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Demixing of homogeneous binary lipid membranes induced by protein inclusions
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We study a model of a lipid bilayer membrane described by two order parameters: the chemical composition
described using the Gaussian model and the spatial configuration described with the elastic deformation model
of a membrane with a finite thickness or, equivalently, for an adherent membrane. We assume and explain on
physical grounds the linear coupling between the two order parameters. Using the exact solution, we calculate
the correlation functions and order parameter profiles. We also study the domains that form around inclusions
on the membrane. We propose and compare six distinct ways to quantify the size of such domains. Despite its
simplicity, the model has many interesting features like the Fisher-Widom line and two distinct critical regions.
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I. INTRODUCTION

Continuous research effort has been put into understanding
the relationship between physical properties, functionality,
and the mutual influence of lipids and proteins in cell
membranes. One of the central issues concerns membrane
domains. It is well established that model lipid bilayer mem-
branes containing cholesterol can support two coexisting liq-
uid phases, called liquid-ordered (Lo) and liquid-disordered
(Ld) [1–3]. Below the critical point of miscibility domains of
different phases form, giving rise to a lateral heterogeneity
of a lipid membrane. Formation of domains and functional
lateral heterogeneity is observed also in living cell membranes
[4–6]. The structure, spatial organization, and role of lipid
and protein domains in cell signaling has been a long studied
problem. Nevertheless, many questions are still open in this
field [7–12]. Observed domains are nanoscopic and dynamical
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and also occur above the critical point [13–15]; therefore the
physical basis of heterogeneity in cell membranes is supposed
to be more complex than a miscibility transition alone.

Diverse equilibrium mechanisms that can lead to mem-
brane segregation on length scales smaller than the charac-
teristic size of the bulk phase separation domains have been
identified theoretically and experimentally [16,17]. Several of
them involve nanometer-sized membrane inclusions, such as
proteins. In general, both direct and indirect interactions be-
tween inclusion and membrane lipids can generate domains.
Direct specific interactions cause chemically favored lipids to
be attracted to the protein, creating a wetting domain [18–20]
or, above the critical temperature of demixing, an adsorption
domain with a concentration of preferred lipids greater than
that of the bulk membrane. The extent of the adsorption do-
main is of the order of the composition correlation length ξ ,
and thus, near the critical point of demixing, where ξ grows
significantly, it can be as large as several microns [21,22].

Here we focus on the indirect interactions resulting from
protein-induced membrane disturbances. Among such pertur-
bations are changes due to hydrophobic mismatch between
membrane lipids and inclusion, i.e., when the hydrophobic
part of the inclusion has a thickness slightly different from the
hydrophobic part of the membrane [23,24]. The energetic cost
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(a) (b)

FIG. 1. Schematic plot of the two possible applications of the model. Different types of lipids are denoted with blue and yellow. (a) The
membrane is flat, but its thickness is not constant and described by the order parameter h̄(r). Due to hydrophobic mismatch of the anchor
(difference between the equilibrium thickness of the membrane and size of the hydrophobic region on the anchor) the thickness of the
membrane is alerted around the anchor, which modifies local composition of the lipids. (b) The membrane has a constant thickness, but it
is not flat, and its height over the reference plane is described by the order parameter h̄(r). In this case the anchor (illustrated in the middle of
the picture) is locally fixing the height of the membrane, and, as a result, the membrane is bent. The external potential that acts differently on
different types of lipids changes the composition of the membrane around the anchor.

of hydrophobic mismatch deformation can be reduced by at-
tracting lipids with a suitable characteristic. One possibility is
that lipids that match the curvature of the membrane caused by
the protein will be effectively attracted [25–28]. Thus inclu-
sions with a hydrophobic core larger or smaller than that of the
membrane would tend to attract lipids of positive or negative
spontaneous curvature, thereby building a concave or convex
shape to fill in the height mismatch. For example, cholesterol
and saturated lipids exhibit a negative spontaneous curva-
ture, whereas unsaturated lipids, with a smaller acyl chain
area to polar head group area ratio, exhibit positive spon-
taneous curvature. In this mechanism, the inclusion-induced
deformation is strongly dependent upon the spontaneous cur-
vature, which in turn is coupled to the composition of the
membrane.

In this paper we discuss a different possibility for creating
chemical inhomogeneity. In order to accommodate hydropho-
bic mismatch, lipids of matching length of the acyl chain
are effectively attracted to the protein inclusion [20]. In
model membranes, such as those considered experimentally
in Refs. [1–3], the hydrophobic thickness of the membrane
is nonuniform. The Lo phase, rich in saturated lipids, shows
higher extension in the lipid acyl chains than the Ld phase,
rich in unsaturated lipids [29]. Depending on the sign of the
hydrophobic mismatch, the lipid composition around the pro-
tein will preferentially be in one of the two phases (Lo or Ld).
In this mechanism, which we call the thickness mechanism,
the composition of the membrane is coupled to its thick-
ness [30,31] and not necessarily to the overall spontaneous

curvature of the membrane. This process is schematically
illustrated in Fig. 1(a).

Another possible mechanism for creating lipid domains
around proteins is relevant in membrane adhesion. In this
case we consider the coupling of the lipid composition to
a particular separation between the membrane and opposing
surface (of another cell or of the extracellular matrix). Two
cell or celllike membranes in the absence of protein-mediated
adhesion maintain a finite distance of the order of 100 nm
[32,33]; hence, the membrane behaves as resting in a poten-
tial minimum. This initial separation is regulated through the
composition of the membrane and the cell glycocalyx, and
changes in these parameters result in different separations.
Local change of the separation occurs when bonds form be-
tween receptors in the membrane and their binding partners on
the opposing cell or in the extracellular environment (ligands
or proteins). In order for this bond to take place, the glycoca-
lyx must be expelled [34], which, in turn, leads to a change
of the composition of the membrane itself. A schematic plot
of this mechanism in presented in Fig. 1(b). Such a process
has been observed in integrin or cadherin adhesion [35,36],
but the same scenario is responsible for protein organization
during the formation of the T-cell synapse [37] or natural killer
cell activation [38].

From the theoretical point of view, the curvature effects
already were conceptually formalized two decades ago [27].
Further detailed analysis was both performed analytically
and in simulations by several groups [39–45]. The thickness
mechanism (coupling between the thickness of the membrane
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and its composition) was suggested in a numerical study [30],
while the analytic approach was then put forward only last
year by us [31]. In Ref. [31] we proposed a model which
couples the elasticity theory of lipid bilayer thickness defor-
mations [24,30,46,47] with the Landau-Ginzburg theory of
a near-critical binary mixture and with the inclusions. Our
model can be solved exactly, which has the obvious advantage
of allowing for a full understanding of the consequences of
considered couplings (beyond curvature) on the local demix-
ing of the binary lipid membrane. The price for this is the
simplification of the actual system, including the disregard of
the size, shape, and conformation of protein inclusions and
other specific properties of lipid bilayers, such as lipid tilt
[48] or intrinsic curvature, inhomogeneous deformations of
lipid volume, or asymmetric bilayer thickness deformations.
We are also restricted to the supercritical range of tempera-
tures. Nevertheless, our minimal model was able to reproduce
experimental observations of the formation of lipid domains
around lipids linked to a reconstituted actin cortex filament
in a model membrane [31,39]. In these experiments the lipid
bilayer was supported, which strongly suppresses spontaneous
curvature effects.

Interestingly, we note that, following the work of Bibtol
et al. [24], it is possible to draw a direct analogy between the
thickness and the shape deformation of the membrane in the
lowest order of theory. That means it is possible, on a different
length scale, to address theoretically both problems within
the same framework. The role of this paper is to provide this
analogy and to describe our model in more detail, which we
could not do in the letter format. Furthermore, we want to
understand the adsorption of lipids onto the protein inclusion
given that no direct attractive interaction is imposed.

We first explore the general features of the model for both
the shape and thickness deformation fields by computing and
analyzing correlation functions. In the absence of the protein
inclusions, we calculate two-point correlation functions and
discuss different forms of their asymptotic decay in connec-
tion with the poles appearing in their integral representation.
Due to the presence of two order parameters and higher order
derivatives in the Hamiltonian, the behavior of these functions
is rich and interesting. For example, the correlation length
that governs the asymptotic decay of the correlation func-
tions shows a curious nonmonotonic and nonanalytic behavior
as function of the temperature deviation τ from the critical
temperature. This is far from a typical behavior of a binary
mixture upon approaching the critical point. From our analyti-
cal results we derive the asymptotic behavior of the correlation
functions and the correlation length in the several limiting
cases of the three relevant parameters of our model.

Furthermore, we investigate adsorption phenomena around
membrane-embedded protein in the context of a domain for-
mation upon approaching the critical temperature. Given that
there is no direct attraction between proteins and lipids that
would be responsible for the classical critical adsorption, it
is interesting to understand what kind of universal scaling
law is obeyed for the adsorption phenomena that take place
entirely due to the coupling of the two order parameters. For
this purpose we calculate the order parameter profiles around
protein inclusion. Based on the integral and local properties
of these profiles, we propose several definitions of the size

of the domain. We determine their asymptotic behavior in
several limits, including approaching the critical temperature
(τ → 0).

Our minimal model does not include membrane tension.
We show under which conditions taking into account the
surface tension does not qualitatively change the results of our
model.

The paper is organized as follows: In Sec. II we define the
model, explain the physical mechanisms behind our assump-
tions, and briefly explain the method of calculation. Section III
is devoted to the correlation functions. We define them and
use their properties to distinguish three zones in the space of
the parameters. In Sec. IV we discuss the order parameter
profiles and study the formation of domains. We introduce
and compare six different ways to identify the size of in-
duced domains. Our research is summarized and discussed
in Sec. V. Finally, we have included several Appendixes: in
Appendix A we discuss how the properties of our model
change for nonzero surface tension; Appendix B presents the
method used to calculate the order parameter profiles and
correlation functions; in Appendix C we discuss the behavior
of the roots of a certain polynomial, which determine the
properties of correlation functions; in Appendix D we present
the details of the calculation of the integrals present in the
formulas for the correlation functions in different zones; and,
finally, in Appendix E we study the correlation functions in
various limiting cases.

II. MODEL

We start from introducing the model discussed in this
paper. In order to describe the system we use two order pa-
rameters.

A. Configuration order parameter

The spatial configuration of the membrane is described by
the order parameter h̄(r), the height of the membrane above
the reference plane in a point given by the two-dimensional
vector r. For simplicity we assume that the membrane is
infinite, such that r can be any vector from the plane. The
energy associated with the configuration of a membrane can
be approximated by [49–52]

βHMD =
∫

dr{2κ[H(r)]2 + η S(r) + Vext[h̄(r)]}, (1)

which we call the membrane deformation model. In this
Hamiltonian the bending stiffness κ is a dimensionless param-
eter describing the energy cost of bending the membrane, H(r)
is a mean curvature of the membrane, η denotes the surface
tension, S(r) is a local change in surface area due to membrane
deformation, and an external potential Vext keeps the mem-
brane above the reference plane. In (1) we have introduced
β = (kBT )−1 (where T is a temperature and kB is the Boltz-
mann constant) in order to keep the formula dimensionless,
and we have assumed that the membrane has no spontaneous
curvature.

When the membrane is almost flat, i.e., |∇h̄(r)| � 1, the
mean curvature H(r) ≈ ∇2h̄(r)/2, and the local change in sur-
face area S(r) ≈ [∇h̄(r)]2/2. The external potential originates
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from many different interactions like steric repulsion or van
der Waals attraction and, in cellular systems, from the proper-
ties of the glycocalyx. We assume that it has a minimum for
h̄ = h̄0, and (since we are interested only in small excitations
around the minimum) it can be approximated by a harmonic
potential. If one, for simplicity, additionally assumes that its
minimum is at h̄ = 0, Vext ≈ γ h̄2/2, where the parameter γ

quantifies the strength of binding of the membrane.
The energy of a flat membrane with a variable thickness

can also be approximated by Eq. (1) for |∇h̄(r)| � 1. We
assume that a bilayer membrane is symmetric, so that the
thickness deformations of the two monolayers are identical.
In this picture, the order parameter h̄(r) is defined as the
difference between the local thickness and the thickness d̄0

of an unperturbed membrane (i.e., the distance between two
lipid layers). Of course, in this interpretation the meaning of κ

and Vext is different: the parameter κ , as shown in [24], is four
times smaller than the true bending stiffness of the membrane,
and the potential now describes the interaction between the
two layers: it regulates the energy cost of the compression or
expansion of the lipid bilayer. Both possible interpretations of
the order parameter h̄(r) have been schematically illustrated
in Fig. 1.

A comprehensive description of a membrane definitely
requires consideration of both the spatial configuration of
the membrane and its thickness by taking into account two
distinct configuration order parameters [24] (in the leading
order they decouple from each other in the formula for a total
elastic energy of the membrane). In this paper, in order to
keep the model as simple as possible, we use only a single
field h̄(r). Nevertheless, we keep two possible interpretations
as they are both experimentally relevant.

To make our model simpler we also assume that the ef-
fects of surface tension can be neglected (we take η = 0).
While, when h̄(r) denotes the spatial configuration of the
membrane, this assumption is reasonable as in most cases the
effect of surface tension effectively modifies other parameters
describing the membrane [53], the situation is more subtle
when h̄(r) denotes the thickness of the membrane. In this
case the surface area term in βHMD [Eq. (1)] gives rise to
two leading contributions h̄(r)/d̄0 and [∇h̄(r)]2, which were
employed in the literature to describe the effects of stretching
deformations tangential to the leaflet surfaces (typically by
fixing the volume of the membrane per molecule) and changes
in the projection of the bilayer area onto the reference plane,
respectively [24,30,48,54,55]. As shown in Ref. [24], there
appears another term proportional to [∇h̄(r)]2 if one takes
into account the energy cost due to an increase of the area
per molecule in deformed membrane. It was argued that the
amplitude of this term results from the interfacial tension
of the hydrocarbon-water interface, which is of the order of
40–50 mN/m. This is much larger than the estimated maxi-
mum membrane tension (just before its rupture), which is of
the order of a few mN/m.

