate koji se odlično slažu s FSSH i MCTDH metodama. Međutim, kod pirola LZSH 

predviđa značajno brže vrijeme reakcije od FSSH. U konačnici, može se zaključiti da LZSH 

daje barem kvalitativno točan opis mehanizama u fotokemiji. Time ova metoda postaje važan 

alat za simulaciju neadijabatske dinamike, jer vrlo često faktor koji ograničava preciznost 

računa nije metoda za dinamiku već opis plohe potencijalne energije. U takvim slučajevima, 

LZSH se može lako primijeniti uz naprednije metode za elektronsku strukturu i u slučajevima 

kada neadijabatska sprezanja ili valne funkcije nisu dostupne. 

Također, razvijeni su algoritmi za račun integrala preklapanja valnih funkcija dobivenih 

TDDFT ili ADC(2) metodama za elektronsku strukturu. Uz ove algoritme potpuno je 

uklonjen jedini dio FSSH algoritma čija je cijena usporediva s računom elektronske strukture 

za male i srednje velike molekule. 

Osim bržeg računa neadijabatskih sprezanja, razvijeni kod omogućava i lakšu integraciju 

integrala preklapanja u ostale dijelove teorijskih istraživanja pobuđenih stanja. Tako su 

predloženi algoritmi za optimizaciju pobuđenih stanja, automatsku asignaciju orbitala i 

elektronskih stanja te za dekompoziciju spektara izračunatih metodom nuklearnog ansambla 

na njihove dijabatske kontribucije. 

Ove metode iskorištene su za analizu utjecaja okoline na pojedina elektronska stanja DNK 

nukleobaza. Sistematskim dodavanjem sve složenijih efekata u račun nuklearnih ansambala i 

energija pobude može se doći do generalnog zaključka da promjena energije nekog stanja u 

otopini najviše ovisi o vektoru promjene dipolnog momenta između tog stanja i osnovnog 

stanja. 

U konačnici, proučavane su dva prototipa reakcija u fotokemiji, interna konverzija u 

pirazinu te disocijacija vodika u pirolu. U pirolu je objašnjena ovisnost brzine reakcije o 
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energiji pobude te je pokazano kako je dobar opis miješanja između valentnih i Rydberg-ovih 

stanja ključan za kvantitativno točne simulacije. U slučaju interne konverzije pirazina, po prvi 

put je za dinamiku u punoj dimenzionalnosti pokazano da 𝐴𝐴1𝑢𝑢(𝑛𝑛π∗) stanje nedvojbeno 

sudjeluje u ovom procesu. Kako bi se odredile dijabatske populacije stanja te kontribucije 

pojedinih stanja fotoelektronskom spektru pirazina u različitim trenutcima nakon pobude, 

korištene su razvijene metode za asignaciju stanja i dekompoziciju spektara. Time je 

pokazano da je opis dinamike u kojoj sudjeluju tri stanja u potpunosti konzistentan s 

eksperimentalnim zapažanjima. 
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§1. INTRODUCTION

When molecules absorb a photon in the ultraviolet (UV) or visible region they are promoted to

excited electronic states. In these states they can undergo reactions which are otherwise not pos-

sible or unlikely. The mechanisms of these photochemical reaction involve pathways through

excited states which are not thermally accessible. Examples of important photochemical reac-

tions can be found in all areas of chemistry. In nature, photosynthesis is used to convert carbon

dioxide and water into glucose and oxygen; photochemical reactions such as the isomerization

of retinal are the starting point for vision; in humans Vitamin D is formed only through exposure

to sunlight. These types of reactions are also used in medicine for photodynamic therapy and

in industry for production of various compounds such as benzyl chloride or in various polymer-

ization reactions. Many photochemical reactions have negative effects we wish to avoid such as

photodegradation of many materials or damage of DNA by UV radiation. Understanding these

reactions at a detailed mechanistic level is an area of significant importance in chemistry.

From the theoretical side, studies of these reactions are made difficult by the fact that, by

definition, photochemical reactions involve multiple electronic states which means that a break-

down of the Born-Oppenheimer approximation occurs at some point during the reaction. In

the vicinity of conical intersections (CIs, regions where the potential energy surfaces of two or

more state become degenerate), small changes in the nuclear wave packet cause large changes

in the electronic structure of the system. In such cases, it becomes impossible to fully sep-

arate the electronic and nuclear degrees of freedom in the Schrödinger equation. This prob-

lem can be treated through quantum dynamics methods such as the multi-configuration time-

dependent Hartree (MCTDH) method and its variants1,2 or mixed classical-quantum methods

which treat the nuclei classically and electrons quantum mechanically, but include nonadia-

batic effects through interactions between the two. Among these methods the most popular are

surface hopping (SH) methods and more specifically Tully’s fewest-switches surface hopping

(FSSH) method3,4 in which nuclei move on a single potential energy surface (PES) at any given

moment, but "hops" between different surfaces are possible depending on the nonadiabatic cou-

pling between the states.

Each of these classes of methods has distinct advantages and disadvantages. Quantum dy-

namics can be incredibly accurate, but are very expensive without significant approximations.

Marin Sapunar Doctoral thesis



§1 INTRODUCTION 2

They also require the prior construction of global diabatic potential energy surfaces which is

another difficult task for which there is no general solution. On the other hand, mixed classical-

quantum methods are usually simple to perform "on-the-fly" (without precomputed surfaces)

which makes them especially useful when there is no prior knowledge of the possible mecha-

nism. However, they also require very large numbers of evaluations of PESs and do not include

nuclear quantum effects (NQE).

Both types of methods are still in active development. From the quantum dynamics side,

developments include approximate methods capable of treating very large systems, such as the

multi-level MCTDH method8–10 or "on-the-fly" methods which do not require precomputed

surfaces, such as the variational multiconfiguration Gaussian (vMCG).11,12 From the mixed

classical-quantum side, various expansions and corrections to the FSSH algorithm have been de-

veloped. These include various improvements to the calculation of the required time-derivative

couplings (TDCs),15–17 solve numerical issues at sudden surface crossings,18–22 schemes to

correct for the lack of decoherence in the FSSH algorithm,23,24 and many other areas. One

promising path to fix a basic weakness of FSSH involves adding some NQEs through connect-

ing the FSSH method with ring-polymer molecular dynamics (RPMD).25–29

Another area of development is the nuclear ensemble approach (NEA) through which ob-

servables are calculated in mixed classical-quantum simulations. This approach allows calcu-

lating observables by averaging over values calculated at points representing the nuclear phase

space distribution of the system and is closely related to the overall cost of the calculation since

the goal is always to obtain accurate results while running as few calculations as possible.30–33

However, while we can easily calculate observables, extracting physical insight on the electronic

properties of a system from mixed classical-quantum simulations is not often straightforward.

The only values connected to the electronic degrees of freedom actively used by the FSSH algo-

rithm are the adiabatic populations and nonadiabatic couplings which, by themselves, give little

meaningful insight into the electronic properties of the system. For this reason, even though

photochemical reactions are intrinsically driven by changes in the electronic structure of the

system upon photoexcitation, studies based on SH dynamics calculations are often focused pri-

marily on the changes in the nuclear degrees of freedom which can be analyzed more directly.

In general, it is possible to obtain a qualitative diabatic population by performing a series of

transformations along SH trajectories.75 However, this approach fails for more gradual changes
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of electronic character along trajectories and especially when new states drop into the space

being considered. An alternate to this approach are tools for quantitative analysis of excited

state wave functions such as those developed by Plasser and coworkers.76–81 These tools are

more robust and informative, but have so far not been employed for analyzing the electronic

properties within large nuclear ensembles generated by SH dynamics simulations apart from

specific problems such as the analysis of charge transfer in transition metal complexes.82

The goal of the current work is to improve the efficiency of mixed classical-quantum dy-

namics simulations and simplify the analysis of the results we obtain through these simulations.

First, in section 4.2 we will present algorithms for highly efficient algorithms for calculating

wave function overlaps which is the only part of the FSSH algorithm with a cost comparable to,

or higher than, electronic structure calculations. Then, in section 4.3 we will show how these

overlaps can be used for characterization of electronic states across nuclear ensembles. This

approach finds middle ground between the simple and general, but path-dependent approach

suggested by Mai et al.75 and the robust, quantitative but less general methods suggested by

Plasser and coworkers.76–81 Lastly in sections 4.4 and 4.5, we will apply the developed meth-

ods to reexamine two prototypical problems in photochemistry, the hydrogen detachment in

pyrrole and internal conversion in pyrazine, with a focus on an analysis of the excited states

involved in the processes.
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§2. LITERATURE OVERVIEW

2.1 Nonadiabatic dynamics

We will begin with the basics of quantum chemistry needed for understanding the concepts in

the following section. These topics are covered in detail by many books83–85 and reviews6,86

so here we will only give a brief overview following the notation suggested by Malhado.86 For

chemical phenomena where relativistic effects do not play a role, the dynamics of electrons and

nuclei can generally be described using the time-dependent Schrödinger equation (TDSE)

Ĥ |Ψ〉= i
d
dt
|Ψ〉 . (2.1)

In the above equation, and throughout the text, atomic units are used. For a system consisting

of Nn nuclei with coordinates, masses and charges {Ra}, {Ma} and {Za}, respectively, and Ne

electrons with coordinates {ri}, the Hamiltonian operator Ĥ is

Ĥ =−1
2

Nn

∑
a

1
Ma

∇
2
a−

1
2

Ne

∑
i

∇
2
i +V̂ = T̂N + T̂e +V̂ = T̂N + Ĥe , (2.2)

where the potential energy V̂ is given by

V̂ =−
Nn

∑
a

Ne

∑
i

Za

|Ra− ri|
+

Ne

∑
i

Ne

∑
j

1∣∣ri− r j
∣∣ + NN

∑
a

NN

∑
b

ZaZb

|Ra−Rb|
. (2.3)

It is not possible to solve equation 2.1 analytically for any molecular system and even nu-

merical solutions for systems with more than a few atoms/electrons are possible only with some

approximations.87 The most common path for solving this problem is to start from the Born-

Oppenheimer approximation.88,89 The starting point for this approximation is the observation

that the mass of an electron is over three orders of magnitude smaller than the mass of a proton

which results in a significantly faster time scale for the motion of electrons. Taking this into

account, it makes sense to separate the "slow" nuclear degrees of freedom and the "fast" elec-

tronic degrees of freedom, viewing the full Hilbert space H as a tensor product between the

two subspaces

H = HN⊗He , (2.4)

Marin Sapunar Doctoral thesis



§2 LITERATURE OVERVIEW 5

and to consider the effect of nuclei on the electrons as slowly changing "external" conditions.

In the limit of frozen (clamped) nuclei, the Schrödinger equation of the electronic Hamil-

toninan is

Ĥe(R) |ψn;R〉= En(R) |ψn;R〉 , (2.5)

where Ĥe depends parametrically on the positions of the nuclei R. In this case, its eigenstates

|ψn;R〉 also have a parametric dependence on these coordinates and the eigenvalues En(R) are

a function of the nuclear positions. These eigenstates form a complete basis for the Hilbert

space He, and thus, an arbitrary state of the full system can be expanded in a basis formed from

products of the |ψn;R〉 and basis states of the nuclear degrees of freedom

|Ψ〉= |R,ψn;R〉= |R〉⊗ |ψn;R〉= ∑
n

∫
|R,ψn;R〉〈R,ψn;R|Ψ〉dR . (2.6)

In the coordinate representation this can be written as

Ψ(R,r) = ∑
n

∫
dR′

〈
R,r
∣∣R′,ψn;R′

〉〈
R′,ψn;R′

∣∣Ψ〉
= ∑

n
〈r|ψn;R〉〈R,ψn;R|Ψ〉

= ∑
n

ψn(r;R)χn(R) .

(2.7)

The expansion in equation 2.7 is known as the Born-Oppenheimer or Born-Huang ansatz.

In practice, it is not possible to obtain all of the solutions |ψn;R〉 of equation 2.5. However,

formally these solutions exist and the expansion given above is exact. Inserting this into the

TDSE from equation 2.1 and dropping the explicit parametric dependence of |ψn;R〉 on R for

simplicity, one obtains

i
d
dt ∑

i
|ψi〉 |χi〉= ∑

i

(
−

Nn

∑
a

1
2Ma

∇
2
Ra
+ Ĥe

)
|ψi〉 |χi〉 . (2.8)
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which, after multiplying from the left with
〈
ψ j
∣∣, becomes

i
d
dt

∣∣χ j
〉
=−

Nn

∑
a

1
2Ma

∇
2
Ra

∣∣χ j
〉
+E j

∣∣χ j
〉

−
Nn

∑
a

1
2Ma

∑
i
(2
〈
ψ j
∣∣∇Ra

∣∣ψi
〉

∇Ra
+
〈
ψ j
∣∣∇2

Ra

∣∣ψi
〉
) |χi〉 ,

(2.9)

where the terms that couple the coefficients of the total wave function through the motion of the

nuclei are known, respectively, as the derivative and scalar

F ji =
〈
ψ j
∣∣∇R
∣∣ψi
〉

(2.10)

G ji =
〈
ψ j
∣∣∇2

R
∣∣ψi
〉

(2.11)

nonadiabatic couplings.

Equation 2.9 is still formally exact. An obvious approximation from here is to neglect all

nonadiabatic couplings. This is called the Born-Oppenheimer approximation and results in

uncoupled equations

i
d
dt

∣∣χ j
〉
=−

Nn

∑
a

1
2Ma

∇
2
Ra

∣∣χ j
〉
+E j

∣∣χ j
〉
. (2.12)

The electronic states still depend on the positions of the nuclei, but are always relaxed with

respect to the motion of the nuclei. This corresponds to the adiabatic theorem which states

that a physical system remains in its instantaneous eigenstate if a perturbation is acting on

it slowly enough and if its eigenvalue is well separated from the rest. For this reason the

Born-Oppenheimer approximation is also sometimes called the adiabatic approximation (but

this term is also used for the closely related Born–Huang approximation obtained when the di-

agonal nonadiabatic terms of equation 2.9 are retained). When a system is initially in a given

electronic state |ψn〉, it will always remain in the given state and the motion of the nuclei is

simply motion on a potential energy surface (PES) given by En(R) generated by that electronic

state. The concept of nuclei moving on a PES is central to most dynamical considerations in

chemistry. The "slowly acting perturbation" requirement of the adiabatic theorem is covered

by the initial reasoning for separating the total Hamiltonian based on fast electronic degrees of

freedom and slow nuclear degrees of freedom (the perturbation). The second requirement of

well separated eigenstates is usually true for the electronic ground state in molecules. How-
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ever, for photochemical reactions, which involve excited electronic states, this requirement is

almost never satisfied and a breakdown of the Born-Oppenheimer approximation occurs. In this

case there is need to consider the nonadiabatic couplings which were neglected to arrive at the

adiabatic single state view.

To better understand the reason why the Born-Oppenheimer approximation breaks down

when electronic states are nearly degenerate, it is helpful to take a closer look at the nonadiabatic

couplings. By applying the nuclear gradient to the electronic Schrödinger equation (2.5) and

inserting the definition of the derivative couplings (2.10), one obtains an alternative expression

for the couplings

Fi j =

〈
ψi
∣∣∇Ĥe

∣∣ψ j
〉

Ei−E j
. (2.13)

The denominator in equation 2.13 explicitly shows that the derivative couplings tend to be-

come large when two states approach each other. Importantly, at points where two states are

degenerate the couplings diverge and the adiabatic approximation breaks down completely.

On the other hand, equation 2.13 also confirms that couplings become smaller for states that

are further apart. This allows us to make a new approximation, the group Born-Oppenheimer

or group adiabatic approximation. Assuming a group of g electronic states are well separated

energetically from all other states, the Born-Huang ansatz (2.7) can be truncated to include only

a subset {g} of electronic states

Ψ(R,r) = ∑
n∈{g}

ψn(r;R)χn(R) , (2.14)

where the subset {g} usually involves the lowest electronic states of the system in the relevant

range of nuclear coordinates. This ansatz results in the same TDSE as the full Born-Huang

ansatz, only with electronic states limited to those in {g}

i
d
dt

∣∣χ j
〉
=−

Nn

∑
a

1
2Ma

∇
2
Ra

∣∣χ j
〉
+E j

∣∣χ j
〉

−
Nn

∑
a

1
2Ma

∑
i∈{g}

(2
〈
ψ j
∣∣∇Ra

∣∣ψi
〉

∇Ra
+
〈
ψ j
∣∣∇2

Ra

∣∣ψi
〉
) |χi〉 .

(2.15)

Obviously, the Born-Oppenheimer approximation is a special case with only a single state

in {g}. Since it is never possible to treat all electronic states, equation 2.15 is the starting
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point for almost all dynamical calculations beyond the Born-Oppenheimer approximation in

quantum chemistry. This approximation is often taken as a given, and in practice it is not even

necessary to ensure that the selected electronic states are well separated from higher states.

When dynamics are started with the initial population in some state i < g, the higher lying

states often never acquire a significant population during a propagation. In this case, mixing

(large coupling) between the highest states in {g} and the states above them which are not

included in the calculation has a negligible effect on the overall dynamics.

Methods that can in principle give numerically exact solution to equation 2.15 include

grid based quantum dynamics (QD) approaches, the multiconfiguration time-dependent Hartree

(MCTDH) method which introduces time-dependent basis functions1,2 and trajectory based

methods where the basis functions explicitly follow the nuclear wave functions. The latter in-

clude the variational multiconfiguration Gaussian (vMCG),11 full multiple spawning (FMS)90

and multiconfiguration Ehrenfest (MCE)91,92 methods.

All of these methods are extremely computationally demanding, scaling (unless major ap-

proximations are introduced) exponentially with the number of dimensions of the system being

studied. Since these methods are limited to systems composed of several atoms, there is a need

for more approximate methods which can include some nonadiabatic effects beyond the Born-

Oppenheimer approximation without the cost associated with a fully quantum treatment of the

problem.

2.2 Mixed quantum-classical dynamics

2.2.1 Trajectory based methods

To arrive at a more tractable algorithm for considering nonadiabatic dynamics, we start with the

basic idea of treating the nuclei as classical particles. This is a step further than the separation

of the slow and fast degrees of freedom in the Born-Oppenheimer approximation, but the goal

is to start with this larger approximation and later reintroduce the nonadiabatic effects into

the simplified description of the system. Classical particles can be described by a point in

nuclear phase space (R,v). However, for a description closer to the nuclear wave function |χ〉

a statistical treatment is needed. For this reason, the basic classical construct to describe the

nuclei is their phase space distribution ρ(R,v). The expectation value of any observable µ can
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be obtained by integrating its value weighted by the probability distribution ρ(R,v) over the

full phase space

〈µ〉=
∫ ∫

µ(R,v)ρ(R,v)dRdv =
∫

µ(R)ρ(R)dR , (2.16)

where we assume for simplicity that µ , as will always be the case further in the text, is a function

of the coordinates only and that the velocity can safely be integrated out of the equation giving

ρ(R) which describes the coordinate distribution.

To study dynamical processes, a time evolution ρ(R,v; t) of the phase space distribution

is needed. In purely classical dynamics, this evolution is given by the Liouville equation, but

in practice the most common way for propagating this equation is to represent the distribution

using a set of discreet points {(Ri,vi)}. The full distribution can then be propagated through

time by propagating the individual points using Newton’s equation of motion

Fi = m
d2Ri

dt2 , (2.17)

where the force in the Born-Oppenheimer picture is governed by the electronic Schrödinger

equation as Fi = −∇E0(Ri) with E0(Ri) being the PES of the ground state upon which the

nuclei are propagated. This gives a set of trajectories {Ri} averaging over which at any moment

t is equivalent to integrating over the phase space distribution so eq. 2.16 becomes

〈µ(t)〉=
Np

∑
i

wiµ(Ri(t)) , (2.18)

where wi is the weight of each trajectory and Np the number of trajectories. Usually the initial

points are sampled directly from ρ(R,v;0) so each trajectory has the same weight, 1
Np

.

In mixed quantum-classical dynamics the quantum and classical degrees of freedom interact

so the description of the time evolution given above is not enough. Formally the evolution of

the system in such a case is given by the mixed quantum-classical Liouville equation (QCLE)

where the quantum particles are coupled to a bath of classical particles. This equation is also

usually propagated using trajectories,93 but the equations of motion are more complex and the

trajectories are coupled. Numerically stable and efficient algorithms for solving these equations

are still an open problem.94–96
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On the other hand, the most studied and widely used mixed quantum-clasical dynamics

method is the fewest-switches surface hopping (FSSH) algorithm developed by Tully.3,4 In prin-

ciple FSSH can be derived starting from the QCLE13 or from (also formally exact) nonadiabatic

Bohmian dynamics97,98 and making specific approximations. However, FSSH was introduced

as an ad hoc correction to include nonadiabatic effects into molecular dynamics (MD) simula-

tions99 and is usually still regarded as such. The approach is conceptually simple, intuitively

captures the effects of coupling between electronic states and has given reasonable results for a

wide range of problems in photochemistry.

2.2.2 Fewest-switches surface hopping

As stated above, in this section we will start from the simple fully classical trajectories given

by eq. 2.17, and attempt to reintroduce as much of the nonadiabatic effects while keeping the

method as simple and efficient as possible.

While the definition of the force acting on the nuclei Fi in the adiabatic approximation is

clear since there is only one electronic state, it becomes less obvious when multiple electronic

states ψA(r;R) need to be taken into account. Going beyond the BO approximation, each of

these states has an accompanying nuclear wave function |χA〉 in the Born-Huang ansatz of

equation 2.14. Above, we replaced a single nuclear wave function by a phase space distribution

ρ(R,v). If we hope to retain a classical view of the nuclei when multiple states are involved

we can imagine that each state will need its own phase space distribution ρA(R,v). Then the

key question for developing trajectory based nonadiabatic dynamics methods is how to connect

the propagation of trajectories representing {ρA(R,v)} with the propagation and transfer of

population between electronic states {|ψA(r;R(t))〉}.

In the surface hopping view, each trajectory is assigned to a particular electronic state. Rep-

resenting the flow of population between the different states at a given time is accomplished by

changing this assignment (hops between surfaces). This means that each trajectory is described

by the coordinates and current state as a function of time, (Ri(t),λi(t)). The force acting on the

nuclei is then defined simply by the gradient of the current electronic state.

The key question to answer is how to determine the population flow between the electronic

states. In FSSH this is done by propagating an electronic wave function |Ψ(r, t;R)〉 in conjunc-
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tion with each trajectory. The ansatz used is similar to the Born-Huang expansion

|Ψ(r, t;R)〉= ∑
A

cA(t) |ψA(r;R(t))〉 . (2.19)

with the nuclear wave functions |χA〉 replaced by time-dependent coefficients cA(t) which do

not explicitly contain information on the motion of the nuclei. Inserting 2.19 into the TDSE and

multiplying from the left with |ψB〉 we obtain an equation for the time evolution of the wave

function coefficients

dcB

dt
= ∑

A
cA(−〈ψB|Ĥe|ψA〉+ i〈ψB|

d
dt
|ψA〉) . (2.20)

In the basis of eigenstates of the electronic Hamiltonian equation 2.20 becomes

dcB

dt
=−cBEB +∑

A
cA 〈ψB|

d
dt
|ψA〉 , (2.21)

where we see that the electronic states are coupled through the time-derivative couplings 〈ψB| d
dt |ψA〉

(TDC). These couplings are related to the derivative nonadiabatic couplings 2.10 and the nuclear

velocity using the chain rule:

σBA ≡ 〈ψB|
d
dt
|ψA〉= 〈ψB|∇R|ψA〉

dR
dt

. (2.22)

Changes in the coefficients {cA} along a trajectory are used to determine when a hop (change

of state) should occur. At each step during the trajectory propagation, the hopping probability

from the current state B to any other state A is equal to the change in the population of state B

(c∗B(t)cB(t)) due to flux to A during the time step ∆t. Using equation 2.21, we can derive that

this probability should be

PB→A = max(0,− 2∆t
c∗BcB

Re(σBAcAc∗B)) , (2.23)

where max() is used because the population can flow from A to the current state B, in which

case the flux is negative. However, a negative flux just means that hops would instead occur in

trajectories where the current state is B. Hops are then decided by sampling a random number
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r ∈ [0,1] and evaluating
A−1

∑
C

PB→k ≤ r ≤
A

∑
C

PB→k (2.24)

for each state A. If the condition is true and if energy conservation can be ensured after a

hop, the propagation is continued on that state. For now we assumed that the time step ∆t is

infinitesimal and we will deal with the implications of discretized time steps in section 2.2.3.

This type of sudden switch from one PES to another is not physical. However, when attempt-

ing to describe quantum effects using classical trajectories, it is in general more meaningful to

consider the full swarm of trajectories instead of individual trajectories. When repeating the

above procedure for many trajectories the goal is to ensure that the proportion of trajectories in

a given state will be equal to the average population for each state A,

〈
|cA(t)|

2
〉
= ∑

i
δλi(t)Awi (2.25)

The reason for using the population flux instead of the populations themselves to deter-

mine hopping probabilities is that this minimizes the number of hops needed to satisfy the

requirement given by equation 2.25 at any moment (this is why the method is called "fewest-

switches"). The importance of this point is easily illustrated by imagining an algorithm with

population based hopping probabilities going through a region of heavy mixing. Equation 2.25

would still be satisfied, but at each step the gradient followed by many of the trajectories would

change. This would result in the motion of the individual trajectories, but also of the whole

ensemble, being similar to motion on an averaged PES instead of two distinct types of motion

on one state or the other.

The general procedure described above is the basis of FSSH. Once the initial conditions are

defined, the only values needed to propagate a trajectory are the energies of the electronic states,

the gradient of the current electronic states and the couplings between all electronic states.

Computing energies and gradients is the most standard task of electronic structure calculations,

and analytical nonadiabatic coupling vectors (related to TDCs through equation 2.22) have been

implemented for various electronic structure methods.

However, for a robust algorithm we also need to consider many additional details. One ac-

tive field of research is how to generate the initial conditions for trajectories31,100–105 and how to

obtain observables based on an ensemble of nuclear trajectories31–33,106 which will be covered
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in section 2.2.5. Another active field deals with evaluating the nonadiabatic couplings4,15,16 and

integrating the TDSE while taking into account possible sharp peaks in the couplings19–21,107

which will be covered in section 2.2.3. Two other important question which we will only briefly

touch on here are how exactly to enforce energy conservation after hops108–111 and how to cor-

rect for the lack of decoherence in SH.13,112–115

Energy conservation: For a hop to occur it is not necessary for the two states to be degen-

erate and it is possible (if unlikely) for the energy separation to be substantial. This creates an

energy conservation problem during FSSH trajectories which is solved by scaling the velocity

whenever a hop occurs. This should be done along the direction of the nonadiabatic coupling

vector Fi j,
108,109 but is also sometimes (when coupling vectors are not available) done along

the direction of the momentum or uniformly along all directions. If energy conservation is not

possible due to lack of kinetic energy along the chosen direction, the hop is rejected. This situa-

tion is referred to as a frustrated or forbidden hop and is handled either by reversing the velocity

along the chosen direction (as in elastic scattering) or by ignoring the hop continuing the trajec-

tory on the initial state with no changes. The former approach is considered more justified and

gives better results in most (but not all116) cases.110,111

Correctly achieving energy conservation during dynamics is important from a theoretical

perspective, but usually less so from a practical perspective. For real systems with many de-

grees of freedom these corrections are usually minor since hops mostly occur when the gap

between two states is much smaller than the total kinetic energy of the system. However, in

some cases the choice regarding the treatment of momentum rescaling and frustrated hops can

have a significant impact on the overall dynamics even for molecular systems.117

Decoherence: Overcoherence in the standard FSSH algorithm is an additional problem that

needs to be resolved. The coupling at a given moment in each trajectory depends only on the

current nuclear position which is determined solely by motion on the current surface. For a

given trajectory, amplitudes on all states other than the current one represent "virtual" trajec-

tories moving alongside the "real" trajectory.112 In effect, this means that after bifurcating at a

crossing, two parts of a nuclear wave packet on different surfaces do not move apart. Because of

this, they also do not experience the same level of decoherence as they would in global methods.
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An ideal solution to this problem is not possible inside the independent trajectory approx-

imation. However, a number of approximate recipes have been given based on damping the

amplitudes of all states other than the currently populated one. Of these we will only mention

commonly used procedure suggested by Granucci and Persico114 based on the work by Zhu

and coworkers113,118 referred to as energy based decoherence or as non-linear decay of mixing.

