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A B S T R A C T

We report on a novel way to visualize genomic data. By considering genome coding sequences, cds, as sets
of the 𝑁 = 61 non-stop codons, one obtains a partition of the total number of codons in each cds. Partitions
exhibit a statistical property known as mixing character which characterizes how mixed the partition is. Mixing
characters have been shown mathematically to exhibit a partial order known as majorization (Ruch, 1975). In
previous work (Seitz and Kirwan, 2022) we developed an approach that combined mixing and entropy that is
visualized as a scatter plot. If we consider all 1,121,505 partitions of 61 codons, this produces a plot we call
the theoretical mixing space, TGMS. A normalization procedure is developed here and applied to real genomic
data to produce the genome mixing signature, GMS. Example GMS’s of 19 species, including Homo sapiens, are
shown and discussed.
1. Background

The discovery of the genetic code that connects triplets of nu-
cleotides (codons) to amino acids, and sequences of codons (cds) to
proteins and protein subunits, has revolutionized genetics. This has
resulted in an explosion of data. Tens of thousands of cds are now
available for download via ftp in the RefSeq area of the National Center
for Biotechnology Information (NCBI).

The usual statistical analyses of coding sequences typically focus on
entropy or randomness. The simplest entropic analysis is the number
of each type of nucleotide in the cds. If each nucleotide is present
in approximately equal amounts, the cds is close to random. A more
discriminatory entropy of a cds is the probability distribution of the
codons, 𝑝𝑖, and the associated Shannon entropy:

𝑆𝑆ℎ𝑎𝑛𝑛𝑜𝑛 = − 𝛴 𝑝𝑖 𝑙𝑜𝑔(𝑝𝑖). (1)

It is important to note that the Shannon entropy depends solely on the
set of 𝑝𝑖 and is independent of their order.

Is there more than just randomness to characterize coding sequence
distributions? In a study of chirality, Ruch (1975) introduced the notion
of mixing character. His approach was radically different from char-
acterizing information by entropy, yet it is completely consistent with
the second law of thermodynamics. It also has recently been applied
in quantum information (Halpern, 2018; Egloff and Dahlsten, 2015).
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See Seitz and Kirwan (2022) for the history behind the mixing character
concept and the second law of thermodynamics and for applications to
large databases based on Shannon entropy.

Another advantage of appealing to mixing character is that it in-
troduced a second function to characterize the statistics of the cds,
namely their incomparability, 𝐼 . Although 𝐼 is a purely mathematical
construct (Trotter, 1992), the notion has considerable appeal in biolog-
ical sciences as it quantifies the disconnectivity of the underlying data
vectors. In the following sections 𝐼 is defined precisely and illustrated
with a simple example.

For genome scale purposes, it is useful to have a statistical model
or visualization of the genome to supplement the list of nucleotides in
the cds. Data visualization translates information into a visual context,
such as a map or graph. Data visualization tools help to visualize
characteristics of genomes for comparison to one another and to suggest
individual genes of possible interest within a genome. Applications
include identifying individual genes associated with disease, identifying
groups of genes that generate proteins of related function, and using
genome visualizations to compare species/genomes for many biological
research purposes.

There are numerous ways to visualize genomes. These visualizations
have been used for different purposes such as ‘‘(i) analyzing sequence
data, both in the context of de novo assembly and of resequencing
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experiments, (ii) browsing annotations and experimental data mapped
to a reference genome, and finally, (iii) comparing sequences from
different organisms or individuals’’ (Nielsen and Vidal, 2001). Existing
genome visualization tools have been grouped into four types, genome
alignment visualization tools, genome assembly visualization tools,
genome browsers, and tools to directly compare different genomes with
each other for efficient detection of genomic differences (Pavlopou-
los, 2015). For oncogenomic data, visualizations such as scatterplots,
networks, heatmaps, clusters and combining machine learning and
visualization are used (Qu, 2019).

The approach taken here is developed for the purpose of directly
comparing different genomes. As indicated in the title, the method
utilizes the property of mixing to augment Shannon entropy, so as to
produce a scatter plot visualization, which we term the genome mixing
signature (GMS).

