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Abstract: All differences between the role of space and time in nature are explained by proposing
principles in which none of the spacetime coordinates has an a priori special role. Spacetime is treated
as a non-dynamical manifold, with a fixed global RD topology. The dynamical theory of gravity
determines only the metric tensor on a fixed manifold. All dynamics is treated as a Cauchy problem,
so it follows that one coordinate takes a special role. It is proposed that any boundary condition that
is finite everywhere leads to a solution which is also finite everywhere. This explains the (1, D− 1)
signature of the metric, the boundedness of energy from below, the absence of tachyons, and other
related properties of nature. The time arrow is explained by proposing that the boundary condition
should be ordered. The quantization is considered as a boundary condition for field operators. Only
the physical degrees of freedom are quantized.
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1. Introduction

One of the most fundamental principles of modern theoretical physics is the principle
of Lorentz covariance. This principle essentially says that all fundamental physical theories
should treat space and time coordinates in the same way, up to a negative relative sign
in the metric of spacetime. However, it is known that space and time coordinates are not
really treated in the same way, and that these different treatments cannot be explained
only from the negative relative sign in the metric. One has to introduce some additional
principles in order to explain and describe the observed different roles of space and time in
nature. Let us make a list of some very well-known principles and observational facts that
explicitly state that space and time should be treated in different ways:

– There are a few space coordinates, but there is precisely one time coordinate.
– There is a time arrow, but there is nothing like a space arrow.
– Psychologically, we experience time and space in completely different ways; we

remember the past and not the future, which refers to time, not to space.
– We can travel in space in all directions, but we cannot do that in time.
– Entropy grows with time, but not with space.
– There is a causality principle, which refers to time, not to space; in classical electrody-

namics, one uses only retarded solutions and disregards advanced solutions, which
again refers to the sign of time, not that of space.

– The separation of causally connected events should be timelike or light-like, but cannot
be spacelike; the 4-momentum of a physical particle should be timelike or light-like,
but cannot be spacelike.

– Time has a special role in the canonical (i.e., Hamiltonian) formalism; in field theory (of
real scalar fields, for simplicity), the set of all degrees of freedom is given by all space
points x, not by all space-time points (x, t); in order to quantize fields, we propose
equal-time (anti)commutators, not equal-space (anti)commutators; field operators
(anti)commute for spacelike separations, not for timelike separations.

– The time component of the 4-momentum (energy) must be positive (or zero), while
the space components of the 4-momentum can have both signs; the quantum operator
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of the space inversion is unitary, while the quantum operator of the time inversion is
anti-unitary.

– In the quantum theory of particles (i.e., first quantization) there is an x̂-operator, but
there is no t̂-operator.

If one believes that the fundamental laws of nature should possess a certain simplicity and
symmetry, then it is reasonable to believe that the fundamental laws should have such a
form that none of the space-time coordinates has an a priori special role. If this is so, none
of the itemized laws can be fundamental. From some more fundamental laws it should
rather follow that one of the coordinates must take a special role, by a mechanism which
can be viewed as some kind of spontaneous symmetry breaking.

The idea that the different roles of space and time are consequences of spontaneous
symmetry breaking is not new. In [1–3] the possibility is considered that this is achieved via
the Higgs mechanism. The aim of this article is to give a proposal for a different mechanism
which gives different roles to space and time, a mechanism which does not require the
introduction of the Higgs field.

It is a tradition among almost all physicists that only finding the correct equations
of motion is regarded as a really fundamental task, while the question of the boundary
conditions is regarded as a secondary problem. Here I leave such a viewpoint. I consider
the question of the boundary conditions as an equally fundamental question as the question
of the equations of motion themselves. Therefore, I postulate some principles which the
boundary conditions of the Universe should obey. These principles I choose in such a
way that none of space-time coordinates has an a priori special role, but that they can still
explain the known differences of the role of space and time in the Universe.

The difference between space and time emerges from the viewpoint that nature must
choose some (D − 1)-dimensional sub-manifold on which the boundary condition will
be imposed. This automatically gives a special status to one particular coordinate, the
coordinate which is constant on this sub-manifold. This is the mechanism of spontaneous
symmetry breaking in my approach. I propose essentially three additional principles.
First, spacetime is a non-dynamical manifold, with a fixed global RD topology. Dynamical
theory of gravity determines only the metric tensor on it. Second, I propose that any
boundary condition which is finite everywhere leads to a solution which is also finite
everywhere. This explains the hyperbolicity, i.e., (1, D− 1) signature of the metric. (It is
interesting to note that there is an attempt to explain the hyperbolicity by certain anthropic
arguments [4]. My approach is based on the same mathematical properties of hyperbolic
and non-hyperbolic equations exploited in that work, but I choose different arguments
to favor hyperbolic equations only.) This second principle also explains the boundedness
of energy from below, the absence of tachyons, and other related properties of nature.
The third principle states that the boundary condition is ordered, rather than random. It
explains the time arrow. The quantization is considered as a boundary condition for the
field operators. Only physical degrees of freedom are quantized. This, together with the
treatment of spacetime as a non-dynamical background, resolves the problem of time in
quantum gravity, at least at the conceptual level. Possible paradoxes connected with the
possibility of time travel are excluded by my choice of topology.