Here the populations of all states other than the currently populated one are reduced after each

time step based on their energy difference with the the current state:

C′A =CAe
− ∆t

2τAB , ∀A 6= B

C′B =CB

(
1−∑A6=BC′A
|CB|

2

)1/2

τAB =
h̄

|EA−EB|

(
1+

α

Ekin

)
,

(2.26)

where Ekin is the nuclear kinetic energy and α an empirical parameter determining the strength

of the decoherence correction. Based on some initial numerical tests, small changes in the

empirical parameter were shown to have little impact on the overall dynamics.113 A default

value of 0.1 Hartree was suggested114 and was used in almost all subsequent calculations.

Like the question of energy conservation, decoherence is more often studied from the theo-

retical side than for the practical effect it has on simulations of actual molecular systems. Mostly

it is considered satisfactory to have at least some form of correction, which is why the simple

algorithm presented above is the most common choice. On the other hand, if a system is ex-

pected to pass through the same interaction region many times during a photochemical reaction,

a correct treatment of decoherence is critical.13 This is an active area of research which is be-

yond the scope of this overview. For a more detailed theoretical consideration of this problem,

the reader is referred to the work of Subotnik and coworkers13 and the references within.

2.2.3 Couplings and wave function overlaps

The key quantity that differentiates FSSH molecular dynamics and most other nonadiabatic

dynamics algorithms from ground state Born-Oppenheimer molecular dynamics is the cou-

pling between electronic states. As stated by equation 2.22 time-derivative couplings σBA

can be easily obtained using the nuclear velocity vector and nonadiabatic coupling vectors
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ψ j
∣∣∇R
∣∣ψi
〉
. Analytical algorithms for obtaining the latter have been developed for numer-

ous electronic structure methods. This includes couplings for TDDFT119 with linear response

TDDFT41,56,120,121 and within the Tamm-Dancoff approximation,42,122 equation-of-motion CC

methods,40,123 MCSCF,124 state averaged CASSCF,125 MRCI,126,127 and CASPT2128 which

covers many of the most commonly used electronic structure methods for excited electronic

states.

While this is in theory all that is needed for FSSH calculations, there is one physical and

two practical problems with using TDCs obtained in this way. The physical problem is that

TDCs can change quickly and are often not well represented by their values at the start and

end of a nuclear time step (we will get back to this problem shortly). The practical problems

are that 1) analytical NACV calculations add a significant extra step to the electronic structure

calculations which are already the bottleneck of FSSH calculations and 2) implementing this

type of calculation is not trivial and is usually done only for methods that are well established

which prevents the use of cutting edge electronic structure methods for FSSH.

These practical problems have been noticed very early in the development of FSSH and

already in 1994 Hammes-Schiffer and Tully4 proposed calculating the TDCs by numerical dif-

ferentiation of the electronic wave functions along the trajectory using finite differences

σAB(t +
∆t
2
)≈ 1

2∆t
(〈ψA(t)|ψB(t +∆t)〉−〈ψB(t +∆t)|ψA(t)〉) . (2.27)

Calculation of couplings based on this equation is usually called the HST method. The accuracy

of this method for calculating couplings was confirmed in several studies.15,38

Using this equation, it is possible to obtain the TDCs for any wave function for which we

can compute overlap matrix elements of the form SAB =
〈
ψA
∣∣ψ ′B〉. Here we use the prime to

signify that the two wave functions correspond to different time steps. It is important to stress

that this does not just mean that the two states are not orthogonal (due to being solutions of

the electronic Schrödinger equation at different geometries), but also usually means that they

are built using different basis sets since atomic basis functions explicitly depend on the nuclear

coordinates. This complicates the calculation since it requires taking into account the Slater

determinant (SD) form of the wave functions.

In general we can consider the problem of calculating the matrix for two sets of states {|ψA〉}
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and
{∣∣ψ ′B〉}

|ψA〉=
ndet

∑
a

dA
a |Φa〉 (2.28)

and ∣∣ψ ′B〉= n′det

∑
b

d′Bb
∣∣Φ′b〉 (2.29)

where a and b are collective indices running over all combinations of orbitals from which SDs

|Φa〉 =
∣∣∣φa(1)α · · ·φa(nα )α

φa(nα+1)β · · ·φa(nα+nβ )β

∣∣∣ are constructed. We use {φiα} and
{

φiβ
}

to

denote the set of all α and β spin orbitals, respectively. Inserting into the expression for overlap

matrix elements, we obtain

SAB =
ndet

∑
a

n′det

∑
b

dA
a d′Bb

〈
Φa
∣∣Φ′b〉 . (2.30)

Elements
〈
Φa
∣∣Φ′b〉 can be calculated as the determinant of the overlaps of individual orbitals

from which the SDs are built.16,129 The orbital overlap matrix is block diagonal so the final

expression can be divided into separate spin α and β blocks. The overlap between the two SDs

can then be written as

〈
Φa
∣∣Φ′b〉=

∣∣∣∣∣∣∣∣∣

〈
φa(1)α

∣∣∣φ ′b(1)α〉 · · ·
〈

φa(1)α

∣∣∣φ ′b(nα )α

〉
... . . . ...〈

φa(nα )α

∣∣∣φ ′b(1)α〉 · · ·
〈

φa(nα )α

∣∣∣φ ′b(nα )α

〉
∣∣∣∣∣∣∣∣∣× (2.31)

∣∣∣∣∣∣∣∣∣

〈
φa(nα+1)β

∣∣∣φ ′b(nα+1)β

〉
· · ·

〈
φa(nα+1)β

∣∣∣φ ′b(nα+nβ )β

〉
... . . . ...〈

φa(nα+nβ )β

∣∣∣φ ′b(nα+1)β

〉
· · ·

〈
φa(nα+nβ )β

∣∣∣φ ′b(nα+nβ )β

〉
∣∣∣∣∣∣∣∣∣

=
〈
Φa
∣∣Φ′b〉α

〈
Φa
∣∣Φ′b〉β

, (2.32)

where
〈
Φa
∣∣Φ′b〉σ

was defined as the determinant of the spin σ block of the overlap.

The calculation of a single determinant is usually performed using LU factorization and

scales as O(n3) , where n is the size of the matrix. This means that equation 2.30 scales as

O(ndetn
′
detn

3). This scaling is always worse than the underlying electronic structure calculation

used to compute the wave function meaning that this type of calculation can quickly become the

bottleneck of FSSH calculations. However, due to a much smaller prefactor, even without any

optimizations or approximations the evaluation of eq. 2.30 is significantly faster than electronic
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structure calculations while the number of determinants is sufficiently low.

In order to evaluate the overlap matrix for larger systems, active spaces or basis sets, more

efficient algorithms are needed. For this, one should also take into account the form of the wave

function in the electronic structure method. For single reference methods, expansions 2.28

and 2.29 will contain many determinants which differ in only a single or a few orbitals. For

multireference methods based on the complete active space expansion, the wave functions will

contain many different determinants, but determinants with a given arrangement of orbitals of

a given spin will repeat in determinants with many different arrangements of orbitals of the

opposite spin. These properties were used by Plasser et al.16 to develop a fast general algorithm

for such calculations. Their algorithm is based on sorting and reusing the spin blocks appearing

many times in CASSCF wave function expansions and on expanding the determinants in terms

of minors and reusing these minors to compute multiple determinants when enough of them

differ by only a single orbital.

This approach significantly increases the efficiency of overlap calculations, but it only

pushes the point at which these calculations become the bottleneck to medium sized systems

or active spaces. An alternative approach is to introduce approximations to the overlap calcu-

lation. Pittner et al.15 introduced two thresholds to their implementation of eq. 2.30, a mutual

excitation threshold tme (determinants with a significantly different number of excitations from

the reference orbital are assumed to have negligible overlap) a coefficient product threshold

tcp (when the product of the CI coefficients of two determinants is negligible in all states the

corresponding matrix element is not calculated) so the overlap between two SDs a and b are

calculated only when conditions

tme
ab ≥

∣∣∣∣∣∑i
δa(i)i−∑

i
δb(i)i

∣∣∣∣∣ (2.33)

tcp
ab ≥∑

A
∑
B

∣∣∣dA
a d′Bb

∣∣∣ (2.34)

are met. Another approximation scheme was offered by Plasser et al.,16 here the approximation

is made at the wave function level introducing a threshold for the norm of the wave function

tnorm, the CI expansions 2.28 and 2.29 are sorted and truncated to keep the smallest number of
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determinants satisfying the condition

tnorm
A ≤∑

a

∣∣∣dA
a

∣∣∣2 (2.35)

to form truncated wave functions |ψ̃A〉 which are then used in the overlap calculation. If we as-

sume that these approximations have negligible effect on the angle between the wave functions,

errors due to the reduction of their norms can be canceled out simply by re-normalizing (or

orthogonalizing) the final overlap matrix. Another method for speeding up these calculations

along with a more detailed analysis of the effects of approximating the wave functions will be

given in 4.2.

A completely different approach for obtaining TDCs was developed by Ryabinkin and

coworkers17 based on orbital derivatives. In this approach TDCs are also evaluated by numer-

ical differentiation, but the SDs are expanded before differentiation resulting in an expression

where the finite difference scheme can be applied to the orbitals and coefficients themselves

instead of the determinants. This approach is always significantly faster, scaling with the third

power of the size of the system for a CIS type wave function. However, this approach does

not compute the overlap matrix between wave functions at the two time steps which is itself a

key quantity for FSSH calculations. This is especially true for the problem of trivial crossings

which will be described in detail in the following section.

Trivial crossings: In classical molecular dynamics, motion is governed by a single potential

energy surface which is a smooth functions of nuclear coordinates and the equation of mo-

tion 2.17 can be integrated using standard methods such as the velocity Verlet algorithm.130 A

time step on the order of 1 fs is usually small enough to adequately cover the high frequency

motions in molecular systems and ensure a stable propagation.

The situation in mixed quantum-classical dynamics simulations is significantly more com-

plicated because, in the vicinity of conical intersections, nonadiabatic couplings are highly

peaked functions. There is no limit to how narrow or high these peaks can be in the case

of weakly avoided crossings. In the case of unavoided (trivial) crossings, couplings are delta

functions. In practice, this means that couplings can be nearly zero at the start and end of a

time-step, but increase to very high values during the time step. This is illustrated in Fig 2.1
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where we see two intersections of the same diabatic states with different coupling strengths.

In the first case, the two states mix over four nuclear time steps and the nonadiabatic coupling

is reasonably described by the values calculated at discreet time steps. On the other hand, in

Fig. 2.1a, the two states are very weakly coupled which leads to a highly peaked nonadiabatic

coupling which occurs in between two time steps. In this case, a nonadiabatic transition should

almost definitely occur, but likely won’t if only the couplings at the discreet time steps are used

to calculate the probability.

t t+dt t+2dtt-dt

t t+dt t+2dtt-dt t t+dt t+2dtt-dt

t t+dt t+2dtt-dt

a) b)

Figure 2.1: Adiabatic (full lines) and diabatic (dashed lines) states and nonadiabatic couplings
(blue lines, bottom panels) for the case of strong (a) or weak (b) coupling between diabatic
states. Values calculated at discreet nuclear time steps are marked by black dots. In the case of
weak coupling the peak in the nonadiabatic coupling is too narrow to be captured by discreet
time steps.

The problem of trivial crossings is perhaps most easily seen for systems with a large physical

separation between excited states. When simulating a system composed of two subsystems

separated by hundreds of ångström analytic TDCs between two states on different subsystems

are likely to always be almost exactly zero, but if two states cross during a time step it is obvious

that the same diabatic state should be followed.19,107 The job of any practical FSSH algorithm is

then to be able to recognize and handle this type of situation, but also any borderline situation.

This also needs to be done without resorting to arbitrarily small nuclear time steps, ideally

without any additional electronic structure evaluations.

Since they can vary massively during a time step, direct interpolation of TDCs is not an

option. On the other hand, information on any sudden peaks in the coupling during the time

step will be preserved in the wave functions at the end of a time step. The σAB(t +
∆t
2 ) on
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the left-hand side of equation 2.27 is actually a measure of the change in the wave functions

during the time step, an approximation of the average σAB during the full time step. Due to this

property, TDCs obtained from wave function overlaps are significantly more numerically stable

than analytical calculations.

However, equation 2.27 by itself is not enough for a correct evaluation of hopping proba-

bilities, especially in the case of trivial or nearly trivial crossings. The issue that needs to be

addressed is what assumptions to make about the changes of the electronic states during the

time step while integrating the TDSE. This can be split into two connected but partially distinct

problems; 1) how to interpolate the wave functions or couplings during the step while integrat-

ing the TDSE and 2) how to match the phases of the wave functions at the beginning and end

of the time step.

Interpolation and integration: Approaches to integrating the TDSE given in equation 2.20

can in general be separated into two caregories, adiabatic and diabatic. As mentioned above, if

the equation is integrated in its original adiabatic form 2.20 care needs to be taken to correctly

interpolate the possibly highly peaked couplings. On the other hand, the equation can be trans-

formed into a basis of (quasi)diabatic states between which the couplings are (almost) zero. In

this case the main problem is finding an adequate diabatic basis.

In the adiabatic representation, the averaged couplings evaluated at t + ∆t
2 using eq. 2.27 are

a better approximation than those evaluated analytically at t and t +∆t since they are actually

a measure of the change in the wave functions during the time step. However, this procedure

still causes large numerical errors such as probabilities larger than unity. These problems can be

alleviated by evaluating the hopping probability at substeps during the integration of the TDSE

instead of once for each nuclear time step:

PB→A = max(0,− 2∆τ

cB(τ)
∗cB(τ)

Re(σBA(τ)cA(τ)cB(τ)
∗)) , (2.36)

where τ is the time during the current integration substep and ∆τ is the substep duration. This

probability can then be integrated during the full nuclear time step to determine whether a hop

should occur at the end of the step56 or hops can be allowed during each substep.131 In either

case, σBA(τ) needs to be evaluated in some way. At first this was done by linear interpola-

tion/extrapolation of the TDCs evaluated at t + ∆t
2 using eq. 2.27.56,131
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However, this type of interpolation of the individual elements of the TDC matrix does not

correspond to physically meaningful changes of the electronic wave functions along the sub-

steps. Meek and Levine20 suggested a method called norm-preserving interpolation (NPI) de-

riving σBA(τ) by assuming that the adiabatic wave functions during the time step change via a

unitary transformation

|ψA(τ)〉= U(τ) |ψA(t)〉 (2.37)

where U(τ) is a unitary matrix corresponding to pairwise rotations connecting the initial wave

functions {|ψA(t)〉} with the final wave functions {|ψA(t +∆t)〉}. The TDCs can then be calcu-

lated from {|ψAτ〉} and even analytically integrated over the time step

σBA(t +
∆t
2
) =

1
∆t

∫ t+∆t

t
〈ψB(t)|U

†(τ)
∂

∂τ
U(τ)|ψA(t)〉dτ (2.38)

to give a better approximation of the average TDC than the finite difference approach.

The key advantage of this procedure is that it maintains orthonormality between the states at

all times. This approach was improved by Jain et al.24 when they derived a general expression

for σ which does not rely on pairwise rotations. Starting from the time derivative of the overlap

matrix elements

∂SBA

∂τ
= 〈ψB(t)|

∂

∂τ
|ψB(t + τ)〉 (2.39)

= ∑
M
〈ψB(t)|ψM(t + τ)〉

〈
ψM(t + τ)

∣∣∣∣∂ψB(t + τ)

∂τ

〉
(2.40)

= ∑
M

SBMσMA (2.41)

leads to the differential equation in matrix notation

∂S
∂τ

= Sσ (2.42)

Which can be used to evaluate σ . Averaged over the nuclear time step this gives

σ(t +
∆t
2
)≈ 1

∆t
logS(t, t +∆t) , (2.43)

where S(t, t +∆t) is the overlap matrix between adiabatic wave functions at two nuclear time
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steps. In order to evaluate the equation above, S needs to be a unitary matrix corresponding to

a proper rotation. This can be achieved by orthogonalizing the matrix and correctly assigning

the phases of the wave functions (see below).

If the dynamics are based on propagating the TDSE in the diabatic basis, the most com-

monly used approach is the local diabatization (LD) formalism introduced by Granucci and

coworkers.18 In this approach, instead of constructing global diabatic surfaces, the diabatiza-

tion is performed on-the-fly along the nuclear trajectory so that couplings are negligible only

along the path. The adiabatic to diabatic transformation matrix is defined simply as the orthog-

onalized overlap matrix T = S[ST S]−1/2. This matrix is used to transform the Hamiltonian into

the diabatic basis

H(t +∆t) = T(t +∆t)E(t +∆t)TT (t +∆t) , (2.44)

where E is the Hamiltonian in the adiabatic representation (containing the adiabatic energies on

the diagonal). Since the diabatic states are constructed to change as little as possible along the

time step, this matrix can be safely interpolated by linear interpolation

H(τ)≈ E(t)+ [H(t +∆t)−E(t)]
τ

∆t
. (2.45)

Within this approximation, the TDSE is easily integrated analytically and the hopping proba-

bilities are defined using the changes of adiabatic populations along the time step.

Since large errors are expected only in case of trivial crossings, a third option is to rec-

ognize this situation and treat it as a special case. This is done by Wang and coworkers21,22

by detecting crossings based on the overlap matrix and using a different formula for calculat-

ing the probability of hopping to the state with the maximum overlap with the current state.

Fernandez-Alberti and coworkers19,107 assigned the states by solving the assignment problem

for the overlap matrix. If the current state is assigned to a different state of the next step and if

the corresponding overlap matrix element is greater than some threshold, the crossing is treated

as a trivial crossing and the hop is made without evaluating the probability.

Phase matching: Electronic wave functions are eigenvectors of the electronic Schrödinger

equation. This means that multiplying them by -1 (for real wave functions) results in a wave

function that satisfies the same equation. Normally a change of sign makes no difference since
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all relevant expectation values are insensitive to this phase factor. However, when integrating the

TDSE during FSSH simulations, we assume that the wave functions change smoothly during

the time step and if the phase factor is different between the two time steps this assumption

cannot hold.

Tracking and correcting these phases is critical for the correct evaluation of hopping prob-

abilities at trivial crossings when propagating in the adiabatic basis. This can be illustrated for

the simple toy model of a trivial crossing between two electronic states. Four possible overlap

matrices can be obtained in such a case:0 1

1 0

,

 0 −1

−1 0

,

0 −1

1 0

,

 0 1

−1 0

 , (2.46)

depending on the (basically random) phase factor of each wave function returned by the elec-

tronic structure calculation. While each of these matrices is unitary, the first two are not rotation

matrices (their determinants are -1 instead of 1). Attempting to use these matrices with the HST

or NPI methods would result in all TDCs being exactly zero and the logarithm of the matrix

required by the method of Jain et al.24 would be a complex number matrix.

In practice elements of overlap matrices are basically never exactly zero so the simplest

way to ensure that the overlap matrix corresponds to a rotation is to multiply the columns of the

matrix so that all diagonal elements are positive.15 However, simply ensuring that the matrix is

a rotation matrix is not enough to ensure that the path followed during interpolation will be the

best path, especially where there are multiple state crossings within the time step. In such cases

the choice of phase factors will determine which states will mix during the interpolation.

A sensible solution is usually obtained by assigning the states at the beginning of the time

step to those at the end of the step. This is most simply done by placing the elements with the

maximum value on the diagonal before correcting the phases.132 However, in some cases, this

method still leaves some ambiguity regarding the relative phases of the states. Zhou et al.43

attempt to solve this ambiguity by suggesting that the optimal selection of phase factors is the

one for which the path covered by the wave functions during the rotation is minimal. This is

obtained by minimizing Tr
(
|logU|2

)
for which they give an approximate numerical algorithm.
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2.2.4 Landau-Zener surface hopping

Trajectory surface hopping methods differ from standard adiabatic molecular dynamics by an-

swering one additional question: what is the probability of transitions between different elec-

tronic states? It is therefore instructive to look at a model system where this question can be

answered analytically, the Landau-Zener model.133–135 The solution of this apparently simple

model can give useful insight into the parameters which have an effect on the transition proba-

bility. The equation can also be used as the basis of an approximate algorithm for much more

complex situations. While this algorithm is not expected to perform ideally in all cases, it has

the advantage of bypassing the most difficult part of the FSSH algorithm - the calculation of

nonadiabatic couplings.

The assumptions underpinning the Landau-Zener model are: (1) only two-states are inter-

acting in the relevant region of the nuclear coordinate space, (2) the two states are interacting

in a limited region, (3) the system can be described by diabatic states which coincide with the

adiabatic states far from the interaction region, (4) all elements of the diabatic Hamiltonian have

at most a linear dependence on the nuclear coordinates and (5) the velocity along the trajectory

is constant. In general, we can write the Hamiltonian in the diabatic or adiabatic basis as

Ĥd =

H11(z) H12(z)

H12(z) H22(z)

 , Ĥa =

V+(z) 0

0 V−(z)

 , (2.47)

where, z(t) is a general nuclear coordinate passing through an interaction region where the

diabatic surfaces cross at z(tc) = zc. We will denote the diabatic states {|φ1〉 , |φ2〉} and the

adiabatic states {|φ−〉 , |φ+〉}. The second assumption above is ensured by the condition

lim
|z|→∞

H12(z)
|H11(z)−H22(z)|

= 0 , (2.48)

which in combination with assumption (4) means that the off-diagonal elements cannot depend

on z. This gives the form for the Hamiltonian of the Landau-Zener model as

Ĥd =

h11 + s1z h12

h12 h22 + s2z

 , (2.49)
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which can further be simplified without loss of generality by choosing the coordinates so that

tc = 0 and zc = 0

Ĥd =

s1z h12

h12 s2z

 . (2.50)

For this model, the adiabatic energies (eigenvalues of Ĥd) are

V±(z) =
1
2
(s1z+ s2z±

√
4h2

12 +(s1− s2)
2z2) (2.51)

and the gap between the states is

g(z) = |V+(z)−V−(z)|=
√

4h2
12 +(s1− s2)

2z2 , (2.52)

which is equal to 2|h12| at the gap minimum. So while the gap depends on the difference

between the slopes of the two states ∆s ≡ s1− s2, how close they can approach depends only

on the coupling between the states. For the Landau-Zener formula (see below) to be exact,

the slopes of the two states need to have the same sign. The model is illustrated in Fig. 2.2.

The diabatic surfaces are straight lines intersecting at tc while the adiabatic surfaces exhibit and

avoided crossing in the region around the diabatic crossing point. Because of this, the lower

surface V− corresponds to diabatic state H11 in the limit as z goes to −∞ and to H22 as z goes to

+∞.

- 0.10 - 0.05 0.00 0.05 0.10

- 0.4

- 0.2

0.0

0.2

0.4

Figure 2.2: Adiabatic (full lines) and diabatic (dashed lines) potentials in the Landau-Zener
model. The diabatic states cross at zc = 0 while the adiabatic states exhibit an avoided crossing.

The electronic wave function of the system can be written in terms of adiabatic states as

|Ψ(z, t)〉= c−(t) |φ−(z)〉+ c+(t) |φ+(z)〉. Assuming the full population is initially in one of the
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states (i.e. |Ψ(z, t0)〉= |φ+〉), the probability that a non-adiabatic transition occurred up to some

point t is simply the population of the other state |c+(t)|
2. Alternately, we can write the wave

function in terms of diabatic states |Ψ(z, t)〉 = c1(t) |φ1(z)〉+ c2(t) |φ2(z)〉. Now we can insert

the diabatic Hamiltonian into the time-dependent Schrödinger equation to obtain a system of

equations

ih̄
dc1
dt

= h12c2 exp
(
− i

h̄

∫ t

t0
∆sz(t)dt

)
= h12c2 exp

(
− iv

2h̄
∆s(t2− t2

0)

)
ih̄

dc2
dt

= h12c1 exp
(
− i

h̄

∫ t

t0
∆sz(t)dt

)
= h12c1 exp

(
− iv

2h̄
∆s(t2− t2

0)

) , (2.53)

where we have used the assumption of constant velocity to expand z(t) as vt and solve the

integrals in the exponent. In the limit of t0� tc� t this system of equations can be solved ana-

lytically. Since the adiabatic and diabatic states can be equated in the same limit so c+(−∞) =

c2(−∞) and c−(∞) = c2(∞), this gives the Landau-Zener formula for the nonadiabatic transition

probability

P = exp

(
−2πh2

12
h̄v∆s

)
. (2.54)

Equivalently, the equation above can be written in terms of the adiabatic energies48,49 as

P = exp

− π

2h̄

√
g3(tc)
g̈(tc)

 , (2.55)

where g̈(tc) is the second-order time derivative of the energy gap. These equations show that the

transition probability increases exponentially when the minimum of the gap between two states

decreases, when the difference between the slopes of the states increases, or when the velocity

with which the crossing region is approached increases.

Now that we have detailed the approximations of the LZ model we are ready to consider how

and when the equations derived for this simple model system are applicable to more realistic

systems. Historically, the diabatic LZ formula was used to study atomic or molecular collisions

where the interaction is dominated by a single coordinate (distance between the subsystems) and

is large only in a small region when the two subsystems are near, simplifying the construction

of a diabatic basis. However, classical trajectories are one dimensional objects in phase space

regardless of the number of dimensions of the system so the trajectory can always be written in
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some general form z(t). Construction of a diabatic basis is also not needed if diabatization can

be performed locally along the trajectory in a way similar to the locally diabatic formalism of

FSSH18 or if the recently derived adiabatic version of the LZ formula48 is used.

In terms of studying photochemical reactions, nonadiabatic interactions between electronic

states in molecules are known to be sharply peaked satisfying the requirement for a localized

interaction region. On the other hand, many photochemical reactions of interest involve more

than two states. This is a problem for the LZ model unless each interaction region involves

only two states and is well separated from other states. The topography of the potential energy

surfaces is also surely more complicated than the linear dependence in the LZ model, but a

linear model might still be adequate in the narrow intersection region.

Interest has recently grown in using the Landau-Zener formula for a surface hopping al-

gorithm. This was done first using by constructing a locally diabatic basis and applying the

diabatic LZ formula136 and a few years later the adiabatic version was derived48,49 and used

to study low dimensional models of molecular systems.50,137 Algorithms were also devel-

oped (also with constructing a locally diabatic basis) using the related, but more general Zhu-

Nakamura formula and were shown to give a very good agreement with FSSH for molecular

systems.51,52 The LZ formula was also used recently to treat intersystem crossing both in the

context of AIMS138 and surface hopping.139

The primary motivation for all of these studies is due to the fact neither formula for hopping

probability requires the knowledge of nonadiabatic couplings. This is a very attractive property

mainly because it almost completely trivializes interfacing the surface hopping algorithm with

any electronic structure method/code which can compute analytical gradients of excited states,

but also because the coupling calculation is the most computationally expensive and hardest to

implement part of the FSSH algorithm. Algorithms based on the Zhu-Nakamura formulas were

also used in recent attempts to use potential energy surfaces based on machine learning models

in nonadiabatic dynamics simulations since the highly peaked nonadiabatic couplings are hard

to learn using machine learning algorithms.140,141

Section 3.2.1 details a practical implementation of a surface hopping algorithm based on

equation 2.55 with care taken to assure the numerical stability of the calculated probabilities.