Section 2 shows the logic behind mixing that leads to the concept
of mixing character (Ruch, 1975). Section 3 introduces the concept
of incomparability in partial orders and applies it to sets of codons.
We show the result for all possible coding sequences that contain 61
codons, which we term the theoretical genome mixing space (TGMS).
ection 4 describes real coding sequences of varying lengths. It de-
elops a statistical normalization process to convert or normalize real
equences to those in the TGMS in Section 3. Application of mixing
heory to the normalized sequences then gives the genome mixing
ignatures shown in Figs. 3–7. Section 5 concludes with a discussion
f the relation genome mixing signatures to phylogenetic complexity
nd suggests areas for further study.

The Appendix shows how individual coding sequences in a
enome’s GMS may be identified along with their proteins so as to
xplore relationships of individual genes to one another.

. Mixing

Mixing characterizes sets of objects according to how they can be
ormed from other sets with the same number of objects. It is a fun-
amental physical/combinatoric property independent of the specific
bjects (Seitz and Kirwan, 2022), and has recently been used in physics,
articularly with regard to quantum information and entanglement.

We begin by reviewing the logic behind mixing theory (Ruch, 1975).
hen any set of objects is the union of subsets such that the subsets

ave no objects in common, one obtains a partitioning of the complete
et. For example, consider a set of 6 fruits: 3 apples, 2 pears, 1 orange, 0
lums, 0 grapes, and 0 mangos. The partitioning of this set is the parti-
ion [3,2,1,0,0,0]. We refer to this partition as the mixing character. In
hat follows, it is important to note that so far as mixing is concerned,

his set of fruits is equivalent to a set with 0 apples, 1 pear, 2 oranges,
plums, 0 grapes, and 3 mangos, though those sets obviously differ in
any other ways. For mixing character, the partition is always given

n non-increasing order, so both sets mentioned above have mixing
haracters [3,2,1,0,0,0]. This partitioning is sometimes also represented
s [3,2,1]. We will use the latter notation unless specific reference is
ade to zero elements.

We consider two baskets of fruit, A and B, with partitions [4,1,1]
nd [3,2,1] and show that B is more mixed than A. Logically, Ruch
rgued that doing so requires that it is possible to construct type B
askets from collections of type A baskets. Assume basket B contains
apples, 2 pears and 1 orange. Mixing the following type A baskets:

4 apples, 1 orange, 1 pear] with one containing [4 pears, 1 apple, 1
range] and one containing [4 apples, 1 pear, 1 orange] gives a basket
ith [9 apples, 6 pears, 3 oranges], which is the equivalent of 3 baskets
ach containing [3 apples, 2 pears, and 1 orange] i.e., three baskets all
f type B can be obtained by mixing type A baskets. Hence, baskets
f type B are more mixed than baskets of type A. In other words,
he partition [3,2,1] is more mixed than [4,1,1]. But if we consider
askets [2,2,2] and [3,1,1,1], it turns out that neither can be formed
rom combinations of the other, and the partitions [2,2,2] and [3,1,1,1]
re incomparably mixed — or simply incomparable. In short, mixing
2

haracters are partially ordered (Trotter, 1992). e
. Mixing, majorization, and incomparability

Mathematically, the partition of an integer 𝑁 is defined as the
non-increasing list of 𝑁 integers (including zeros as required) that
sum to N. For example, the partitions of 𝑁 = 6 are [6], [5,1], [4,2],
[4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1] and
[1,1,1,1,1,1], where zero elements are not shown. Clearly there is a
1:1 correspondence between mixing characters and integer partitions.
While simple in concept, the number of partitions grows rapidly with
N, so that when 𝑁 = 61, there are 1,121,505 possible partitions.

In 1903, Muirhead (1903) introduced the majorization partial order
for partitions of integers. In 1974 Ruch (1975) proved that majorization
is identical to the partial order of mixing characters.