In Appendix A we investigate how our results would
change if we included the surface tension in the model. We
show that as long as the relevant parameter ϑ = η/

√
κγ < 2,

the effect of surface tension is generating only a minor quanti-
tative change. Moreover, even if ϑ � 2, where the qualitative
change occurs (the oscillatory solutions for the correlation

functions and order parameter profiles disappear), our results
for exponentially decaying functions are still valid.

Our estimates based on the values of parameters reported
in literature [24,54] are that for real bilipid membranes, when
h̄ denotes the thickness of the membrane, the coefficient ϑ is
of the order of 1, so our model should be valid at least for
some membranes [56]. When h̄ denotes the spatial position of
the membrane, ϑ depends strongly on the experimental setup
(via η and γ ), but we expect it to be even smaller.

B. Composition order parameter

In order to describe the composition of the membrane we
introduce a scalar order parameter φ̄(r). We define it as a
difference between the local concentration of saturated lipids
and their concentration at the critical demixing point. In this
way, above the critical temperature Tc the equilibrium value
of the order parameter is zero, and below Tc it has two possi-
ble equilibrium values: the positive describing Lo phase and
negative describing Ld phase.

In this paper we use only one composition order parameter
to describe the membrane in order to keep the model simple;
thorough description of the chemical composition would re-
quire the introduction of several order parameters (separately
for each component and each layer), which typically compli-
cates the phase diagram.

Around the critical point, the energy associated with the
chemical composition can be approximated by the Landau-
Ginzburg Hamiltonian

βHLG =
∫

dr
{σ

2
[∇φ̄(r)]2 + t φ̄2(r) + uφ̄4(r) − cφ̄(r)

}
,

(2)

where σ > 0 measures the energy cost of a chemical gradient
on the membrane, t ∝ T − Tc is the temperature, u > 0, and c
is the ordering field proportional to the deviation of the chem-
ical potential of the considered component from its critical
value.

In our model for the sake of simplicity, we assume that c =
0 and u = 0 in Eq. (2). The former means that the composition
of the membrane is at its critical-point value, which seems
to be in line with some of the experiments [39]. The latter
assumption makes the Hamiltonian unbounded from below
for t < 0 and, therefore, restricts our analysis to the cases
where the membrane is in a mixed state (t > 0). For u > 0
an analytical solution of our model is not known.

The two remaining terms in Hamiltonian (2) (u = 0, c = 0
and t > 0) define the so-called Gaussian model [51].

C. Coupling between order parameters

In order to study the relation between the chemical compo-
sition and shape of the membrane, it is necessary to introduce
coupling between the order parameters.

The simplest, mathematical coupling arises from the ob-
servation that the integral in Landau-Ginzburg Hamiltonian
(2) should be calculated on the curved manifold [given by
h̄(r)] rather than on the flat reference plain. Close investigation
shows that this effect gives corrections that are proportional to
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the powers of ∇h̄, and thus they are not relevant in the limit
of an almost flat surface |∇h̄(r)| � 1 assumed in our model.

The physical mechanism of coupling between the order
parameter φ̄ and the mean curvature H of the membrane was
proposed and analyzed in Refs. [25,57]. In the leading order, it
gives a coupling in Hamiltonian that is proportional to φ̄∇2h̄,
which can lead to a curvature-driven phase separation in the
membrane.

In this paper we propose a different physical mechanism
that leads to a direct coupling between the order parameters—
a term proportional to h̄φ̄ in the Hamiltonian.

When h̄ describes the spatial configuration of the mem-
brane, an external potential Vext [see Eq. (1)] represents a
nonspecific adhesion, which keeps the membrane shape in
a minimum of an effective potential. Various theoretical and
experimental studies [58–62] indicate that the strength and the
position of this nonspecific minimum results from balancing
the membrane-substrate van der Waals and the Coulomb po-
tential with the membrane deformation repulsion. Other types
of interactions could also contribute. The quadratic form of
Vext is thought of as an expansion of the effective potential
around its minimum. It is natural to assume that that this
effective potential depends on the composition φ̄ (e.g., via
van der Waals interactions [62]). The simplest possible way
to include this effect is to consider the composition-dependent
equilibrium height of the membrane, which for small |φ̄| gives

Vext = γ

2
[h̄(r) − αφ̄(r)]2, (3)

where we have introduced the proportionality coefficient α.
On the other hand, when h̄ denotes the excess thickness of

the membrane (over the reference value d̄0) we assume that
different lipids have a different effective length of acyl chains.
This makes the equilibrium thickness of the bilayer dependent
on its chemical composition and justifies Eq. (3).

The effect of the coupling between order parameters has
been schematically shown in Fig. 1 for both possible interpre-
tations of h̄.

We note that from the point of view of the composition
order parameter φ̄, the coupling term given by Eq. (3) has two
effects: the term quadratic in φ̄ effectively shifts t by α2γ /2
(and therefore pushes the system away from the critical point),
and the term linear in φ̄ represents a position-dependent [via
h̄(r)] chemical potential.

D. Inclusions

Finally, we introduce inclusions that model the anchors
(like proteins or lipids) immersed in the membrane. We
assume that they are coupled to the configuration order pa-
rameter: If h̄ is the height of the membrane above the reference
plane, we assume that the inclusions are attached to some ex-
ternal structures (cytoskeleton) and deform locally the shape
of the membrane. If h̄ denotes the thickness of the membrane,
we assume that the inclusions have a hydrophobic mismatch,
i.e., the hydrophobic region on the inclusion has a differ-
ent height than the height of the unperturbed membrane. As
a result the membrane gets thicker or thinner close to the
inclusion.

For simplicity we neglect the size of inclusions and assume
that they are all isotropic and pointlike [63,64]. As a first
approximation, we also neglect the possible different affinities
to different components of the membrane, i.e., coupling of
the inclusion directly to order parameter φ̄. This effect is
worth studying separately, but we expect it to be subdominant
in comparison with coupling to h̄. A more realistic model
would require introducing some nonzero area covered by the
inclusion [this area should be excluded from the integrals
in Eqs. (1) and (2), as the order parameters are undefined
there] and taking into account a possibility of angle-dependent
coupling. Moreover, the details of an interaction between an
inclusion and the membrane have been studied only for a
limited number of cases, and they often are under debate.
Pointlike inclusions are described with only a few parameters
(like the values of order parameters and their derivatives) that
can be fitted to reproduce a correct long distance behavior
of the membrane observed around the real inclusion. The
price to pay for this simplification is the possibility that some
quantities will be divergent. In our model, allowing for point-
like inclusions coupled to φ̄ leads to some divergent integrals
and requires introducing a regularization scheme, which we
discuss in more detail in Sec. IV.

We denote by N the number of inclusions and label their
positions by r1, r2, . . . , rN . We approximate the interaction
with the harmonic potential:

βHI = λ

2

N∑
i=1

[h̄(ri ) − h̄i]
2, (4)

where h̄i denotes the value of h̄ preferred by ith inclusion,
and the positive coefficient λ defines the strength of the po-
tential. In our calculations, for the sake of simplicity, we take
the limit λ → ∞, which enforces the relations h̄(ri ) = h̄i for
i = 1, 2, . . . , N .

E. Hamiltonian of the model

We can now write the full Hamiltonian of our model in the
reduced, dimensionless variables.

We use the length scale

ζ = (κ/γ )1/4 (5)

as a unit of length, and define h = h̄/ζ and ρ = r/ζ . The
length scale ζ is proportional [65] to the correlation length
in a model of a tensionless membrane with a single order
parameter h̄(r) [66]. The unit of the composition is given by
σ−1/2, and the unit of energy is kBT . All the formulas for
dimensionless variables are summarized in Table I.

There are three dimensionless parameters that describe our
model: the bending stiffness κ which is already dimensionless
in the original formula, the reduced dimensionless temper-
ature τ = tζ 2/σ proportional to the reduced temperature t ,
and the parameter μ = ασ−1/2/ζ that is proportional to the
coupling α between the order parameters. It is also convenient
to introduce a fourth parameter ω = κμ2 = κα2/(σζ 2) as this
combination of parameters often appears in our formulas. As
we discuss in Sec. II F, this parameter regulates the length
scale starting from which the thermal fluctuations of the or-
der parameters must be correlated. The anchors immersed in

054120-5



PIOTR NOWAKOWSKI et al. PHYSICAL REVIEW E 107, 054120 (2023)

TABLE I. Definition of dimensionless parameters used in the model. The unit of length is denoted by L, the unit of chemical composition
(the unit of φ̄) is denoted by C, and the unit of energy is denoted by E . In the last column, the names of the reduced variables that we use are
given.

Variable Original unit Rescaled variable Name

h̄ L h = h̄/ζ Reduced height or thickness of the membrane
φ̄ C φ = φ̄ σ 1/2 Reduced composition of the membrane
Ā L2 A = Ā/ζ 2 Reduced area of the system
r L ρ = r/ζ Reduced distance or position
κ 1 κ Bending stiffness
γ L−4 − Strength of the potential acting on the membrane
η L−2 ϑ = η/

√
κγ Reduced surface tension of the membrane

σ C−2 − Parameter describing energy cost of the gradient of concentration
t L−2C−2 τ = t ζ 2/σ Reduced temperature
α LC−1 μ = α σ−1/2/ζ Reduced coupling
− 1 ω = κμ2 = κα2/(σζ 2) Combination of parameters appearing in the polynomial W
λ L−2 ν = λζ 2 Reduced harmonic potential coefficient
h̄i L hi = h̄i/ζ Reduced height of the membrane for proteins

the membrane introduce additional parameters: the positions
of anchors ρi, the imposed reduced heights of the mem-
brane hi = h̄i/ζ for i = 1, . . . , N , and the harmonic potential
constant ν (which we set infinite in our calculation). The
Hamiltonian in the new variables takes the form

H[h(ρ), φ(ρ)] = HMD + HG + HC + HI, (6a)

βHMD =
∫

dρ
κ

2
[∇2h(ρ)]2, (6b)

βHG =
∫

dρ

{
1

2
[∇φ(ρ)]2 + τφ2(ρ)

}
, (6c)

βHC =
∫

dρ
κ

2
[h(ρ) − μφ(ρ)]2, (6d)

βHI = ν

2

N∑
i=1

[h(ρi ) − hi]
2, (6e)

where the symbol “∇” denotes the gradient operator in dimen-
sionless variable ρ.

In the above formulas: HMD describes the energy related to
the curvature of the membrane, which is part of the membrane
deformation Hamiltonian (1), and, in fact, it is the Hamilto-
nian expanded in small gradients of h with vanishing surface
tension η; HG is the Hamiltonian of the Gaussian model, i.e.,
Eq. (2), with u = 0 and c = 0; HC, describing the coupling,
originates from the second part of the membrane deformation
Hamiltonian with the potential given by Eq. (3); and HI is the
rescaled version of Eq. (4).

We note that in our model there is no external potential that
keeps h close to 0. Instead, this condition is attained via the
coupling term (6d), since the order parameter φ is kept close to
zero (for τ > 0) by the term (6c). As we have checked, adding
external potential proportional to h2(r) is not changing basic
properties of the system, and, therefore, we do not include it
in our model for the sake of simplicity.

We also note that in our model we allow the order pa-
rameters to take any real value. Physically, the height of the
membrane above the reference plane is always restricted by
some objects present in the system. Also, the excess thickness

is bounded from below as the two layers of the membrane
cannot intersect. Similarly, the concentration of one of the
lipids φ is bounded by the finite values that describe a mem-
brane without or full of this lipid. Here we ignore this limits
in order to solve the model analytically. As an a posteriori
justification of this assumption, we note that the boundary
values of the order parameters are typically located far in the
tail of the calculated Gaussian distributions, and, therefore, the
nonphysical values are highly improbable.

F. Length scales

Before going to the calculation of the correlation functions,
it is useful to discuss the length scales present in our model.
We have identified three physically relevant length scales.

The natural length scale for the order parameter h̄ is �h =√
2ζ = (4κ/γ )1/4, i.e., the correlation length of the model of

the membrane without the composition order parameter φ̄.
Analogously, the natural length scale for the order parame-
ter φ̄ is �φ = (2τ )−1/2ζ = √

σ/(2t ), which is the correlation
length in the Gaussian model. The third length scale �coupling =
ω−1/2ζ = α−1√σ/γ is associated with the coupling between
the order parameters. As we have checked, the fluctuation of
φ̄ of the size ∼�coupling has the coupling interaction energy
[given by HC; see (6d)] of the order of 1kBT . This means that
on the scales much smaller than �coupling one can ignore the
coupling, while on much larger scales the fluctuations of φ̄

and h̄ must be correlated.
The situation changes slightly when one considers nonva-

nishing surface tension of the membrane, i.e., nonzero η in
Eq. (1). In this case the correlation length of the model without
the composition order parameter becomes a function of κ ,
η, and γ [53], and it is not equal to �h anymore. In such a
case one can introduce one more length scale �surface tension =√

η/(2γ ), which is equal to the correlation length in the
special case of κ = 0. All calculations presented in this pa-
per assume η = 0, and, therefore, they are valid in the case
�surface tension � �h, �φ, �coupling.

Our exact analysis of the model is valid for any values
of the length scales �h, �φ , and �coupling. In Sec. III G and
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Appendix E we discuss the correlation functions in several
limiting cases in which one of these length scales becomes
much larger or much smaller than others.

G. Method of calculation

The partition function of the system is defined using the
path integral over all configurations of the two fields

Q
(
κ, τ, μ, A; {hi, ρi}N

i=1

)
=
∫

Dh(ρ)Dφ(ρ) exp
[−βH

(
κ, τ, μ, A; {hi, ρi}N

i=1

)]
.