In section 4.1 the LZ algorithm is compared with FSSH for two prototype molecules with a

significantly different photochemistry, pyrazine and pyrrole.
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2.2.5 Nuclear phase space distributions

In 2.2.1 we decided to represent the nuclei by phase space distributions {ρA(R,v, t)} which are

in turn represented by a set of trajectories {(Ri(t),λi(t))}. So far we have focused exclusively

on how to propagate these trajectories, but here we will focus on how to generate the initial

distributions from which trajectories are sampled.

Typical photochemical studies are concerned with processes which follow a path where:

1) the system is in equilibrium in the ground state, 2) a photon is absorbed exciting the sys-

tem to some upper state and 3) the excess energy is either redistributed through nonradiative

processes or is lost through luminescence. Surface hopping algorithms are at their best when

modelling nonradiatve processes which means that steps 1) and 2) usually need to be taken into

account before starting the SH calculation. This involves specifying a ground state phase space

distribution and a way to "lift" it to the excited states to model the absorption process.

Ground state ensemble: Two different approaches to describing the ground state phase space

distribution are common. These approaches differ based on whether the quantum nature of the

nuclei (mainly the zero-point energy, ZPE) is taken into account or not.

For "classical" sampling, it is usual to run long Born-Oppenheimer ground state dynamics

trajectories with a thermostat employed to ensure a canonical ensemble. After the trajectories

are fully equilibrated and if they are long enough, the set of geometries and velocities from these

trajectories represent a classical phase space distribution. Initial conditions are then obtained

by randomly sampling snapshots from these trajectories. Under this procedure, the system is

imparted with a thermal energy of εT = kT .

The standard "quantum" sampling procedure is to construct the Wigner quasiprobability

distribution for the system which is the quantum analogue of a classical probability distribution

in phase space

W (q, p) =
1

π h̄

∫
∞

−∞

〈
q+q′

∣∣ρ̂∣∣q−q′
〉

e−2ipq′/h̄dq′ (2.56)

where ρ̂ is the density matrix of the system and 〈q|ψ〉= ψ(q) is the wave function in position

representation. For a harmonic oscillator in the ground state, this expression can be evaluated

analytically,

W (q, p) =
1

π h̄
exp
(

mω

h̄
q2 +

1
mω h̄

p2
)
, (2.57)
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where m and ω are the mass and frequency of the oscillator. Analytical expressions are avail-

able also for excited states of the harmonic oscillator. Temperature effects can be included

by sampling from each state based on the Boltzmann distribution,104 or by directly inserting a

canonical ensemble density matrix into equation 2.56 which gives

W (q, p) = 2tanh
(

h̄ω

2kT

)
exp
(
− tanh

(
h̄ω

2kT

)(
mω

h̄
q2 +

1
mω h̄

p2
))

. (2.58)

Equations 2.57 and 2.58 are exact for the harmonic oscillator, but they can also be used

to approximate the quantum distributions of positions and momenta for real systems. In this

case, each normal mode is represented as a harmonic oscillator with mass m j and frequency ω j

and no interaction with the other modes so the full distribution can be written as a product of

one-dimensional distributions

W (q,p) = ∏
j

Wj(q j, p j) (2.59)

and each mode can be sampled individually. Another property of equations 2.57 and 2.58 to

notice is that the position and momentum are uncorrelated which means they can be sampled

separately (which is not always the case).

At room temperature the ZPE is significantly higher than the thermal energy of the system.

This means that a simulation with initial conditions sampled from the Wigner distribution has

significantly more vibrational energy available and, thus, can explore a wider region of phase

space. Comparing the amplitudes Qa = (2ε/mω
2)1/2 of harmonic oscillators with energy εT

and εQ:101

QaT

QaQ =
2kT
h̄ω

1/2
, (2.60)

we see that the difference is greater for high energy modes.

Equation 2.56 which includes nuclear quantum effects is obviously a more realistic descrip-

tion of the quantum systems being studied than a purely classical view of the nuclei. Sampling

using equations 2.57 or 2.58 and 2.59 is also much less computationally demanding than a

classical trajectory since it requires only a single evaluation of the Hessian of the system. On

the other hand, representing the ground state of a molecule as a set of independent harmonic

oscillators is a very large approximation which can severely limit the range of sampled con-

formations (for example when more than one minimum is accessible in the ground state) but
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also extend it where the energy is underestimated by the harmonic approximation (particu-

larly for low-frequency, large-amplitude motions102). For select cases this approximation can

be improved, such as by sampling randomly from two or more Wigner distributions when the

molecule has a few well separated minima,31 but there is no way to systematically improve the

distribution. Special care also has to be taken when an explicit environment is included in the

calculations.102,142

Another quantum sampling scheme that is gaining traction is the of path integral molec-

ular dynamics (PIMD). In this method, nuclear quantum effects are included by a classical

evolution of an extended system composed of multiple copies ("beads") of the real system

connected by harmonic potentials. The computational cost of this procedure is higher than clas-

sical MD since it involves propagating multiple beads simultaneously. This cost has steadily

been decreasing with the development of quantum thermostats with the approach based on the

generalized Langevin equation (GLE) with only 4-10 beads required to obtain a converged dis-

tribution.143 This thermostat approach converges to the exact quantum distribution in the case

of a harmonic potential, but unlike the analytical Wigner formula also provides a reasonable

estimate for highly anharmonic cases.143 The development of path integral based methods is an

active field of research, for an overview of the topic the reader is referred to the recent review

by Markland and Ceriotti and references therein.144

This procedure has been used by several groups for sampling geometries to simulate absorp-

tion spectra.32,145–148 Momentum distributions can also be obtained using PIMD in conjunction

with the GLE thermostat which means it can be used to sample initial conditions for SH simu-

lations.149,150 Several promising early attempts have also been made to directly join PIMD with

SH approaches to include nuclear quantum effects in trajectory based nonadiabatic dynamics

simulations.25–27,29

Initial excited state distribution: Several attempts have been made to include the electric

field in photochemical studies to directly model the absorption process.151–154 However, the

more usual approach is to model the absorption separately and start the dynamics simulation

with a wave packet (phase space distribution) already in the excited state.

Within the electric dipole approximation the semi-classical expression for the photoabsorp-
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tion cross-section is

σ(E) =
π

3h̄cε0E ∑
F

∫
ρ0|µ0F |

2
δ (E−E0F)dR (2.61)

where the sum goes over all possible final states F and it is assumed that initially the full

population is in the ground electronic state, E0F = EF(R)−E0(R) is the vertical excitation

energy and µ0A is the electronic transition dipole moment

µ0A = 〈ψ0(r;R)|µe(r;R)|ψA(r;R)〉 , (2.62)

which can be expressed in terms of oscillator strength f0F as

µ
2
0A =

3h̄2e2

2meE0F
f0F . (2.63)

Equation 2.61 tells us that the probability of absorbing a photon of a given energy depends for

a given geometry is possible only for E = ∆E0F and depends linearly on the oscillator strength.

The only other consideration to take into account is the source of photons. The most com-

mon approach is to assume that the excitation is performed by a weak laser pulse (small pertur-

bation) with an extremely narrow time envelope. This translates to a very wide energy envelope

meaning that all photon energies in a relevant energy window can be assumed to be equally

probable. In practice, this means sampling points from the ground state distribution weighted

only by their oscillator strength and using the same initial time for all selected trajectories.

Other starting assumptions can be that the system is excited by a continuum wave laser

field150 or by black-body radiation.105 In the former case the photon energy distribution is nar-

row, if the energy of the laser is at the tail of the spectrum it might be difficult to sample enough

points in the selected energy window. The solution offered in this case is to add a Lagrange mul-

tiplier ensuring the resonance condition during the ground state dynamics so that only points

in the correct energy window are sampled.150 In the case of black-body radiation, the radiation

can be treated as an ensemble of coherent short pulses155 and averaging over time by displacing

the initial time of each trajectory can correct for the fact that not all molecules in the ensemble

are excited at the same moment.105
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Nuclear ensemble approach: Because of the delta function in equation 2.61, the photoab-

sorption cross-section (and many other spectroscopic observables) cannot be practically calcu-

lated by equation 2.18 since it would give a line spectrum regardless of the number of points

sampled. Instead, the delta functions are replaced by finite width line shape functions centered

at E = ∆E0F and the absorption spectrum is calculated as

σ(E) =
πe2h̄

2mcε0E ∑
F

Np

∑
i

wiE0F(Ri) f0F(Ri)k
(

E−E0F(Ri)

δF

)
, (2.64)

where k(E−E0F (Ri)
δF

) is the normalized line shape and δF a parameter (bandwidth) which de-

termines the width of the function. This equation corresponds to the statistical method called

kernel density estimation (KDE) whose goal is to estimate an underlying distribution from a

set of points sampled from the distribution156,157 (in this method k is called the kernel). In the

current context, this approach is usually called the nuclear ensemble approach and replacing the

delta functions with line shapes can easily be justified by invoking the uncertainty principle.

Crespo-Otero and Barbatti106 present a formal derivation of the equation above starting

from the expression for the cross-sections within the BO approximation and employing a Monte

Carlo procedure for solving integrals containing the nuclear wave functions of the initial and

final vibrational state. Depending on the assumptions made for the nuclear wave functions, the

line shape is either a Lorentzian

k
(

E−E0F(Ri)

δF

)
=

1
πδF

δ
2
F

δ
2
F +(E−E0F)

2 , (2.65)

or a Gaussian

k
(

E−E0F(Ri)

δF

)
=

1
δF
√

2π
exp

{
−1

2

(
E−E0F(Ri)

δF

)2
}
. (2.66)

The former are used to describe homogeneous broadening while the latter are associated with

broadening caused by collisions. The broadening parameter in this view is associated with

the lifetime of the excited state and is usually determined empirically to obtain the best fit

with experimental data. On the other hand, Sršeň and co-workers offer a statistical view of

the method and its limitations.32 They use Silverman’s rule of thumb to set the broadening
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parameter and bootstrap resampling to set confidence intervals for the calculated observable.

The computational cost of photochemical studies is often directly related to the number

of sampled points needed to obtain converged observables so the goal is always to minimize

this number. Much work has been devoted to this goal and the suggested solutions depend

on what is being studied. In the previous section we mentioned the possibility of adding a

constraint to ground state dynamics to more efficiently sample the tail end of the spectrum.150

For sampling rare events in the surface hopping view there is the army ants algorith.158 When

the calculation of the observable is more expensive than sampling the phase space distribution,

machine learning can be used to build a model for quickly evaluating (approximate) observables

for many points.33

Another useful approach is importance sampling31 for situations when the observables need

to be calculated for multiple similar distributions (for example at different temperatures). The

expectation value for some distribution ρ
′ can simply be expressed in terms of another known

distribution ρ if the ratio between the distributions is known

〈µ〉=
∫

µ(R)ρ ′(R)dR =
∫

µ(R)
ρ
′(R)

ρ(R)
ρ(R)dR . (2.67)

In this case, if a collection of points have been sampled from ρ , one only needs to adjust their

weights w(Ri) = ρ
′(Ri)/ρ(Ri) to obtain results for ρ

′.

2.3 Photochemical problems

In the following section we will take a look at the work done so far on a few of the prototypical

problems in photochemistry. The systems studied are pyrrole and pyrazine (Figure 2.3). The

photochemical processes in these systems are very different, but both systems are relatively

small and the studied processes occur on very fast (femtosecond) time scales which allows them

to be studied using a variety of advanced methods both experimental and theoretical. Despite

this fact, some basic aspects of these reactions, such as which electronic states are relevant and

to what extent, are still under debate.
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Pyrrole Pyrazine

a) b)

Figure 2.3: The prototypical systems under investigation, a) pyrrole and b) pyrazine.

2.3.1 Pyrrole

Pyrrole is a simple five-membered heterocycle commonly found as a building block of biolog-

ically important molecules such as proline, indole and porphyrins of which the best known is

probably heme.

From the perspective of photochemistry, it is interesting due to being, along with phenol,

imidazole and indole, a prototypical example of excited state hydrogen detachment driven by

dissociative 1
πσ
∗ states as noted by Domcke and coworkers.66,67 This process usually involves

excitation to a 1
ππ
∗ state, followed by internal conversion to the (usually dark) 1

πσ
∗ which

leads to a conical intersection with the ground state along the hydrogen detachment coordinate.

The process is governed by the relative energy of the two excited states and the position of the

CI between them. The molecules mentioned above exhibit a complex photochemistry while

their size and prevalence as building blocks of larger chromophores make them ideal targets

for a bottom-up approach to photochemical studies. Over the past twenty years, this process

in pyrrole has been widely studied from both the theoretical159–164 and experimental68,165–173

side.

In terms of spectroscopy, despite numerous studies of the vertical excitation energies of

pyrrole,174–180 there are still some disagreements about the character and relative positions of

the lowest excited states. There are two 1
πσ
∗ states, A2(πσ

∗) and B1(πσ
∗), corresponding to

excitations from either the HOMO or HOMO-1 π orbitals into an orbital with significant anti-

bonding σ
∗ character. While these states are often denoted σ

∗, at the ground state minimum

geometry the character of the particle orbital is of Rydberg 3s type.180,181 The σ
∗ character

becomes dominant only as the N-H bond is extended. Unlike in phenol and imidazole, these
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states are the lowest excited states of pyrrole. Both are dark states, but the A2(πσ
∗) state is

possible to detect as a very weak tail of the absorption spectrum up to 250 nm where the 0-0

transition lies. On the other hand, the B1(πσ
∗) state is not experimentally verified. There are

also two relevant 1
ππ
∗ states. One of these is the bright B2(ππ

∗) state which is agreed upon

as the main state contributing to the lowest band in the UV spectrum of pyrrole between 5.6

and 6.2 eV (220 to 200 nm).182 The other is the A1(ππ
∗) state which is approximately an order

of magnitude darker which has sometimes been placed below and sometimes above B2(ππ
∗).

Between the 1
πσ
∗ and 1

ππ
∗ theoretical studies usually predict the presence of two Rydberg

states, A2(π3pz) and B1(π3py). The third p type Rydberg state (3px), is usually placed at

significantly higher energies. An overview of the vertical excitation energies at various levels

of theory reported in the literature is given in table 4.3 in section 4.4.

The absorption spectrum was also simulated at different levels of theory,101,180,183 with the

best agreement with experiment achieved by Neville et al.180 based on MCTDH calculations

by simulating individual spectra obtained from vertical excitations to A1(ππ
∗), B1(π3py) and

B2(ππ
∗). A model comprised of six states and ten modes based on energies obtained at the

CASPT2(8,8) level using the aug-cc-pVDZ basis with additional diffuse s and p functions was

used for A1(ππ
∗) and B2(ππ

∗) states. The B1(π3py) was described using a single state model

with ten harmonic modes. It was found that the sharp peak at 5.85 eV comes from the B1(π3py)

state, in agreement with previous assignments.176,182,183 While it was confirmed that most of the

intensity of the lowest peak comes from excitation to the B2(ππ
∗) state, it was also found that

coupling with the A2(π3pz) and B1(πσ
∗) states significantly influences the shape and position

of the peak.

The dynamics following excitation of pyrrole to the A2(πσ
∗) state has also been studied by

a number of groups.159,160,162,164,173,184,185 The primary relaxation mechanism is agreed to be

a fast ejection of H-atoms. The time scale of this process was always reported below 60 fs, but

it has been found that this mechanism depends on the energy imparted along the N-H mode.159

Wu et al.173 also performed dynamics from the B1(πσ
∗) states based on the model Hamiltonian

developed by Neville et al.180 This resulted in two competing processes, direct dissociation from

B1(πσ
∗) and to internal conversion to A2(πσ

∗) followed by dissociation with time scales of 19

and 61 fs, respectively.

A few dynamics studies have also been performed starting from higher excitation energies,
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mostly on the B2(ππ
∗) state.161–163 At these energies other deactivation mechanisms, mainly

ring puckering and ring opening, start becoming relevant. These mechanisms were first inves-

tigated by Barbatti et al. who investigated different CIs of the molecule at the MRCI level.181

In further studies, FSSH dynamics simulations were performed at the MRCI161 and TDDFT162

level. In the former study, 80% of the trajectories deactivated through N-H stretching and 13%

deactivatd throguh ring puckering or opening mechanisms. A deactivation time constant of 139

fs was obtained. In the latter study, three excitation windows centered at 5.0, 5.85 and 6.43 eV

were explored. The two higher energy windows populated mostly the B2(ππ
∗) state and led to

relaxation through N-H stretching either on the S1 or on the S2 surface in > 90% of the trajecto-

ries. At this level of theory the ring opening mechanism was not noticed and the ring puckering

mechanism was present in only 4%-7% of the trajectories. The reported time scales were 20

fs, 166 fs and 184 fs for the three time windows. A somewhat faster deactivation (τ ≈ 100 fs)

after excitation to the B2(ππ
∗) state was obtained by Faraji and coworkers.163 In this study, a

model Hamiltonian was built based on MRCI computations and including five electronic states

(ground state, the two 1
πσ
∗ and the two 1

ππ
∗ states) and 24 modes (all vibrational degrees

of freedom of the molecule). Anharmonic treatment was adopted only for the N-H stretching

mode so this was the only possible relaxation mechanism.

From the experimental side, the time scale of H-elimination in pyrrole following excitation

to the A2(πσ
∗) state was first determined by Lippert et al.167 who reported two time constants

(τ1 = 110± 80 fs and τ2 = 1.1± 0.5 ps) for NH fission after excitation at λ = 250 nm. The

former was assigned to direct hydrogen detachment along the A2(πσ
∗) surface, while the latter

was attributed to detachment from the vibrationally excited ground state. The shorter time scale

was confirmed by Roberts et al. using time-resolved ion yield and velocity map imaging at

multiple excitation wavelengths. The excitation wavelength dependent time constants for N-

H bond fission have been obtained from the kinetic fit of the normalized H+ signal transient

(REMPI probed H-atoms) as a function of pump-probe delay time. The exponential rise of the

H+ signal at positive pump-probe delay times revealed single time constants of τ = 126±28 fs

and τ = 46±22 fs for H-elimination at 250 nm (band origin) and 238 nm, respectively.68 The

authors also investigated the dynamics of monodeuterated pyrrole (pyrrole-d1) and reported a

time constant of 1.4± 0.3 ps for N-D dissociation at 250 nm giving rise to a kinetic isotope

effect of KIE ≈ 11. These results are consistent with the existence of a small barrier on the S1
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surface as predicted by theory.159 On the other hand, Wu et al. used pump pulses at 242 and

236 nm and reported an ultrafast decay of the system from the ionization window on a single

timescale of less than 20 fs for both wavelengths.173 Similar results were obtained by Kirkby et

al.186 who reported a timescale of < 50 fs following excitation at 249.5, 245 and 240 nm.

At shorter wavelengths other states, primarily the B2(ππ
∗) state, are accessible. Roberts et

al.68 reported two time constants of τ1 = 52±12 fs and τ2 = 1.0±0.4 ns following excitation

at 200 nm the first of which they assigned to the 1
πσ
∗ mediated process while the second

was assigned to H-elimination from vibrationally excited ground state species. At the same

wavelength Kirkby et al.186 reported a timescale of < 50 fs. Wu et al. excited at 217 nm

and reported two time constants of τ1 = 13± 10 and τ2 = 29± 10 fs which are in reasonable

agreement with the theoretically predicted time scales reported in the same study.

While a general picture of the photodynamics of pyrrole is known, some details are still not

understood. We will attempt to address these in section 4.4. The main goal of that section will

be to eliminate the discrepancy between the computed and measured time constants for pyrrole

excited to higher lying states. In addition to this, significant attention will be given to the exact

nature of the B2(ππ
∗) state and the interaction between this state and the p-type Rydberg state

which are near in energy.

2.3.2 Pyrazine

Pyrazine is a prototypical system for photochemical studies as a standard example of vibronic

coupling.69 A large part of the reason for this is due to the convenience of studying the system

thanks to its high symmetry and the fact that the coupling between the two most relevant states of

the system can be described reasonably using a two dimensional model. These are the B2u(ππ
∗)

and B3u(nπ
∗) states visible in the absorption spectrum at, respectively, 4.81 and 3.83 eV. Due

to symmetry considerations, these can only be coupled in first order through normal modes of

b1g symmetry, of which there is only one in the molecule, the Q10a normal mode (the normal

mode notation used here, as is standard in the literature, is based on the normal modes of

benzene.69,187)

Over the years, the photochemistry of the system has been widely studied. From the theo-

retical side, a series of papers by Domcke and coworkers70–72,188 investigated the process using

two-state vibronic coupling models containing three to four modes. These models captured the
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physics responsible for internal conversion in pyrazine and were used to calculate various spec-

tra of pyrazine in excellent agreement with experimental ones. Similar results were obtained

by others using different electronic structure and quantum dynamics methods.189 Over time full

dimensional models were developed, first with additional modes included heuristically190–192

and finally a quadratic vibronic coupling model encompassing all 24 degrees of freedom was

built.193 The developed two state pyrazine models have often been used to test new numerical

methods in quantum dynamics.10,194–199

From the experimental side, Stert et al.200 measured the lifetime of the B2u(ππ
∗) state using

time-resolved photoelectron spectroscopy (TRPES) to approximately 20 fs, in excellent agree-

ment with theoretical predictions. Recent advances in the time-resolution of the experiments

finally provided conclusive direct evidence of the ultrafast internal conversion in pyrazine with

a reported lifetime of around 22 fs.201,202 On significantly longer time scales, both internal

conversion to the ground state and intersystem crossing to the triplet manifold are seen with

timescales in the range of tens or hundreds of ps.202 To our knowledge, direct spectroscopic

evidence of the Au(nπ
∗) state has not been reported.

From the mixed quantum-classical perspective, Werner et al.73 performed SH dynamics

on the system at the TDDFT/B3LYP/TZVP level. They reported significant populations of

Au(nπ
∗) and B2g(nπ

∗) in the early moments of the dynamics calculations. However, this was

done without a diabatization procedure, simply equating the states with the S2 and S4 adiabatic

states, respectively. In a subsequent study, Tomasello et al.74 calculated the TRPES at the same

level of theory to obtain a reasonable agreement with experiment. Based on static calculations

and potential energy scans, Lin and co-workers203 also suggested that the Au(nπ
∗) state should

be important in the ultrafast relaxation mechanism of the B2u(ππ
∗) state. To see whether these

states were actually populated during the dynamics, Sala et al.53 built two, three and four state

models spanning ten relevant normal modes based on electronic structure calculations at the

XMCQDPT2(10, 8) level. Through these calculations they confirmed that the Au(nπ
∗) state is

indeed significant in the early dynamics while the B2g(nπ
∗) state was never populated. They

also found54 that the Au(nπ
∗) state was responsible for internal conversion to the ground state

at a longer time scale. Sun and co-workers used the same two and three state model to compute

multiple spectral signals and found that including the Au(nπ
∗) state has a significant effect on

the calculated signals.
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On the other hand, Kanno and co-workers performed calculations at the MRCISD(10,8)

also including four electronic states, from quantum dynamics propagated in different subspaces

spanned by two modes204 they concluded that the Au(nπ
∗) state is not populated in the early

moments after excitation. In a continuation of this work, Mignolet and coworkers7 simulated

the vacuum ultraviolet photoelectron spectrum of pyrazine at the same level of theory. They

computed signals of the three states at their potential minima along the Q6a normal mode.

When computed in this way, the main signal coming from the ionization of Au(nπ
∗) is centered

at a photoelectron kinetic energy of 4.90 eV, where no peak is visible in the time resolved

photoelectron imaging experiment.202

Most of the work on the photochemistry of pyrazine has focused on these lowest excited

states. Some work has been done to study higher lying states,205,206 but these states are not

relevant in the current context. In section 4.5 we will take another look at the internal conversion

in pyrazine from the mixed quantum-classical perspective. We will employ a higher level of

theory than previous SH results and specifically look for signs of the Au(nπ
∗) state whose

significance in the dynamics is still disputed.7,204

Marin Sapunar Doctoral thesis



§3 COMPUTATIONAL METHODS 40

§3. COMPUTATIONAL METHODS

At the mixed classical-quantum level we usually need to employ three distinct sets of compu-

tational methods to obtain a full picture of a photochemical problem. First, we need a method

for treating the electronic structure of the system. Next, we need a method for treating the nu-

clear degrees of freedom: generating an initial ensemble and propagating it. Finally, we need a

method for simulating observables which can be directly verified by experiments. Each of these

steps is important and the computational methods chosen for each are described in this section.

3.1 Electronic structure

To explain a photochemical reaction means to understand the interplay between the relevant

electronic states and nuclear motions. This poses a significant challenge for electronic struc-

ture methods since it requires accurately describing states with significantly different electronic

characters at an equal level and at a wide range of nuclear configurations. This includes both

bound and dissociative valence state, diffuse Rydberg states and highly delocalized or charge-

transfer states. This problem cannot be solved using blunt force since any method which would

be accurate in all cases would also be prohibitively expensive for practical calculations. Be-

cause of this, the choice of the level of theory for the electronic structure calculation is the basis

for any successful photochemical study.

For dynamics simulations, this choice is limited by the need for thousands of evaluations of

energies, excited state gradients and nonadiabatic couplings along the ensemble of trajectories.

The need for excited state gradients specifically means that most state of the art methods for

excitation energies cannot be used since efficient analytical gradients are difficult to implement

for most of these methods. However, these methods are often useful for benchmarking less

accurate methods at selected relevant geometries.

In the studies and tests reported in chapter 4 multiple electronic structure methods and basis

sets will be used. Mostly, we will be using the ADC(2) method (see below) which has proven to

provide a good balance between cost and accuracy for the molecules with ten to twenty atoms

studied here. For these calculations, the efficient implementation in the Turbomole program

package207,208 based on the resolution of the identity (RI) approximation209–211 was used. In
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Figure 3.1: Orbitals included in the active space for XMS-CASPT2 calculations of pyrazine.

all cases where ADC(2) was used, the core electrons were frozen. All ADC(2) calculations

were performed using the cc-pVNZ212 and aug-cc-pVNZ213 family of basis sets. In the case of

pyrrole, calculations FSSH dynamics simulations were also repeated using the spin-component

scaled version of ADC(2).214

Additional calculations for pyrrole were performed at the TDDFT level using the B3LYP215,216

functional, also using the Turbomole program package.217 The def2-TZVPD basis set was used

in this case.218 As will be discussed in detail in section 4.4, this method gives a significantly dif-

ferent description of the bright B2(ππ
∗) state of pyrrole. For pyrazine, additional calculations

were performed at the XMS-CASPT2/aug-cc-pVDZ using the BAGEL program package.39 The

five lowest states of the neutral molecule and the seven lowest states of the cation were calcu-

lated with an active space consisting of 10 electrons (9 for the cation) in 8 orbitals: π(1b3u),

π(1b2g), n(5b1u), π(1b1g), n(6ag), π
∗(2b3u), π

∗(1au) and π
∗(2b2g) (Figure 3.1). These calcu-

lations were performed for a subset of geometries sampled from the dynamics calculations to

simulate the photoelectron spectra since this level of theory provided significantly better ioniza-

tion potentials than ADC(2).