Let 𝜆 = [𝜆1, 𝜆2,… , 𝜆𝑁 ] be a partition of an integer N. The criterion
of majorization (sometimes called dominance) is that a partition 𝜆

ajorizes another partition 𝜇 if and only if

1 + 𝜆2 +⋯ + 𝜆𝑚 ≥ 𝜇1 + 𝜇2 +⋯ + 𝜇𝑚 ∀ 𝑚 = 1 𝑡𝑜 𝑁. (2)

or example, consider two partitions of 𝑁 = 6: 𝜆 = [4, 1, 1, 0, 0, 0] and
= [3, 2, 1, 0, 0, 0], discussed earlier. The two sums (termed partial

ums) in Eq. (2) are 4, 5, 6, 6, 6, 6 and 3, 5, 6, 6, 6, 6, and it is easy to
ee that for each value of m in Eq. (1) the inequality is satisfied.
owever, for 𝜆 = [2, 2, 2, 0, 0, 0] and 𝜇 = [3, 1, 1, 1, 0, 0], the partial

ums are 2, 4, 6, 6, 6, 6 and 3, 4, 5, 6, 6, 6. The inequality is not satisfied
nd the partitions are incomparable. (Note, the partial sums include
he zero elements.) The incomparability number, 𝐼 , for each partition
s obtained by counting the total number of other partitions that are
ncomparable to it. This can be done by exhaustive comparisons of all
artitions using Eq. (2).

In this paper the objects in the set are codons, and the set is the
oding sequence (Seitz and Kirwan, 2022). The codon order we use is
iven below, where they are read left to right and numbered 1 through
1:

CGA CGC CGG CGT AGA AGG CTA CTC CTG CTT TTA TTG TCA
TCC TCG TCT AGC AGT ACA ACC ACG ACT CCA CCC CCG CCT
GCA GCC GCG GCT GGA GGC GGG GGT GTA GTC GTG GTT AAA
AAG AAC AAT CAA CAG CAC CAT GAA GAG GAC GAT TAC TAT
TGC TGT TTC TTT ATA ATC ATT ATG TGG.

The codon ordering choice does not affect the coding sequence
istributions because regardless of order, the list of frequencies of the
ccurrences of codons when arranged in non-increasing order is the
ame. However to identify individual genes from the NCBI data, the
odon order above must be used.

Consider the set of all possible coding sequences with 61 codons.
e call this set the theoretical genome mixing space (TGMS). This set

ontains over a million sequences. For each of these we computed the
ntropy and the incomparability (Seitz and Kirwan, 2022). Fig. 1, a
catter plot of incomparability, 𝐼 , vs. Shannon entropy, 𝑆, shows the
GMS.

. Genome mixing signatures

Recall that the majorization partial order applies to sets with the
ame number of objects. This is clearly not the case for real coding
equences, so the raw mixing characters must be normalized in some
anner so that they become members of the theoretical mixing space;

n other words, ‘‘normalized’’ to an integer partition of 𝑁 = 61. To
ccomplish this we chose to normalize each raw mixing character by
ividing each element by the total number of codons in the coding
equence and multiplying by 61, the number of codons. This gives, of
ourse, a vector, 𝜔, of real numbers between 0 and 61. This is then
apped to the closest integer partition of 61 as follows.

First, truncate 𝜔 to obtain an integer vector 𝜂. The sum of the

lements in 𝜂 is obviously less that 61. Next compute the difference
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Fig. 1. Theoretical Genome Mixing Space.

Fig. 2. Humans.

between this vector and the real vector, resulting in a new real vector,
𝜈, with elements that lie between 0 and 1. Let 𝜆𝑖 be the 𝑖th element of
𝜈 closest to 1 and increase the corresponding element in 𝜂 by 1. After
setting 𝜆𝑖 to 0, repeat the process until the sum of the elements in 𝜂 is
61. By choosing 61 as the normalization constant this method obtains
mixing characters within the theoretical genome mixing space TGMS.

For each normalized coding sequence we compute the entropy, 𝑆,
and incomparability, 𝐼 (Seitz and Kirwan, 2018, 2016, 2014) where
entropy is normalized to 1 and incomparability is divided by the total
number of partitions of 𝑁 = 61. A plot of the set of points (𝑆, 𝐼) is
the Genome Mixing Signature. We display the GMS of Homo sapiens in
Fig. 2 superimposed on the theoretical genome mixing space.