In Section 2 I present the main physical and mathematical ideas which led me to find
the principles which can describe the nature of space and time and explain the differences
between them. In Section 3 I give a precise formulation of these principles, as a set of
axioms which classical physics should obey. The purpose of Section 4 is to discuss in
more detail the origin of various differences between the role of space and time in classical
physics, emphasizing that they all emerge from the axioms of Section 3. In Section 5 I
discuss the origin of the difference between the role of space and time in quantum physics.
The connection with classical physics is most manifest in the Heisenberg picture, which I
use to formulate the quantization as a boundary condition for field operators. In Section 6
I discuss whether the second principle that I propose is satisfied for the known physical
theories and what new consequences can emerge from this principle. In Section 7 I discuss
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whether some of my axioms can be rejected or weakened. In addition, I make some remarks
on the question of dimensionality of space. Section 8 is devoted to concluding remarks.

2. The Main Ideas

In this section I give the main physical and mathematical ideas which led me to find
the principles proposed in Section 3. Section 2 is intended to be very pedagogical, but not
too exhaustive. It is also intended to be intuitive, rather than rigorous.

Let us start from the origin of the time arrow. Most physicists agree that all manifesta-
tions of the time arrow (except the arrow connected with the direction of the expansion
of the Universe) are consequences of the thermodynamic time arrow, i.e., of the fact that
disorder increases with time. The fact that disorder grows with time is equivalent to the
statement that the Universe was quite ordered in the past. Thus, the only real problem with
the time arrow is to explain why the Universe was so ordered at some instant of time of
its evolution. Since I cannot find any convincing explanation of this (except the anthropic
principle [5]), I shall take this as one of my fundamental postulates. It is enough to postulate
that at some “initial” instant of time (not necessarily the earliest instant) all fields and matter
must be in some partially ordered configuration in all space regions, but in such a way that
“initial” velocities have random space-directions. I require random directions of velocities
because then both time directions are equivalent, in the sense that disorder increases in both
directions from this “initial” instant. The present velocities are obviously not random, since
they lead to increasing order in the negative time direction. The “initial” instant is actually
the instant of minimal entropy.

The next question considered is why is time the coordinate which takes a special role?
Why is this is not the z-coordinate, for example? Or why is there no more than one coordi-
nate which takes a role similar to that of time? The answer to this question can be easily
found if one treats the dynamics of the Universe as a Cauchy problem. To solve a partial
differential equation in D dimensions, one first needs to fix some (D − 1)-dimensional
sub-manifold (Cauchy surface) on which the Cauchy data will be imposed. This automati-
cally gives a special status to one particular coordinate, the coordinate which is constant on
this sub-manifold. If we, in addition, require that the differential equation should provide
a stable evolution of the Cauchy data, then for a second-order differential equation two
necessary conditions must be fulfilled [4]: First, the equation must be hyperbolic, which
corresponds to the (1, D− 1) signature of the metric. Second, the Cauchy surface must be
spacelike, i.e., the boundary condition must be the initial condition.

Let us illustrate this on a free-field equation

∂µ∂µφ(x) + m2φ(x) = 0 . (1)

All known free fields satisfy this equation, including the Dirac field too. We assume
that the metric has the form gµν = diag(1,−1,−1,−1). m2 is some real parameter that
can be positive, zero, or negative. If we are looking for the solution of the form φ(x) =
exp(ik · x), we find the dispersion relation

k2
0 − k2 = m2 . (2)

In general, any component of k can be complex. However, if we require that the
solution is finite for any value of x, including the cases when some of the components of x
are±∞, we conclude that all components of k must be real. Now let us suppose that m2 > 0.
In this case, the real vector k can be arbitrary, since then k0 is also real. However, k0 cannot
take an arbitrary real value, but must rather satisfy k2

0 ≥ m2. We can construct the general
solution of (1) which is finite everywhere as a Fourier expansion over plane-wave solutions.
For some fixed t, it can have an arbitrary (finite everywhere) dependence on x. However,
for fixed z, for example, it cannot have an arbitrary time-dependence, because the spectrum
of k0 is truncated. Therefore, if we require that an arbitrary boundary condition that is
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finite everywhere leads to a solution which is also finite everywhere, then the boundary
condition must be the initial condition.