(7)

Since all terms in the Hamiltonian (6) are quadratic in the
order parameters and their derivatives, it is possible to calcu-
late the partition function analytically—we replace the fields
h(ρ) and φ(ρ) with their Fourier transforms and calculate the
integrals separately for every wave vector. For the details of
this procedure as well as for the calculation of the correlation
functions and order parameters profiles see Appendix B.

III. CORRELATION FUNCTIONS

A. Definition

We start the investigation from studying the two-point cor-
relation functions in the system without proteins. For such a
system N = 0, the Hamiltonian is

H = HMD + HG + HC, (8)

where the terms on the right-hand side are given by Eq. (6).
Because of the symmetry of changing the sign of both order
parameters, 〈h(ρ)〉 = 〈φ(ρ)〉 = 0 for any position ρ. There-
fore, we define all the possible two-point correlation functions
via

Chh(ρ; κ, τ, μ) = 〈h(ρ0)h(ρ0 + ρ)〉, (9a)

Chφ (ρ; κ, τ, μ) = 〈h(ρ0)φ(ρ0 + ρ)〉, (9b)

Cφφ (ρ; κ, τ, μ) = 〈φ(ρ0)φ(ρ0 + ρ)〉. (9c)

Since the Hamiltonian (8) is invariant under rotations and
translations, these functions depend only on the length ρ of
the vector ρ, and they are independent of the reference point
ρ0.

B. Integral formulas for the correlation functions

Using the path integral method, we obtain the formulas for
the correlation functions (see Appendix B 1)

Chh(ρ; κ, τ, μ) = 1

2πκ

∫ ∞

0

x(x2 + ω + 2τ )J0(ρ x)

(x4 + 1)(x2 + 2τ + ω) − ω
dx,

(10a)

Chφ (ρ; κ, τ, μ) = μ

2π

∫ ∞

0

x J0(ρ x)

(x4 + 1)(x2 + 2τ + ω) − ω
dx,

(10b)

Cφφ (ρ; κ, τ, μ) = 1

2π

∫ ∞

0

x(x4 + 1)J0(ρ x)

(x4 + 1)(x2 + 2τ + ω) − ω
dx,

(10c)

FIG. 2. Plot of the three zones in the space of parameters de-
fined by the properties of roots of the polynomial W (z; τ, κμ2); see
Eq. (11). The behavior of the correlation functions for large ρ is
different in each zone. The blue dots denote the values of parameters
used in Fig. 3, and the black square marks the point where all three
zones meet (ω∗, τ ∗) = (8/(3

√
3), 1/(6

√
3)).

where Ji denotes the (unmodified) Bessel function of the first
kind of order i, and ω = κμ2.

C. Three zones

The above integrals can be transformed to contour integrals
on the complex plane and calculated using the residue theorem
[67]. The final formula depends on the form of complex roots
of the polynomial in complex variable z,

W (z; ω, τ ) = (z4 + 1)(z2 + 2τ + ω) − ω, (11)

which is in the denominator of all the integrands in (10). Since
W (z; ω, τ ) has real coefficients and only even powers of z, if
z0 is its root, then z∗

0, −z0 and −z∗
0 are the roots of W (the

symbol z∗ denotes the complex conjugate of a number z). This
polynomial has no real roots.

The plane of the parameters (ω, τ ) is split into three dif-
ferent zones by the properties of the roots of the polynomial
W (z; ω, τ ). In zone I the polynomial has only imaginary roots
±it1, ±it2, and ±it3, where we assume 0 < t1 < t2 < t3. In
zone II there are two imaginary roots ±it1 and four complex
roots of a form ±a ± it2, with a, t1, t2 > 0, and t1 < t2. Fi-
nally, in zone III the roots are of the same form as in zone
II, ±it1 and ±a ± it2 with a, t1, t2 > 0, but now t1 > t2. The
splitting of the parameter plane is presented in Fig. 2.

The behavior of the roots upon crossing the boundaries of
the zones is discussed in Appendix C.

D. Explicit formulas in three zones

Using the parameters describing roots of the polynomial
W , we were able to calculate the integrals in Eq. (10) to obtain
explicit formulas for the correlation functions.
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In zone I, where all the roots of the polynomial (11) are imaginary, the correlation functions are

Chh(ρ; κ, τ, μ) = 1

2πκ

[
M(ρ, t1)

(
2τ + ω − t2

1

)
(
t2
1 − t2

2

)(
t2
1 − t2

3

) + M(ρ, t2)
(
2τ + ω − t2

2

)
(
t2
2 − t2

1

)(
t2
2 − t2

3

) + M(ρ, t3)
(
2τ + ω − t2

3

)
(
t2
3 − t2

1

)(
t2
3 − t2

2

)
]
, (12a)

Chφ (ρ; κ, τ, μ) = μ

2π

[
M(ρ, t1)(

t2
1 − t2

2

)(
t2
1 − t2

3

) + M(ρ, t2)(
t2
2 − t2

1

)(
t2
2 − t2

3

) + M(ρ, t3)(
t2
3 − t2

1

)(
t2
3 − t2

2

)
]
, (12b)

Cφφ (ρ; κ, τ, μ) = 1

2π

[
K0(ρt1)

(
t4
1 + 1

)
(
t2
1 − t2

2

)(
t2
1 − t2

3

) + K0(ρt2)
(
t4
2 + 1

)
(
t2
2 − t2

1

)(
t2
2 − t2

3

) + K0(ρt3)
(
t4
3 + 1

)
(
t2
3 − t2

1

)(
t2
3 − t2

2

)
]
, (12c)

where we have introduced the function

M(ρ, t ) =
{
K0(ρ t ) for ρ > 0,

− ln t for ρ = 0,
(13)

and Ki is a modified Bessel function of the second kind of order i. Even though M is not continuous in ρ, the correlation
functions Chh and Chφ are continuous at ρ = 0 (the divergent terms in the expansion of Bessel functions cancel each other). The
correlation function Cφφ diverges logarithmically for small ρ,

Cφφ (ρ; κ, τ, μ) = − ln ρ

2π
+ O(1), for ρ → 0, (14)

and the integral (10c) is divergent for ρ = 0. These properties of the correlation functions for ρ → 0 are true in all zones; they
are remnants of the divergences present in the Gaussian model in two dimensions [68].

Each of the correlation functions in Eq. (12) consist of three terms. When ρ is large these terms decay to zero exponentially
with length scales, respectively, 1/t1, 1/t2, and 1/t3; and since in this zone t1 < t2 < t3, the first term dominates over two other
terms. Therefore, in this zone the correlation length ξ = 1/t1.

In zone II the correlation functions are

Chh(ρ; κ, τ, μ) = 1

2πκ

[
M(ρ, t1)

(
2τ + ω − t2

1

)
(
t2
1 − t2

2

)2 + 2a2
(
t2
1 + t2

2

)+ a4
− Im

(
M(ρ, t2 + ia)[(a − it2)2 + 2τ + ω]

2at2
[
t2
1 + (a − it2)2

]
)]

, (15a)

Chφ (ρ; κ, τ, μ) = μ

2π

[
M(ρ, t1)(

t2
1 − t2

2

)2 + 2a2
(
t2
1 + t2

2

)+ a4
− Im

(
M(ρ, t2 + ia)

2at2
[
t2
1 + (a − it2)2

]
)]

,

(15b)

Cφφ (ρ; κ, τ, μ) = 1

2π

[
K0(ρt1)

(
t4
1 + 1

)
(
t2
1 − t2

2

)2 + 2a2
(
t2
1 + t2

2

)+ a4
− Im

(
K0[ρ(t2 + ia)][(a − it2)4 + 1]

2at2
[
t2
1 + (a − it2)2

]
)]

,

(15c)

where the function M(ρ, t ) is given by (13). Like in the
previous case, the functions Chh and Chφ are continuous for
ρ = 0 and Cφφ diverges for ρ → 0; see Eq. (14).

For large ρ the two terms present in all the formulas for
the correlation functions (15) decay to zero like exp(−t1ρ)
and exp(−t2ρ), respectively. Because in this zone t1 < t2, the
first term dominates over the second one, and the correlation
length ξ = 1/t1.

Finally, in zone III the correlation functions are given
by Eq. (15), the same as in the previously discussed zone
II. The reason for this similarity is the same mathematical
structure of the roots of the polynomial (11) in these two
zones. However, in this zone t1 > t2, and, therefore, for large
ρ the second terms in the formulas (15) dominate; the cor-
relation length ξ is 1/t2. The difference between dominating
terms justifies the distinction we have made between zones II
and III.

It is convenient to decompose the correlation func-
tions in all of the zones into a dominating decay and an

amplitude

Cxx(ρ; κ, τ, μ) = Axx(ρ; κ, τ, μ)ρ−1/2e−ρ/ξ (ω,τ ), (16)

where “xx” denotes “hh”, “hφ,” or “φφ”, Axx are the ampli-
tudes, and the correlation length

ξ (τ, ω) =
{

1/t1(τ, ω) in zones I and II,
1/t2(τ, ω) in zone III, (17)

will be discussed in the next subsection.
The three amplitudes Axx are zero for ρ = 0 [in the case

of Cφφ , the divergence for ρ → 0 is cured by the factor ρ−1/2

present in Eq. (16)]. The behavior of the amplitudes for ρ > 0
is different in different zones. In zone I the amplitudes mono-
tonically increase upon increasing ρ, and their value saturates
at certain limiting values attained for ρ → ∞. In zone II the
amplitudes also have a well-defined limit for ρ → ∞, but they
show some oscillations caused by the second term in each
of the formulas (15). These oscillations decay with a length
scale 1/t2 and typically make the amplitude nonmonotonic
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(a)

(b)

(c)

FIG. 3. Example plots of the correlation functions Chh, Chφ , and Cφφ , and their amplitudes in different zones as functions of the distance ρ.
(a) κ = 10, τ = 0.02, and μ = 0.5 (zone I), (b) κ = 10, τ = 0.15, and μ = 0.2 (zone II), (c) κ = 10, τ = 0.30, and μ = 0.5 (zone III). The
values of parameters used here have been marked with blue dots in Fig. 2. In each panel the plot on the left presents the correlation functions,
and the plot on the right their amplitudes [see Eq. (16)]. The behavior of the amplitudes is different in each zone.

function of ρ. Only when 1/t2 is much smaller than ξ might
the amplitude stay monotonic, but the oscillations are still vis-
ible. Finally, in zone III, where the oscillating term dominates,
the amplitude has no limit for ρ → ∞. Instead, it oscillates
around zero. For large ρ these oscillations have period P =
2π/a, and for smaller ρ higher order terms perturb slightly
the amplitudes. The full correlation functions [see (16)] decay
to zero exponentially in zones I and II and like a damped
oscillation in zone III.

The correlation functions, upon crossing the border of
zones, show a smooth crossover between different asymp-
totic behaviors. Typically, two different length scales become
comparable or the period of oscillations diverges. This means
that, close to the border, the size of the system necessary
to observe characteristic behavior of the correlation func-
tions becomes very large. We have not observed any phase
transition associated with changing of the zones. Detailed
analysis of the observed crossover is beyond the scope of this
paper.

The plots of the correlation functions and their amplitudes
in different zones are presented in Fig. 3.

The phenomenon of different asymptotics of the correla-
tion function is well known in the literature in the context of
the theory of fluids; the line separating regions with exponen-
tial and damped oscillatory decay of the correlation functions
(in our case borderline between zone III and other zones) is

called the Fisher-Widom line [53,69,70]. We note that, even
though the mathematical mechanism generating the Fisher-
Widom line is the same, its physical reason is different. While
in fluids the oscillations appear due to layering of particles,
in our model the oscillations are the result of minimizing the
energy of an elastic membrane.

E. Correlation length

In this subsection we discuss the properties of the cor-
relation length ξ (τ, ω) given by Eq. (17) that describes the
exponential decay of all the correlation functions.

Even though the correlation length ξ has been defined
separately in each of the zones, it is a continuous function
of its parameters; upon crossing the border between zone I or
II and zone III the derivative ∂ξ/∂τ is discontinues and can
even be divergent. On the contrary, there is no nonanalyticity
associated with crossing the border between zones I and II,
which is in line with the properties of the roots of the poly-
nomial; see Fig. 7(b) below. We stress that the nonanalyticity
appears only in the correlation length; it is not present in the
correlation functions.

For large values of the reduced temperature τ ,

ξ (τ, ω) =
√

2 + O(1/τ ), for τ → ∞. (18)
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(a)

(b)

FIG. 4. Correlation length ξ as a function of τ for different values
of ω. (a) For ω < ω∗ the minimum gets deeper upon increasing ω;
(b) for ω > ω∗ the value in the minimum increases upon increasing ω

and, eventually, disappears for ω = ω†. The dashed lines denote the
asymptotic behavior of the correlation length (which is independent
of ω): (2τ )−1/2 for small τ , and

√
2 for large τ . The kinks, visible for

all the curves, are associated with crossing the border between two
different zones: in (a) from zone II for small τ to zone III for large
τ , and in (b) from zone I to zone III. Crossing from zone I to zone
II is not associated with any nonanalyticity of ξ , and for the selected
values of ω it is located beyond the range of the plot.

This result agrees with the correlation length [measured in
units ζ ; see (5)] reported for a membrane without the com-
position order parameter φ(ρ) [66]. This limit is discussed in
Appendix E 1.

When the reduced temperature is close to zero, we have

ξ (τ, ω) = (2τ )−1/2 + O(τ 1/2), (19)

which means that for τ → 0 our model becomes critical
and ξ diverges with the critical exponent ν = 1/2. This
value is characteristic for the Gaussian model. The proper-
ties of the correlation functions in this limit are presented in
Appendix E 2.