Genome mixing signatures for 18 additional species are shown
below in Figs. 3–7 where the x-axes are all entropy and the y-axes
incomparability. The data sources for these GMS are given in the data
section following the references.

The GMS shows two complementary statistical aspects of a genome.
One is the entropy or randomness of the cds (x-axis). The other is a
statistical measure of how mixed the coding sequence distribution is (y-
axis). While gene entropy is well studied, mixing character is a second
statistical property that has not been used in comparisons of species
genomes.

A GMS considers both the entropy, 𝑆, and the incomparability, 𝐼
of mixing characters. They occupy just a fraction of the theoretical
3

genome mixing space in Fig. 1, since the number of genes in biological
species is lower than the number of partitions of 𝑁 = 61. Also, the
proportion of occupied mixing space will be even smaller because it is
expected that some genes (after normalization) will now have the same
mixing character, while their raw mixing characters may still differ.
Note that the raw mixing characters can still be obtained from the
data, if desired, for more detailed considerations. (See the Data Source
section following the references for the NCBI datasets used here.)

5. Discussion

Consider the GMSs of the MERS virus in Fig. 3. From all virus GMS it
is clear that they have the smallest number of coding sequences, as was
already well known. What is new in the GMS (and for all viruses studied
here) is that they appear similar in that they have high entropy and
low incomparability. Given that some virus cds have a large number of
codons, this need not have been the case. While it is true that many
or most virus codon sequences are relatively short, some are not. For
example the Middle East virus has 11 coding sequences with codon
numbers 586, 313, 139, 76, 68, 62, 48, 36, 32, 24, and 7. They all
show entropies greater than 0.8 and incomparabilities below 0.1. Many
coding sequences in other (non-virus) species with similar or smaller
numbers of codons have lower entropy and higher incomparability.
Further studies of additional viruses beyond those in Fig. 3 are required
to establish the significance of this difference.

For all other species many coding sequences are less random and
more mixed. This is expected since other species are more phyloge-
netically complex than viruses and have many more coding sequences.
This is clearly seen in Figs. 3–7. More importantly, the mixing signatures
of the species studied here are all visually distinct. Similarities in GMS
may indicate biologically relevant relationships between species; this
is clearly beyond the scope of the present paper yet remains an area
for further work.

For example, a possible area for the application of GMS is in the field
of phylogenetics. The phylogenetic relationship between Alligator mis-
sissipiensis (American alligator) and Haliaeetus leucocephalus (bald eagle)
illustrates this possibility. These organisms are in different classes (birds
and reptiles) yet display similar, though still distinct, GMSs. Genomes
of both alligators and birds have the smallest portion of genes with
low entropy among the metazoans we have studied; nevertheless, such
regularity emphasizes the complex evolutionary relationship between
the two (see the GMS for Alligator mississipiensis (American alligator)
and Haliaeetus leucocephalus (bald eagle) in Fig. 7). Members of or-
der Crocodilia are the closest relatives of birds, both being the only
surviving representatives of Archosauria (Green et al., 2014; Brusatte
et al., 2010), sharing a common ancestor that lived around 240 million
years ago. A study of crocodilian genomes led by scientists at UC Santa
Cruz (Demuth et al., 2020) revealed an exceptionally slow rate of
genome evolution in the crocodilians.

Another interesting application of mixing statistics would be to
study transcriptomes, if their sequences can be reliably obtained. This
would follow the same procedure as that given here for coding se-
quences in the NCBI database. A particular area of recent interest is the
codon usage bias in co-evolving hosts and viruses (Chen et al., 2020).
This is an area for further study where mixing analysis may be of use.

In conclusion, the GMS describes the mixing pattern of gene en-
tropies and incomparabilities independent of chemical details. It thus
may provide insights into physical and statistical influences on evo-
lution of individual genes as well as genome evolutionary histories.
The relationship between entropy and incomparability was argued in
previous work (Seitz and Kirwan, 2018, 2016, 2014) to indicate a
relation between incomparability and complexity. However, for genes,
sequential complexity is clearly not equal to functional complexity
since various gene sequences could have the same incomparabilities
and since many biochemically relevant aspects are ignored in a mixing
analysis.
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Fig. 3. Viruses.