Using a similar argument one can also see that m2 cannot be negative, because other-
wise, owing to the fact that there is more than one space coordinate, no three components
of k could take arbitrary real values, without leading to the fourth component of k being
imaginary.

One can also easily generalize the analysis to the flat metric with the (n, m) signature,
and conclude that an arbitrary boundary condition that is everywhere finite can lead to a
solution which is also finite everywhere only if n or m is equal to 1.

Now we can already see the main idea why one coordinate, so-called time, takes
a special role. The dynamics is described by some partial differential equations in D
dimensions that treat all coordinates in the same way, up to some signs in the metric, which
can generally take the (n, m) signature (n + m = D). Thus the differential equations are
covariant with respect to the SO(n, m) group of coordinate transformations. However,
the differential equations do not describe the dynamics uniquely; one must also fix some
boundary condition. To accomplish that, one first must fix the boundary itself, which
is some (D − 1)-dimensional sub-manifold. This defines the remaining one coordinate
which has the same value at the whole (D− 1)-dimensional subspace. By imposing that
the arbitrary finite everywhere boundary condition leads to a solution which is also finite
everywhere, we obtain that all coordinates on this boundary must have the same sign of
the metric and that the remaining one coordinate must have the opposite sign of the metric.
Thus we derive the Lorentz invariance SO(1, D− 1) (isomorphic to SO(D− 1, 1)). This also
leads to some constraints on the form of the differential equations, including the sign of m2.
In addition, we impose that the boundary condition must be ordered in a described sense,
from which we derive the second law of thermodynamics and thus the causal role of the
time coordinate.

I also want to clarify some conceptual details that are important for a deeper under-
standing of gravity. Physicists are used to thinking that there is a great difference between
the gravitational field and all other fields, because other fields describe some dynamics for
which spacetime serves as a background, while the gravity field describes the dynamics
of spacetime itself. So, they often imagine that spacetime itself cannot exist without the
existence of the gravity field gµν(x), whereas it can exist without other fields (which corre-
sponds to Tµν = 0 in the Einstein equation), and without the dark energy (which can be
absorbed into a term contributing to the total Tµν). However, a manifold with coordinates
xµ can be well defined even without the metric being defined. This leads to the possibility
of interpreting the gravitational field in such a way that it differs much less from the other
fields. Such an interpretation could be useful in order to formulate a consistent theory of
quantum gravity.

When solving the Einstein equation, one can forget that gµν(x) represents the metric
tensor; it can be viewed just as some second-rank tensor field. Moreover, solving the
Einstein equation as a Cauchy problem requires that the topology of spacetime should be
fixed before the actual solving. More precisely, the Cauchy problem is well posed only if
the topology takes the form Σ×R on the global level, where Σ represents the topology of
the Cauchy surface. (Note that, in practice, the Einstein equation is usually not solved as a
Cauchy problem; it is solved by imposing some symmetry conditions of the metric on the
whole spacetime. The various solutions satisfying these conditions are then recognized as
representing various topologies.) In this article I propose that the whole dynamics should be
treated as a Cauchy problem, so I propose that the topology of spacetime is not a dynamical
entity. Since I require that none of space-time coordinates should have an a priori special
role, the topology should also be symmetrical in that sense. Therefore, I choose RD as a
global topology. Note finally that the condition D = 4, as well as the (1,3) signature of the
metric, must also be imposed by the initial condition in the Cauchy-problem approach to
the Einstein equation.
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3. The Formulation of Principles

In this section the precise formulation of principles that I propose is given as a set of
axioms. These axioms refer mainly to classical physics, while the transition to quantum
physics is discussed in Section 5.

Axiom 1. There exists a manifoldM which can be globally bijectively mapped to the set RD,
where D is a fixed positive integer.

This axiom says that spacetime is continuous, D-dimensional, infinite, and predy-
namical. The mapping in Axiom 1 defines the coordinates x ≡ {x1, . . . , xD} ∈ RD. Next
we introduce a metric tensor onM which is a symmetric second-rank tensor which must
satisfy the following axiom.

Axiom 2. For each point x there exists a neighborhood U, non-negative integers n, m satisfying
n + m = D, and coordinates such that the metric tensor possesses n positive and m negative
eigenvalues on U.

This axiom says that for each point there exist numbers n, m and coordinates such that
the metric is invariant with respect to SO(n, m) coordinate transformations at this point.
This is a generalization of the Lorentz SO(1, 3) invariance. It is also important to note that
from Axiom 2 it follows that the metric possesses the global decomposition into D = n + m,
i.e., if, for example, the manifoldM has the (1,3) signature of the metric at some point, then
it has the same signature on the wholeM.