In Fig. 4 we present the plots of the correlation length ξ as
a function of τ for several fixed values of ω. When ω is small,

for small τ the correlation function is a decreasing function of
τ and has a minimum exactly when the parameters are on the
border between zones II and III (see Fig. 2). For this special
value of τ , ξ is nonanalytic and the derivative ∂ξ/∂τ jumps
from a finite negative value to a finite positive value. For
larger values of τ the correlation length, upon increasing τ ,
first increases, has a shallow maximum, and decreases to the
asymptotic value

√
2. Upon increasing ω [for small values of

ω, see Fig. 4(a)] the shape of the correlation function plotted
as a function of τ changes only slightly. The value of τ for
which there is a minimum is slowly decreasing (following
the border between zones II and III) and gets deeper. At the
same time the jump of the derivative ∂ξ/∂τ in the minimum
is increasing, and the value in the minimum is decreasing.

The above picture changes when, upon increasing ω, ω =
ω∗ = 8/(3

√
3) ≈ 1.54 is reached, i.e., the value in the point

where all three zones meet. In the minimum [observed for τ =
τ ∗ = 1/(6

√
3) ≈ 0.0962] the derivative ∂ξ/∂τ is −∞ from

the left side and +∞ from the right side. In this special point
the correlation function has the smallest possible value

ξmin = ξ (τ ∗, ω∗) = 31/4 ≈ 1.32 (in units of ζ ). (20)

Upon further increasing of ω [see Fig. 4(b)], the minimum
moves towards smaller values of τ , following the border be-
tween zones I and III. The derivative ∂ξ/∂τ stays (minus)
infinite from the left side, but the right side derivative is
finite and decreasing. For ω = ω† = 4

5 (10 − 2
√

5)1/2 ≈ 1.88
the right side derivative changes its sign; for ω � ω† the cor-
relation length ξ does not have a minimum, and, as a function
of τ , it monotonically decreases. At the border between zone
I and III there is still a point of nonanalyticity with an infinite
left side derivative ∂ξ/∂τ .

These properties of the correlation length ξ can potentially
be used to experimentally estimate the value of ω and, thus,
the coupling between order parameters α. The value of τ for
which ξ is nonanalytic and (for ω < ω†) has a minimum is
uniquely related to the value of ω.

F. Period of oscillations

Another quantity that can potentially be measured ex-
perimentally is the period of oscillations of the correlation
function. The oscillations are visible only in zones II and III,
and their period is

P = 2π

a
, (21)

where a is determined by the roots of polynomial (11) (it is
the real part of the complex root). This period can be reliably
estimated from the plot of the correlation function only when
P/ξ � 1; otherwise the exponential decay damps the oscilla-
tions too fast, like is illustrated in Fig. 3(c).

As we have checked numerically, in zone III for large τ the
period P = 2π

√
2, while the correlation length ξ = √

2 (in
units of ζ ), which gives P/ξ = 2π . Upon decreasing τ both
the period and the correlation length are growing but the ratio
P/ξ is increasing, making it harder to measure the period of
oscillations. Finally, upon approaching the border of the zone,
the period reaches a finite value for the border between zones
III and II, or infinity for the border between zones III and I.
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The situation is different in zone II, where the oscillations
do not dominate for large distances, but they are still visible
on top of exponentially decaying correlation function. In this
case, the ratio P/ξ can be small, especially for τ → 0, where
the correlation length diverges while the period of oscillations
stays finite. Nevertheless, in this zone the decay of oscillations
is governed by a length scale ξ1 = 1/t2, which is smaller than
the correlation length. As we have checked numerically, in
zone II the ratio P/ξ1 is always larger than 2π .

To conclude, for all possible values of parameters, the
decay of oscillations has a length scale comparable to the
period of oscillations and, therefore, experimental measuring
of it must be very challenging, if possible at all.

G. Correlation functions in different limiting cases

We conclude the analysis of the correlation functions in the
model by studying their behavior in various limiting cases.
In order to keep the text compact, the detailed analysis is
reported in Appendix E; here we provide only the most im-
portant results.

When the reduced temperature is big (τ → ∞ limit and
�φ much smaller than other length scales) the composition
order parameter φ becomes negligible, and thus the correla-
tion functions Cφφ and Chφ go to zero. In this limit only the
order parameter h is relevant and the results known for the
membrane deformation model are recovered.

When, on the other hand, the reduced temperature is small
(τ → 0 limit and �φ  �h, �coupling) the system becomes crit-
ical and all the correlation functions are proportional to a
single scaling function, the same as in the Gaussian model.
Surprisingly, only the formula for Cφφ is strictly universal; the
other correlation functions still depend on the parameter μ

describing the strength of the coupling.
In the case of weak coupling between order parameters

(μ → 0 limit and �coupling much larger than other scales) the
correlation function Chφ is vanishing. Surprisingly, the two
order parameters stay coupled for a nonzero μ and decay with
the same correlation length. Only when μ = 0 does the decay
for Chh and Cφφ happen on different length scales.

When the coupling between the order parameters is strong
(μ → ∞ and �coupling � �h, �φ) the correlation length di-
verges and the system is again critical. We identify this limit
with critical roughening present in the membrane deformation
model without external potential. All the correlation functions
can be described with a single scaling function.

We have also considered a limit of γ → ∞ in the coupling
term in the Hamiltonian (3), which implies �coupling � �h �
�φ . As we show in Appendix E 5, it is equivalent to the limit
of both τ → 0 and μ → ∞ with τμ2 fixed. Even though any
of these limits alone imply criticality, when they are applied
together the system in not critical anymore. In fact, it can be
mapped to a membrane deformation model with both elastic
and surface energy included.

IV. ORDER PARAMETER PROFILES AND SIZE
OF INDUCED DOMAINS

Now we introduce a single anchor into the membrane,
i.e., we put N = 1 in Eq. (6), and discuss the resulting order

parameter profiles. For simplicity, we assume that the inclu-
sion is located in the origin (ρ1 = 0), and thus the system has
a rotational symmetry with respect to the origin. As a result,
the equilibrium values of the order parameters depend on the
distance from the origin ρ and not on the exact position ρ. In
Appendix B 2, using the method based on path integrals, we
show that

〈h(ρ)〉 = h1Chh(ρ; κ, τ, μ)/Chh(0; κ, τ, μ), (22a)

〈φ(ρ)〉 = h1Chφ (ρ; κ, τ, μ)/Chh(0; κ, τ, μ), (22b)

where h1 denotes the value of the order parameter h imposed
on the membrane in the pinning point ρ1 = 0. Depending on
the interpretation of h, this can be either fixed excess thick-
ness that matches the hydrophobic mismatch of the anchoring
protein or fixed position of the membrane imposed by the an-
chor attached to the cytoskeleton. The formulas for the order
parameter profiles 〈h(ρ)〉 and 〈φ(ρ)〉 are equal to properly
rescaled correlation functions Chh and Chφ , respectively. This
implies that the order parameters have a different asymptotic
behavior in the three zones identified in Sec. III.

Here we skip the detailed analysis of 〈h(ρ)〉 and 〈φ(ρ)〉
in different regimes as this would only repeat the discussion
of the correlation functions presented in Sec. III. Moreover,
the plots of the profiles in different zones have already been
presented in [31].

When the excess thickness of the membrane is fixed to
some nonzero value in the origin, the order parameter h(ρ) is
also nonzero in the region surrounding the pinning point, and,
due to the coupling between order parameters, φ(ρ) also is
nonzero there. Of course, the farther away from the origin we
go, the smaller the magnitudes of the order parameters are. We
identify the perturbation in the order parameters caused by the
presence of the anchor with experimentally observed so-called
domains of lipids that form around the pinning points [31,39].
In order to facilitate the comparison between our model and
experimental systems, it is necessary to introduce an effective
size R of the induced domain. We note that in our model,
the membrane is always above the critical temperature, where
there is only a single bulk phase (with equilibrium average
of both order parameters equal zero); therefore the observed
perturbations cannot be the domains in the strict sense of
the meaning. This explains why there is no straightforward,
unique definition of the radius of such a domain. In this
section we discuss six possible ways to define such a quantity
(three different definitions applied to two order parameters).

A. Effective radii based on integrated order parameters

We define the excess adsorption �ex and the excess volume
Vex via

�ex(κ, μ, τ, h1) = 2π

∫ ∞

0
〈φ(ρ)〉ρ dρ, (23a)

Vex(κ, μ, τ, h1) = 2π

∫ ∞

0
〈h(ρ)〉ρ dρ, (23b)

i.e., the area integral of the composition and thickness order
parameter profiles. Excess adsorption is proportional to the
additional amount of the component of the membrane pre-
ferred by the anchor that has gathered around it, and excess
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volume is equal to the additional volume (measured in ζ 3

unit) of the membrane due to the hydrophobic mismatch of
the anchor. We note that both quantities can be positive or
negative: the sign of φ, and hence �ex, determines the type
of lipids that the anchor effectively prefers, whereas positive
(negative) Vex corresponds to the hydrophobic core of the
anchor larger (smaller) than the preferred distance between
the leaflets of an unperturbed membrane. Using Eq. (22), after
some algebra, we get

�ex(κ, μ, τ, h1) = h1μ

2τChφ (0; κ, τ, μ)
, (24a)

Vex(κ, μ, τ, h1) = h1(2τ + κμ2)

2τκChh(0; κ, τ, μ)
. (24b)

Both quantities are continuous functions of all their param-
eters, and they are linear in the thickness of the membrane h1

imposed by the inclusion. For small τ they have a divergence
of a type (τ ln τ )−1. For τ → ∞, the excess adsorption �ex

decays to zero like τ−1, while the excess volume Vex has a
finite limit 8h1.

From definition (23a) and Eq. (22b) it follows that, upon
approaching the critical point, the excess adsorption is de-
termined by the integral of the mixed correlation function
Chφ . We recall that for systems described by a single or-
der parameter, the integral of the (dimensionless) correlation
function is equal to the susceptibility and diverges as ∼|t |−γ ,
where t = (T − Tc)/Tc is the reduced temperature and γ is
the critical exponent [21]. For the Gaussian model γ = 1
and logarithmic correction are expected, and τ ∼ t ; hence our
results are in agreement with this general law. Moreover, the
same law applies to Vex which is based on the order parameter
h, which shows that, due to the coupling, in the limit τ → 0
the critical behavior is relevant for both order parameters, as
we have observed in Appendix E 2.

The excess adsorption can be used to define the effective
size of the induced domain. For a given set of parameters κ ,
μ, τ , and h1, we consider a simplified circular deformation
of the membrane of the radius R� with a constant chemical
composition inside equal to 〈φ(0)〉, a zero composition order
parameter outside, and the same excess adsorption as the real
deformation. Using (24a) we get

R� (κ, μ, τ ) =
(

μ

2πτ Chh(0; κ, τ, μ)

)1/2

. (25a)

Similarly, one can define the effective radius RV as the
radius of the circular deformation of fixed thickness h1 and
the same volume as the real deformation:

RV (κ, μ, τ ) =
(

2τ + κμ2

2πτκ Chh(0; κ, τ, μ)

)1/2

. (25b)

B. Effective radii based on local properties
of the order parameters

Another possible definitions of the effective radius are
based on local properties of the order parameters. When
observing the thickness of the membrane or its chemical com-
position it is natural to place the border of the deformation
in the place where the observed quantity is changing in the
fastest way, i.e., where the derivative is the biggest—in the

inflection point. Therefore, we introduce two effective radii
R

φ

infl and Rh
infl based on the inflection points:

∂2

∂ρ2
〈φ(ρ)〉

∣∣∣∣
ρ=R

φ

infl(κ,μ,τ )

= 0, (25c)

∂2

∂ρ2
〈h(ρ)〉

∣∣∣∣
ρ=Rh

infl(κ,μ,τ )

= 0, (25d)

where, in the case of zone III, one has to take the smallest pos-
itive ρ fulfilling the above condition. Unlike R� and RV , these
two radii are based on local properties of the order parameter,
which makes their analytical analysis more challenging.

Finally, the effective size of the domain can be defined
as a distance at which the magnitude of the order parameter
reaches half of its value in the center of the domain〈

φ
(
R

φ

1/2(κ, μ, τ )
)〉 = 1

2 〈φ(0)〉, (25e)〈
h
(
Rh

1/2(κ, μ, τ )
)〉 = 1

2 〈h(0)〉. (25f)

This definition is especially handful when working with mi-
croscope images of experimental system.

We note that all six radii introduced here do not depend
on the thickness h1 of the membrane set by an inclusion.
For R� and RV changing of h1 is changing the reference
value of the relevant order parameter at ρ = 0 together with
the excess adsorption and the excess volume, and for R

φ

infl,
Rh

infl, Rφ

1/2, and Rh
1/2 varying h1 changes the magnitude of the

order parameters but does not shift the inflection point or the
midpoint.

C. Comparison of effective radii in different limiting cases

We have calculated rigorously the asymptotic behavior of
all the radii for large and small values of their parameters—the
results are summarized in Table II.

For τ → 0 the values of R� and RV diverge in exactly the
same, independent of the value of ω = κμ2 way ∼|τ ln τ |1/2.
The divergence is slower than the divergence of the correlation
length ξ ∼ τ−1/2 only by a logarithmic factor; this seems to be
a manifestation of the universality principle. The radii Rφ

1/2

and Rh
1/2 also diverge for τ → 0 but like τ−1/4, i.e., much

slower than ξ , R� , and RV , and with ω-dependent amplitude.
In contrast, radii Rφ

infl and Rh
infl in the limit τ → 0 approach

two different, finite, ω-dependent values. We note that, for
τ = 0 our model is not well defined, and therefore these
limiting values cannot be reached. These results imply that
for small values of τ ,

ξ  R� > RV  R
φ

1/2 > Rh
1/2  R

φ

infl > Rh
infl, for τ → 0.

(26)

The example behavior of the radii for small τ is presented in
Figs. 5(a) and 5(b).