In section 4.1 we will also compare FSSH and LZSH algorithms to quantum dynamics

studies. For this we will employ model potentials developed by Sala et al.53 based on electronic

structure calculations at the extended multi-configuration quasi-degenerate second-order per-

turbation theory (XMCQDPT2)219 level using an active space of ten electrons in eight orbitals

and the aug-cc-pVDZ basis set.212 In the two state model the normal modes which give rise

to non-vanishing first-order couplings between the B3u(nπ
∗) and B2u(ππ

∗) states are included,

these are the totally symmetric modes Q6a, Q1, Q9a and Q8a and the B1g mode Q10a. The three

state model also includes the Au(nπ
∗) state which couples to the B3u(nπ

∗) and B2u(ππ
∗) states

Marin Sapunar Doctoral thesis



§3 COMPUTATIONAL METHODS 42

through B2g and B3g modes, respectively. Of these, the Q4, Q5, Q3 and Q8b modes are included

in the model. Benchmark quantum dynamics calculations for these systems were performed

using the MCTDH method, for the details of these calculations the reader is referred to the

original publication.34

3.1.1 Algebraic diagrammatic construction

The algebraic diagrammatic construction scheme is based on the theory of the polarisation

propagator.57 This propagator has the form

Π(ω) = x†(ω−Ω)−1x , (3.1)

where x = 〈ψn|c
†
r cs|ψ0〉 is a matrix of transition amplitudes and Ω is a diagonal matrix contain-

ing the vertical excitation energies ωn. The procedure for obtaining these excitation energies

involves writing the operator in a non-diagonal form based on a representation of the effective

Hamiltonian after which searching for the poles of the propagator (excitation energies where

eq. 3.1 goes to infinity) can be reduced to a diagonalization of a Hermitian matrix. This method

was later reformulated in the so-called intermediate-state representation.58 In this representa-

tion, excited states are built starting from a (correlated) ground state wave function |ψ0〉 and

consecutively acting on it with classes of standard configuration interaction (CI) excitation op-

erators

CI =
{

c†
oca; c†

oc†
pcacb; c†

oc†
pc†

qcacbcc; ...
}
, (3.2)

where indices a,b, ... denote occupied orbitals and o, p, ... denote virtual orbitals. When the

ground state is composed of multiple determinants, the states obtained in this way are not or-

thogonal. Because of this, an orthogonalization procedure also needs to be employed after act-

ing with each class (single excitations, double excitations, ...) of operators. For ADC methods

the ground state is the Møller-Plesset (MP) wave function and orthogonalization is done using a

combination of the Gram-Schmidt process (between excitation classes) and symmetric orthog-

onalization (within the same excitation class).220,221 A series of ADC(n) methods is available

by limiting the order of the MP ground state and the level of CI excitation operators used to n-th

order. Coupled cluster (CC) methods can be derived in a similar way with a different ground

state and orthogonalization procedure.
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Alternately, ADC(2) can be considered222 as a further approximation of the second-order

approximate coupled cluster singles and doubles model (CC2).223 However, the symmetrisation

of the Jacobian in ADC(n) methods leads to some key advantages over CCn methods. They

are fully size-intensive and (starting from the third order) have better scaling with the number

of basis functions. Most importantly, ADC methods involve diagonalization of a Hermitian

matrix. This means that they are more stable close to conical intersections which is critical for

nonadiabatic dynamics simulations.59 Another advantage of this is that excited state properties

are twice as fast to calculate since the left and right eigenvectors are the same. On the other

hand, the CCn methods include a description of the ground state which is superior to the MPn

methods. This means that ADC(2) is less reliable when the ground state has significant multi-

reference character which results in an unbalanced description of the various excitations of the

system. However, in such cases CCn also quickly becomes unreliable since it is still a single

reference method.224

A more detailed overview of ADC(n) methods is presented in the recent review by Drew et

al.225 and the references within. The accuracy of these methods has been assessed in a number

of benchmarks.226–228 Mean errors for ADC(2) have been reported as 0.22±0.38 eV for various

singlet states226 and 0.01± 0.16 eV for charge transfer states,228 results similar to CC2. Even

better results are obtained using the ADC(3) method. This method is less accurate than CC3,229

but has the advantage of O(n6) scaling which makes it significantly faster than CC3 for larger

systems. Efficient ADC(3) analytical gradients have only recently become available230 which

makes the method a likely candidate for future benchmark nonadiabatic dynamics studies.

One additional alternative to mention are the spin-component scaled (SCS) and spin-opposite

scaled (SOS) variants of MP, ADC and CC methods.214,231,232 The former is an empirical cor-

rection based on scaling the same-spin and opposite-spin integrals appearing in the equations.

In the latter, the same-spin integrals are completely neglected and opposite-spin integrals are

scaled to compensate. The SOS-ADC(2) method scales approximately as O(n4) making it sig-

nificantly faster for larger systems than ADC(2). For our purposes however, the main advantage

of these methods is that they have been shown to alleviate the problems of these methods in the

treatment of Rydberg states both in terms of vertical excitation energies and shapes of potential

energy surfaces.227,233
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3.1.2 Time-dependent density functional theory

Density functional theory (DFT) is an approach to electronic structure calculations based on

the Hohenberg-Kohn234 theorems. The first of these theorems states that the total energy for

a system of electrons moving under the influence of an external potential vext(r) (usually the

electron-nuclei interaction) is uniquely determined by its electron density n(r) or in other words,

that the total energy is a functional of the electron density

E[n(r)] =
∫

vext(r)n(r)dr+F [n(r)] , (3.3)

where F [n(r)] is a universal functional completely defined by the number of electrons. The

second Hohenberg-Kohn theorem states that the density which minimizes the total energy is

the exact ground state density n0 which allows for practical applications of DFT. The problem

is that a part of the universal functional is not fully known. In the Kohn-Sham approach235 a

practical approach to DFT is given by replacing the interacting system with a fictitious system

of non-interacting particles which generate the same density. For the non-interacting system,

the single-particle orbitals (densities) can be obtained through an eigenvalue equation with an

effective potential. In this approach, the unknown part of the energy functional is contained

in the exchange-correlation energy Exc[n(δ r)] which enters the effective potential as ∂Exc[n(δ r)]
∂n(δ r) .

Since this part of the effective potential depends on the density itself, the equation is solved in an

iterative manner improving the density and effective potential until self-consistent solutions are

obtained. The key problem of DFT is finding the best possible approximation for the exchange-

correlation functional Exc[n(δ r)].

In 1984, Runge and Gross236 extended DFT to time-dependent systems where they have

shown that there exists a one-to-one mapping between a time-dependent potential in which the

system evolves and the density of the system. This theorem provides the foundation of time-

dependent density functional theory (TDDFT) which can be used to extend the applicability

of DFT to excited states. From a practical perspective, the most widely used approach for ex-

cited state calculations is linear response TDDFT. In this approach, the variation of the system

following a small perturbation depends only on the ground state density. This means that the ex-

cited states can be obtained directly from Kohn-Sham orbitals from a non-hermitian eigenvalue
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equation of the form A B

B A

X

Y

= ω

1 0

0 −1

X

Y

 , (3.4)

where the matrices A and B involve four-center integrals over pairs of occupied and virtual

Kohn-Sham orbitals so have dimensions equal to those in the configuration interaction singles

(CIS) approach. In fact, in the Tamm-Dancoff approximation the off diagonal elements B are

assumed to be zero and the problem computationally reduces to the same form as CIS.

TDDFT is likely the most widely used method for simulating excited states as it provides

reasonable accuracy in many cases at a very low computational cost. Mean errors for vertical

excitation energies computed by TDDFT are usually reported in the 0.2-0.4 eV range.237,238

However, it also fails qualitatively for certain types of excited states, mainly those with charge-

transfer or double excitation character. Another issue is that there is no way to systematically

improve TDDFT results which has resulted in an ever growing number of exchange-correlation

functionals with no clear hierarchy and no sure way to decide which functional is best suited

for a particular application.238,239

As long as it accurately describes the electronic states of the system under study, TDDFT

is also mostly well suited for SH calculations. Multiple methods for calculating the couplings

between TDDFT excited states are available.41,42,56,65,120–122 The method is also quite numer-

ically stable and retains its accuracy in wide areas of the potential energy surface. However,

while it can predict the location of CIs, the exact shape of the intersections can be incorrect.

This is especially true for intersections between the S0 and S1 states which are qualitatively in-

correct.240 This means that, like single reference wave function methods, TDDFT is not suited

for following the dynamics of a system through type of intersection.

3.1.3 Complete active space methods

There are many situations where the ground state of a system cannot be adequately described

by a single SD. In these cases the Hartree-Fock (HF) method fails qualitatively in a way that is

difficult to overcome for single-reference methods built upon it and reference states consisting

of more SDs are needed. These are usually generated by multi-configurational self-consistent

field (MC-SCF) in which the wave function is a linear combination of SDs or configuration state

functions calculated by simultaneous variation of both the linear combination coefficients and
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orbitals from which the determinants are built. The complete active space self-consistent field

(CASSCF)241,242 method is the most commonly used variant of MC-SCF. In this method, an

active space of relevant orbitals and electrons is selected and a full CI expansion of this active

space is included in the MC-SCF wave function ansatz with all other orbitals always either

doubly occupied or empty.

Due to the factorial scaling of the method with the size of the active space only a small

number of electrons/orbitals can be treated in this way. Typically, this means that CASSCF

calculations are limited to ten to twenty electrons in as many orbitals. Since excitations to/from

most orbitals are not included at all in the CASSCF wave functions, most of the dynamical

electronic correlation is not captured by this method so the errors of the method are quite

large. This can be remedied by the complete active space second-order perturbation theory

(CASPT2)243,244 method which corrects the CASSCF wave functions using perturbation the-

ory similar to the MP2 correction to HF wave functions. Depending on the details of how the

perturbation is applied, single-state, multi-state245 and extended multi-state (XMS-CASPT2)246

variants of CASPT2 are available. The latter, based on quasi-degenerate perturbation theory was

developed specifically to treat numerical problems arising in MS-CASPT2 when state mixing

is strong.

Analytical gradients for CASPT2 have been derived in 2003.247 However, the method has

been employed for FSSH simulations only recently,248 following the very efficient implemen-

tations of CASPT2 gradients249 and nonadiabatic coupling vectors128 in the BAGEL electronic

structure code.39 With its inclusion of static correlation and, consequently, ability to treat CIs

involving the ground state, CASPT2 has very clear advantages over ADC(2) and similar single-

reference methods with otherwise similar accuracy.238 On the other hand, the method is still

more difficult to use correctly than most single-reference methods and more prone to errors due

to problems such as intruder states.

3.1.4 Other excited state electronic structure methods

The accurate evaluation of excited state energies and properties is a very active field of interest

in chemistry and one that is still far from solved.238 In the previous subsections, we have briefly

covered the electronic structure methods used in the current work. These are also the methods

most commonly used for on-the-fly nonadiabatic dynamics simulations.
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Among single-reference methods, the coupled cluster family of methods, either in the linear

response or equation of motion formulation, is extremely important for excited state studies.

These methods can be quite accurate for a wide variety of excited states and range from CC2

which has a similar cost and accuracy to ADC(2) through CCSD to CC3, CCSDT and CCS-

DTQ. The latter three are benchmark methods for small to very small molecules with accuracy

in the range of a few hundredths of an eV, but a scaling between O(n7) for CC3 to O(n10) for

CCSDTQ. These methods are widely used with efficient implementations available in many

electronic structure codes along with analytic gradients for excited states.209,211,250,251 Nonadi-

abatic coupling vectors have also been implemented,40 but as mentioned in the ADC section,

the problem of CC methods for on-the-fly dynamics is their inability to correctly treat conical

intersections59 so they are still mostly used in static calculations.

Among multi-reference methods, we can mention the density matrix renormalization group

(DMRG),252 n-electron valance state perturbation method (NEVPT2)253 and various multiref-

erence CI methods.254,255 DMRG is a method for optimization of wave function coefficients

in terms of so-called matrix product states which can effectively expand the number of active

orbitals for which a full CI treatment can be applied to around one hundred. Like CASSCF,

by itself this method does not include enough dynamical correlation, but can be built upon and

progress in this direction is ongoing.256 NEVPT2 is a method related to CASPT2. It is size

consistent and free of the intruder state problem,253 but lacks the efficient analytical gradient

implementations available for CASPT2 making it unsuitable for dynamics simulations. MR-CI

is another way to add dynamical correlation to the CASSCF (or other MRSCF) wave functions

by including (usually single and double) excitations out of all reference determinants. Like

CASPT2, this method can provide quite accurate results for different kinds of excited states,

but is also difficult to use and very expensive for large reference wave functions.

For a more detailed recent overview of the methods mentioned here see the book edited by

Gonzales and Lindh.257 For a discussion on the accuracy of the methods, the reader is referred

to the recent review of benchmarks by Loos and coworkers.238

3.2 Implementation of surface hopping algorithms

The general scheme for a nonadiabatic dynamics simulation based on mixed quantum-classical

methods is shown in figure 3.2. We can roughly separate the procedure into four consecutive,
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GS trajectory
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LD-FSSH
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Time constants

Adiabatic populations
Geometrical changes
Electronic changes

Time resolved spectra

Calculation of UV absorption
spectrum

Nuclear ensemble approach

Ground state ensemble
{Ri, vi}

Excited state ensemble
{Ri, vi, λi} Time dependent

excited state ensemble
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Figure 3.2: Workflow of a typical mixed quantum-classical nonadiabatic dynamics simulation.
It consists of generating an initial ensemble in the ground state (green), simulating the photoex-
citation (orange), propagating the ensemble of trajectories (yellow) and finally analysing the
results (purple). The output of each step along this process is the input for the next step.

partially independent parts:

1. sampling the ground state ensemble,

2. simulating the excitation process,

3. propagating the chosen initial conditions,

4. analysing the results.

1) Established procedures for sampling the ground state phase space distribution ρ(R,v),

along with their strengths and weaknesses, were covered in section 2.2.5. In the present study,

initial conditions {Ri,vi}will be sampled from the thermal Wigner distribution given by eq. 2.58.

As already mentioned, the distribution given by this method includes the ZPE, but can be far

from the actual distribution in the presence of normal modes which are highly anharmonic and

in particular low-frequency torsional modes. To ensure that the harmonic approximation ad-

equately describes the ground state PES of the systems under study, the energy of each point

sampled based on the harmonic approximation Eh
i will be compared to the actual energy Eqm

i
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calculated at that geometry. In cases where this difference is larger than a selected threshold

tanh the sampled point is discarded. For rigid systems with a deep ground state minimum, such

as DNA nucleobases, pyrrole and pyrazine, the harmonic approximation is quite accurate so

sampled points are rarely discarded.

2) A part of the ground state ensemble needs to be lifted to the excited states. To do this,

the excited state energies and oscillator strengths {EA, f0A} at each geometry {Ri} need to be

calculated. From these, the UV absorption spectrum can easily be calculated using the nuclear

ensemble approach. This is an important step since it provides a point early in the study where

the results can directly be compared with the experiment to judge whether the chosen electronic

structure level is adequate to describe at least the bright excited states of the molecule in the

region close to the ground state minimum. After this, a subset of points sampled from the

ground state ensemble needs to be chosen to represent the initial wave packet in the excited

state. The choice of initial excited states is done based on oscillator strength. In addition to this,

we also always have to limit our exploration to a specific energy window we are interested in.

The probability to sample state A at geometry Ri is then calculated as

PiA ∝ fOA(Ri)E (ω−EA(Ri)) , (3.5)

where E (ω−EA(Ri)) is the energy window centered at ω limiting the dynamics exploration to

the relevant energy range. In the case of pyrrole, three rectangular energy windows are selected

centered at 200, 238 and 250 nm with widths of 2 nm. In the case of pyrazine, the energy

window is a Gaussian function centered at ω = 4.7eV with a full width at half maximum of

0.2 eV chosen to best represent the pump pulse which was used by Horio et al.202 to obtain the

experimental time-resolved photoelectron spectrum.

3) The key step is the propagation of trajectories. While trajectory surface hopping algo-

rithms are simple in principle, there are many different variants and corrections which might

give different results depending on the situation. For this reason, one of the main goals of our

implementation was for it to be as modular as possible to allow for freely choosing the best

approach for a particular problem. Figure 3.3 shows the work flow during the propagation of

a single trajectory. The core loop involves multiple steps. First the nuclear degrees of free-

dom are propagated. Since electronic structure calculations are the computational bottleneck of
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R(0), v(0), λ(0)SH program options

Time step propagation
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Output

End?
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Generate input files

Run calculation
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Figure 3.3: Propagation of a trajectory using the FSSH algorithm. The main FSSH code (yel-
low) handles the propagation of the nuclear coordinates and the total electronic wave function.
When energies and gradients are required a script (purple) is called to run a chosen electronic
structure code and parse the output. The overlap calculation is handled by a standalone program
also interfaced to the electronic structure code.

these calculations, the velocity Verlet algorithm130 is always used. For model systems where

additional evaluations of the PES are not computationally expensive one could use higher order

propagators. It is possible to set constraints during this propagation258 or to project rotation and

translation from the motion at each step to keep the molecule in the Eckart frame.259 The next

step is to calculate the energies and gradient at the new geometry which is handled by an outside

script which communicates with the main code through simple files containing the necessary

inputs/outputs.

For FSSH algorithms this is followed by calculating the overlap matrix between the current

and previous step, propagating the TDSE and determining the hopping probabilities. In the

present work we have developed new algorithms for calculating the overlap matrix which are

described in detail in section 4.2. To propagate the TDSE and obtain accurate hopping proba-

bilities the many details explained in section 2.2.3 need to be taken into account. Most of the

methods mentioned in that section have been implemented as options in the SH code. In the
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studies reported here, the phases of the overlap matrix were corrected by transforming the ma-

trix so that the largest elements are on the diagonal, multiplying the columns so these elements

are all positive and transforming back to the original basis. When propagating in the adiabatic

basis (A-FSSH) the nuclear time step was split into 10000 substeps131 during which the energies

were linearly interpolated and the overlap matrix was interpolated based on the NPI scheme.20

Hops were allowed at each substep. Alternately, propagation was performed based on the lo-

cally diabatic formalism (LD-FSSH).18 The energy based decoherence scheme of Granucci and

Persico was employed with the default decoherence constant of 0.1 Eh.114 Energy conservation

after hops was ensured by uniformly rescaling the nuclear momenta. For LZSH these steps are

skipped. Instead, the hopping probability is evaluated only if a gap minimum in the previous

step is detected. To ensure the numerical accuracy of the evaluated probability, the trajectory

is returned to a step before the gap minimum and the minimum and second derivative of the

energy are evaluated more accurately using a numerical procedure described in section 3.2.1.

Since the overlap code has been fully separated from the dynamics code, the trajectories

never need information on the basis functions, molecular orbitals or wave functions which

makes them completely indifferent to the chosen level of theory. The only information re-

quired to be passed from the dynamics to the ES program is the geometry and current state,

while the only information returned are the state energies and gradient of the current state (and

nonadiabatic coupling vectors if they are used). This makes writing the interface script trivial

for any electronic structure code. For LZSH this is all that is needed, for FSSH an interface for

the overlap code also has to be written. This part is more difficult since it requires working with

the basis set, molecular orbitals and wave function coefficients. However, maximum attention

has been devoted when writing the overlap code to simplify this procedure. Details concerning

the interface between electronic structure codes and the wave function overlap calculation are

covered in section 3.2.2.

4) After a set of trajectories is propagated, we are left with a huge amount of data from

which physical insight needs to be extracted. The most basic information are the relaxation

pathway for individual trajectories and the adiabatic populations of the ensemble. These can

be used to extract (through fitting) time constants of the studied reactions which can be directly

compared to information available through time resolved experiments. Diabatic populations are

not available from on-the-fly SH calculations, but we can estimate them by using wave function
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overlaps to compare the electronic wave functions at different geometries in the ensemble. This

procedure is explained in section 4.3. Lastly, observables such as time-resolved spectra can be

calculated using the nuclear ensemble approach for each time step.

3.2.1 Landau-Zener surface hopping

The adiabatic form of the Landau Zener equation for the transition probability given in sec-

tion 2.2.4,

Pi j = exp

− π

2h̄

√
g3(tc)
g̈(tc)

 , (3.6)

does not contain the TDCs which allows us to bypass the overlap calculation. However, overlaps

are used in all algorithms for handling trivial crossings so in our implementation of LZSH we

take care to not "reinvent" this problem by inaccurately treating such intersections where we

expect the gap minimum to become very small during the time step.

While the FSSH algorithm gives a "local" transition probability (actually transition rate) at

each step of the dynamics, equation 3.6 gives the "global" transition probability for the intersec-

tion region. This means that the probability should be evaluated only when a minimum of the

energy gap between two states g(t) = Ei(t)−E j(t) is found along a trajectory. After evaluating

the probability at this minimum, the trajectory either resumes its evolution on the previously

populated state or is transferred to the other state and evolution is resumed from tc.

The second derivative of the energy gap is calculated when the gap minimum is reached

(t = tc) using a three point finite difference

g̈(tc) =
g(t−δ )+g(t +δ )−2g(t)

δ
2 =

2d

δ
2 , (3.7)

where δ is the time-step and we defined d ≡ ((g(t − δ )− g(t))+ (g(t + δ )− g(t)))/2 as the

average change in the gap between the time steps around the minimum. Inserting into the LZ

probability formula, we obtain

Pi j = exp

−π

2

√
g3(t)δ 2

2d

 . (3.8)

In this form, we see that we need only the state energies of three consecutive time steps to
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evaluate the LZ probability. This means that, at each step, LZ surface hopping requires no

information in addition to that required for classical molecular dynamics, the energies of the

electronic states and the gradient on the current state. This makes LZ surface hopping incred-

ibly easy to interface with any electronic structure program even when nonadiabatic couplings

are not available and without the need to implement the calculation of wave function overlaps

which is typically the most labour intensive part of implementing Tully’s fewest-switches sur-

face hopping algorithm.

However, there are two possible sources of error in the formula above. The first is the

assumption that g(tc) = g(t). In fact we only know that t− δ < tc < t + δ . This is important

because g(tc) appears in the exponent so small changes in the value of the minimum can have

a large impact on the calculated probability. The second source of error is the precision σ with

which state energies are calculated as set during the electronic structure calculation. This is

more important when the time step is small and the second derivative is calculated by taking a

difference between numbers of similar magnitude.

The former source of error is basically a minimization problem where we are finding the lo-

cal minimum of g(t). This is most simply done by reducing the time steps when a gap minimum

is found (for example using the bisection method). However, since each additional evaluation

of the electronic energies is costly, it is useful to only do this when necessary. Since d is the

change in the gap around the minimum, we can assume that g(t)−d ≤ g(tc) ≤ g(t). Inserting

these upper and lower limits into equation 3.8, we obtain an error interval for the hopping prob-

ability Pmin ≤ P ≤ Pmax. This allows us to set a precision threshold directly on the probability

and only reduce the time step when needed. The same procedure can be done for the error due

to σ by assuming all energies entering equation 3.8 are only correct up to ±σ .

Due to the exponential form of equation 3.6, there is a wide range of possible intersections

characterized by (g(tc), g̈(tc)) combinations which give hopping probabilities close to zero or

one and are not sensitive to small deviations in either value. On the other hand, when the term in

the exponent is close to unity (i.e. the hopping probability is close to 50%), small errors in the

calculated values can have a large impact on the probability so additional calculations will be

required. By always calculating error estimates, we hope to minimize the number of additional

potential energy evaluations without sacrificing accuracy.
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3.2.2 Molecular orbital overlap integrals

We mentioned above how interfacing electronic structure codes with a wave function overlap

calculation is significantly more complex than interfacing with the molecular dynamics portion

of the code. In this section we will explain the reason for this and describe how we attempt

to minimize this problem through the implementation of the code. The two inputs needed

for any wave function overlap calculation are the wave function coefficients and the matrix of

overlaps between molecular orbitals used to generate the two sets of wave functions. While the

wave function coefficients can usually be read directly from a file, molecular orbital overlaps

between different geometries are rarely available from electronic structure programs and have

to be calculated from the molecular orbital coefficients and information on the basis functions.

The most common type of basis functions used in quantum chemical programs are Gaussian

type orbitals (GTOs) which allow for very efficient evaluations of integrals needed for electronic

structure calculations. Two varieties of these basis functions are used,260 Cartesian GTOs are

defined as

glxlylz(R;R0,ξ ) = Ngxlxylyzlzeξ (x2+y2+z2) , (3.9)

where q≡ Rq−R0q for q ∈ {x,y,z}, while spherical GTOs are defined as

g̃nlm(R;R0,ξ ) = Ng̃Y l
m(θ ,φ)r

ne−ξ r2
, (3.10)

where r, θ and φ are spherical coordinates centered at R0 and Y l
m(θ ,φ) are the spherical har-

monic functions. The two types of GTOs are normalized as

Ng =

(
2

3
2+l

ξ
3
2+l

Γ(1
2 + lx)Γ(

1
2 + ly)Γ(

1
2 + lz)

) 1
2

, (3.11)

and

Ng̃ =

(
22n+3(n+1)!ξ (n+ 3

2 )

(2n+2)!π
1
2

) 1
2

, (3.12)

respectively. Typically, only spherical Gaussians with l = n are used and are defined in groups

(subshells) with the same l and all possible m values. For a given angular momentum l =

lx + ly + lz, the number of Cartesian functions is greater ((l + 1)(l + 2)/2) than the number of
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spherical functions (2l + 1). The spherical functions with l = n can be expanded as a linear

combination of the appropriate Cartesian functions260

g̃lm(R;R0,ξ ) = ∑
lx,ly,lz

T lm
lxlylzglxlylz(R;R0,ξ ) . (3.13)

General analytical expressions for the transformation coefficients T lm
lxlylz have been derived and,

since they depend only on the quantum numbers, can easily be tabulated.260

While these basis functions are efficient, they do not have the correct behavior for r = 0

(where atomic orbitals should have a cusp) or for large r (where they should fall of as e−r).

Because of this, the actual basis functions used in most electronic structure programs are con-

tracted Gaussian type orbital (cGTO)

Glxlylz(R;R0,ξ ,b) = NG ∑
i

biglxlylz(R;R0,ξi)

= NGxlxylyzlz ∑
i

Ngi
bie

ξi(x
2+y2+z2) ,

(3.14)

which are linear combinations of GTOs with the same angular part built to better reproduce a

single Slater type orbital (STO). The coefficients bi are known as contraction coefficients. The

full cGTO can be normalized as

NG = Γxyz ∑
i

∑
j

bib jNgi
Ng j

(ξi +ξ j)
− 3

2−l , (3.15)

where we have defined Γxyz ≡ Γ(1
2 + lx)Γ(

1
2 + ly)Γ(

1
2 + lz).

Once the basis set is defined, it is straightforward to calculate matrix elements in the space

of the basis functions. The elements of the atomic orbital overlap matrix S are calculated as

Sab = 〈Ga|Gb〉= NGa
NGb ∑

i
∑

j
bib j

〈
gi,a
∣∣g j,b

〉
. (3.16)

The integrals over Cartesian functions
〈
gi,a
∣∣g j,b

〉
can be calculated analytically.261 In the basis

of spherical functions, operators can be obtained either by numerically computing the integrals
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g̃i,a
∣∣g̃ j,b

〉
or by transforming the Cartesian matrices

S̃ = TT
csS

CTcs , (3.17)

where Tcs is a block diagonal matrix containing the transformation coefficients between Carte-

sian and spherical functions T lm
lxlylz for each subshell. Operators in the basis of molecular orbitals

φi(R) = ∑
a

Ci,aGa or φi(R) = ∑
a

C̃i,aG̃a (3.18)

are easily obtained by matrix multiplication from the corresponding atomic orbital operators

SMO = CTSC = C̃TS̃C̃ . (3.19)

From the practical side, to calculate the required values, one needs to know the molecular

orbital coefficients and the basis functions. To fully define each basis function, we need to know

its origin R0 (almost always the coordinates of an atom), exponents ξ , contraction coefficients

b and angular momentum quantum numbers (lx, ly, lz) or (l,m). The former quantities are the

same inside a subshell regardless of the choice between spherical and Cartesian basis functions,

so the basis set is most usually given as a list of {l,ξ ,b}.