Fig. 4. Archaea, Bacteria, Yeast, and multi-celled Fungi.
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Fig. 5. Plants.

Genome mixing signatures are based on a fundamental statistical
property of coding sequences, namely their mixedness. The signatures
for different genomes appear to be unique for most species — with
viruses a possible exception. The GMS views coding sequences in terms
of a statistical scalar quantity quantifying randomness (entropy) and in
5

terms of a vector quantity that characterizes mixing (mixing character).
This new visualization of genomes should be of interest to augment
visualization tools already in use.

Data source

All data was obtained from the National Center for Biotechnology
Information (NCBI) via ftp to the RefSeq area. The file names for all
species studied here are listed below.

• Anopheles gambiae (𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜) GCF 000005575.2 AgamP3 cds from
genomic.fna

• Eschherichia coli (𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎) GCF 000010245.2 ASM1024v1 cds
from genomic.fna

• Saccharomyces cerevisiae (𝑦𝑒𝑎𝑠𝑡) GCF 000146045.2R64 cds from
genomic1.fna

• Arabidopsis thaliana (𝑤𝑒𝑒𝑑) GCF 000001735.4 TAIR10.1 cds from
genomic.fna

• Caenorhabditis elegans (𝑛𝑒𝑚𝑎𝑡𝑜𝑑𝑒) GCF 000002985.6 WBcel235 cds
from genomic.fna

• Danio rerio (𝑧𝑒𝑏𝑟𝑎𝑓𝑖𝑠ℎ) GCF 00002035.6 GRCz11 CDS from
• Drosophila melanogaster (𝑓𝑟𝑢𝑖𝑡𝑓 𝑙𝑦) GCF 000001215.4 Release 6

plus ISO1 MT cds from genomic.fna
• Homo sapiens (ℎ𝑢𝑚𝑎𝑛) GCF 000001405.39 GRCh38.p13 cds from

genomic.fna
• Mus musculus (𝑚𝑜𝑢𝑠𝑒) GCF 000001635.26 GRCm38.p6 cds from

genomic.fna
• Zea mays (𝑐𝑜𝑟𝑛)GCF 000005005.2 B73 RefGen v4 cds from ge-

nomic.fna
• Aeropyrum pernix (𝐴𝑟𝑐ℎ𝑎𝑒𝑎) GCF 000011125.1 ASM1112v1 cds

from genomic(1).fna
• Auricularia subglabbra (𝑚𝑢𝑙𝑡𝑖𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟𝑓𝑢𝑛𝑔𝑖) GCF 000265015.1 Au-

ricularia subglabra SS-5 V1.0 cds from genomic.fna
• Xenopus tropicalis (𝑤𝑒𝑠𝑡𝑒𝑟𝑛𝑐𝑙𝑎𝑤𝑒𝑑𝑓𝑟𝑜𝑔) GCF 000004195.4 UCB

Xtro 10.0 cds from genomic.fna
• Alligator mississipiensis (𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛𝑎𝑙𝑙𝑖𝑔𝑎𝑡𝑜𝑟) GCF 000281125.3

ASM28112v4 cds from genomic.fna
Fig. 6. Invertebrates.
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Fig. 7. Vertebrates.
• Haliaeetus leucoephalus (𝑏𝑎𝑙𝑑𝑒𝑎𝑔𝑙𝑒) GCF 000737465.1 Haliaeetus
leucocephalus.4.0 cds from genomic.fna

• Porcine respirovirus GCF 000925555.1 ViralProj265892 cds from
genomic1.fna

• SARS related coronavirus GCF 009858895.2A SM985889v3 cds
from genomic.fna

• Middle East Virus, MERS GCF 000901155.1 ViralProj183710 cds
from genomic.fna

• Lambda phage GCF 000840245.1vViralProj 14204 cds from ge-
nomic.fna
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Appendix. Application to single genes