In the limit τ → ∞ all radii approach finite, nonzero, ω-
independent values. In this limit

R� � RV �
√

8/π > ξ �
√

2 > R
φ

1/2 � Rh
1/2

� R† > R
φ

infl � Rh
infl � R∗, for τ → ∞, (27)
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TABLE II. Asymptotic behavior of six effective radii for small and large effective temperature τ and the coupling constant μ (the bending
stiffness κ is assumed to be constant). Only leading order terms in a given limit are given; the limits τ → 0, ∞ are calculated for fixed μ, and
the limits μ → 0, ∞ are for fixed τ . The special values R∗ and R† are defined in Eq. (28).

Radius Definition of effective radius τ → 0 τ → ∞ μ → 0 μ → ∞
R� Excess adsorption

√
2|τ ln τ |−1/2

√
8/π ≈ 1.596 τ -dependent constant

√
8/π [κμ2/(2τ )]1/4

RV Excess volume
√

2|τ ln τ |−1/2
√

8/π ≈ 1.596
√

8/π ≈ 1.596
√

8/π [κμ2/(2τ )]1/4

R
φ

infl Inflection point of 〈φ〉 ω-dependent constant R∗ ≈ 0.8096 τ -dependent constant R∗[κμ2/(2τ )]1/4

Rh
infl Inflection point of 〈h〉 ω-dependent constant R∗ ≈ 0.8096 R∗ ≈ 0.8096 R∗[κμ2/(2τ )]1/4

R
φ

1/2 Half of maximal value of 〈φ〉 f1(ω)τ−1/4 R† ≈ 1.302 τ -dependent constant R†[κμ2/(2τ )]1/4

Rh
1/2 Half of maximal value of 〈h〉 f2(ω)τ−1/4 R† ≈ 1.302 R† ≈ 1.302 R†[κμ2/(2τ )]1/4

where

kei(R†) = 1

2
kei (0), R† ≈ 1.302, (28a)

d2

dρ2
kei (ρ)

∣∣∣∣
ρ=R∗

= 0, R∗ ≈ 0.8096 (28b)

[where R∗ is the smallest positive solution of (28b)]. The
behavior of radii for large τ is illustrated in Figs. 5(a) and
5(b).

When μ → 0 (which for fixed κ is equivalent to ω → 0)
all radii approach finite values. For radii based on chemical
composition φ, this limit depends on τ , while for radii based
on h it does not depend on any parameter; see Table II. As
presented in Fig. 5(c), upon reducing μ, depending on the
values of other parameters, the relation between the radii can
change.

Finally, in the limit μ → ∞ all radii are proportional to
[κμ2/(2τ )]1/4 ∼ μ1/2. In this limit (like in the case of large
values of τ ), we observe that the radii group into pairs that
become asymptotically equal:

R�,RV ≈
√

8/π

(
κμ2

2τ

)1/4

> ξ ≈
√

2

(
κμ2

2τ

)1/4

> R
φ

1/2,R
h
1/2 ≈ R†

(
κμ2

2τ

)1/4

> R
φ

infl,R
h
infl ≈ R∗

(
κμ2

2τ

)1/4

, for μ → ∞, (29)

where we have used Eq. (E13). The above behavior of the
radii has been illustrated in Fig. 5(c). Surprisingly, the ampli-
tudes multiplying the dominant divergence [κμ2/(2τ )]1/4 are
identical to the limiting values of the radii for τ → ∞. We
also note that, depending on the radius and parameters, the
asymptotic formula can be approached both from below and
from above (which is in contrast with the limit τ → ∞, where
the limiting value was always approached from above).

The above rigorous analysis has been supported by nu-
merical calculation of all the radii. We have not noted any
nonanalytical behavior of the radii upon crossing the borders
of the three regimes discussed in Sec. III, which is different
from the behavior of ξ . In zone III all the radii are of the
same order as the correlation length ξ , while in zones I and
II, in the limit τ → 0, the radii and the correlation length can
be significantly different [cf. Eq. (26)]. For all tested values

of parameters, we have observed that all radii are decreasing
upon increasing τ , and they are increasing upon increasing μ.
We have also checked that

R� > RV >
√

8/π, R
φ

1/2 > Rh
1/2 > R†,

and R
φ

infl > Rh
infl > R∗, (30)

where R† and R∗ are defined in Eq. (28). For most of the
tested values of parameters we have also observed RV > R

φ

1/2

and Rh
1/2 > R

φ

infl; however, when both τ and μ are small this
relation does not hold.

Finally we note that each of RV , Rh
1/2, and Rh

infl has the
same limiting value for τ → ∞ and for μ → 0 (equal, re-
spectively, to

√
8/π , R†, and R∗). Closer investigation shows

that for small values of μ these functions are almost constant,
except for a small region around τ = 0, for which their value
is significantly higher. Upon reducing μ the size of this region
is decreasing. Such a behavior suggests the existence of a scal-
ing limit for μ → 0 and τ → 0. The detailed analysis of the
model in this limit and the discussion of the physical relevance
of the membrane with strongly fluctuating composition order
parameter weakly coupled to spatial degrees of freedom go
beyond the scope of this paper.

V. DISCUSSION

The main goal of this paper was to investigate the structure
properties of a simple model that couples the composi-
tion of the two-component lipid membrane to a membrane
shape order parameter that describes two different situations:
deformations of the local thickness of the membrane or de-
formations of its local position. This coupling is relevant in
the context of domain formation in cell membranes and model
membranes. For example, it has been observed that membrane
lipids segregate near anchors linking the membrane to the
cytoskeletal actin filaments. Typically, these anchors have a
hydrophobic part with a thickness slightly different from that
of the hydrophobic part of the membrane. Due to this hy-
drophobic mismatch, the hydrophobic core of the membrane
locally deforms, effectively attracting to this region lipids
with an appropriate length of the hydrophobic acyl chain. The
same mechanism would apply whenever proteins or anchors
have a hydrophobic part with a thickness slightly different
from that of the hydrophobic part of the membrane. Another
possible mechanism for creating lipid domains around pro-
teins is by deforming the membranes through ligand-receptor
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(a)

(b)

(c)

FIG. 5. Plots of the effective radii R� , RV , Rφ

infl, Rh
infl, Rφ

1/2, and
Rh

1/2 describing the size of the domain induced by the defect. (a), (b)
Plot of six radii as functions of τ for κ = 10 and μ = 0.4. (c) Plot
of the radii as a function of μ for fixed κ = 10 and τ = 0.15. In
all panels, the dashed lines denote the asymptotic behavior for τ ,
μ → 0, ∞, and the dots for τ = 0 and μ = 0 denote the finite limits
of the radii; cf. Table II.

interactions with the structures in the extracellular space. In
this case the composition of the membrane can be affected
by the change of the average separation from the opposing,

adherent surface, namely, the displacement of the membrane
may result in the expulsion of the proteins of the glycocalyx
from the region of the contact. Likewise, a significant redis-
tribution of charged moieties may take place. In both cases
the nonspecific interactions of the adherent membrane will
be affected, which can drive modification of the membrane
composition. Such a process is responsible for protein orga-
nization during the formation of the T-cell synapse or natural
killer cell activation. The same scenario has been observed in
integrin or cadherin adhesion.

The advantage of our model is that it can be solved ex-
actly. Using the path integral approach, we have calculated
analytically correlation functions of all three pairs of order
parameters. Our model has three independent (dimensionless)
parameters. One of them, i.e., the reduced deviation from the
critical temperature of membrane demixing τ , is a natural
control parameter in experiments. The parameter describing
membrane elasticity κ can in principle be measured. This is
not the case for the third parameter, which is the strength
of coupling between the local deformation of the membrane
thickness (or the membrane height) and the local change in
the lipid concentration μ. However, as we argued in Sec. III E,
its value can be estimated from the behavior of the correlation
length, which is measurable.

In the phase space spanned by these parameters we have
distinguished three zones of distinct functional forms of
the two-point correlation functions. In all zones the leading
asymptotic decay is exponential; however, it is multiplied by
different prefactors: in zones I and II by a constant number,
and by an oscillating function in zone III. Close to the critical
point, in zones I and II this behavior is very similar to the one
observed in the Landau-Ginzburg model, whereas away from
criticality, in zone III it resembles the membrane deformation
model behavior.

These correlations are responsible for enhanced concen-
tration order parameter near an inclusion embedded in the
membrane, which locally change the thickness (height) of
a membrane. This phenomenon is an analog of critical
adsorption occurring in binary liquid mixtures upon approach-
ing critical point of demixing from a homogeneous phase.
We have found that excess adsorption of membrane lipids
of one kind diverges in the same way as predicted for
two-dimensional Ising-like systems near symmetry-breaking
pointlike inclusions [21]. In order to facilitate comparisons
with experiments, we have proposed several definitions of
the size of domains rich in the lipid effectively attracted to
the inclusion, and we have discussed their universal aspects,
advantages, and disadvantages. For example, for a study of
coalescence of two domains in comparison with images from
microscope, it is convenient to use R

φ

1/2. However, like for
all other proposed radii, this definition does not depend on
the hydrophobic mismatch of the inclusion, so the size of the
domain is not changing upon increasing the mismatch, which
is counterintuitive.

The current work has several very natural extensions. First,
one can include the φ4 term in the Hamiltonian. This allows
for studying the model at and below the critical temperature
but requires numerical calculations. Second, one can intro-
duce several inclusions in arrangement that mimics anchors
linking the membrane to the actin network, and compare the
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lipid concentration field with experimental images. Due to
the presence of quenched disorder along the lines following
the filaments of the actin, such a model can be treated only
numerically. Third, one can also add to our model a coupling
between the curvature of a membrane and its composition,
and study the combine effect of the two mechanisms of do-
main formation. Finally, this model can also be used to study
membrane-mediated Casimir-like interactions between float-
ing inclusions. These effective forces could be very strong
and might be a dominant factor in the process of formation
of clusters of proteins on the membrane.
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APPENDIX A: EFFECT OF THE SURFACE TENSION
OF THE MEMBRANE

In this Appendix we discuss how the properties of our
model change when nonzero surface tension η is considered;
see Eq. (1). In such a case, the part of the dimensionless
Hamiltonian βHMD giving the energy associated with the
shape of the membrane [cf. Eq (6b)] is

βHMD =
∫

dρ

(
κ

2
[∇2h(ρ)]2 + κϑ

2
[∇h(ρ)]2

)
, (A1)

where ϑ = η/(κγ )1/2 is the dimensionless variable propor-
tional to the surface tension η of the membrane.

Using the path integral method, we have calculated the
formulas for the correlation functions for the extended
Hamiltonian

Chh(ρ; κ, τ, μ, ϑ )

= 1

2πκ

∫ ∞

0

x(x2 + ω + 2τ )J0(ρ x)

(x4 + ϑx2 + 1)(x2 + 2τ + ω) − ω
dx,

(A2a)

Chφ (ρ; κ, τ, μ, ϑ )

= μ

2π

∫ ∞

0

x J0(ρ x)

(x4 + ϑx2 + 1)(x2 + 2τ + ω) − ω
dx,

(A2b)

Cφφ (ρ; κ, τ, μ, ϑ )

= 1

2π

∫ ∞

0

x(x4 + ϑx2 + 1)J0(ρ x)

(x4 + ϑx2 + 1)(x2 + 2τ + ω) − ω
dx,

(A2c)

which is equivalent to Eq. (A2) with x4 + 1 replaced with x4 +
ϑx2 + 1 [and, of course, it reduces to (A2) for ϑ = 0].

The calculation of the integrals (A2) can be done in exactly
the same way as for the original integrals. Again, the proper-

ties of the correlation functions depend on the roots of the
polynomial in the denominator

W̃ (z; ω, τ, ϑ ) = (z4 + ϑz2 + 1)(z2 + 2τ + ω) − ω. (A3)

The properties of the roots split the space of parameters (ω, τ )
into three distinct zones whose shape now depends on ϑ . In
zone I all six roots are imaginary ±it1, ±it2, and ±it3 with
t1 < t2 < t3. In zones II and III there are two imaginary roots
±it1 and four complex roots ±a ± it2, and t1 < t2 in zone II
while t1 > t2 in zone III. The correlation functions Chh and
Chφ are given by exactly the same formulas (12) and (15)
as in the case of a membrane without a surface tension, but
the parameters t1, t2, t3, and a are now given by the roots
of the polynomial (A3). The situation is slightly different in
the case of Cφφ since ϑ appears in the nominator of the inte-
grand (A2c); after a short calculation we get the following: in
zone I,

Cφφ (ρ; κ, τ, μ, ϑ ) = 1

2π

[
K0(ρt1)

(
t4
1 − ϑt2

1 + 1
)

(
t2
1 − t2

2

)(
t2
1 − t2

3

)
+K0(ρt2)

(
t4
2 − ϑt2

2 + 1
)

(
t2
2 − t2

1

)(
t2
2 − t2

3

)
+K0(ρt3)

(
t4
3 − ϑt2

3 + 1
)

(
t2
3 − t2

1

)(
t2
3 − t2

2

)
]
, (A4a)

and in zones II and III,

Cφφ (ρ; κ, τ, μ, ϑ )

= 1

2π

[
K0(ρt1)

(
t4
1 − ϑt2

1 + 1
)

(
t2
1 − t2

2

)2 + 2a2
(
t2
1 + t2

2

)+ a4

− Im

(
K0[ρ(t2 + ia)][(a − it2)4 + ϑ (a − it2)2 + 1]

2at2
[
t2
1 + (a − it2)2

]
)]

.