While almost all quantum chemistry packages dealing with isolated molecules use con-

tracted Gaussian basis sets, how these are expanded into actual basis functions is often different

from program to program. Even after defining the order of the basis functions within subshells,

some ambiguities (such as a different sign for some of the spherical harmonics, or a different

normalization procedure) remain due to possible non-standard definitions used in certain pack-

ages. Because of this, we add an additional step in the calculation of the MO overlap matrix

SMO. First, the AO overlap matrix is calculated according to equation 3.16 or 3.17 based only

on the basis set information and assuming standard ordering of basis functions within subshells.

Before using equation 3.19, the AO overlap matrix (either S or S̃) is further transformed as

S′ = TT
progSTprog , (3.20)

where Tprog is a permutation and scaling matrix depending on the electronic structure program
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Table 3.1: Order of spherical and Cartesian basis functions expected for molecular orbitals
given in the Molden format.264

l m order / lxlylz order
2 (d) 0, 1, -1, 2, -2 / 200, 020, 002, 110, 101, 011
3 (f) 0, 1, -1, 2, -2, 3, -3 / 300, 030, 003, 120, 210, 201, 102, 012, 021, 111
4 (g) 0, 1, -1, 2, -2, 3, -3, 4, -4 /

400, 040, 004, 310, 301, 130, 031, 103, 013, 220, 202, 022, 211, 121, 112

Table 3.2: Changes required to standardize Molden files generated by different quantum chem-
istry packages. The fixes were tested to give correct values for MO overlap matrix elements
for the given versions of the programs and with basis sets containing functions with angular
momenta up to lmax.

Package Version lmax Type Change
Bagel 11. 5. 2020 h Sphe None

Molcas 19.11 g Sphe None
Molpro 2018.1 f Cart None
CFour 2.1 f Cart Scale all coefficients by√

(2lx−1)!!(2ly−1)!!(2lz−1)!!

Turbomole 7.0.1 g Cart Scale all coefficients by
√

2l−1
Orca 4.2.1 h Sphe Printed contraction coefficients are already multi-

plied by Ng.a Coefficients corresponding to AOs
with 2 < |m|< 5 scaled by −1.

a Fixed by dividing contraction coefficients by Ng when reading them instead of by Tprog.

used. In this way, creating an interface to a different electronic structure program requires only

knowing the ordering of functions within subshells and possible scaling factors. These are

readily found without any outside information by comparing the standard AO overlap matrix S

for the basis set and a known final matrix S′. The latter can be obtained for an orthonormal set

of MOs where only the MO coefficients are needed to calculate the AO overlap matrix

SMO = I = CTS′C ⇒ S′ = CT,−1C−1 . (3.21)

The closest to a standard format for writing atomic basis sets and molecular orbitals is the

Molden format262,263 since most packages can print MOs in this format. It supports both spher-

ical and Cartesian functions and has a published ordering264 for expanding the basis functions

within each subshell up to g type orbitals (Table 3.1). As noted above, this by itself is not

enough and "fixes" are often needed to handle Molden files generated by different quantum

chemistry packages. Examples of such changes are given in Table 3.2.
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A further example is given for MOs written in the native format for Turbomole. Turbomole

uses spherical basis functions and it uses the same ordering of basis functions as Molden, but

one f-type basis function (g̃3,−3) and two g-type basis functions (g̃3,−2 and g̃4,−3) are defined

with a different sign from those in equation 3.10. Listing 1 gives the two functions needed to

automatically generate the transformation matrix from this format to any other format for which

functions like this are also defined.

1 def turbo_m_order(l):

2 ’’’ Order of m for subshell with given l.’’’

3 if l == 1:

4 return [1, -1, 0]

5 m = [0]

6 for i in range(1, l+1):

7 m.append(i)

8 m.append(-i)

9 return m

10

11 def turbo_lm_scale(l, m):

12 ’’’ Scaling factor for bf with quantum numbers l, m.’’’

13 if l == 3 and m == -3:

14 return -1

15 if l == 4 and (m == -3 or m == -2):

16 return -1

17 return 1

Listing 1: Functions needed to generate Tprog for transforming MO coefficients to and from the

Turbomole native format.

3.3 Photoionization observables

For the photochemical processes studied in later sections, some the most informative exper-

iments might be those based on time-resolved photoelectron spectroscopy.173,186,202 In these

experiments, the pump pulse excites the system to start the reaction and the probe pulse ion-

izes the system. Then the kinetic energy (and angular distribution) of the photoelectron can be

measured to obtain information on the state of the system from which the electron was ejected.

At a particular molecular geometry, the likelihood of photoionization is connected to the
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dipole transition moment between the initial (
∣∣∣ΨN

I

〉
) and final (

∣∣∣ΦN
Fk

〉
) wave functions involved

in the transition. The partial differential cross-section in the molecular frame is

dσIFk

dk
= 4π

2
αω

∣∣∣〈Ψ
N
I

∣∣∣µ∣∣∣ΦN
Fk

〉∣∣∣2 , (3.22)

where k is the momentum of the photoelectron, α is the fine structure constant, ω is the photon

energy and
〈

Ψ
N
I

∣∣∣µ∣∣∣ΦN
Fk

〉
= µIFk is the dipole transition moment. This value is most com-

monly evaluated in the single channel approximation where the final state is expressed as an

antisymmetrized product of the wave function of the ejected photoelectron ϕk with kinetic en-

ergy Ek =
h̄2k2

2me
and of the remaining bound ionized system Ψ

N−1
F .

For single photon photoionization with linearly polarized light, the differential cross-section

will have the following form

dσIFk

dk
=

σIFk

4π
[1+βIFkP2(cosθ)] , (3.23)

where P2 is the second-order Legendre polynomial, θ is the angle between the electron emission

direction k and the polarization vector of the incident light, and β is an asymmetry parameter

(ranging between -1 and 2) fully describes the angular distribution of the photoelectron.

The calculation of the dipole transition moment can be simplified to a single electron picture

by integrating out the N−1 electrons of the bound system

µIFk =
〈

φ
D
IF

∣∣∣µ∣∣∣φk

〉
, (3.24)

where
∣∣∣φ D

IF

〉
is the Dyson orbital

∣∣∣φ D
IF

〉
=
√

N
∫

Ψ
N−1
F (x1, ...,xN−1)

∗
Ψ

N
I (x1,x2, ...,xN)dx1...dxN−1 (3.25)

and an additional so-called conjugate contribution is usually neglected.

Humeniuk et al. derived expressions for Dyson orbitals within linear response TDDFT.265

The wave function is represented by the TDDFT linear response eigenvectors as a linear combi-

nation of single-excitations from the Kohn-Sham reference Slater determinant. After expanding

the SDs of the neutral system into minors along the last row to give a sum over SDs of dimension
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N−1, the Dyson orbital can be written as

∣∣∣φ D
IF

〉
= ∑

a,i
∑
b, j

c∗N−1
aF cN

bI ∑
k

〈
Φ

iN−1
aF

∣∣∣ak

∣∣∣Φ jN
bI

〉
|φk〉 , (3.26)

where the first two sums go over all combinations of occupied orbitals a,b and virtual orbitals

i, j of the final (cation) and initial (neutral) state, respectively, and operator ak removes an

electron from orbital k of the neutral wave function.

The norm of a Dyson orbital can itself be used as a qualitative approximation of the photion-

ization cross-section. For a more accurate treatment, or for obtaining the photoelectron angular

distribution, we need to solve eq. 3.24. This will be done at the static-exchange DFT level266

with the DFT ground state density used to build the Hamiltonian matrix. Both the Hamiltonian

matrix and the previously computed Dyson orbitals are expanded in a new basis set consisting

of an expansion of radial B-spline functions multipled by real spherical harmonics. This basis

set consists of a set of basis functions positioned at the center of mass of the molecule and ex-

panding to large distances (needed to accurately treat the continuum states) and basis functions

positioned at the nuclei (needed to accurately treat the bound states). The continuum states are

obtained through the Galerkin approach.267 and are further normalized to K-matrix asymptotic

boundary conditions.

For the photoionization observable calculations performed in the study of pyrrole in sec-

tion 4.4, the ground state density is calculated at the DFT/LB94/DZP level268 using the ADF

program.269 This functional was previously shown to give accurate results for photoionization

observables.270 For the B-spline basis set, a radial grid was placed at the center of mass of the

molecule with nodes extending up to 25 a0 with a step size of 0.2 a0 and combined with spher-

ical harmonics with angular momentum up to 15. Additional expansions were placed at the

nuclei, associated with spheres of radius 1.2, 1.0 and 0.7 a0 and angular momenta up to 2, 2 and

1 for N, C and H atoms, respectively.
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§4. RESULTS AND DISCUSSION

4.1 Evaluation of SH algorithms

As noted in section 2.2.4, significant interest in recent years has been devoted to developing a

surface hopping algorithm where the energies and gradients of the electronic states would be

the only required input during the propagation of the trajectories.48–52,136,137,271

Most of these studies have focused on model systems when comparing the LZSH type algo-

rithms to other methods. An exception to this is the work of Zhu and coworkers52 who used the

photoisomerization reaction in azobenzene to compare surface hopping procedures based on the

Zhu-Nakamura formula and on the fewest-switching algorithm. They found very good agree-

ment between the two methods both for the full population and for individual trajectories and

hopping events. However, this reaction usually involves only a single hopping event for each

trajectory at an S0/S1 conical intersection well separated from all other states so agreement here

cannot be generalized for more complex reactions. On the other hand, Xie and Domcke137

compared both FSSH and LZSH algorithms with exact quantum dynamics simulations for a

three-state two mode model of photoinduced hydrogen detachment in phenol. This reaction

involves a transfer of population from the ππ
∗ state into a dissociative πσ

∗ state which leads to

an intersection with the ground state along the hydrogen detachment coordinate. In this case,

both SH algorithms were in agreement, but both failed to quantitatively reproduce the exact

results. However, it was difficult to judge how much of this failure was due to the approximate

treatment of nonadiabatic effects and how much was due to system-specific nuclear quantum

effects since the reaction involves a significant degree of H-atom tunneling.

In the present work, we will look at two prototypical problems in photochemistry, the first

is internal conversion in pyrazine after excitation to the B2u(ππ
∗) and the second is hydrogen

detachment in pyrrole after excitation to the B2(ππ
∗) state. The former involves a fast transfer

of population from the B2u(ππ
∗) state to the lower lying B3u(nπ

∗) and Au(nπ
∗) states. In

pyrrole, the B2(ππ
∗) is the adiabatic S5 state. Hydrogen detachment proceeds mostly from

the A2(πσ
∗) state which is the adiabatic S1 state so, at least, the πσ

∗ and two Rydberg states

between these two states need to be included in the consideration. These reactions will be

covered in significantly more detailed in sections 4.5 and 4.4, respectively. Here, we will just
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comment on the reactions in terms of their treatment using FSSH and LZSH. Nonadiabatic

dynamics were performed using SH algorithms in the adiabatic basis using the NPI formalism

to ensure numerical stability of the calculated TDCs (A-FSSH), in the locally diabatic basis

(LD-FSSH), or based on the Landau-Zener formula (LZSH).

4.1.1 Pyrazine

The dynamics of pyrazine were considered at three distinct levels in order to obtain the best

possible assessment of the methods for the problem and also to consider the effect of the number

of dimensions included in the model on the performance of the methods. The first two are the

two and three state linear vibronic coupling model Hamiltonians develepoed by Sala et al.53

described in section 3.1 and the third is the ADC(2)/aug-cc-pVDZ full dimensional potential.

Figure 4.1 shows the population of the B2u(ππ
∗) state in the diabatic basis and of S2 in

the adiabatic basis for dynamics performed using the two state model. The population decays

quickly within the first 45 fs to approximately 0.15 and then exhibits recurrences around 80 fs

and 140 fs after the start of the dynamics. Overall, the exact results (black curve) are accurately

reproduced by both LZSH and by LD-FSSH with only minor differences visible. The deviations

between the FSSH and LZSH results are very minor. The population recurrences are also mostly

reproduced by both SH methods.

Figure 4.1: Diabatic population of the B2u(ππ
∗) state (upper panel) and adiabatic population of

the S2 state for the two state model of pyrazine during MCTDH (black), LD-FSSH (green) and
LZSH (red) dynamics. Figure originally published in Ref. (34).

Figure 4.2 shows the populations of the diabatic states for dynamics performed using the

three state model. The decay to the B2u(ππ
∗) state is just as fast as in the two state model, but
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unlike in that model decays almost completely to zero in the same time frame. There are also

almost no recurrences of the population of the B2u(ππ
∗) state, instead the population oscillates

between the B3u(nπ
∗) and Au(nπ

∗) states. As with the two state model, the agreement between

both of the mixed classical-quantum methods and MCTDH is very good, with only a slight (≈

0.05) underestimation of the population Au(nπ
∗). A similar level of agreement between LZSH

and LD-FSSH can be seen when looking at the populations of the adiabatic states in Figure 4.3.

The decay of the S3 population is faster than that of B2u(ππ
∗). After approximately 60 fs, the

population is split between the S1 and S2 states at approximately 80% to 20% and does not

significantly change until the end of the simulation.

Figure 4.2: Diabatic populations of the B2u(ππ
∗) (a), Au(nπ

∗) (b) and B3u(nπ
∗) (c) states for

the three state model of pyrazine during MCTDH (black), LD-FSSH (green) and LZSH (red)
dynamics. Figure originally published in Ref. (34).

Figure 4.3: Adiabatic populations of the S3 (a), S2 (b) and S1 (c) states for the three state model
of pyrazine during MCTDH (black), LD-FSSH (green) and LZSH (red) dynamics. Figure orig-
inally published in Ref. (34).
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Finally, ab initio on-the-fly simulations were performed at the ADC(2)/aug-cc-pVDZ level.

In these simulations, initial conditions were sampled from the Wigner distribution and an in-

stantaneous excitation to the bright B2u(ππ
∗) state was assumed. Five states (ground state and

lowest four excited states) were included in the calculation. However, the 200 fs simulations

were too short for any decay to the ground state and the S4 state was also never significantly

(< 0.03) populated during the dynamics.

Figure 4.4 shows the populations of the adiabatic states for dynamics performed using the

full system at the ADC(2) level. There are no qualitative differences between the adiabatic

populations in simulations using the full-dimensional simulations and the three state model. As

before, we see an excellent agreement between the LD-FSSH and LZSH methods. On the other

hand, the A-FSSH underestimates the decay rate of the intermediate S2 population. At longer

time scales, the populations given by the three methods converge to the same value.

Figure 4.4: Adiabatic populations of the S3 (a), S2 (b) and S1 (c) states of pyrazine during
A-FSSH (blue), LD-FSSH (green) and LZSH (red) dynamics calculated at the ADC(2)/aug-cc-
pVDZ level of theory. Figure originally published in Ref. (34).

The dynamics on the fully dimensional system were performed in the adiabatic basis and no

diabatization procedure to generate fully coupled diabatic states for a system of this size is avail-

able. Instead, the diabatic populations are approximated using two simple procedures based on

the properties of the states. In the first attempt, the states are simply arranged according to their

oscillator strengths. At the ground state minimum geometry, the B2u(ππ
∗) state is relatively

bright (∼ 5×10−2 oscillator strength), the B3u(nπ
∗) state is dark (∼ 5×10−3) while the tran-

sition to Au(nπ
∗) is forbidden (0). These large differences allow separating the states based

on the oscillator strengths, but are not reliable at different geometries. The diabatic popula-
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tions obtained from oscillator strengths are shown for LZSH and FSSH dynamics in Figure 4.5.

Whereas the adiabatic populations were smooth, the diabatic populations of the B3u(nπ
∗) and

Au(nπ
∗) states exhibit oscillations with the two methods giving almost completely identical

results. However, these oscillations have a significantly shorter period (∼ 30 fs) compared to

those of the model system (∼ 60 fs).

Figure 4.5: Approximate diabatic populations of the B2u(ππ
∗) (a), Au(nπ

∗) (b) and B3u(nπ
∗)

(c) states of pyrazine during A-FSSH (blue), LD-FSSH (green) and LZSH (red) dynamics cal-
culated at the ADC(2)/aug-cc-pVDZ level of theory. Figure originally published in Ref. (34).

One area where the two methods differ is the actual points where the hops occur. Figure 4.6

shows the distribution of gaps at which the hops occur for each of the methods tested. The

total number of hops is similar in each simulation, but we see that significantly more hops

occur at low gaps (∼ 0.1 eV) in the LZSH simulation compared to either FSSH simulation.

This observation is expected since hopping probabilities in LZSH are evaluated only in the gap

minima. On the other hand, hops in FSSH can occur at any point regardless of the gap between

states so hops at larger gap values are possible.
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Figure 4.6: Distribution of the instantaneous energy gaps for successful hops between (a) S3 and
S2 and (b) between S2 and S1 in the full-dimensional ADC(2) simulations. The red, green, and
blue distributions correspond to LZSH, LD-FSSH and A-FSSH methods, respectively. Figure
originally published in Ref. (34).

4.1.2 Pyrrole

For pyrrole, sets of trajectories were propagated using each of the SH algorithms (A-FSSH, LD-

FSSH and LZSH) using three different electronic structure methods, ADC(2)/aug-cc-pVDZ,

SCS-ADC(2)/aug-cc-pVDZ and B3LYP/def2-TZVPD. For each method a total of 100 trajecto-

ries were sampled (weighted by oscillator strengths) from the ground state Wigner distribution.

In all of the selected trajectories, the bright B2(ππ
∗) state from which the dynamics were started

was the S5 state.

Table 4.1 shows the time scales for relaxation to the ground state for each dynamics simula-

tion. Unlike the situation in pyrazine, the quantitative picture for the reaction in pyrrole is sig-

nificantly different based on both the electronic structure and the dynamics level of theory. The

reaction is significantly slower at the ADC(2) level than TDDFT and significantly faster with

LZSH than LD-FSSH. Differences between ADC(2) and SCS-ADC(2) are negligible. In terms

of reaction mechanisms, most trajectories ended through dissociation of the N-H bond, and a

smaller fraction (similar across all methods) through the ring-puckering mechanism. Some of

the N-H dissociation trajectories remain in the S2 state when the S0/S1 CI is reached, but at

these points the S2 state is always within 1 eV of the CI, suggesting the S2/S0 CI would be

reached quickly from there.

Populations of all adiabatic states are shown in Figure 4.7. Qualitatively the results LD-

FSSH/LZSH results are very similar. The main visible difference is in the populations of states
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Table 4.1: Time constants (in fs) for relaxation to the ground state for different combinations of
surface hopping algorithm and electronic structure method.

LD-FSSH LZSH
ADC(2)/aug-cc-pVDZ 185 128

SCS-ADC(2)/aug-cc-pVDZ 189 122
B3LYP/def2-TZVPD 95 52

S4 (purple), S3 (red) and S2 (green) in the early steps of the B3LYP dynamics which are pop-

ulated for a shorter amount of time in the LZSH dynamics. An initial comparison of the pop-

ulated diabatic states at 10 and 20 fs also did not show qualitative differences between LZSH

and LD-FSSH dynamics.
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LD-FSSH/SCS-ADC(2)

LZSH/SCS-ADC(2)

LD-FSSH/B3LYP

LZSH/B3LYP

Figure 4.7: Populations of the ground state and ten lowest excited states during LD-FSSH and
LZSH dynamics at the SCS-ADC(2)/aug-cc-pVDZ (a, c) and B3LYP/def2-TZVPD (b, d) levels
of theory.

The distribution of hops with respect to the gap minimum is quite similar to the one shown

for pyrazine in Figure 4.6 with the LZSH distribution more highly peaked at low gap values.

Also like in pyrazine, the overall number of hops is similar for both algorithms algorithms.

However, in pyrrole the two LZSH simulations end faster which means that the same number

of hops occurs in less time. Indeed, we see that the key difference between the two methods
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in pyrrole is in the very early stages of the simulation (first 5 fs) where significantly more hops

occur in the LZSH simulations. This causes the LZ trajectories to more quickly pass through

the initial region where the states S2-S6 are all within a very narrow energy window.

4.1.3 Numerical stability of LZSH

Continuing with the pyrrole B3LYP dynamics as our test case, we will now take a look at the

numerical stability of the LZSH algorithm with respect to the possible errors caused by dis-

creet time steps and finite precision of the electronic structure calculations as discussed in sec-

tion 3.2.1. The LZSH results shown above are for trajectories where the time step was bisected

four times before evaluating the hopping probability at each gap minimum. The relaxation

time scale is almost identical (within 2 fs) if only a single bisection is performed, but slight

differences could be seen for the populations of the S2 and S1 states. Due to the frequency of

gap minima encountered during the trajectory, the average number of evaluations of the PES is

∼ 20% higher when four bisections are performed at each hop than when a single bisection is

performed (244 and 203, respectively).

Figure 4.8 shows the (log(g), log(d)) distributions from the pyrrole B3LYP trajectories with

different time steps for the evaluation of hopping probabilities. Here, as defined in section 3.2.1,

g is the energy gap and d = ((g(t− δ )− g(t))+ (g(t + δ )− g(t)))/2 is the change of the gap

value between time steps. Also shown are regions where the errors in the calculated probability

(assuming energies are calulated with a precision σ = 10−6) are greater than 5% (blue contours),

10% (orange), 20% (green) or 50% (red) for the given combination of g and d and a time step

of 0.5 (a), 0.25 (b) 0.125 (c) and 0.03125 fs. The area with large possible errors in the upper

part of the figures is due to uncertainty in the position of tc, while the one in the lower part of

the figures is due to σ . We see that a time step of 0.5 fs is often enough, but a not insignificant

portion of the hops are in the upper "error" area, suggesting that this time step is sometimes too

large. On the other hand, a time step of 0.03125 fs is often too small, since a significant portion

of the determined gaps could be affected by the accuracy of the electronic structure calculation.

So decreasing the time step increases the precision with which the gap energy is calculated,

but introduces larger errors in the second derivative. From these results, it appears that using

a time step around 0.25 fs should give satisfactory accuracy for almost all hops in this system.

However, in around 80% of the cases a step of 0.5 fs is already enough to be certain that the
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Figure 4.8: Error estimates for eq. 2.55 with σ = 10−6 and a time step of 0.5 (a), 0.25 (b)
0.125 (c) and 0.03125 fs. Combinations of g and d for which errors greater than 5%, 10%,
20% and 50% are estimated are within the blue, orange, green and red contours, respectively.
Distributions (log(g), log(d)) from the pyrrole B3LYP trajectories with the corresponding time
step are shown by the shaded areas.

probability was calculated within 5% accuracy. The average pyrrole B3LYP trajectory encoun-

tered 18 gap minima. This means that using the developed algorithm for adapting the time step

based on error estimates often reduces the overall cost of the simulation by ∼ 21 evaluations

per trajectory or 15% overall with no trade-off in the accuracy.

An analysis of the actual differences in hopping probabilities evaluated at the same gap

minima over the entire simulation was performed to see whether the error estimates used to

determine the time step are realistic. On average, the computed probabilities were quite accurate

regardless of the time step. However, outliers where the calculated probability is different by 10

percentage points depending on the time step were not uncommon. In these cases, the estimated
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errors were similarly high which means the adaptive algorithm would automatically modify the

time step to accurately calculate the probability. With these results, we can be confident in

the numerical stability of the developed LZSH algorithm. However, from the almost perfect

agreement seen in pyrazine and significant differences seen in pyrrole, we can also note that

increasing the density of states has a significant impact on the accuracy of LZSH.

4.2 Wave function overlap algorithms

In this section we are interested in the calculation of the overlap matrix between a set of NA

electronic states {|ΨA〉} and NB states
{∣∣Ψ′B〉} where the states are expanded in terms of Slater

determinants (SDs)

SAB =
〈
ΨA
∣∣Ψ′B〉= ndet

∑
o

n′det

∑
p

dA
o d′Bp

〈
Φo
∣∣Φ′p〉 , (4.1)

where ndet is the number of SDs in the expansion of A, Φo are the SDs and dA
o are their coeffi-

cients and all primed values refer to states
{∣∣Ψ′B〉}. Here, and in the rest of the section, o, p, ...

are general indices, while a,b, ..., i, j, ... and σ ,τ will be used for occupied orbitals, virtual or-

bitals and spin functions, respectively. The only requirement for calculating SAB is that the two

sets of states share the same number of occupied orbitals (electrons). Apart from this, they can

be expanded in terms of basis sets defined at different geometries (which is the usual case when

they are used in FSSH calculations), but also using different basis sets altogether.

As stated in section 2.2.3, equation 4.1 requires the evaluation of a huge number of deter-

minants and has a formal scaling of O(ndetn
′
det(nal pha3 + nbeta3)). Instead of trying to solve

the general problem, we limit our scope to states which can be described by a CIS type wave

function

|ΨA〉=
{α,β}

∑
σ

no,σ

∑
a

nv,σ

∑
i

dA
ai,σ

∣∣∣Φi
a,σ

〉
(4.2)

∣∣Ψ′B〉= {α,β}

∑
τ

no,τ

∑
b

n′v,τ

∑
j

d′Bb j,τ

∣∣∣Φ′ jb,τ

〉
, (4.3)

where
∣∣∣Φi

a,σ

〉
are SDs with one electron moved from orbital a to orbital i.
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Inserting the CIS ansatz into equation 4.1 we obtain

〈
ΨA
∣∣Ψ′B〉= {α,β}

∑
σ

{α,β}

∑
τ

no,σ

∑
a

no,τ

∑
b

nv,σ

∑
i

n′v,τ

∑
j

dA
ai,σ d′Bb j,τ

〈
Φ

i
a,σ

∣∣∣Φ′ jb,τ

〉
(4.4)

or, after splitting into blocks as in equation 2.31 and rearranging the sums

〈
ΨA
∣∣Ψ′B〉= 〈Φ0

∣∣Φ′0〉β

no,α

∑
a

no,α

∑
b

nv,α

∑
i

n′v,α

∑
j

dA
ai,αd′Bb j,α

〈
Φ

i
a

∣∣∣Φ′ jb

〉
α


+

(no,α

∑
a

nv,α

∑
i

dA
ai,α

〈
Φ

i
a

∣∣∣Φ′0〉
α

)no,β

∑
b

n′v,β

∑
j

d′Bb j,β

〈
Φ0

∣∣∣Φ′ jb

〉
β


+

(no,β

∑
a

nv,β

∑
i

dA
ai,β

〈
Φ

i
a

∣∣∣Φ′0〉
β

)no,α

∑
b

n′v,α

∑
j

d′Bb j,α

〈
Φ0

∣∣∣Φ′ jb

〉
α


+
〈
Φ0
∣∣Φ′0〉α

no,β

∑
a

no,β

∑
b

nv,β

∑
i

n′v,β

∑
j

dA
ai,β d′Bb j,β

〈
Φ

i
a

∣∣∣Φ′ jb

〉
β

 . (4.5)

The above equation consists of eight blocks (four for each spin) which can be calculated sep-

arately. For convenience, since they are not important for further considerations, we will drop

the spin indices going forward and also assume n′v = nv and N = NA = NB. The most expensive

step is the calculation of n2
on2

v determinants of the form
〈

Φ
i
a

∣∣∣Φ′ jb

〉
in the quadruple sums. Apart

from the determinant calculation, the sums themselves are costly because the CI coefficients are

state dependent so the sums have to be computed for each pair of states separately, when imple-

mented using matrix multiplications this adds an additional O(n2
on2

vN +n2
onvN2) step resulting

in a scaling of O(NANBn2
on2

v) for a straightforward implementation.