We identified genes in two selected areas of the GMS of two species
for study. They are located at different regions of the TGMS. First we
consider the genes in Mus musculus that have high incomparability
and are situated at the top of the inner curve in the mixing space
that forms the yellow background in the GMS. Their incomparability
values are between 0.37 and 0.422, and the entropy values are between
0.62 and 0.67 (Table 1). There are 18 genes in this region and all of
them are connected with keratin (the structural protein of the external
part of the epidermis) and hair growth. Hair is unique to mammals.
Keratin associated proteins (KRTAPs) that comprise two major groups
(high/ultrahigh cysteine and high glycine–tyrosine) are major compo-
nents of hair and play an essential role in the formation of rigid and
resistant hair shafts.

A second example comes from another area of the TGMS, namely
very high entropy and very low incomparability.

In the genome of yeast Saccharomyces cerevisiae, we analyzed 10
genes with entropy values between 0.969 and 0.978, as well as in-
comparability values between 1.15916 × 10−5 and 4.72579 × 10−5
(Table 2). It is interesting that 7 genes (YRF1-1, YRF1-2, YRF1-4,
YRF1-5, YRF1-8, YHR218W, and YML133C) are located at subtelomeric
regions within the Y’ element and are confirmed or putative heli-
cases involved in telomere maintenance via recombination. The rest of
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Table 1
Genes in Mus musculus.

Entropy Incomparability Sequence Number Name

0.631159454 0.417262524 73128 Gm34733
0.634755753 0.394387901 73137 Keratin-associated
0.635701703 0.416293293 73121 Gm7735
0.635913502 0.392148942 38351 Krtap5-2
0.640166454 0.402695477 38350 Krtap5-3
0.64405205 0.40391618 73115 Gm33798
0.647648349 0.402518928 38354 Krtap5-5
0.647860148 0.407504201 73125 Gm34566
0.648006309 0.381834239 38357 Gm46022
0.648806098 0.421145707 73118 Gm6358
0.650298697 0.383182406 38360 Krtap5-1
0.652044437 0.401277751 73130 Keratin-associated
0.658596899 0.389547974 73133 Gm35174
0.658902185 0.388016999 38353 Keratin-associated
0.659143548 0.40072313 38358 Gm4559
0.659501508 0.378740162 38356 Gm40460
0.660010285 0.382173955 73127 Gm34650
0.663991083 0.370674223 38359 Gm10013

Table 2
Genes in Saccharomyces cerevisiae.

Entropy Incomparability Sequence Number Name

0.978422208 1.15916 E-05 3337 AVT3
0.974825909 2.05082 E-05 2049 PUS2
0.971229611 3.29914 E-05 1444 YRF1-1
0.971229611 3.29914 E-05 1731 YRF-2
0.971229611 3.29914 E-05 2688 YHR218 W
0.971229611 3.29914 E-05 4101 YRF1-4
0.971229611 3.29914 E-05 4102 YRF1-5
0.971229611 3.29914 E-05 4103 YML133C
0.971229611 3.29914 E-05 5517 YRF1-8
0.969125911 4.72579 E-05 3590 MMP1

the genes are AVT3 (involved in amino acid trans membrane export
from vacuoles), MMP1 (involved in S-methylmethionine transmem-
brane transport) and PUS2 (involved in mRNA pseudouridine synthesis
and in tRNA pseudouridine synthesis). Both AVT3 and MMP1 proteins
are yeast amino-acid transporters (Nishida et al., 2016; Popov-C̆eleketić
t al., 2016) consistent with the observed GMS grouping. Also, as
result of recent reports that PUS2 increases yeast LiCl sensitivity
hen deleted (Hajikarimlou et al., 2020), we note that AVT5 involved

n vascular amino-acids uptake (Chardwiriyapreecha et al., 2010) is
lso involved in lithium uptake in Schizosaccharomyces pombe (Popov-

C̆eleketić et al., 2016). This is again consistent with the GMS grouping
of the three genes reflecting either their functional relatedness or their
domain similarities.
7
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