(A4b)

The dependence of the zone diagram on the value of the
reduced surface tension ϑ is presented in Fig. 6. For ϑ = 0 we
recover the diagram for the model without surface tension; see
Fig. 2. Upon increasing ϑ , zone III is decreasing, and zones
I and II are increasing. This is especially visible for larger
values of ω. As we have checked, the line between the I and
III approaches for large ω an asymptote

τ
asymptote
I/III (ω; ϑ ) = ϑ2

8 − 2ϑ2
ω + ϑ

4
, for large ω. (A5)

The situation changes when, upon increasing ϑ , the value ϑ =
2 is reached [see Fig. 6(f)]. Starting from that point zone III
completely disappears, and the space of parameters is split
only into two zones. Upon further increasing of ϑ zone II is
slowly growing, and the line between the zones approaches

τ
asymptote
I/II (ω; ϑ ) = − ϑ

4 + 2ϑ
ω + ϑ

2
, for large ϑ, (A6)

with some deviations for very small ω. A similar behavior
has been reported in the model without a composition order
parameter [53]: upon increasing the surface tension of the
membrane, at some point the order parameter stops showing
oscillations.
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(a)

(d)

(b)

(e)

(c)

(f)

FIG. 6. Schematic plot presenting how the three zones are changed by the surface tension η of the membrane. (a) ϑ = η/(κγ )1/2 = 0,
(b) ϑ = 0.2, (c) ϑ = 0.5, (d) ϑ = 1.0, (e) ϑ = 1.5, and (f) ϑ = 2. On every plot the black square marks the point where all three zones meet.
The color code used to denote the zones is the same in every panel.

We have also checked numerically that for ϑ < 2 the corre-
lation length is the smallest in the point where all three zones
meet (denoted by a black square in Fig. 6). Moreover, for
ϑ > 0 this minimal value is larger than 31/4, the minimal value
of the correlation length in a model without surface tension η

[see Eq. (20)].
We conclude that introducing nonzero surface tension of

the membrane, as long as ϑ = η/(κγ )1/2 < 2, is changing
the system only quantitatively; the main qualitative properties
remain unchanged.

Finally we note that introducing nonzero η is changing the
behavior of our system in some limiting cases. In the limit
μ → ∞ (�coupling � �h, �φ), while for ϑ = 0 the system is in

zone III, it is in zone I for ϑ > 0. In the limit γ → ∞ (cf.
App. E 5) the reduced temperature t is effectively shifted by a
term proportional to η.

APPENDIX B: METHOD OF CALCULATIONS

In this Appendix we present the details of the calculation
of the formulas used in the paper. The calculation is based
on [66], where the membrane with a single order parameter
h(r) is studied. We have decided to include the derivations
here because the additional order parameter φ(r), described by
the Hamiltonian of the Gaussian model, makes it necessary to
regularize the integrals by introducing the cutoff, which was
not necessary in [66].

1. Correlation functions

To calculate the correlation functions for the membrane without pinning points we calculate the probability density of having
h(ρa ) = ha, φ(ρa ) = φa, h(ρb) = hb, and φ(ρb) = φb. In a canonical ensemble it is given by

p(ρa, ha, φa, ρb, hb, φb; κ, μ, τ )

= const
∫

Dh(ρ)
∫

Dφ(ρ)δ[h(ρa ) − ha]δ[φ(ρa ) − φa]δ[h(ρb) − hb]δ[φ(ρb) − φb] exp {−βH[h(ρ), φ(ρ)]}, (B1)

where the term const denotes a constant prefactor (its exact value is not relevant, the final value is determined using the
normalization condition),

∫
Dh(ρ)

∫
Dφ(ρ) is the path integral over all possible configurations of the two order parameters,

δ denotes the Dirac delta function (it is used to fix the values of the order parameters in ρa and ρb), and the Hamiltonian βH is
given by Eq. (6) without the pinning part (N = 0).

Using the the relation

δ(x) = 1

2π

∫ ∞

−∞
dψ eiψx, (B2)
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we transform Eq. (B1) into

p(ρa, ha, φa, ρb, hb, φb; κ, μ, τ ) = const
∫

Dh(ρ)
∫

Dφ(ρ)
∫ ∞

−∞
dψ1

∫ ∞

−∞
dψ2

∫ ∞

−∞
dψ3

∫ ∞

−∞
dψ4 exp{−βH[h(ρ), φ(ρ)]

+ iψ1h(ρa ) + iψ2φ(ρa ) + iψ3h(ρb) + iψ4φ(ρb) − iψ1ha − iψ2φa − iψ3hb − iψ4φb}. (B3)

The next step is to introduce the Fourier transform of the order parameters

h(ρ) =
∑
|q|<�

hqeiqρ, φ(ρ) =
∑
|q|<�

φqeiqρ, (B4)

where, in order to regularize some prefactors and integrals, we have introduced a cutoff �; to obtain the final results we apply
the limit � → ∞. The allowed values of the wave vector q, assuming square shape of the membrane of the area A and periodic
boundary conditions, are

q = 2π√
A

(n, m), n, m ∈ Z, |q| < �. (B5)

Using (B4) we transform all the terms of Hamiltonian (6). After some algebra we get

βHMD = A
∑
|q|<�

κ

2
q4|hq|2, (B6a)

βHG = A
∑
|q|<�

(
1

2
q2 + τ

)
|φq|2, (B6b)

βHC = A
∑
|q|<�

κ

2
(|hq|2 + μ2|φq|2 − 2μhqφ

∗
q ), (B6c)

where we have used identities h−q = h∗
q and φ−q = φ∗

q which follow from the fact that the order parameters h(ρ) and φ(ρ) are
real-valued functions. Using the above result in Eq. (B3), after some reordering of terms in the exponent we get

p(ρa, ha, φa, ρb, hb, φb; κ, μ, τ ) = const
∫
Dh(ρ)

∫
Dφ(ρ)

∫ ∞

−∞
dψ1

∫ ∞

−∞
dψ2

∫ ∞

−∞
dψ3

∫ ∞

−∞
dψ4 exp

{
−
∑
|q|<�

[
A

κ

2
(q4 + 1)|hq|2

+ A

2
(q2 + 2τ + ω)|φq|2 − Aκμhqφ

∗
q − iψ1hqeiqρa − iψ2φqeiqρa − iψ3hqeiqρb − iψ4φqeiqρb

]

− iψ1ha − iψ2φa − iψ3hb − iψ4φb

}
. (B7)

In order to simplify the above formula it is necessary to define what exactly is meant by the path integral
∫
Dx(ρ), where x

denotes one of the order parameters h or φ. Clearly, one has to integrate over all degrees of freedom xq describing the function
x(ρ), but they are not independent variables since x−q = x∗

q . Therefore, we group together all terms containing xq and x−q, and
integrate them separately over real and imaginary part of xq. Since∫ ∞

−∞
d Re xq

∫ ∞

−∞
d Im xqe−a(q)|xq|2−2b(q)xq e−a(−q)|x−q|2−2b(−q)x−q =

[√
π

2a(q)
exp

(
b(q)b(−q)

a(q)

)]2

(B8a)

and ∫ ∞

−∞
dx0 e−a(0)|x0|2−2b(0)x0 =

√
π

a(0)
exp

(
b(0)2

a(0)

)
, (B8b)

where we have used the fact that x0 is real and assumed that a(−q) = a(q); we can use the following rule for calculating the path
integrals:

∫
Dx(ρ) exp

⎧⎨
⎩−

∑
|q|<�

[a(q)|xq|2 + 2b(q)xq]

⎫⎬
⎭ = const exp

⎡
⎣∑

|q|<�

b(q)b(−q)

a(q)

⎤
⎦. (B9)

We note that the omitted constant depends on the parameters present in a(q), which in our case are κ , μ, and τ . The strict
calculation of the constant standing in front of the integral for the probability p requires including not only all the prefactors
from Eq. (B8) but also a Jacobian coming from the change of variables made with the Fourier transform. Moreover, such a
constant is clearly cutoff dependent and may diverge in the limit � → ∞ or A → ∞. Here we avoid all these problems by
calculating the constant via the normalization of the probability distribution.
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Applying the transformation (B9) for h(ρ) in Eq. (B7) with

a(q) = Aκ

2
(q4 + 1), (B10a)

2b(q) = −Aκμφ∗
q − iψ1eiqρa − iψ3eiqρb , (B10b)

after a short derivation gives

p(ρa, ha, φa, ρb, hb, φb; κ, μ, τ )

= const
∫

Dφ(ρ)
∫ ∞

−∞
dψ1

∫ ∞

−∞
dψ2

∫ ∞

−∞
dψ3

∫ ∞

−∞
dψ4 exp

{
−
∑
|q|<�

[
A

2

(q4 + 1)(q2 + 2τ + ω) − ω

q4 + 1
|φq|2

+ ψ2
1 + ψ2

3

2Aκ (q4 + 1)
− i μ

q4 + 1
eiqρaψ1φq − i μ

q4 + 1
eiqρbψ3φq + cos q(ρa − ρb)

Aκ (q4 + 1)
ψ1ψ3

− iψ2φqeiqρa − iψ4φqeiqρb

]
− iψ1ha − iψ2φa − iψ3hb − iψ4φb

}
. (B11)

In the resulting formula one of the factors has the exact form of the polynomial from Eq. (11): W (q) = (q4 + 1)(q2 + 2τ + ω) −
ω. The transformation (B9) can now be applied to Eq. (B11) in order to calculate the path integral over φ(ρ). From Eq. (B11)
we read

a(q) = A

2

W (q)

q4 + 1
, (B12a)

2b(q) = − i μ

q4 + 1
eiqρaψ1 − i μ

q4 + 1
eiqρbψ3 − iψ2eiqρa − iψ4eiqρb . (B12b)

After some algebra we derive

p(ρa, ha, φa, ρb, hb, φb; κ, μ, τ )

= const
∫ ∞

−∞
dψ1

∫ ∞

−∞
dψ2

∫ ∞

−∞
dψ3

∫ ∞

−∞
dψ4 exp

{
− 1

A

∑
|q|<�

[
q2 + 2τ + ω

2κW (q)

(
ψ2

1 + ψ2
3

)

+ q4 + 1

2W (q)

(
ψ2

2 + ψ2
4

)+ μ

W (q)
(ψ1ψ2 + ψ3ψ4) + μ cos q(ρa − ρb)

W (q)
(ψ1ψ4 + ψ2ψ3)

+ (q2 + 2τ + ω) cos q(ρa − ρb)

κW (q)
ψ1ψ3 + (q4 + 1) cos q(ρa − ρb)

W (q)
ψ2ψ4

]
− iψ1ha − iψ2φa − iψ3hb − iψ4φb

}
. (B13)

To simplify the above formula it is convenient to take the limit A → ∞. From Eq. (B5) it follows that, upon increasing A, the
allowed values of q are getting closer to each other, and in the limit of infinite area, the sum is replaced with an integral following
a formula

lim
A→∞

1

A

∑
|q|<�

f (q) = 1

4π2

∫
|q|<�

dq f (q), (B14)

valid for any function f (q) that decays sufficiently fast for large q.
We introduce three functions:

C̄hh(ρab) = 1

4π2

∫
|q|<�

dq
(q2 + 2τ + ω) cos q(ρa − ρb)

κW (q)

= 1

2πκ

∫ �

0
dq

q(q2 + 2τ + ω)J0(qρab)

W (q)
, (B15a)

C̄hφ (ρab) = 1

4π2

∫
|q|<�

dq
μ cos q(ρa − ρb)

W (q)

= μ

2π

∫ �

0
dq

qJ0(qρab)

W (q)
, (B15b)

C̄φφ (ρab) = 1

4π2

∫
|q|<�

dq
(q4 + 1) cos q(ρa − ρb)

W (q)

= 1

2π

∫ �

0
dq

q(q4 + 1)J0(qρab)

W (q)
, (B15c)
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where we have defined ρab = |ρa − ρb|, and simplified the integrals by performing the integral over the direction of vector q. We
note that the functions have been given a bar to distinguish them from the correlation functions [see Eq. (10)]. Our goal in this
subsection is to prove that, in the limit � → ∞, they are actually equal to the correlation functions.

Using Eq. (B15), formula for the probability in Eq. (B13) can be written in the form

p(ρa, ha, φa, ρb, hb, φb; κ, μ, τ ) = const
∫ ∞

−∞
dψ1

∫ ∞

−∞
dψ2

∫ ∞

−∞
dψ3

∫ ∞

−∞
dψ4 exp

[
−1

2
C̄hh(0)

(
ψ2

1 +ψ2
3

)− 1

2
C̄φφ (0)

(
ψ2

2 +ψ2
4

)
− C̄hφ (0)(ψ1ψ2 + ψ3ψ4) − C̄hφ (ρab)(ψ1ψ4 + ψ2ψ3) − C̄hh(ρab)ψ1ψ3 − C̄φφ (ρab)ψ2ψ4

− iψ1ha − iψ2φa − iψ3hb − iψ4φb

]
. (B16)

We note that the coefficient C̄φφ (0) diverges for � → ∞. This
is the main motivation for introducing the regularization.

Using the matrix notation, the formula in Eq. (B16) for the
probability can be rewritten in a form

p(ρa, ha, φa, ρb, hb, φb; κ, μ, τ )

= const
∫

d� exp

(
−1

2
�TM� − i�T�

)
, (B17)

where the four-dimensional vector � = [ψ1, ψ2, ψ3, ψ4]T,
� = [ha, φa, hb, φb]T, the symbol “T” denotes transposition
of the vector or matrix, and the symmetric matrix M is given
by

M =

⎡
⎢⎢⎢⎢⎢⎣

C̄hh(0) C̄hφ (0) C̄hh(ρab) C̄hφ (ρab)

C̄hφ (0) C̄φφ (0) C̄hφ (ρab) C̄φφ (ρab)

C̄hh(ρab) C̄hφ (ρab) C̄hh(0) C̄hφ (0)

C̄hφ (ρab) C̄φφ (ρab) C̄hφ (0) C̄φφ (0)

⎤
⎥⎥⎥⎥⎥⎦.