One approach to reducing the cost of such calculations is to notice that most matrices whose

determinants are needed for overlap calculations are very similar. Specifically for CIS wave

functions, in equation 4.5 we can see that the marices differ by at most two rows and two

columns. This property was used previously by Plasser and coworkers16 to significantly speed

up calculations for MR-CIS expansion by using a single step Laplace’s recursive formula during

the determinant calculations. Expanding the determinants into minors along a column allows

one to reuse the minors for all determinants which are different from the starting determinant by

only that column. For the case of elements
〈

Φ
i
a

∣∣∣Φ′ jb

〉
appearing in CIS expansions, expanding
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along column j we arrive at

〈
Φ

i
a

∣∣∣Φ′ jb

〉
=

no

∑
c6=a

oc j(−1)c+b
〈

Φ
i
a,c

∣∣∣Φ′b〉+oi j(−1)a+b 〈
Φa
∣∣Φ′b〉 , (4.6)

where oop denotes the overlap between molecular orbitals o and p. Here, none of the determi-

nants have a dependence on index j, meaning that the determinant calculations can be taken out

of the sum over n′v virtual orbitals (at a cost of an additional sum over no−1 orbitals).

This approach can be furthered by expanding the level 1 minors (L1M) again using Laplace’s

recursive formula and writing
〈

Φ
i
a

∣∣∣Φ′ jb

〉
σ

in terms of level 2 minors (L2M)

〈
Φ

i
a

∣∣∣Φ′ jb

〉
=

no

∑
c6=a

no

∑
d 6=b

oc joid sgn(b−d)sgn(c−a)(−1)a+b+c+d 〈
Φa,c

∣∣Φ′b,d〉
+oi j(−1)a+b 〈

Φa
∣∣Φ′b〉 ,

(4.7)

where sgn(o− p) are used to change sign beyond the row/column removed from the L1Ms

where the indices are reduced by one compared to the original matrix. Both sums in equation 4.7

are over occupied orbitals and the elements
〈
Φa,c

∣∣Φ′b,d〉 also do not depend on i or j. Since

interchanging the indices a and c or b and d has no effect on the values, the total number

of unique determinants to calculate is reduced to 1
4n2

o(no− 1)2. This effectively removes the

dependence on the number of virtual orbitals from the cost of calculating determinants changing

the scaling to O(n7
o). An additional step is needed to reconstruct the full determinants which

can be done efficiently using matrix-matrix multiplications with a scaling of O(n4
onv + n3

on2
v),

and the final sum still remains the same.

Another approach is based on calculating the natural transition orbitals (NTOs) for the CIS

wave functions.60,61,272 In the case of CIS wave functions, NTOs can be calculated by separate

unitary transformations in the subspaces of occupied and virtual orbitals which is conveniently

done by a singular value decomposition (SVD) of the matrix containing the CIS coefficients dA
ai

DA = OΛVT . (4.8)

This results in an no×no matrix O containing the hole NTOs in the basis of occupied orbitals,

an nv× nv matrix V containing the particle NTOs in the basis of virtual orbitals and no× nv
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matrix Λ containing the no (assuming no < nv, as is always the case in practice) singular values

λ
A
k on the diagonal and zeroes everywhere else.

The CIS wave functions of equations 4.2 and 4.3 can be written in terms of the NTOs as

|ΨA〉=
{α,β}

∑
σ

nσ

∑
o

λ
A
o,σ

∣∣∣ΘA
o,σ

〉
(4.9)

|ΨB〉=
{α,β}

∑
τ

nσ

∑
p

λ
B
p,σ

∣∣∣ΘB
p,σ

〉
, (4.10)

where
∣∣∣ΘA

o,σ

〉
are singly excited SDs with excitations from the oth occupied to oth virtual natural

orbital. In this form, the full wave function is a linear combination of only nα + nβ SDs.

Inserting into Eq. 4.1 we get

〈
ΨA
∣∣Ψ′B〉= 〈Θ

A
0

∣∣∣Θ′B0 〉
β

(
nα

∑
o

nα

∑
p

λ
A
o,αλ

′B
p,α

〈
Θ

A
o

∣∣∣Θ′Bp 〉
α

)

+

(
nα

∑
o

λ
A
o,α

〈
Θ

A
o

∣∣∣Θ′B0 〉
α

)(nβ

∑
p

λ
′B
p,β

〈
Θ

A
0

∣∣∣Θ′Bp 〉
β

)

+

(nβ

∑
o

λ
A
o,β

〈
Θ

A
o

∣∣∣Θ′B0 〉
β

)(
nα

∑
p

λ
′B
p,α

〈
Θ

A
0

∣∣∣Θ′Bo 〉
α

)

+
〈

Θ
A
0

∣∣∣Θ′B0 〉
α

(nβ

∑
o

nβ

∑
p

λ
A
o,β λ

′B
p,β

〈
Θ

A
o

∣∣∣Θ′Bp 〉
β

)
.

Only double sums over no remain in equation 4.11 and only n2
o determinants need to be cal-

culated for each spin. The trade-off here is that the orbitals are now state-dependent so the

determinants
〈

Θ
A
o

∣∣∣Θ′Bp 〉 need to be calculated separately for each pair of states, resulting in

an overall scaling of O(N2n5
o). Since only a small number of states is included in a typical

calculation, it can be assumed that N2 � n2
o � n2

v . This would mean that calculations based

on equation 4.11 (denoted ONTO further in the text) are expected to significantly outperform

those based on equation 4.7 (denoted OL2M) which, in turn, are faster than those based on

equation 4.5 (denoted OCIS).

We should note here that this type of calculation can trivially be extended to the calcula-

tion of Dyson orbitals using equation 3.25. This requires an additional loop to cycle over the

orbitals from which an electron can be removed when expanding the N electron wave func-
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tion into minors following which N− 1 overlap determinants are calculated. Due to this extra

loop, calculating Dyson orbitals in this manner has even worse scaling than regular overlap

calculations and thus performance improvements are even more crucial.

4.2.1 Performance

In section 4.2 we presented two efficient algorithms for calculating overlaps of wave functions

expanded in terms of Slater determinants built from different sets of basis functions. We have

shown that the developed algorithms should have significantly better scaling than a trivial im-

plementation of the underlying equations. In this section, we will test the actual performance

of these algorithms.

The cost of a wave function overlap calculation depends on three parameters: the size of

the system, the size of the basis set and the number of states for which overlaps are required.

The size of the system (number of electrons) fully determines the number of occupied orbitals,

while the number of virtual orbitals depends both on the number of atoms of each type and the

number of basis functions added for each such atom. The number of states included depends on

the problem being studied, but in general larger systems have a denser manifold of states which

means that they usually require the consideration of more states.

A series of poly-alanine peptides was chosen for numerical tests of the performance of the

algorithms. The systems ranged from three to thirty residues. This corresponds to systems with

62 to 575 occupied orbitals. All calculations were performed for two basis sets of significantly

different size, the small def-SV(P) and the larger cc-pVTZ basis set. The number of virtual

orbitals went from 196 to 1843 for the smaller set and from 656 to 6083 for the larger one.

All calculations were performed on a single CPU core (Intel(R) Xeon(R) CPU E3-1245 v5 @

3.50GHz) and the timings are shown in Figure 4.9.

The trivial implementation of the calculation is significantly slower than all of the results

shown so comparisons are made only between the new algorithms (OL2M and ONTO) and the

previously available algorithm based on level 1 minors (OL1M algorithm).16 Both algorithms

improve upon the OL1M algorithm, but the ONTO algorithm also outperforms the OL2M al-

gorithm by an order of magnitude even for the smallest test case. The differences are more

pronounced for larger systems. Going beyond ≈ 200 occupied orbitals, the OL2M algorithm

quickly becomes too expensive while the ONTO algorithm still takes only eight hours on a
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single processor at 575 occupied orbitals.
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Figure 4.9: Comparison of the performance of the OL1M (red), OL2M (green) and ONTO
(blue) algorithms. (a) Scaling with the system size (number of residues) with 5 excited states.
Additional tests were performed on the 3 alanine (b, d) and 5 alanine (c, e) systems. (b) 3-Ala
and (c) 5-Ala scaling with basis set size for 5 excited states going from the def-SV(P) to the
aug-cc-pVQZ basis set. (d) 3-Ala and (e) 5-Ala scaling with the number of states included in
the calculation. Figure originally published in Ref. (35).

We see in Figure 4.9a that the curves for the two basis sets almost perfectly overlap for

both of the new algorithms. This shows that the benefits of these algorithms increases with

the size of the basis set. To further test this, in Figure 4.9b and c we look at a wider range of

basis sets when applied to the two smaller systems with 3 and 5 alanine residues, respectively.
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The series of basis sets included was def-SV(P) < cc-pVDZ < aug-cc-pVDZ < cc-pVTZ <

aug-cc-pVTZ < cc-pVQZ < aug-cc-pVQZ. As expected the ONTO algorithm still shows no

dependence on the number of virtual orbitals since all matrices entering the algorithm after

the initial SVD decomposition to generate the NTOs (which has a negligible cost even for the

largest calculations) have dimensions proportional only to the number of occupied orbitals.

On the other hand, the cost of the calculation with the OL2M algorithm initially also does

not depend on the basis set size, but as we begin to use augmented triple zeta or quadruple

zeta basis sets a quadratic dependence emerges. This is because of the O(n3
on2

v) scaling step

of reconstructing the full determinants from the minors which becomes the bottleneck of the

algorithm for large enough nv.

The last variable when looking at the scaling of the different algorithms is the size of the

overlap matrix being calculated. In Figure 4.9d and 4.9e we see that the OL2M algorithm even-

tually becomes preferable to the NTO algorithm. This is expected since the dominant steps for

large systems in the OL2M and ONTO algorithms are always O(n7) and O(n5NANB), respec-

tively. From this, we expect that the point at which the OL2M algorithm starts outperforming

the ONTO algorithm is when NANB/n2 > c, where c is some implementation dependent con-

stant. From the data in Figure 4.9 we see that c≈ 1
6 in the current code.

Here we note that both algorithms are amenable to parallelization since most of the time

is spent in the loops calculating determinants which do not depend on each other. While the

results shown above were performed on a single processor, the code itself is parallelized and

shows a nearly linear speedup with the number of cores. In addition to this, both algorithms still

consist of calculations of many similar determinants. We can take further advantage of this fact

by re-utilizing and updating the LU factorization while calculating the determinants. This has

been implemented for the OL2M algorithm resulting in a 10 to 100 times faster calculation of

the minors.62 This implementation fills the gap where calculations of overlaps could become the

bottleneck for medium sized systems when a large number of states needed to be considered.

It also opens the possibility of extending the procedure to compute the overlaps between more

complex wave function types such as MR-CIS without making approximations.
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4.2.2 Approximations

Based on the results of section 4.2.1 we can conclude that overlaps can be calculated at virtually

no cost compared to the electronic structure calculation for most systems typically studied using

FSSH. For ADC(2) this is certainly true, but TDDFT scales more favorably and can be used to

treat much larger systems at a low cost, especially with the use of graphical processing units

(GPUs).63–65 When the cost of the overlap calculation is not negligible approximations should

be considered.

In section 2.2.3 we mentioned two approximation schemes for calculating TDCs. Here we

will take a more detailed look at these schemes in the context of our developed algorithms and

comment on the viability of their implementation and possible errors. From the approximation

scheme suggested by Pittner et al.,15 the mutual excitation threshold is not relevant for CIS

type wave functions since all determinants are singly excited. On the other hand, the coefficient

product threshold tcp of Pittner and the wave function norm threshold tnorm of Plasser et al.16

are both applicable to these types of wave functions.

The efficiency of the OL2M algorithm stems from the ability to efficiently calculate overlaps

between many Slater determinants at once. Dropping a small number of SDs from the wave

function expansion or SD overlaps from eq. 4.5 would have negligible effect on the overall

cost of the calculation. With larger numbers of dropped terms (higher level of approximation),

one would have to select which minors are worth precomputing and when it is more efficient

to directly calculate the overlap determinant. The more terms are dropped, the less minors

would be worth calculating and the difference between the OL2M and direct algorithms would

be smaller. For this reason, the OL2M algorithm is not particularly amenable to this type of

approximation.

On the other hand, the ONTO algorithm is based on reducing the number of determinants

in the expansions and reducing this number even further directly reduces the cost of the cal-

culation. Wave functions expanded in terms of NTO excitations are usually dominated by a

small number of determinants272 which makes them ideal for approximations based on neglect-

ing determinants with small coefficients. Both the tcp and tnorm approximations are trivial to

implement in this algorithm, with the condition for tcp changed slightly from eq. 2.33 to reflect

that the orbitals are different for each state so coefficients for each pair of states are checked
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separately

tcp
ab,AB ≥

∣∣∣dA
a d′Bb

∣∣∣ . (4.11)

The two approximation schemes are quite similar. For the purposes of analyzing the possible

errors, the tnorm scheme is more practical so we will use it in this section. However, similar

conclusions can be made for the scheme based on tcp. We start by truncating the wave functions

to keep only the kt largest coefficients

∣∣Ψ̃A
〉
=

kt

∑
o

dA
o

∣∣∣ΦA
o

〉
, (4.12)

so that the norm of each truncated wave function
∣∣Ψ̃A

〉
is larger than a selected threshold pa-

rameter tnorm 〈
Ψ̃A
∣∣Ψ̃A

〉
=

kt

∑
o
(dA

o )
2 ≥ t . (4.13)

This truncation obviously reduces the norm of the wave functions causing a systematic under-

estimation of the calculated overlaps but it can also affect the angles between them. The norm

can easily be fixed by renormalizing either the truncated states before calculating the overlaps

or the overlap matrix itself. In the cases where angles are not changed by the truncation, the

exact overlaps are recovered in this way and initial tests using this methods have resulted in

very accurate overlaps for threshold values above 0.95.16

The maximum possible overestimation error introduced in this way is 1− t which is accept-

able (and expected). However, it is also possible for the overlaps to be underestimated by as

much as 2
√

t
√

1− t. This can be simply illustrated with an overlap of two states dominated by

the same two excitations

|ΨA〉=
√

t |Θ1〉+
√

1− t |Θ2〉 ⇒
∣∣Ψ̃A

〉
=
√

t |Θ1〉 (4.14)

|ΨB〉=
√

t |Θ2〉+
√

1− t |Θ1〉 ⇒
∣∣Ψ̃B

〉
=
√

t |Θ2〉 . (4.15)

The overlap of these two states is equal to 2
√

t
√

1− t when the full wave functions are consid-

ered. If the states are truncated, only the dominant excitations are kept and the overlap is 0. For

t = 0.9, this produces an error of 0.6, and even for t = 0.99 the error is still 0.2 and these errors

are not reduced by renormalizing or orthogonalizing the overlaps. While this situation might
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appear extreme at first glance, it is the type of behaviour expected near conical intersections

or avoided crossings where significant mixing between electronic states can occur for small

changes in nuclear coordinates.

There is also reason to suspect that the ONTO algorithm will be more vulnerable to these

types of errors since NTO expansions are dominated by a small number of determinants. For this

reason detailed numerical tests of the approximation scheme based on the threshold tnorm for in-

dividual wave functions were performed. To ensure that the approximation is tested thoroughly,

we repeat all overlap calculations along FSSH trajectories using different values of the tnorm

truncation threshold parameter. For the test case, two trajectories (one TDDFT/B3LYP/def2-

TZVPD and one ADC(2)/aug-cc-pVDZ trajectory randomly selected from the ensemble) sim-

ulating the nonadiabatic dynamics of pyrrole excited to B2(ππ
?) state37 were chosen. These

dynamics are covered in detail in section 4.4 and were originally performed without truncation

since the molecule is small so the overlap calculation is fast. The reason for choosing this sys-

tem is that the manifold of excited states is quite dense for such a small molecule which results

in many state crossings during the dynamics. As noted in section 4.2.2, such state crossings are

regions where the suggested truncation scheme might result in large errors.

Both trajectories consist of 500 steps (250 fs with a 0.5 fs time step) with 10 excited states

resulting in a a total of 50 000 overlap matrix elements between excited states. The basis set

for the TDDFT calculations included 18 occupied and 212 virtual orbitals, while the basis set

for the ADC(2) calculation included 13 occupied (the five core orbitals were frozen) and 142

virtual orbitals. The total number of determinants computed along the trajectory with different

settings for tnorm is shown in Figure 4.10.

The efficiency of the truncation scheme is determined by the number of excitations with sig-

nificant coefficients in the wave function expansion. In the TDDFT calculations, the auxilliary

wave functions, written in terms of excitations from Kohn-Sham orbitals, are dominated by only

a few excitations. Because of this, for small values of tnorm the possibility of reusing determi-

nants for multiple states in the OCIS algorithm slightly outweighs the compactness of the wave

functions in the ONTO algorithm. However, as the threshold is increased above tnorm = 0.98,

the cost of the OCIS algorithm quickly overtakes the ONTO algorithm. In the ADC(2) calcula-

tion, a larger number of singly excited determinants has significant contributions and the ONTO

algorithm requires less determinants for tnorm = 0.99 than the OCIS algorithm for tnorm = 0.9.
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Figure 4.10: Comparison of the total number of determinants computed along a (a)
TDDFT(B3LYP)/def2-TZVPD and (b) ADC(2)/aug-cc-pVDZ (b) FSSH trajectory of pyrrole
for different values of the CI vector truncation threshold tnorm using the ONTO and OCIS algo-
rithms. Figure originally published in Ref. (35).

As expected, for both trajectories the total number of determinants which needed to be

computed was lower with the ONTO algorithm by more than two orders of magnitude for

higher values of tnorm. For larger systems or smaller numbers of states, these differences are

expected to be even more pronounced in favour of the ONTO algorithm.

The more important information, the errors introduced by the approximation, is shown in

Figure 4.11. All overlap matrix elements were compared to the corresponding elements calcu-

lated using the full wave functions. The mean error of the approximation scheme is small for

both the OCIS and ONTO algorithm and is reduced further by orthogonalization of the overlap

matrix. However, looking at mean errors is not sufficient since a large error in a single matrix

element can cause an unphysical hop which affects the remainder of the trajectory. As stated

previously, we expected that wave functions with large contributions from a few determinants

would result in larger errors after the approximation. However, this was only partially the case.

The observed maximum errors are approximately
√

1− tnorm for low threshold values (half

of the worst-case scenario error). For higher threshold levels (tnorm >= 0.999), the observed

maximum errors separate further from the worst-case scenario, but always remain significantly

higher than 1− tnorm.

Marin Sapunar Doctoral thesis



§4 RESULTS AND DISCUSSION 81

0.00

0.01

0.02

0.03

M
ea

n 
Er

ro
r

a OCIS
OCIS orth

ONTO
ONTO orth c

10 4 10 3 10 2 10 1

Norm of truncated amplitudes (1 - t)

10 3

10 2

10 1

M
ax

 E
rro

r

b

10 4 10 3 10 2 10 1

Norm of truncated amplitudes (1 - t)

d

Figure 4.11: Mean (a, c) and maximum (b, d) errors for overlap elements computed with dif-
ferent threshold values along a (a, b) TDDFT(B3LYP)/def2-TZVPD and (c, d) ADC(2)/aug-
cc-pVDZ FSSH trajectory using the ONTO and OCIS algorithms. Errors for the raw overlap
matrix elements (full lines), errors after orthogonalization (dashed lines) and the maximum error
expected for the approximation scheme (2

√
1− t
√

t, black line) are shown. Figure originally
published in Ref. (35).

In the case of the TDDFT trajectory, both the CIS and NTO expansions are quite compact

and the maximum errors are approximately the same with both algorithms. ADC(2) wave func-

tions usually have contributions from a larger number of excitations. Still, the maximum errors

of the OCIS algorithm are only slightly smaller than those of the ONTO algorithm. Orthogo-

nalization has almost no effect on the maximum errors since they are not caused by the loss of

norm of the wave functions. In any case, it is important to remember that, at least for TDDFT

and ADC(2) wave functions, errors of the order
√

1− tnorm are possible with this approximation

scheme and it should be avoided or used with the largest possible values of the truncation thresh-

old when quantitative results are required. It is worth noting here that approximate overlaps used

for CC2/ADC(2) calculations are actually always calculated by truncating the wave functions

since only their singles amplitudes are taken to construct a formal CIS wave function.59 This

is different from the approximation mentioned above since none of the neglected determinants

are singly excited determinants and, assuming that the reference determinant doesn’t change

significantly, will have negligible overlaps with the non-neglected singly excited determinants.
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The maximum error in this case should be approximately equal to the norm of the neglected

amplitudes which is on average equal to 0.076 along the tested trajectory.

4.3 Decomposition of spectra

One outstanding problem of surface hopping methods is the interpretation of obtained results

in terms of changes in the electronic structure of the system. In this regard, the main advantage

of surface hopping methods is also its problem. Simulating dynamics on-the-fly in the basis of

adiabatic states is the reason why this method is cheap and simple to use compared to methods

which require constructing global diabatic potential energy surfaces. On the other hand, diabatic

surfaces are useful when interpreting the results because electronic properties change smoothly

over the surface. While we can compute reasonably accurate estimates of many observables

using the nuclear ensemble approach described in section 2.2.5, we often want to know how the

different electronic states contribute to these observables.

In this section, we will look at the absorption spectra and how we can assign them within the

nuclear ensemble method. It is important to note that we are not aiming for a perfect quantitative

method, but rather a qualitative way to show how much a particular "diabatic" state contributes

to a particular region of the absorption spectrum. Wave function overlaps are a natural choice

for this task since they are the most direct comparison of the electronic structure of two states

at different nuclear geometries. The procedure is simple. 1) Define a reference geometry, this

is usually the ground state minimum geometry. 2) Characterize the states at this geometry (this

step will be detailed later). 3) Calculate the overlap matrix between this geometry and all other

points of the ensemble. 4) Assign the states at all other points using those at the reference

geometry based on the overlaps, this is done by solving the assignment problem using the

Hungarian algorithm.273,274 5) Calculate averaged values for each "diabatic" state by summing

over the states assigned to each state of the reference geometry.

Upon assigning the states at all points of the ensemble, the spectra are calculated as

σ(E) ∝

Ns

∑
A

f̄0A√
2πγA

exp

(
−(E− Ē0A)

2

2γ
2
A

)
, (4.16)

where Ē0A and f̄0A are, respectively, the mean excitation energy and oscillator strength of each

of the thirty states and γi is the standard deviation of the excitation energy. A graphical summary
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of this procedure is shown in Figure 4.12.

These spectra are different from the standard nuclear ensemble approach where each point

is broadened using the same kernel function. In our approach, the spectra use state-specific

widths based on the standard deviations γi. However, in general the two approaches give a very

similar overall shape of the spectrum with the main difference being the easy assignment of the

contributions from individual states using the current approach.
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Figure 4.12: Schematic representation of the simulation of state-averaged absorption spectra.

It is clear that this is by no means a real diabatization procedure. When a state is a nearly

equal mixture between two states of the reference geometry it will be assigned fully to one of

those states. However, if the reference states are chosen well strong mixing should be limited to

regions near conical intersections and most entries of the overlap matrices will be close to zero

or one. If strong mixing between states is present at a significant portion of the geometries, an

alternative algorithm can be used. In this algorithm, we replace steps 4) and 5) above and instead

spectra for each "diabatic" state are obtained by summing over all states at each geometry

weighted by the square of their overlap with the reference state. This is equivalent to writing the

states at each geometry in the basis of reference states and using the squares of the coefficients
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cAF(Ri) = 〈ψA(R0)|ψF(Ri)〉 as additional weights in the nuclear ensemble approach:

σA(E) ∝ ∑
F

Np

∑
i

wiE0F(Ri)|cAF(Ri)|
2 f0F(Ri)k

(
E−E0F(Ri)

δF

)
. (4.17)

This alternate procedure looses the simplicity of 1:1 correspondence between the states at each

geometry and the easy definition of state-specific broadening factors {γA}. On the other hand,

it is less vulnerable to errors due to mixing between the states.

4.3.1 Absorption spectra of nucleobases

The procedure described above was used to study the spectra of DNA nucleobases in a wide

range of excitation energies (350-190 nm). In this study we were interested in characterizing

the absorption spectra and also in the effect of the zero point energy, temperature and solvation

on the positions of the peaks of individual states in the spectra. The four nucleobases studied

are adenine, thymine, guanine and cytosine (Figure 4.13). For each of these, three phase space

distributions were sampled using eq. 2.58. These were the gas phase distribution at T = 0 K

(100 points for each molecule), the gas phase distribution at T = 298 K (100 points) and a

distribution at T = 298 where the minimum and normal modes were obtained with the COSMO

model.

Figure 4.13: MP2/aug-cc-pVDZ optimized ground state geometries of the four nucleobases and
atom labeling. Figure originally published in Ref.(36).

The electronic states at the reference geometry of each of the four bases (the gas phase

ground state minima) were assigned based on their dominant hole and particle transition or-

bitals. For all four nucleobases all states have either an n or π hole orbital and either a π
∗ or a

Rydberg particle orbital so we can roughly categorize them into four types: nπ
∗, nRyd, ππ

∗ and
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πRyd. The states are mutually orthogonal, but often share the same dominant hole or particle

orbital. This can be automatically determined by computing the overlaps between the individual

hole/particle orbitals of each state, mostly resulting in values close to zero or one. For example,

the lowest 14 states of adenine can all be described in terms of four hole and seven particle

NTOs (Table 4.2).

In addition to overlaps, we compute the second moments along the z-axis (out-of-plane axis)

of the orbitals to aid in the state assignment (and later visualization). Since the nucleobases are

planar or almost planar, the four types of relevant orbitals can be very clearly separated based

on these moments. Among the hole orbitals, n type orbitals are mostly confined to the plane so

their
〈

z2
〉

values are small (0.4−0.9 a2
0) while π orbitals extend further out of plane (1.5−1.8

a2
0). The π

∗ orbitals are more diffuse (2.0−5.0 a2
0) while the defining characteristic of Rydberg

orbitals is their very diffuse character (8.0− 32 a2
0). Using these moments to determine the

type of each orbital and overlaps to detect orbitals repeating in multiple states, an automatic

procedure for assigning all states can be easily devised. This type of assignment is shown in

Table 4.2 for adenine, while additional information on the states of all four nucleobases both in

gas phase and in solution is presented in the original article36 with a more detailed discussion

of specific relevant states and comparisons with previously reported findings.
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Table 4.2: ADC(2) excitation energies (in eV) and oscillator strengths of 9H-adenine computed
at the optimized ground state geometry. All transition below 6.53 eV (190 nm) and selected
transitions with large oscillator strengths at higher energies are included. States are character-
ized by their dominant NTO pairs contributing. Table adapted from Ref. (36).

S NTO character Ere f f re f

S1 n1π
∗
1 4.99 0.013

S2 π1π
∗
1 5.10 0.251

S3 π1π
∗
2 + π2 pi∗1 5.12 0.036

S4 π1Ryd1 5.38 0.010
S5 n1π

∗
2 5.63 0.002

S6 π1Ryd2 5.69 0.004
S7 n1Ryd1 5.96 0.022
S8 n2π

∗
2 6.03 0.001

S9 π1Ryd3 6.17 0.008
S10 π2π

∗
1 + π1π

∗
2 +n1Ryd2 6.20 0.425

S11 n1Ryd2+ π1π
∗
2 + π2π

∗
1 6.40 0.0975

S12 π1Ryd4 +π2Ryd 1 6.42 0.0319
S13 π1Ryd5 6.46 0.0056
S14 π2Ryd1 6.50 0.0019
S16 π3π

∗
1 + n1Ryd 3+ π2π

∗
2 6.59 0.039

S27 π2π
∗
2 + n1Ryd 4+ π3π

∗
1 7.17 0.163

Spectra obtained using Eq. 4.16 are shown in Figure 4.14 along with the experimental ab-

sorption spectra. Mean excitation energies and oscillator strengths are shown as a red stick

spectrum. Spectra were normalized to scale with the experiment, but no shift in the energy

domain was used. We see that there is good agreement between the experiment and calculated

spectra. In the case of adenine and thymine this agreement is almost perfect. For guanine, the

peaks corresponding to the La and Lb are further apart in the experiment than in the simulated

spectrum where they appear merged as a single band. This difference is acceptable, especially

in light of the fact that the distance and relative intensity of these two bands depends on the ex-

act experimental procedure.275,276 It is also possible that the discrepancy is due to the 7H form

of guanine which was not accounted for in the theoretical spectrum but might have a signifi-

cant contribution to the experimental spectrum. For cytosine we found that the full simulated

spectrum is redshifted with respect to the experimental one and the height of the first band is

underestimated.

With the ability to assign states across different geometries, we can analyze how the average
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Figure 4.14: Theoretical (state-averaged, red line) and experimental (black line) UV absorption
spectra of DNA nucleobases in water. Sticks indicate the mean excitation energies and oscillator
strengths of the lowest 30 transitions. Figure originally published in Ref. (36).

energies of these states are shifted across the Wigner distribution around the ground state mini-

mum. In addition to this, we can compare the states between different ensembles, for example

at different temperatures or with a different environment. These effects are studied individually

and all together in Figure 4.15. Each state is represented by a single marker (crosses, triangles,

squares and circles for the states of adenine, guanine, thymine and cytosine, respectively) whose

color indicates the shift of the mean energy of the state with respect to the vertical excitation

energy. As mentioned above,
〈

z2
〉

of the hole and particle orbitals can be used to differentiate

orbitals of different type which is used here to group the states by their character.

First we consider what we gain by considering an ensemble of geometries instead of verti-

cal excitation energies. Compared to the ground state minimum, the gap between the ground

state and any other state should be larger at some geometries and smaller at other geometries.

However, on average the gap is smaller. Among the electronic states shown here, the π
∗ states

are redshifted by 0.15 eV while the Rydberg states are shifted by 0.09 eV on average. This is
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Figure 4.15: Solvent induced shifts for different types of electronic transitions. The states are
characterized by their dominant hole and particle NTOs which are recognized and grouped
based on their second moments. States of adenine, guanine, thymine and cytosine are de-
noted with crosses, triangles, squares and circles, respectively. Figure originally published in
Ref. (36).

consistent with results from Bai and coworkers277 who calculated an average shift of 0.11 eV

for the states of a set of 28 organic molecules. Based on simple analytic models they show

that the main cause of this shift is that the ground state is more tightly bound (and is thus more

destabilized by geometry changes) than the excited states. The difference between the shifts of

the π
∗ and Rydberg states are also explained by similar considerations. The main difference

here is the significant softening of out-of-plane modes due to the weakening of π-conjugation

in π
∗ states which occurs to a much smaller degree in Rydberg states. In Figure 4.15b we see a

redshift of the π
∗ and Rydberg states by 0.04 and 0.01 eV, respectively, due to a change in tem-

perature from 0 K to 298 K. This effect is smaller than the zero-point energy since it involves

significantly less energy. In general it is explained by similar considerations of the frequencies

of the normal modes, but at the temperature considered only the low-frequency normal modes

are noticeably excited.

Next, we look at the effect of changing the environment on the excitation energies. In

Figure 4.15c we look only at the electrostatic effects by computing the energies within the

COSMO environment. These effects are quite large and lead to a blueshift of the nπ
∗, nRyd

and πRyd states by 0.38, 0.69 and 0.34 eV. On the other hand, ππ
∗ are redshifted by 0.03

eV. Figure 4.15d shows the contribution of structural effects due to the difference between the

ground state minimum geometries of the molecules in vacuum and with a COSMO environment.
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This causes a further redshift of the different states by 0.03 to 0.10 on average. This contribution

seems to depend more on the individual molecules than type of excited state. The average shift

is roughly proportional to the change in geometry between the vacuum and COSMO optimized

structures. The root mean square deviations are larger for guanine (0.34 Å amu1/2) and cytosine

(0.53 Å amu1/2) than for adenine and thymine, (<0.1Å amu1/2).

We saw above that the largest effects are caused by electrostatic effects. To further explore

this component of solvent shift, in Figure 4.16 we show how it relates to the magnitude of

the vector of the difference of static dipole moment vectors in the ground and excited states at

reference geometries, ∆µ
re f = |µre f

n −µ
re f
0 |. Here we see that a sudden change in the direction

of the static dipole moment is energetically unfavorable in solution. In other words, states whose

electron densities are very different from those in the ground state are strongly blueshifted in

solution. This is most clearly the case for nRyd states where an electron is transferred from a

quite localized n-orbital to a highly delocalized Rydberg orbital.
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Figure 4.16: Dependence of the electrostatic component of the solvent shift (∆E) on the mag-
nitude of the difference of static dipole moment vectors in the ground and excited states at
reference geometries, ∆µ

re f = |µre f
n − µ

re f
0 |. The lowest 20 electronic states of each base are

shown. Adenine, guanine, thymine and cytosine are denoted with crosses, triangles, squares
and circles, respectively. Figure originally published in Ref. (36).

In the above section, we have shown how an extremely simple state tracking algorithm

based on overlap matrices can be used to extract useful information about the diabatic states of a
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molecule from an ensemble of nuclear geometries. For the molecules in question, each overlap

calculation takes only a few seconds so their cost is completely negligible compared to the

electronic structure calculations. On the other hand, in the next section we will see the limits of

the information we can obtain using these simple assignment (Eq. 4.16) or weighting (Eq. 4.17)

procedures when analyzing the absorption spectrum of pyrrole. In that case, these procedures

can point to the presence of intensity borrowing between the states, but a full diabatization

procedure is required for a quantitative interpretation of the spectrum.

4.4 Pyrrole

In this section we will explore the nuances of the photochemistry of pyrrole, primarily the

wavelength dependent time scale of hydrogen detachment seen by Roberts and coworkers.68

We begin by choosing an appropriate level of theory for the electronic structure calculations.

The two methods selected are ADC(2)/aug-cc-pVDZ and TDDFT/B3LYP/def2-TZVPD. Both

methods are in good agreement with benchmark electronic structure calculations for vertical

excitation energies (Table 4.3). We see that all states at both levels of theory are within a few

tenths of an eV of the reference values. Oscillator strengths are also in agreement with MS-

CASPT2 values reported by Roos et al. with the exception of the A1(ππ
∗) state which is an

order of magnitude darker using both methods. Specifically looking at the B2(ππ
∗) state, we see

that the vertical excitation energy obtained at both current levels of theory is in good agreement

with that reported by Neville et al.180 who have shown that this energy can be significantly

higher than expected based on the experiment since the actual absorption spectrum is shifted

to lower energies due to coupling (intensity borrowing) with the other states. Looking at the

main orbital contributions for this excited state, we see a considerable difference between the

two levels of theory. At the TDDFT/B3LYP/def2-TZVPD level the state is a pure ππ
∗ state.

On the other hand, at the ADC(2)/aug-cc-pVDZ level the state has a mixed valence/Rydberg

character with significant 3px character for the dominant particle orbital. This difference is due

to the employment of the def2-TZVPD basis set and not the B3LYP functional that was used

in the calculations. The augmented def2 series of basis sets contains diffuse s and d functions,

but lacks diffuse p functions. The aug-cc-pVNZ (N = D, T, Q) basis sets do contain diffuse p

functions, which enhance mixing of the B2(ππ
∗) and B2(π3px) states. Let us note that when

the ADC(2) method is used with the def2 basis sets the mixing is removed, but the vertical
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excitation energies are severely over-estimated. On the other hand, B3LYP used with the aug-

cc-pVTZ basis sets yields mixed states and underestimated vertical excitation energies.

Table 4.3: Vertical excitation energies (in eV) computed with the TDDFT/B3LYP/def2-TZVPD
and ADC(2)/aug-cc-pVDZ methods compared with previous theoretical results and experimen-
tal data. Computed oscillator strengths are given in parentheses where available.

A2(πσ
∗) B1(πσ

∗) A2(π3pz) B1(π3py) B2(ππ
∗) A1(ππ

∗)

Experiment177,182 5.22a - - 5.85b 5.90b -
B3LYP 4.99 5.87 5.89 5.95 6.32 6.47

(0.000) (0.013) (0.000) (0.026) (0.174) (0.001)
ADC(2) 5.13 5.75 5.86 5.89 6.35 6.49

(0.000) (0.013) (0.000) (0.031) (0.214) (0.000)
GMS CCSD179 5.10 5.79 5.81 5.96 5.96 6.53
MS-CASPT2176 5.22 - 5.97 5.87 5.87 5.82

(0.000) - (0.000) (0.026) (0.209) (0.036)
CASPT2/CCSD180 5.06 5.86 5.87 6.00 6.24 6.01

a Band origin. b Band maximum.

Going beyond the vertical excitation, we look at the minima of the key states governing

the photochemistry, the 1
πσ
∗ states and the B2(ππ

∗) state. The former states are known to be

quasi-bound with respect to the N-H stretching coordinate, with a low barrier leading to the

dissociation pathway.68,159 In agreement with previous the TDDFT/PBE0 study by Barbatti et

al.,162 we found that TDDFT fails to accurately reproduce this feature, giving a purely disso-

ciative PES along the N-H stretching coordinate with a mostly flat region where the minimum

should be present. On the other hand, the surface along this coordinate is accurately reproduced

at the ADC(2)/aug-cc-pVDZ level, with a minimum and a barrier of E0 = 1780 cm−1 in good

agreement with previous CASSCF, MRCI and CASPT2 calculations yielding barriers of 2090,

1935 and 1615 cm−1, respectively.159,161,172 Figure 4.17 shows a relaxed scan of the PES for

the ground and five lowest singlet excited states. The scan was obtained by constrained opti-

mizations of the S1 state along the N-H stretching coordinate. The two 1
πσ
∗ states, A2(πσ

∗)

and B1(πσ
∗) (which corresponds to S5 at the A2(πσ

∗) minimum) are dissociative with respect

to the relevant coordinate while the other states are bound and strongly destabilized by the elon-

gation of the N-H bond. Until bond lengths close to the CI are reached, all states have mostly

(> 90%) single excitation character and the ground state has very little multireference character

(D1 < 0.04).
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Figure 4.17: Relaxed scan of the PES along the N-H stretching coordinate optimized in the
A2(πσ

∗) state (red) at the ADC(2)/aug-cc-pVDZ level. The states shown are the ground state
(black), A2(πσ

∗) (red), A2(π3pz) (blue), B1(π3py) (green), B2(ππ
∗) (purple) and B1(πσ

∗)
(orange). All energies are in eV and with respect to the ground state minimum energy. Figure
originally published in Ref. (37).

Next, we focus on the geometry optimization of the bright B2(ππ
∗) state. At the ground

state minimum geometry this is the S5 state and optimization immediately leads to a conical in-

tersection with the B1(πσ
∗) state which is heavily destabilized as the B2(ππ

∗) state is relaxed.

In order to simplify the procedure of finding the minimum "diabatic" B2(ππ
∗) state, we modify

the optimization procedure to compute the wave function overlap between the B2(ππ
∗) state at

the ground state minimum geometry and the states at each subsequent step of the optimization.

Thus, at each step we continue the optimization on the adiabatic state which is characterized as

the B2(ππ
∗) state at the current geometry. In this way, when a CI is reached during optimiza-

tion, the optimization always follows the target state, unlike the standard adiabatic geometry

optimization which usually reaches the first CI and fails to converge. In the present exam-

ple at the TDDFT/B3LYP/def2-TZVPD level (Figure 4.18), three such CIs (with the B1(πσ
∗),

B1(π3py) and A2(π3pz)) states) are crossed and the algorithm converges to a minimum where

B2(ππ
∗) state is the S2 adiabatic state. From the dominant NTO pairs along the optimization

path (Figure 4.18b), we see that the character of the state has remained virtually unchanged

during the whole optimization. This optimization procedure is conceptually similar to the one

developed concurrently by Sanz García et al.278,279 based on tracking the target state through
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the dominant NTO pair only.

The converged geometry, with the N atom and corresponding H atom out of the molecular

plane in opposite directions, is in good agreement with the previously reported B2(ππ
∗) state

minimum247 and is located 0.7 eV below the vertical excitation energy. On the other hand, at

the ADC(2)/aug-cc-pVDZ level the B2(ππ
∗) state has a more shallow planar minimum closer

to the FC geometry at which the target state is still the S4 state. This minimum is 0.34 eV below

the vertical excitation energy and still above the p-type Rydberg states. As we will see shortly,

this difference has a substantial effect on the dynamics of the system.

Step 0 Step 2 Step 6 Step 16 Minimum

a

Converged

minimum

b

Figure 4.18: (a) Optimization of the B2(ππ
∗) state of pyrrole at the TDDFT/B3LYP/def2-

TZVPD level of theory with three CI crossings occurring during the first 20 steps. (b) The
dominant natural transition orbital pairs for the target state along the optimization path (at points
marked by light blue squares). Figure originally published in Ref. (35).

4.4.1 UV absorption spectrum

The nuclear ensemble approach was used to calculate the UV absorption spectrum at both levels

of theory. Equation 2.58 was used to generate 8000 geometries and velocities based on the har-
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monic normal modes of the ground state minima at T = 293 K. Pyrrole is an aromatic system

with a deep ground state minimum with no normal modes below 500 cm−1 and no highly anhar-

monic modes. Due to these facts the harmonic approximation is sufficiently accurate. This can

be seen by comparing the distribution of potential energies in the harmonic approximation and

the actual energies calculated at the generated geometries (Figure 4.19). At both levels of theory

we see that the energy distribution in the harmonic approximation is virtually identical to the

actual distribution of the energies for the sampled geometries. However, some outliers (less than

1% of all geometries) are present in both cases where the error of the harmonic approximation

is larger than 0.5 eV. These outliers have been removed from further consideration.
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Figure 4.19: Ground state potential energies of pyrrole in the harmonic approximation and at
the (a) MP2/aug-cc-pVDZ and (b) TDDFT/B3LYP/def2-TZVPD level for geometries sampled
from the thermal Wigner distribution at 293 K based on normal modes computed at the respec-
tive level of theory.

At both levels of theory the UV spectrum was simulated from the generated geometries

based on the energies and oscillator strengths of the ten lowest excited states and broadened by

a Lorentzian function with a width of 0.1 eV. Both methods give a similar absorption spectrum,

with the band center at≈ 6.05 eV, which is slightly blueshifted with respect to the experimental

spectrum. Additionally, the red tail of the calculated spectra, especially at the ADC(2) level is

wider than the experimental spectrum. As is expected for the nuclear ensemble approach, the

fine structure of the spectrum, including the intense and very narrow peak usually assigned to

the B1(π3py) state, was not reproduced.

By looking at the wave functions of the electronic states at each geometry we can esti-

mate the contributions to the spectrum from each diabatic state. For this goal we use Eq. 4.17
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Figure 4.20: Comparison of the first absorption band of the experimental182 UV spectrum (blue)
with those obtained using the nuclear ensemble approach based ten excited states calculated at
the ADC(2)/aug-cc-pVDZ (yellow) and TDDFT/B3LYP/def2-TZVPD (green) levels of theory
for 8000 geometries. The shaded red areas centered at 4.96, 5.21 and 6.2 eV (250, 238 and 200
nm) with a width of 4 nm indicate windows from which initial conditions were sampled for the
nonadiabatic dynamics simulations.

as described in section 4.3 since mixing between states is common. From Figure 4.21a, we

can confirm that the main contribution to the first band in the spectrum of pyrrole is from the

B2(ππ
∗) state. However, especially at lower energies, we also see significant contributions to

the spectrum from the states assigned as B1(πσ
∗), A2(π3pz) and B1(π3py) which have negligi-

ble oscillator strengths at the ground state minimum geometry. Looking at these states at other

geometries (Figure 4.21b and c), it can be seen that their oscillator strengths are proportional

to their overlaps with the B2(ππ
∗) state at the ground state geometry. This indicates that their

contributions to the spectrum are due to their mixing with the bright B2(ππ
∗) state. This is

in agreement with the observation by Neville et al. based on quantum dynamics calculations

that intensity borrowing by these states plays a significant role in shifting the first absorption

band to lower energies. While only the TDDFT/B3LYP/def2-TZVPD spectrum is shown in

Figure 4.21, very similar results can be seen at the ADC(2)/aug-cc-pVDZ level as well.

4.4.2 FSSH simulations

Finally, we can look at the dynamics of the system. We are interested in three excitation win-

dows shown in Figure 4.20. The three spectral windows centered at 250, 238 and 200 nm (4.96,
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Figure 4.21: (a) Spectrum of pyrrole computed using the nuclear ensemble method and de-
composed into contributions by state based on overlaps with the reference states defined at the
ground state minimum geometry. (b) A2(π3pz) and (c) B1(π3py) state distributions of oscilla-
tor strengths and their overlaps with the B2(ππ

∗) state at the ground state minimum geometry
reference state. Figure originally published in Ref. (35).

5.21 and 6.2 eV) with a width of 4 nm roughly correspond to the wavelengths of the pump

pulses used in the experiment of Roberts et al.68 From 2000 geometries sampled from the ther-

mal Wigner distribution, for each energy window a total of 100 initial conditions was selected

based on oscillator strengths.

The first excitation window is in the region of the 0-0 transition of the A2(πσ
∗) state. As

stated above, TDDFT fails to reproduce this region of the PES so only results at the ADC(2)/aug-

cc-pVDZ are reported for this window. All trajectories within this energy window start with

very low potential energy and in order to relax to the ground state they need to cross the 1780

cm−1 barrier along the N-H stretching coordinate. Indeed, only 10% of the trajectories reached

the ground electronic state within the simulation time of 500 fs. This confirms that relaxation

in this region is primarily driven by tunneling of the hydrogen. Since nuclear quantum effects

are not included in the SH approach, the relaxed PES scan along the N-H stretching coordinate

(Figure 4.17) was used as a 1D model to estimate the hydrogen tunneling dynamics based on

the standard WKB approach. Assuming the reduced masses of the N–H and N–D fragments
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as effective mass parameters, the eigenstates of the potential were computed by diagonalizing

the Hamiltonian with the Lanczos–Arnoldi integration scheme implemented in the MCTDH

program package.2 Quasi-bound states of pyrrole and pyrrole-d1 were found at 897.9 and 795.4

cm−1. The tunnelling probabilities were computed as P = e2S where S is the classical action

integral through the barrier. The KIE was obtained as the ratio of hydrogen vs. deuterium tun-

nelling probabilities. The semiclassical solution yields an isotope effect of 9.9, in very good

agreement with the experimentally determined value of 11.68

The second excitation window corresponds to excitation with≈ 0.25 eV higher energy than

the first window. This is not high enough to excite the molecule to S2 or above, but is sufficient

to cross the barrier along the N-H stretching coordinate in most cases, as seen by a dissociation

yield of 86% within 500 fs. The time dependent populations of the A2(πσ
∗) state are shown

in Figure 4.22. The calculated time constant for the depopulation of the S1 state of 28 fs is in

good agreement with the experimentally reported value of 46±22. Since a ADC(2) is a single

reference method, we cannot track the dynamics beyond the S0/S1 CI and FSSH simulations are

stopped when the energy gap between S0 and S1 is 0.1 eV or lower. However, based on the high

velocity of the hydrogen atom in the final moments of all trajectories, we can assume that little

to no bifurcation occurs at this CI and that the main products are a ground state pyrrolyl radical

and a hydrogen atom. In this wavelength range, this has been demonstrated through the total

kinetic energy release spectra, which do not show a signal corresponding to the formation of

an excited state radical, and time-resolved photoelectron spectra, both revealing only one time

constant.68,169,173

The third excitation window falls in the higher energy region of the first absorption band,

where the B2(ππ
∗) state dominates the absorption. In this region FSSH simulations were per-

formed at both the ADC(2)/aug-cc-pVDZ and TDDFT/B3LYP/def2-TZVPD levels of theory.

At the former level a total relaxation yield of 82% was found within the simulation time of

500 fs. Among the trajectories which reached the ground state, 70% deactivated through the

N-H bond dissociation channel while the remaining 30% deactivated through the ring defor-

mation channel. None of the trajectories exhibited a ring opening or other pathway. The time

constants obtained both for the N-H dissociation and the ring deformation pathways are higher

than 150 fs. This is three times longer than the experimental value of 52±12 fs, but in agree-

ment with previous simulations in this energy region performed at the MR-CISD+Q(6,5)161
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Figure 4.22: Population of the S1 state of pyrrole during FSSH simulations at the ADC(2)/aug-
cc-pVDZ level for initial conditions sampled at T = 293 K in the wavelength range 236 < λ <
240. The black line represents a mono-exponential fit for the decay of the S1 state. Figure
originally published in Ref. (37).

and TDDFT/PBE0162 levels reporting time constants of 140 and 180 fs, respectively. Ad-

ditional simulations were performed by considering a higher excitation window (196− 198

nm), a larger basis set (cc-pVTZ with diffuse functions of p, d, and f type added to the cen-

ter of mass of the molecule to accurately describe the Rydberg states280), or by employing the

spin-component scaled ADC(2) (which has been reported to improve the description of Ryd-

berg states227). None of these were found to have a significant effect on the results. At the

TDDFT/B3LYP/def2-TZVPD level N–H bond dissociation was again found to be the domi-

nant deactivation mechanism, while ring puckering occurred only in 6% of the cases. The time

constant for the relaxation to the ground state via the N-H dissociation pathway was 48 fs,

in excellent agreement with the measurment of Roberts et al.,68 and in sharp contrast to the

ADC(2)/aug-cc-pVDZ results. The total relaxation yield was also higher, at 98%.

The differences between the two sets of dynamics simulations from the B2(ππ
∗) state can be

directly connected to the topography of the B2(ππ
∗) state at the respective electronic structure

levels. A typical B3LYP/def2-TZVPD trajectory deactivating through N–H bond dissociation

is shown in Figure 4.23. The simulation started from the B2(ππ
∗) state which is the adiabatic

S5 state. This state is intercalated in a dense manifold of excited states and two Rydberg states

are found lower in energy. However, the valence and Rydberg states are separated and the

initial excitation is of clear ππ
∗ character as shown by the leftmost NTO shown in Figure 4.23.

During the dynamics, the system evolves through out-of-plane motions towards the minimum

of the state and B2(ππ
∗) becomes the S2 state. Since there is little mixing between the B2(ππ

∗)
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state and the Rydberg states no hop occurs to these states as the system evolves past them. After

some time in the S2 state, an S1/S2 CI is reached and a change of character occurs in a region

where the B2(ππ
∗) and A2(πσ

∗) states are heavily mixed. Once on the A2(πσ
∗) surface, the

S0/S1 CI is quickly reached through N-H bond elongation.
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Figure 4.23: Potential energy of the ground state and nine lowest excited electronic states along
a representative TDDFT/B3LYP/def2-TZVPD trajectory. Dominant particle NTOs of the cur-
rently populated state at points during the trajectory are shown below. Figure adapted from
Ref. (37).

On the other hand, at the ADC(2)/aug-cc-pVDZ level the minimum of the B2(ππ
∗) state

is planar and higher in energy than the two Rydberg states. A representative trajectory at this

level is shown in Figure 4.24. Because of this, the system spends more time in the region where

the three states are close in energy thus having more opportunities to hop between the different

states. In addition to the system spending more time in the region where the states are close

in energy, the couplings between the states are higher than at the TDDFT/B3LYP/def2-TZVPD

level due to the high level of Rydberg-valence mixing. This can be seen in the trajectory by

frequent changes of electronic character. Since there is no clear motion bringing the populated

state closer to A2(πσ
∗), it takes a longer time to reach the S1/S2 CI. However, once the CI is

finally reached the relaxation mechanism is the same as in TDDFT. Of course, this picture only

shows one representative trajectory from each ensemble. Some ADC(2) trajectories quickly

reach the S1/S2 CI without hops to the Rydberg pz and py state while some TDDFT trajectories

do spend time in the Rydberg states.
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Figure 4.24: Potential energy of the ground state and nine lowest excited electronic states along
a representative ADC(2)/aug-cc-pVDZ trajectory. Dominant particle NTOs of the currently
populated state at points during the trajectory are shown below. Figure adapted from Ref. (37).

To further test the effect of the different description of Rydberg-valence mixing, FSSH

dynamics simulations were performed using two additional basis sets at the TDDFT level. The

first was the def2-QZVP basis set with the f and g functions removed. This basis set provides

a similar description of valence states to def2-TZVPD, but due to the lack of diffuse functions,

Rydberg states are destabilized so they are higher in energy than the B2(ππ
∗) state. Despite

having two states fewer between the initially excited state and the dissociative S1 state, the

effect on the dynamics is negligible, showing that these states are not important in the overall

process. On the other hand, when the aug-cc-pVTZ basis set is used mixing between valence

and Rydberg states is present, similar to that at the ADC(2)/aug-cc-pVDZ. This is reflected in

the dynamics, increasing the time constant of the process beyond 200 fs.

Based on these results and previous literature, we can conclude that the dynamics of pyr-

role in the second excitation window at 238 nm is straightforward and basically solved at this

point. The current results for the excitation at 250 nm are also in excellent agreement with the

experimental findings of Roberts et al. providing a satisfying picture of the dynamics in this re-

gion. However we should note that in the experiment of Kirkby et al.186 following excitation at

249.5 nm a sub-50 fs time scale was obtained so no trapping by the low barrier was found. This

indicates that it is extremely easy to overcome the barrier and benchmark quantum dynamics

calculations for both pyrrole and pyrrole-d1 are needed to obtain a definitive quantitative picture
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of the dynamics in this region.

The dynamics in the third excitation region around 200 nm is the most complex. Our results

suggest that the picture given by the TDDFT/B3LYP/def2-TZVPD is correct both in terms of the

topography of the B2(ππ
∗) state and the dynamics and that a lack of Rydberg-valence mixing is

the key to this. Since these dynamics simulations were first published, more studies have looked

at the dynamics of pyrrole starting from the B2(ππ
∗) state.186,281,282 Kirkby et al.186 explored

the dynamics using the model Hamiltonian developed in ref.180 and, in contrast to the current

results, obtained a significant transient population of the A2(π3pz) state with a maximum at 35

fs, but also noted that the dynamics are highly sensitive to the addition of additional modes,

namely the nitrogen out-of-plane mode. Geng et al. specifically looked at the effect of the

Rydberg states using a quadratic vibronic coupling Hamiltonian and ML-MCTDH based on

ADC(2)/aug-cc-pVDZ electronic structure calculations and also found a transient population of

the A2(π3pz) state.281 On the other hand, Heindl and González282 performed calculations at the

XMS-CASPT2(8,8)/ANO-L+ level to simulate the dynamics starting from an energy window

also centered at 200 nm. By excluding the 3px orbital from their active space they ensured that

the B2(ππ
∗) state is of pure ππ

∗ character. In their simulations 91% of the trajectories resulted

in N-H dissociation (with a time constant of 64± 13 fs) and 9% in ring-puckering, results in

very good agreement to those reported here. Due to the use of a multireference method, they

could follow the dynamics through S0/S1 CI and calculate the total kinetic energy spectrum in

which the main feature of the spectrum was in qualitative agreement with the experiment.