(B18)

This reveals the simple structure of the formula for the prob-
ability in Eq. (B17). We have imposed four conditions on the
membrane: (1) in point ρa the order parameter h is equal to
ha, (2) in point ρa the order parameter φ is equal to φa, (3) in
point ρb the order parameter h is equal to hb, and finally, (4) in
point ρb the order parameter φ is equal to hb. The element of
the matrix Mi j is solely related to the conditions i and j. The
type of the correlation function is selected based on the fields
that are fixed, and the argument of the correlation function
is the distance between the points where the conditions are
imposed. The second term in the exponent in Eq. (B17) sets
the relation between variables ψi and the values of fixed order
parameters for the four conditions imposed on the membrane.
We note that this rule can easily be extended to an arbitrary
number of points where the order parameters are fixed and,
therefore, allows one to skip the part of the calculations with
path integrals. We leave the mathematical proof of correctness
of this general procedure as a simple exercise.

The integral in Eq. (B17) can be calculated using the matrix
analog of Eq. (B8),∫

dv exp

(
−1

2
vTAv + wTv

)

= (2π )n/2

√
det A

exp

(
1

2
wTA−1w

)
, (B19)

where A is an arbitrary, n × n, symmetric, positive-definite
matrix. After simple derivation, from Eq. (B16) we get

p(ρa, ha, φa, ρb, hb, φb; κ, μ, τ )

= (4π2
√

det M)−1 exp
(− 1

2�TM−1�
)
, (B20)

where the prefactor is calculated from the normalization
condition∫ ∞

−∞
dha

∫ ∞

−∞
dφa

∫ ∞

−∞
dhb

∫ ∞

−∞
dφb

× p(κ, μ, τ ; ρa, ha, φa, ρb, hb, φb) = 1 (B21)

using Eq. (B19). Finally, we calculate the correlation func-
tions using the relations∫

dv vi exp

(
−1

2
vTAv

)
= 0, (B22a)

∫
dv viv j exp

(
−1

2
vTAv

)
= (2π )n/2

√
det A

(A−1)i j,

(B22b)

where vi and v j denote components of the n-dimensional
vector v; A is a symmetric, n × n, positive-definite matrix;
and (A−1)i j denotes a component of the matrix A−1, i.e., the
inverse of A. After straightforward calculation we get

Chh(ρab) = lim
�→∞

(〈hahb〉 − 〈ha〉〈hb〉) = lim
�→∞

C̄hh(ρab),

(B23a)

Chφ (ρab) = lim
�→∞

(〈haφb〉 − 〈ha〉〈φb〉) = lim
�→∞

C̄hφ (ρab),

(B23b)

Cφφ (ρab) = lim
�→∞

(〈φaφb〉 − 〈φa〉〈φb〉) = lim
�→∞

C̄φφ (ρab).

(B23c)

The result, together with Eq. (B15), proves the formulas in
Eq. (10).

2. Order parameter profiles

We now move to the problem of finding the order pa-
rameter profiles in the system with N pinning points. The
part of the Hamiltonian responsible for the pinning is HP;
see Eq. (6e). In order to include this term in our calcula-
tion of the path integrals we use the Hubbard-Stratonovich
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transformation

exp (−βHP) =
N∏

i=1

exp
[
−ν

2
[h(ρi ) − hi]

2
]

=
N∏

i=1

1√
2πν

∫ ∞

−∞
dψi

× exp

[
−ψ2

i

2ν
+ iψi[h(ρi ) − hi]

]
, (B24)

which in the limit ν → ∞ produces the same factor in the
exponent as the Dirac delta function; see Eq. (B2). Therefore,
neglecting the prefactor, the calculation of the path integrals
goes along the same line as in the previous section and gives
a formula similar to (B17).

In order to make the calculation as general as possible,
we denote by x the order parameter for which we want to
calculate the average (x = h for height order parameter and
x = φ for the composition order parameter) and denote its
value in the point of interest ρ by x0, i.e., x(ρ) = x0. If the
membrane, following the pinning Hamiltonian HP, is pinned
in N additional points ρ1, ρ2, . . . ρN , where its height is fixed
to h1, h2, . . . , hN , respectively, then, following the discussion
presented in Sec. B 1, the probability is given by

px
(
ρ, x0, {ρi, hi}N

i=1; κ, μ, τ
)

= const
N∏

i=0

(∫ ∞

−∞
dψi

)
exp

[
− 1

2
C̄xx(0)ψ2

0

−
N∑

i=1

C̄hx(|ρi − ρ|)ψ0ψi − 1

2

N∑
i, j=1

Bi jψiψ j

− iψ0x0 − i
N∑

i=1

ψihi

]
, (B25)

where the matrix Bi j = C̄hh(|ρi − ρ j |). We now use Eq. (B19)
to calculate the integrals over ψ1, ψ2, . . . , ψN in the above
formula, and then Eq. (B8) to integrate over ψ0. After straight-
forward calculation we get

px
(
ρ, x0, {ρi, hi}N

i=1; κ, μ, τ
)

= const exp

{
− 1

2

[
x2

0 − 2x0

N∑
i, j=1

hiC̄hx(|ρ j − ρ|)(B−1)i j

]

×
[
C̄xx(0)−

N∑
i, j=1

C̄hx(|ρi − ρ|)C̄hx(|ρ j − ρ|)(B−1)i j

]−1}
.

(B26)

After finding the constant from the normalization condition,
we derive

〈x(ρ)〉 = lim
�→∞

〈x0〉

= lim
�→∞

∫ ∞

−∞
dx0 x0 px

(
ρ, x0, {ρi, hi}N

i=1; κ, μ, τ
)

= lim
�→∞

N∑
i, j=1

hiC̄hx(ρ j − ρ)(B−1)i j . (B27)

We note that in the final formula for the order parameter
profile, the limit � → ∞ exists, as the correlation functions
present in Eq. (B27) are all well defined in this limit.

In the case of N = 1 and ρ1 = 0, we have B = [C̄hh(0)],
and the formulas in Eq. (22) are recovered. In a different case
of h1 = h2 = · · · = hN ≡ h0 the formulas for the profile from
[31] are verified.

APPENDIX C: BEHAVIOR OF THE ROOTS OF THE
POLYNOMIAL W

In this Appendix we discuss the complex roots of the poly-
nomial W (z; τ, ω) given by Eq. (11). As we have pointed in
the main text, the properties of the roots define three zones
present in the model; see Fig. 2. In zone I the roots have
the form ±it1, ±it2, and ±it3, with t1 < t2 < t3. In zones II
and III the six roots have the form ±it1 and ±a ± it2, where
a, t1, t2 > 0 and t1 < t2 in zone II and t1 > t2 in zone III.

We note, that all the above coefficients can in principle be
calculated analytically with the help of Cardano’s formula, as
W is a third-order polynomial of z2. Nevertheless, we keep the
roots as parameters for the sake of simplicity.

The behavior of the parameters upon crossing the borders
of the zones has been illustrated in Fig. 7. Upon going between
zones II and III, the parameters t1(ω, τ ), t2(ω, τ ), and a(ω, τ )
are analytic functions. This is because the only difference
between this zones is the relation between t1 and t2. On the
contrary, going from zone I to zone II or III is accompanied
with a rapid change of t1 or t2 as these functions have been
differently defined in zone I. Upon approaching the border
of zone I from zone II [Fig. 7(b)] t1 and t2 stay finite and a
approaches zero. Exactly at the border, a is zero and t2 (from
zone II) splits into the parameters t2 and t3 (from zone I). The
parameter t1 stays analytic upon crossing this border. Upon
approaching the border between zone I and III from the side
of zone I, the parameters t1 and t2 approach each other. Exactly
at the border they become equal and become t2 from zone
III. The parameter a from zone III is zero at the border and
grows upon entering inside zone III. The parameter t3 in zone
I is analytic and is renamed t1 in zone III. The behavior of
the roots upon crossing the borders of zone I is similar to
what happens to the roots of the polynomial z2 + c when c
is continuously changed from positive to negative values.

In the special point ω∗ = 8/(3
√

3) ≈ 1.54 and τ ∗ =
1/(6

√
3) ≈ 0.0962, where all three zones meet, the poly-

nomial W has a pair of triple-degenerate roots equal to
±3−1/4 i ≈ ±1.32 i. This means that upon approaching to this
point from zone I, the parameters t1, t2, and t3 become equal;
and upon approaching from zone II or III, parameters t1 and t2
become equal and a decays to zero.

APPENDIX D: CALCULATION OF INTEGRALS

In this Appendix we present the details of calculation of the
integrals present in the formulas for the correlation functions
in different zones. The calculation is based on a (simplified)
method presented in [67]. Here we focus on Eq. (10b),

I =
∫ ∞

0

x J0(ρ x)

(x4 + 1)(x2 + 2τ + ω) − ω
dx, (D1)
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(a) (b)

FIG. 7. Parameters t1, t2, t3, and a that describe the complex roots of the polynomial W (z; ω, τ ) as a function of τ for fixed (a) ω = 1.0, and
(b) ω = 1.9. The zones on the plane of parameters have been marked on top of the graphs, and gray vertical lines denote the borders between
zones (see Fig. 2).

and assume that the parameters are in zone II or III, where
the roots of the polynomial W (z) are of the form ±i t1 and
±a ± i t2; see Eq. (11). All other integrals can be calculated
exactly the same way.

First, we note that the Bessel functions present in the cal-
culation are analytical functions on the complex plane with a
branch cut for a real, nonpositive argument. Moreover, if x is
shifted infinitesimally towards positive imaginary values, the
integrand becomes a symmetric function of its argument, and,
therefore, we can extend the range of integration

I = 1

2
lim

ε→0+

∫ ∞+iε

−∞+i ε

x J0(ρ x)

(x4 + 1)(x2 + 2τ + ω) − ω
dx. (D2)

In the second step, the Bessel function J0 is replaced
with the Hankel function of the first kind H(1)

0 (z) = J0(z) +
iY0(z), where Y0 denotes the (unmodified) Bessel function of
the second kind. The resulting integral is

I = 1

2
Re

[
lim

ε→0+

∫ ∞+iε

−∞+i ε

x H(1)
0 (ρ x)

(x4 + 1)(x2 + 2τ + ω) − ω
dx

]
.

(D3)

The advantage of this change is that H(1)
0 (z) for large |z|

behaves like exp(iz), and, therefore, we can close the contour
of integration in (D3) with a large semicircle on the upper
half of the complex plane. Now, the integral can be calculated
using the residue theorem. For ε → 0+ there are three poles
of the integrand inside the contour of integration: the roots of
the polynomial W (z)

z1 = i t1, z2 = a + i t2, and z3 = −a + i t3. (D4)

We thus get

I = 1
2 Re

{
2π i

[
Res

z1

f (z) + Res
z2

f (z) + Res
z3

f (z)
]}

, (D5)

where f (z) denotes the integrand in (D3).

The last step is the calculation and simplification of (D5);
this is done using the identity

H(1)
0 (z) = −2i

π
K0(−i z), (D6)

valid for Re z > 0 or Im z > 0. After a short derivation we
discover that the last two terms in Eq. (D5) are equal, and we
recover Eq. (15b).

APPENDIX E: LIMITING CASES FOR THE
CORRELATION FUNCTIONS

This Appendix is devoted to study of the properties of the
correlation functions, defined in Sec. III, in various limiting
cases. We concentrate here on the cases where the result can
be related to other, already known models.

1. Limit τ → ∞ with κ and μ fixed

The limit τ → ∞ implies that the length scales fulfill the
relation �φ � �h, �coupling. The parameter τ appears in the
Hamiltonian of the model (6) in the term HG, where it is
multiplied by φ2(ρ). Therefore, the limit τ → ∞, with other
parameters fixed, implies that φ(ρ) → 0, which reduces the
interaction to the membrane deformation Hamiltonian for the
field h(ρ). This observation is in line with the limiting value
of the correlation length given by Eq. (18): in the membrane
deformation model the correlation length (in units of ζ ) is
equal to

√
2.

In order to calculate the correlation functions in this limit
we first note that for large values of τ the system is in zone III,
and therefore, the formulas given in Eq. (15) must be used. In
the second step we calculate the roots of the polynomial (11)
in this limit and parameters associated with them. After some
algebra we get for τ → ∞

t1 =
√

2τ + O(τ−1/2), t2 = a = 1√
2

+ O(τ−1). (E1)
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Finally, we use the above result in Eq. (15). The first term
in each of the formulas decays to zero for large τ like
exp(−√

2τρ), and, for ρ �= 0, it can be neglected in compari-
son with the second term. After simple calculation we derive

Chh(ρ; κ, τ → ∞, μ) = − 1

2πκ
kei(ρ) + O(τ−1),

(E2a)

Chφ (ρ; κ, τ → ∞, μ) = − μ

4πτ
kei (ρ) + O(τ−2),

(E2b)

Cφφ (ρ; κ, τ → ∞, μ) = − κμ2

8πτ 2
kei (ρ) + O(τ−3),

(E2c)

where kei(ρ) = Im K0[ρ(1 + i)/
√

2] denotes the Kelvin
function kei.

The result for the correlation function Chh [Eq. (E2a)] is in
full agreement with the result known for the membrane de-
formation model [49,66]. The disappearing of the correlation
functions Chφ and Cφφ in the limit τ → ∞ is caused by the
vanishing of the order parameter φ in this limit.

We note that the limiting correlation function Cφφ [given
by Eq. (E2c)] is finite for ρ = 0, even though for any finite
τ the function diverges logarithmically [see Eq. (14)]. The
disagreement shows that in this case the limit τ → ∞ is not
uniform—for any finite τ there is a region around ρ = 0,
where the value of Cφφ (ρ; κ, τ, μ) is essentially different
from Cφφ (ρ; κ, τ → ∞, μ), but the size of this region shrinks
∼τ−1/2 upon increasing τ .

2. Limit τ → 0 with κ and μ fixed

We now move to the opposite limit τ → 0, i.e., to the case
�h, �coupling � �φ . In this regime the Gaussian model is known
to be critical [68]. Since, as discussed in Sec. III E, in our
model the correlation length diverges for small values of τ ,
here we also expect criticality.