4.4.3 Photoionization

In a continuation of the work attempting to clarify the nature of the B2(ππ
∗) state, we have

calculated the photoionization observables based on a Dyson orbitals approach used together

with an accurate representation of the molecular continuum based on an expansion in terms

of B-spline basis functions. These observables were calculated at the ground state minimum

geometry at the TDDFT/B3LYP and ADC(2) levels employing both the aug-cc-pVDZ and def2-

TZVPD basis sets in order to see whether the different description of the B2(ππ
∗) state leaves

a footprint in the observable photoelectron spectrum.

At the ground state minimum geometry, the Dyson obital corresponding to ionization from

the B2(ππ
∗) state to the ground state of the cation at the ADC(2)/aug-cc-pVDZ level is com-
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posed mainly of the 3b1(3px), 4b1(3px) and 5b1(π
∗) virtual MOs with contributions of 79%,

7% and 5%. On the other hand, at the B3LYP/def2-TZVPD level the Dyson orbital is basically

exclusively 3b1(π
∗) since the Rydberg orbitals are at higher energies. This results in an overlap

of only 0.65 between the two Dyson orbitals. For comparison, the overlap between the Dyson

orbitals from the A2(πσ
∗) excited state of the molecule calculated using the same methods is

0.95.

The calculated cross-sections and asymmetry parameters for the B2(ππ
∗) excited state are

presented in Figure 4.25. One can observe differences in magnitude and shape in their profiles

starting from the threshold region up to about 20 eV. Cross-section profiles calculated with

both electronic structure methods and the aug-cc-pVDZ basis set reach a value of about 35 Mb

rapidly decreasing to the value of 2 Mb within 10 eV. On the other hand, cross-section profiles

computed with TDDFT and ADC(2) and the def2-TZVPD basis set reach their maximum value

at around 20 Mb with a much slower decrease to the plateau value of 2 Mb at 20 eV. This

difference is expected as the slower decrease is a typical signature of a spatially more contracted

orbital. For the asymmetry parameters, the most significant difference between the calculated

profiles can be observed within the 15 eV.

These results in addition to the molecular frame photoelectron angular distributions which

were also calculated in the same work,283 suggest that a carefully planned photoelectron spec-

troscopy experiment should be able to provide definitive insight into the nature of the B2(ππ
∗)

excitation and the degree to which valence-Rydberg mixing plays a role in it. From the theoret-

ical side, for converged and persuasive results one would need both very large basis sets and a

treatment of correlation significantly beyond the ADC(2) level.
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Figure 4.25: Computed partial cross-sections and asymmetry parameters for the photoioniza-
tion from the first B2 excited state of neutral pyrrole to the ground state of the cation. Figure
originally published in Ref. (283).

4.5 Pyrazine

As covered in section 2.3.2, the internal conversion process of pyrazine following excitation

to the B2u(ππ
∗) state has been used for the past three decades as a testing ground for quan-

tum dynamics methods. However, prompted by FSSH calculations of Werner et al.,73,74 recent

studies have shown that the process is more complex than the well-established two-state pic-

ture would suggest. This motivates us to reexamine pyrazine from a mixed quantum-classical

perspective where we can take into account the full complexity of the potential energy surfaces

while treating all excited states in the relevant energy region in an unbiased way.

The ADC(2)/aug-cc-pVDZ level of theory was chosen as it was shown to provide a reason-

ably accurate description of the excited states at a low cost. Table 4.4 shows a comparison of the

vertical excitation energies (and 0-0 transitions where possible) with previously reported theo-

retical and experimental data. We can see that all states are within 0.3 eV of experimental values

with errors comparable to those of higher level methods. This is in contrast to B3LYP/TZVP

calculations used by Werner et al.73 which give a significantly higher excitation energy for the
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B2u(ππ
∗) state. The position of the Au(nπ

∗) state has not been conclusively verified by ex-

periment, but most high level electronic structure calculations place it either slightly below the

bright B2u(ππ
∗) or the two states are essentially degenerate.

Table 4.4: Vertical excitation energies (in eV) of pyrazine computed with the ADC(2)/aug-cc-
pVDZ method compared with previous theoretical results and experimental data. 0-0 transitions
are given in parentheses.

B3u(nπ
∗) Au(nπ

∗) B2u(ππ
∗) B2g(nπ

∗)

Experiment284 - (3.83) - 4.81a (4.69) -
ADC(2)34 4.18 (4.05) 4.83 5.08 (4.81) 5.85
XMCQDPT253 3.93 4.45 4.79 5.38
CASPT2285 4.02 4.75 4.80 5.56
CC2286 4.26 4.95 5.13 5.92
CC3286 4.24 5.05 5.02 5.74
MRCISD204 4.55 5.16 5.52 5.91
TDDFT/B3LYP73 3.96 4.6 5.46 6.3

a Band maximum.

4.5.1 Potential energy surfaces

To further test the electronic structure method, one-dimensional cuts of the diabatic PESs of

the three lowest excited states along the four most relevant dimensionless tuning modes were

calculated and compared with the more accurate but computationally expensive multi-reference

XMCQDPT2 method as a benchmark (Figure 4.26). Along each of the scans the two electronic

structure methods give almost parallel potential energies with crossings at roughly the same

positions. The well studied CI between the B2u(ππ
∗) and B3u(nπ

∗) states is reached along

the Q6a mode. In each of the scans we also reach a CI between the B2u(ππ
∗) and Au(nπ

∗)

states, with the CI along the Q8a mode closest to the equilibrium structure. Additionally, CIs

between the B3u(nπ
∗) and Au(nπ

∗) can be reached along the Q9a and Q8a modes. Recent

quantum dynamics calculations have shown that the latter CI is responsible for the oscillations

of population between the two states.53

Next, we will look at the shape of the excited state PESs in their full dimensionality. At the

ground state minimum geometry (Smin
0 ) the B3u(nπ

∗) state is 0.65 eV below the other states.

Optimizing the S1 state without symmetry constraints leads to a minimum of Ci symmetry
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Figure 4.26: One-dimensional cuts of the potential energy surfaces of the B3u(nπ
∗) (black),

Au(nπ
∗) (red), and B2u(ππ

∗) (green) states along the four most important totally symmetric
dimensionless normal modes, Q6a (a), Q1 (b), Q9a (c), Q8a (d). The full and dashed lines rep-
resent the XMCQDPT2/aug-cc-pVDZ and ADC(2)/aug-cc-pVDZ results, respectively. Figure
originally published in Ref. (34).

(Smin
1 ) 4.02 eV above the ground state minimum. There are in fact four symmetrically equivalent

minima, breaking the symmetry at a D2h transition state along the imaginary Q8b normal mode

leads to one of two C2h transition states where a negative frequency for an out of plane hydrogen

motion leads to the Ci symmetry minima. The path from Smin
0 through the two transition states

to one of the S1 minima is shown in Figure 4.27a, with the corresponding motions shown in the

inset. At the minimum, the S2 state is 0.77 eV above S1. However, when we compare the NTOs

of the two states to those of B3u(nπ
∗) and Au(nπ

∗) at the FC geometry, we see that they are

significantly different (Figure 4.27b and c). The particle NTOs at Smin
1 are rotated with respect

to those at Smin
0 . This is due to the fact that the Q8b mode, along which the C2h transition state

was found, is of B3g symmetry so it can directly couple the B3u(nπ
∗) and Au(nπ

∗) states. We

obtain a more quantiative picture by calculating the overlaps between the states at Smin
0 and Smin

1 .

In the orthogonalized overlap matrix, we see that S1 and S2 are evenly mixed combinations of

B3u(nπ
∗) and Au(nπ

∗) with overlaps equal almost exactly to ± 1√
2
.

This mixing between the two states along the Q8b mode is caused by a stabilization of the

π
∗ orbital with a node on the stretched C-N bond with respect to the π

∗ orbital with a node

on the contracted C-N bond. This is in contrast to the situation in D2h symmetry where the

1au orbital, with nodes on all four C-N bonds, is lower in energy (in benzene the two orbitals
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are degenerate). The CI between S1 and S2 can easily be found along a path connecting two

symmetrically equivalent Smin
1 (Figure 4.27c). Since the system will naturally move toward

these minima and oscillate around them during the dynamics, this heavy mixing implies that a

significant population in the Au(nπ
∗) state should be expected.
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Figure 4.27: a) Energies of the S1 and S2 states along a path from the FC geometry (left) through
transition states of D2h and C2h symmetry to the S1 minimum (right). The motion corresponding
to each part of the path is shown in the inset. b) Dominant particle NTOs of the B3u(nπ

∗) and
Au(nπ

∗) states at the FC geometry. c) Linearly interpolated path between two symmetrically
equivalent minima on the S1 surface with the particle NTOs of the S1 and S2 states shown above
the corresponding minima.

4.5.2 FSSH simulations

In section 4.1 we have already shown that the different SH algorithms perform quite well for

this system when compared against exact quantum dynamics calculations on the model systems

of Sala et al.. In addition to this, we have also shown that A-FSSH, LD-FSSH and LZSH are in

quite good agreement with each other both for the model systems and for the full dimensional

system. With method testing out of the way, in this section we will take the LD-FSSH results

and focus on their interpretation. Because we will be comparing our dynamics to the experi-
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mental results of Hori et al.,202 we have further limited our selection of trajectories based on the

energy shape of the pump pulse used in that experiment. From the initial set of 500 trajectories

sampling was performed using a Gaussian function centered at 4.7 eV with a FWHM of 0.2 eV.

All further analysis was performed for a subset of 86 trajectories chosen in this way.

We have already shown both the adiabatic and diabatic populations obtained through nona-

diabatic dynamics simulations in Figure 4.4 and 4.5. However, for the diabatic picture we have

used only oscillator strengths to obtain the adiabatic to diabatic transformation. A more reli-

able, albeit still not perfect, way to obtain diabatic populations is based on comparing the wave

functions themselves. At each geometry, overlaps with the reference states at the ground state

minimum geometry are calculated. This overlap matrix is then used to transform the current

states into the basis of reference states. Populations obtained in this way are shown in Fig-

ure 4.28a. Qualitatively, the picture we obtain is the same as the one based on overlaps, with

the B2u(ππ
∗) state quickly depopulated in favor of both Au(nπ

∗) and B3u(nπ
∗). After approx-

imately 50 fs, most of the population is in these states and oscillations are seen with a period

of approximately 35 fs. Looking at the actual coefficients of the currently populated state in

the basis of reference states (Figure 4.28b), we see this same oscillatory behavior. However, we

also see that at all time steps, states at most geometries in the ensemble are not clearly described

as either Au(nπ
∗) or B3u(nπ

∗) state. Instead, the coefficients mostly show a mixture of the two

states. This is in line with the expectation that the system is exploring the region around the S1

minimum.

We have also calculated the photoelectron spectrum based on the nuclear ensemble approach

at t = 0 fs (Figure 4.29) and t = 50 fs (Figure 4.30) at the XMS-CASPT2/aug-cc-pVDZ level.

Photoelectron kinetic energies were calculated based on a probe pulse of 9.3 eV, corresponding

to the pulse used by Horio et al..202 In the two figures, the upper panels show the spectra calcu-

lated from all neutral states weighted according to the coefficients of the B3u(nπ
∗) (a), Au(nπ

∗)

(b) and B2u(ππ
∗) (c) reference states. The bottom panels (d) show the actual photoelectron

spectrum as calculated based only on the currently populated state of each trajectory. In Fig-

ure 4.29d we clearly see three peaks, centered at 0.5, 2.5 and 4 eV, in very good agreement

with the experiment.202 These peaks all originate from the bright B2u(ππ
∗) state which is the

only one populated at t = 0. The peaks at 4 and 2.5 eV correspond to ionization to D1 and D3

while ionization to D0 is not allowed. On the other hand, D0 is accessible from the B3u(nπ
∗)
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Figure 4.28: Time-dependent populations of the diabatic B3u(nπ
∗), Au(nπ

∗) and B2u(ππ
∗)

states obtained from ADC(2)/aug-cc-pVDZ nonadiabatic dynamics simulations from a sample
of 86 trajectories that satisfy the experimental excitation conditions (upper panel). Distribution
of the relative Au(nπ

∗) character of the currently-populated state for steps where nπ
∗ character

is dominant.

and Au(nπ
∗) states with peaks centered around 3.8 eV and 4.4 eV, respectively. Since neither

of these states have allowed transitions to D1-D4, they have no signals in the 1-3.5 eV region

of the photoelectron spectrum which means that the population of the B2u(ππ
∗) state can be

unambiguously connected to the peak at 2.5 eV.

A significantly different picture can be seen after 50 fs when most of the population has

transfered from B2u(ππ
∗) to the nπ

∗ states. In Figure 4.27d we see that the peak at 2.5 eV

has disappeared and in the 3-5 eV region the spectrum has a single peak centered around 3.6

eV. This is again in good agreement with the experiment,202 also reproducing the shift of the

second peak to lower energies. We can also see that this spectrum can not be assigned to either

the Au(nπ
∗) or the B3u(nπ

∗) state. The spectra corresponding to these two states are virtually

identical, composed of two distinct peaks in the 3-5 eV region. This difference between the
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Figure 4.29: Photoionization cross-sections for the nuclear ensemble at t = 0 fs with (a)
B3u(nπ

∗), (b) Au(nπ
∗), (c) B2u(ππ

∗) and (d) the currently populated state as the initial state.

two pictures can be easily explained if we refer back to Figure 4.27. Once on the S1 surface,

motion towards the minimum mixes the Au(nπ
∗) and B3u(nπ

∗) states so the signals seen in

Figure 4.27a and b correspond to the mixed S1 (3-4 eV region) and S2 (4-5 eV region) states.

Since almost all trajectories are moving on the S1 surface, the peak at higher kinetic energies is

never seen.
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Figure 4.30: Photoionization cross-sections for the nuclear ensemble at t = 50 fs with (a)
B3u(nπ

∗), (b) Au(nπ
∗), (c) B2u(ππ

∗) and (d) the currently populated state as the initial state.

The lack of any peak in the experimental spectrum above 4 eV was taken as evidence that

the Au(nπ
∗) state is never populated by Mignolet et al.7 since they estimated that the ionization

from this state to D0 should leave a signal around 5 eV. However, as we have shown above,
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this peak would only be present before any relaxation of the nuclear ensemble (wave packet)

has occurred. Upon relaxation, mixing of the two states ensures that it is no longer possible

to assign the population to just one diabatic state and the experimentally observed spectrum is

fully consistent with this picture.
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§5. CONCLUSION

The focus of this work is the potential of the mixed classical-quantum approach for the study

of photoinduced processes. The basic tools in this approach are the trajectory surface hopping

algorithm for simulating the dynamics of systems in the excited state and the nuclear ensemble

method for calculating observables over ensembles of nuclear configurations.

Our work began with creating a flexible and modular implementation of FSSH and LZSH

algorithms including recent improvements of the algorithm for the correct treatment the trivial

crossings problem. We have tested these algorithms against quantum dynamics simulations on

model systems and also for the first time performed a detailed comparison of LZSH and FSSH

without employing analytical models. Here we saw that the two methods are in very good

agreement for simple internal conversion in pyrazine, but for the more complex reaction in

pyrrole predict a time scale which is faster by a factor between 1.5 and 2. Nevertheless, we can

conclude that LZSH can at least give qualitatively correct descriptions of reaction mechanisms

in photochemistry. This makes it an important tool since the factor limiting the precision of

nonadiabatic dynamics simulations is often the underlying electronic structure method and not

the method of propagation itself. In these cases, LZSH can be used alongside more advanced

electronic structure methods for which nonadiabatic couplings or wave function overlaps are

not yet available or too expensive.

Next, we developed and implemented two new algorithms for the calculation of wave func-

tion overlap integrals for use alongside TDDFT and ADC(2) electronic structure calculations.

Without these algorithms, these calculations would become extremely expensive for larger sys-

tems due to their high scaling. The highly unfavorable O(n2
vn5

o) scaling of a regular wave func-

tion overlap algorithm was reduced significantly to O(n7
o) in the OL2M or O(N2n5

o) in the

ONTO algorithm. With these changes, the overall cost of these calculations is now negligible

compared to electronic structure calculations for all systems studied with the currently available

methods.

In addition to the performance benefit afforded by the new algorithms, we have focused

on usability and flexibility in the implementation. This has allowed for easier interfacing with

different electronic structure codes, but also for easier integration of the wave function overlap

calculation into the work flow of photochemical studies. The code was connected to an opti-
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mization procedure to find the minimum of a particular state of pyrrole while passing through

multiple conical intersections. It was also used to find combinations of hole and particle orbitals

to simplify the assignment of excited states in a wide energy window for four DNA nucleobases.

The code can also calculate related integrals. In the study of DNA nucleobases, it was used

to calculate
〈

z2
〉

values of the hole and particle NTOs of various states to automatically deter-

mine their character (n, π , π
∗ and Rydberg). Another important application is the calculation

of Dyson orbitals which are closely related to wave function overlaps (after expanding the SDs

of an N electron wave function into minors the calculation reduces to a series of overlap calcu-

lations between N−1 electron determinants). These orbitals were used both in the pyrrole and

in the pyrazine studies to compare results with the experiment.

Most importantly, wave function overlaps were used to track the electronic character of

states across large ensembles of nuclear configurations simplifying the assignment of absorption

and photoelectron spectra, allowing us to comment on the diabatic populations based on FSSH

calculations in the adiabatic basis and to detect the level of mixing between states of different

character. These tools have allowed us to reexamine some of the prototypical problems in

photochemistry through a new lens.

For our study of the absorption spectra of DNA nucleobases, we started from a large number

of excited states at the GS minimum geometry and tracked these states in ensembles including

zero-point energy, temperature effects and solvation effects. In this way, we could directly

see the small redshift of all states due to the zero-point energy and the large shifts in different

directions for different types of excited states when the electrostatic effects of the solution are

introduced. We found that nπ
∗, nRyd and πRyd states are always blueshifted by the polar

environment while ππ
∗ states are slightly redshifted with respect to their counterparts in the gas

phase. These effects are quite general and connected to the magnitude of the difference of static

dipole moment vectors between the ground and excited states.

In our original study of pyrrole, we also looked at the simulation and decomposition of ab-

sorption spectra using the nuclear ensemble method and wave function overlaps and were able

to reproduce the general shape of the spectrum and show signs of intensity borrowing from the

B2(ππ
∗) state to the lower lying Rydberg states as seen in benchmark quantum dynamics simu-

lations.180 Mainly, we were interested in how hydrogen detachment is affected by the excitation

wavelength. The lowest energy window studied, at 250 nm, involves tunneling of the hydrogen
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atom and is thus an example where the SH algorithm cannot provide an accurate description of

the dynamics. On the other hand, the window at 238 nm excites the A2(πσ
∗) state in a region

significantly above the barrier and results in a very fast and direct dissociation.

The third excitation window involves excitation to the B2(ππ
∗) state and passage through

multiple conical intersections before relaxation to the ground state is possible. In this case, the

dynamics are highly sensitive to the shape of the B2(ππ
∗) PES at the underlying level of theory.

We have performed simulations at multiple levels of theory showing that the relaxation mech-

anism is correctly reproduced in all cases, but the time scale of the reaction depends heavily

on the level of Rydberg-valence mixing. At the TDDFT/B3LYP/def2-TZVPD level and other

methods where this mixing is not present our results are in very good agreement with the exper-

iment.68 These results were later corroborated by FSSH simulations of Heindl and González282

at the XMS-CASPT2(8,8)/ANO-L+ level where the 3px orbital was excluded from the active

space to ensure that the B2(ππ
∗) state is of pure ππ

∗ character. However, recent quantum dy-

namics studies have suggested a significant transient population of the A2(π3pz)
186,281 which

is more in line with our simulations at the ADC(2)/aug-cc-pVDZ level.

When different levels of theory give a conflicting description of a system it can be difficult

to decide with confidence which description is correct without direct confirmation from exper-

iment. For this reason, we have attempted to calculate observables which would give direct

insight into the nature of the B2(ππ
∗) state. With a high degree of Rydberg-valence mixing

the state obtains a significantly more diffuse character which should be visible in photoelectron

spectroscopy. Indeed, cross-section profiles calculated for the B2(ππ
∗) state with a significant

contribution from the Rydberg 3px orbital decrease in value much faster than for the pure ππ
∗

state. These results suggest that it should be possible to experimentally determine the nature of

the B2(ππ
∗) excitation and the degree to which valence-Rydberg mixing plays a role in it.

Pyrazine is an interesting example because it was considered for a very long time as a two

state problem based on quantum dynamics simulations.70–72,188 This view was first challenged

by FSSH simulations at the TDDFT level.73,74 However, these studies presented the populations

of the S1, S2 and S3 adiabatic states as directly equal to diabatic populations of the B3u(nπ
∗),

Au(nπ
∗) and B2u(ππ

∗). In this picture, the Au(nπ
∗) state appeared as a transiently populated

state before most of the population was transferred to B2u(ππ
∗). This is in contrast to the

quantum dynamics studies of Sala et al.53,54 in which reduced dimensionality models were
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designed specifically to address the lack of Au(nπ
∗) state in the standard models of pyrazine

used in quantum dynamics simulations. In our first study on pyrazine,34 we have shown that

both FSSH and LZSH simulations on the model systems of pyrazine give populations which

agree quite well with those obtained through MCTDH. Additionally, we have performed SH

calculations on the full dimensional system at the ADC(2)/aug-cc-pVDZ level and calculated

actual diabatic populations where we have seen that the Au(nπ
∗) state is indeed populated on a

longer time scale than suggested by Mitrić and coworkers.73,74

This difference between the adiabatic and diabatic picture was explained through an analysis

of the S1 potential energy surface showing a strong mixing between the Au(nπ
∗) and B2u(ππ

∗)

states in a region around the S1 minimum. This mixing was also found in the nuclear ensemble

generated through SH calculations. Other recent studies have argued that the Au(nπ
∗) state

is not populated based on the lack of a peak corresponding to this state in the experimental

photoelectron spectrum.7,204 By directly simulating slices of the time-resolved photoelectron

spectra reported Horio et al.202 and decomposing the spectrum based on contributions of the

different states, we could show that the peak in the 3.5 eV PKE region arises both from the

B3u(nπ
∗) state (at early times) and the mixed B2u(ππ

∗) and Au(nπ
∗) states (at later times).

This mixing is only seen after relaxation of the molecule along multiple normal modes towards

the S1 minimum which shifts the peak of the Au(nπ
∗) state from higher PKEs seen in the

FC region to the position seen in the experiment. In this we see a clear advantage of mixed

quantum-classical methods being able to treat all degrees of freedom of the molecule on an

equal footing compared to low dimensional models in which this sort of relaxation and shift of

the peak is not seen.
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§6. LIST OF ABBREVIATIONS

ADC Algebraic diagrammatic construction
AIMS Ab inition multiple spawning
CASSCF Complete active space self consistent field
CASPT2 Complete active space second-order perturbation theory
CI Conical intersection / Configuration interaction
CIS Configuration interaction singles
DFT Density functional theory
DMRG Density matrix renormalization group
FMS Full multiple spawning
GTO Gaussian type orbital
HST Hammes-Schiffer and Tully method for calculating TDCs
L1M Level 1 minor
L2M Level 2 minor
MCE Multiconfiguration Ehrenfest
MCTDH Multiconfiguration time-dependent Hartree
MD Molecular dynamics
MPn Møller–Plesset perturbation theory to n-th order
MRCI Multireference configuration interaction
MRSCF Multireference self-consistent field
NEA Nuclear ensemble approach
NTO Natural transition orbital
NQE Nuclear quantum effects
NEVPT2 n-electron valence second order perturbation theory
OCIS Overlap calculation using trivial alrgorithm
OL2M Overlap calculation using L2M based algorithm
ONTO Overlap calculation using NTO based algorithm
PES Potential energy surface
PIMD Path integral molecular dynamics
QCLE Mixed quantum-classical Liouville equation
QD Quantum dynamics
SD Slater determinant
STO Slater type orbital
SVD Singular value decomposition
TDC Time-derivative coupling
TDDFT Time-dependent density functional theory
TDSE Time-dependent Schrödinger equation
TRPES Time-resolved photoelectron spectroscopy
UV Ultraviolet
vMCG Variational multiconfiguration Gaussian
XMS-CASPT2 Extended multi-state CASPT2
ZPE Zero-point energy
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152. R. Mitrić, J. Petersen, and V. Bonačić-Koutecký, Phys. Rev. A - At. Mol. Opt. Phys. 79

(2009) 1–6.

153. I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, Phys. Rev. A - At. Mol. Opt. Phys.

81 (2010) 1–13.

154. M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, and L. González, J. Chem.

Theory Comput. 7 (2011) 1253–1258.

Marin Sapunar Doctoral thesis



§7 REFERENCES 124

155. A. Chenu and P. Brumer, J. Chem. Phys. 144 (2016) 044103.

156. M. Rosenblatt, Ann. Math. Stat. 27 (1956) 832–837.

157. E. Parzen, Ann. Math. Stat. 33 (1962) 1065–1076.

158. S. Nangia, A. W. Jasper, T. F. Miller, and D. G. Truhlar, J. Chem. Phys. 120 (2004)

3586–3597.

159. V. Vallet, Z. Lan, S. Mahapatra, A. L. Sobolewski, and W. Domcke, Faraday Discuss.

127 (2004) 283–293.

160. V. Vallet, Z. Lan, S. Mahapatra, A. L. Sobolewski, and W. Domcke, J. Chem. Phys. 123

(2005) 144307.
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249. W. Győrffy, T. Shiozaki, G. Knizia, and H.-J. Werner, J. Chem. Phys. 138 (2013) 104104.

250. Y. Shao et al., Mol. Phys. 113 (2015) 184–215.

251. D. A. Matthews, L. Cheng, M. E. Harding, F. Lipparini, S. Stopkowicz, T.-c. Jagau, P. G.

Szalay, J. Gauss, and J. F. Stanton, J. Chem. Phys. 152 (2020) 214108.

Marin Sapunar Doctoral thesis



§7 REFERENCES 129

252. S. R. White, Phys. Rev. Lett. 69 (1992) 2863–2866.

253. C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J. P. Malrieu, J. Chem. Phys.

114 (2001) 10252.

254. P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Chem. Rev. 112 (2012)

108–181.

255. H. Lischka, D. Nachtigallová, A. J. A. Aquino, P. G. Szalay, F. Plasser, F. B. C. Machado,

and M. Barbatti, Chem. Rev. 118 (2018) 7293–7361.

256. A. Baiardi and M. Reiher, J. Chem. Phys. 152 (2020) 040903.

257. L. González and R. Lindh, Quantum Chemistry and Dynamics of Excited States, Wiley,

2020.

258. H. C. Andersen, J. Comput. Phys. 52 (1983) 24–34.

259. A. Y. Dymarsky and K. N. Kudin, J. Chem. Phys. 122 (2005) 39–41.

260. H. B. Schlegel and M. J. Frisch, Int. J. Quantum Chem. 54 (1995) 83–87.

261. S. Obara and A. Saika, J. Chem. Phys. 84 (1986) 3963–3974.

262. G. Schaftenaar and J. H. Noordik, J. Comput. Aided. Mol. Des. 14 (2000) 123–134.

263. G. Schaftenaar, E. Vlieg, and G. Vriend, J. Comput. Aided. Mol. Des. 31 (2017) 789–

800.

264. http://cheminf.cmbi.ru.nl/molden/molden_format.html (accessed on 06/25/2020).

265. A. Humeniuk, M. Wohlgemuth, T. Suzuki, and R. Mitrić, J. Chem. Phys. 139 (2013)
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