We start the analysis by noting that for τ → 0 the system
can be either in zone I or in zone II. For ω � 2, the system is
in zone I, the parameters describing the roots of polynomial
(11) are

t1 =
√

2τ + O(τ 3/2), (E3a)

t2 = (ω −
√

ω2 − 4)1/2/
√

2 + O(τ ), (E3b)

t3 = (ω +
√

ω2 − 4)1/2/
√

2 + O(τ ), (E3c)

and the correlation functions are given by Eq. (12). For ω < 2,
the system is in zone II, the parameters are

t1 =
√

2τ + O(τ 3/2), (E4a)

t2 = √
2 + ω/2 + O(τ ), (E4b)

a = √
2 − ω/2 + O(τ ), (E4c)

and the correlation functions are given by Eq. (15). The spe-
cial case of ω = 2 has been incorporated into the first case
above, because for small nonzero τ and ω = 2, the system is
in zone I, just like for ω > 2.

For fixed ρ and τ → 0 we derive the following formu-
las for the correlation functions (the calculations were done

separately for the system in zone I and in zone II giving the
same results):

Chh(ρ; κ, τ → 0, μ) = −μ2 ln τ

4π
+ O(1), (E5a)

Chφ (ρ; κ, τ → 0, μ) = −μ ln τ

4π
+ O(1), (E5b)

Cφφ (ρ; κ, τ → 0, μ) = − ln τ

4π
+ O(1). (E5c)

All the functions do not depend on ρ, which means that
the fluctuations keep both order parameters constant. This
is not surprising since for τ → 0 the correlation length ξ

diverges, and thus keeping ρ fixed implies the regime ρ � ξ

in which the correlation function is expected to stay almost
constant. Moreover, the relation Chh = μChφ = μ2Cφφ im-
plies that the coupling between order parameters given by
Eq. (6d) is strictly fulfilled (at least in the leading order). We
note that all the correlation functions diverge logarithmically
for τ → 0.

To gain more insight into the behavior of the correlation
functions for small τ , it is useful to introduce the scaling limit
τ → 0, ρ → ∞ with the scaling variable u = √

2τρ ≈ ρ/ξ

fixed. In this limit, after some algebra, we get

Chh(u; κ, τ → 0, μ) = μ2K0(u)

2π
+ O(τ ), (E6a)

Chφ (u; κ, τ → 0, μ) = μK0(u)

2π
+ O(τ ), (E6b)

Cφφ (u; κ, τ → 0, μ) = K0(u)

2π
+ O(τ ). (E6c)

This result should be compared with the prediction for sys-
tems in the vicinity of a critical point based on the scaling
hypothesis [71]

C = ρ−(d−2+η)C(u), (E7)

where d = 2 is the dimensionality of the system, η is a critical
exponent, and C(u) is a universal scaling function. We note
that only Cφφ is strictly following Eq. (E7), with η = 0 (the
same value as in Gaussian model) and C(u) = K0(u)/(2π )
(see, e.g., [68]); the scaling formulas for Chh and Chφ contain
an additional nonuniversal (depending on the coupling μ)
factor. Like in the case of fixed ρ, the correlation functions in
the leading order differ only by the power of μ, which implies
that the order parameters are strongly coupled. This explains
why both order parameters become critical in the limit τ → 0
and the divergence of all the correlation functions (E6) for
u → 0.

3. Limit μ → 0 with κ and τ fixed

We now consider the case of μ → 0, i.e., when the two or-
der parameters are weakly coupled. This implies that �h, �φ �
�coupling. In this limit, depending on the value of τ , the system
is in zone II or III, and therefore, the correlation functions are
given by Eq. (15).
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We start from expanding the roots of the polynomial (11)
in the limit of small ω = κμ2. After some algebra we get

t1 =
√

2τ +
√

2τ 3/2ω

1 + 4τ 2
+ O(ω2), (E8a)

t2 = 1√
2

+ (1 − 2τ )ω

4
√

2(1 + 4τ 2)
+ O(ω2), (E8b)

a = 1√
2

− (1 + 2τ )ω

4
√

2(1 + 4τ 2)
+ O(ω2), (E8c)

and the same expansion is valid for both zones II and III. This
allows us to calculate the correlation length in this limit

ξ (τ, ω → 0) = max((2τ )−1/2,
√

2) + O(ω), (E9)

which is in agreement with the plots of the correlation length
in Fig. 4(a).

Using Eq. (E8) in Eq. (15) we derive the asymptotic form
of the correlation functions:

Chh(ρ; κ, τ, μ → 0) = μ2K0(ρ
√

2τ )

2π (1 + 4τ 2)2 − kei (ρ)

2πκ
, (E10a)

Chφ (ρ; κ, τ, μ → 0) = μK0(ρ
√

2τ )

2π (1 + 4τ 2)

− μ[2τ kei (ρ) + ker (ρ)]

2π (1 + 4τ 2)
, (E10b)

Cφφ (ρ; κ, τ, μ → 0) = K0(ρ
√

2τ )

2π

+ κμ2[(1−4τ 2) kei(ρ)−4τ ker(ρ)]

2π (1 + 4τ 2)2
,

(E10c)

where we have introduced another Kelvin function ker(ρ) =
ReK0[ρ(1 + i)/

√
2]. In Eqs. (E10) we have calculated the

leading term separately for the two terms present in the for-
mula for each of the correlation functions in Eq. (15); the
neglected, higher order terms were always smaller at least by
a factor of μ2.

Each of the formulas for the correlation functions (E10)
consists of two terms: the first term, proportional to
K0(ρ

√
2τ ), for large ρ decays exponentially to zero with a

length scale (2τ )−1/2; the second term, proportional to the
combination of kei(ρ) and ker(ρ), for large ρ decays expo-
nentially to zero with a length scale

√
2. For τ < 1/4 (i.e., in

zone II) the former length scale is bigger, and, therefore, for
μ �= 0 all correlation functions decay with the same length
scale (2τ )−1/2, in line with Eq. (E9). Nevertheless, upon de-
creasing μ to 0, the amplitudes multiplying the first term in
Eq. (E10a), both terms in Eq. (E10b), and the second term in
Eq. (E10c) are decaying to 0. As a result for μ = 0 the func-
tion Chh decays to zero with a length scale

√
2, Chφ is zero,

and Cφφ decays to zero with the original length scale (2τ )−1/2.
For τ � 1/4 (i.e., in zone III) for μ > 0 the second terms in
formulas (E10) dominate, and all correlation functions decay
with a length scale

√
2. For μ = 0, due to zeroing of some

amplitudes, the same result as for τ < 1/4 is recovered.
The above analysis shows that, even though the correla-

tion functions change for μ → 0 in a continuous manner, the
correlation length is discontinuous at μ = 0: For μ > 0 the

correlation length is the same for all correlation functions, and
it is given by Eq. (E9). For μ = 0, we have

Chh(ρ; κ, τ, μ = 0) = −kei (ρ)

2πκ
, (E11a)

Chφ (ρ; κ, τ, μ = 0) = 0, (E11b)

Cφφ (ρ; κ, τ, μ = 0) = K0(ρ
√

2τ )

2π
, (E11c)

i.e., the correlation function Chh decays to zero with a length
scale

√
2 and the correlation function Cφφ with a length scale

(2τ )−1/2, and there is no correlation between the order pa-
rameters. We note that Eq. (E11a) agrees with the correlation
function in the membrane deformation model and Eq. (E11c)
with the correlation function in Gaussian model [see Eq. (E2a)
and Refs. [66,68]].

4. Limit μ → ∞ with κ and τ fixed

The effect of this limiting case, in which �coupling � �h, �φ ,
is not evident at first sight. In order to study and explain the
behavior of the system, we first note that in the limit μ → ∞
the system is for τ > 0 in zone III; see Fig. 2. In this zone the
roots of the polynomial (11) are described by three parameters
t1, t2, and a. For large μ we have calculated

t1 = μ
√

κ + τ

μ
√

κ
+ O(μ−3), (E12a)

t2 =
( τ

2κ

)1/4
μ−1/2 + O(μ−3/2), (E12b)

a = (2τ/ω)1/4/
√

2 + O(ω−3/4), (E12c)

which implies

ξ = 1/t2 =
(

2κ

τ

)1/4√
μ + O(μ−1/2) → ∞, (E13)

and, therefore, in the limit μ → ∞ the system becomes crit-
ical. By substituting Eq. (E12) into Eq. (15), for fixed ρ (i.e.,
for ρ � ξ when μ → ∞) we get

Chh(ρ; κ, τ, μ → ∞) = μ

8
√

2τκ
+ O(ln μ), (E14a)

Chφ (ρ; κ, τ, μ → ∞) = 1

8
√

2τκ
+ O

(
ln μ

μ

)
, (E14b)

Cφφ (ρ; κ, τ, μ → ∞) = 1

8μ
√

2τκ
+ O

(
ln μ

μ2

)
, (E14c)

which shows that in this limit both order parameters stay
constant on the length scale ξ (the same behavior we have
seen in the limit τ → 0; see Sec. E 2). The value of field h(ρ)
fluctuates with a standard deviation that scales like

√
μ, and

the field φ(ρ) has a standard deviation ∼1/
√

μ. Therefore,
for large μ the Gaussian term (6c) in the Hamiltonian (6a)
becomes negligible. This, in turn, allows the field φ to adapt to
changes of the field h at no additional energy cost (which is in
line with the fact that in this limit �coupling → 0) and makes the
coupling term (6d) also negligible. Without pinning, the only
relevant term left in the Hamiltonian is (6b) which allows for
large-scale fluctuations of the membrane [72]. The behavior
of our system in the limit μ → ∞ can thus be identified with
the critical roughening of the membrane.
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Finally, to describe the correlation functions in the limit
μ → ∞ it is useful to introduce the scaling variable v =
ρ/ξ = ρ t2 ∼ ρ/

√
μ. As we have checked, in the scaling limit

μ → ∞ with v fixed we get

Chh(v; κ, τ, μ → ∞) = kei(
√

2v)μ

π
√

8τκ
+ O(μ−3), (E15a)

Chφ (v; κ, τ, μ → ∞) = kei(
√

2v)

π
√

8τκ
+ O(μ−2), (E15b)

Cφφ (v; κ, τ, μ → ∞) = kei(
√

2v)

π
√

8τκμ
+ O(μ−3). (E15c)

5. Limit of strong binding between order parameters

Another interesting limiting case is when the binding γ

between two order parameters is going to ∞. In this limit
�coupling � �h � �φ . From Eq. (3) it follows that the two order
parameters must strictly fulfill the relation h̄(r) = αφ̄(r), and
the system is effectively described by a single order parameter.
In this case the Hamiltonian reduces to

βH̃ =
∫

dr

{
κ

2
[∇2h̄(r)]2 + σ̃

2
[∇h̄(r)]2

+ γ̃

2
h̄2(r) + λ

2

N∑
i=1

[h̄(ri ) − �i]
2

}
, (E16)

with σ̃ = σ/α2 and γ̃ = 2t/α2. The above Hamiltonian has
already been discussed in the literature [53], as it describes
a membrane with binding stiffness κ and surface tension σ̃ in
an external harmonic potential of the strength γ̃ . The results of
our model, after taking the proper limit (as described below),
are in full agreement with [53].

The limit γ → ∞ implies that ζ = (κ/γ )1/4 → 0, and
thus, τ → 0 and μ → ∞ (see Table I) with fixed

κτμ2 = τω = tκα2

σ 2
≡ 1

8
χ2, (E17)

where, in order to simplify the notation, we have added an
extra factor κ , and we have defined χ � 0. The vanishing of
the unit of length ζ makes the analysis of this special limit
challenging.

In Fig. 2 the limit considered here is located in the re-
gion where the border between zones I and III asymptotically
touches the line τ = 0. Closer analysis shows that in this limit

the system is in zone I for χ < 1 (and the correlation function
decays exponentially) and in zone III for χ > 1 (where Chh

shows damped oscillations). The same change of asymptotics
has been reported in [53] for σ/λ0

m = 1/4, which is in an
agreement with our results since σ/λ0

m in [53] is equivalent
to (4χ )−1 in our paper.

Detailed analysis of the roots of the polynomial (11) shows
that in this limit for χ < 1 (zone I)

t1 = 2

χ

√
1 −

√
1 − χ2 τ 1/2 + O(τ 3/2), (E18a)

t2 = 2

χ

√
1 +

√
1 − χ2 τ 1/2 + O(τ 3/2), (E18b)

t3 = χ

2
√

2τ
+ O(τ 1/2), (E18c)

and for χ > 1 (zone III)

a =
√

2τ

χ

√
χ − 1 + O(τ 3/2), (E19a)

t1 = χ

2
√

2τ
+ O(τ 1/2), (E19b)

t2 =
√

2τ

χ

√
χ + 1 + O(τ 3/2). (E19c)

Therefore, the (dimensional) correlation length ξ̄ is for
χ < 1 (zone I)

ξ̄ = ζ ξ = ζ

t1
=
(

χ

1 −
√

1 − χ2

)1/2

ζ̃ , (E20)

and for χ > 1 (zone III)

ξ̄ = ζ ξ = ζ

t2
=
[

2χ

(χ + 1)

]1/2

ζ̃ , (E21)

with ζ̃ = (κ/γ̃ )1/4. The above formula for the correlation
length can be shown to be identical with Eq. (36) in [53].
We note that, even though in this limit two different critical
regimes τ → 0 and μ → ∞ overlap, only the dimensionless
correlation length ξ is infinite. Together with increasing ξ , the
unit of length ζ → 0, which keeps the dimensional correlation
length ξ̄ = ζ ξ finite, and the system is actually not critical.

Because our notation makes the analysis of this limit un-
necessarily complicated, we refrain from a detailed study of
our model for γ → 0. Properties of the model in this special
case have been discussed in [53].
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