Now we introduce dynamics, described by some fields ϕa(x). The metric tensor can
also be one of the dynamical fields, but this is not necessary. For dynamical fields we
require the following axiom:

Axiom 3. Dynamical fields satisfy partial differential equations (with derivatives with respect to
xµ) and for each point x there exist coordinates such that the equations are covariant with respect to
SO(n, m) coordinate transformations at this point, where n, m are determined by Axiom 2.

To construct such differential equations, we do not usually have to worry about
the precise values of n and m, since these equations look formally the same for various
n, m when written in a manifestly covariant form. Use of Lagrangian techniques further
simplifies the construction of such equations.

The knowledge of the differential equations does not determine dynamical fields
uniquely. We want to understand the principles which nature obeys in order to pick up
a particular solution that corresponds to the actual Universe. Now the essence of my
philosophy is as follows: It is redundant for nature to choose some differential equations
and some particular solution. Nature actually chooses some differential equations and
some boundary condition. The crucial point is that nature must first choose some (D− 1)-
dimensional sub-manifoldMB ⊂M on which the boundary condition will be imposed,
so nature really does choose it. This choice is not considered as a mathematical convenience,
but rather as a real event in nature. Such a viewpoint can look slightly metaphysical, but
we shall see that such a viewpoint leads to a natural explanation of the known differences
between the roles of space and time, as well as to some new predictions. Furthermore, we
shall see that, for a given universe, this “canonical” sub-manifoldMB can be uniquely
identified, at least in principle. In the following I propose some axioms that refer to the
properties of this “canonical” MB and the corresponding boundary condition, which
nature should obey.

If the differential equations are of the k-th order in the field ϕa(x), then it is convenient
to choose some connected boundaryMB and to fix ϕa(x) and all its normal derivatives
on it, up to the (k− 1)-th derivative. If this is carried out for all fields appearing in the
differential equations, the Cauchy–Kowalevska theorem provides that the solution is then
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unique. (Strictly speaking, this theorem also requires the analyticity of the boundary
condition and provides the analyticity of the solution. However, I shall assume that the
Cauchy problem is well posed also for smooth enough boundary conditions which are not
necessarily analytic.) Therefore, I propose the following axiom:

Axiom 4. The boundary MB is a connected (D − 1)-dimensional sub-manifold which can be
globally bijectively mapped to the set RD−1.

It is understood that the boundary condition fixes the fields ϕa(x) and all its nor-
mal derivatives up to the (k− 1)-th derivative. Thus, because of Axiom 1, the topology
of MB proposed in Axiom 4 is the only one that can lead to a well-posed boundary-
condition problem.

Let us now introduce the following definition:

Definition 1. A function ϕ : X → C is regular on a domain X ⊆M if |ϕ(x)| is bounded from
above for every x ∈ X.

In other words, a regular function is a function which is finite everywhere. It is quite
reasonable to require that physical fields should be regular. However, it is known that
some fields, such as the metric tensor gµν, the connection Γρ

µν, and the vector potential Aµ

do not have to be regular. I shall refer to such fields as gauge fields. Only physical fields,
such as the scalar curvature R and the field strength Fµν have to be regular, whereas the
gauge fields can possess only such irregularities which do not lead to irregularities of the
corresponding physical fields. Having this in mind, I introduce the following definition:

Definition 2. The field ϕa is essentially regular on X if its corresponding physical field is regular
on X. The metric field is essentially regular on X if it is essentially regular as a field and satisfies
Axiom 2 on X.

I have no intention to give a rigorous definition of a physical field. Let me just note
that fields appearing in the Lagrangians which do not possess any kind of gauge symmetry
are their own physical fields.

Now we are ready to propose the following axioms:

Axiom 5. For a given signature of the metric there existsMB such that every boundary condition
essentially regular onMB leads to a solution essentially regular onM.

Axiom 6. The Cauchy surfaceMB is chosen in such a way as to satisfy the requirement of Axiom 5.
The boundary condition is essentially regular onMB.

Axiom 5 is central and the most important axiom of this article. This is actually not
the constraint on the boundary condition, but rather on the signature and on the possible
forms of the dynamics, i.e., on the possible equations of motion. As we shall see, this
Axiom explains the hyperbolicity of the equations of motion, i.e., the (1, D− 1) signature
of the metric. It also explains a lot of known differences between the role of space and time
itemized in the Introduction. Finally, it leads to some new predictions. All that will be
discussed in later sections. Here I want to explain that axioms of this section lead to a new
philosophy of the logical (not temporal) order which nature must follow when it chooses
the conditions which uniquely determine the Universe.

Nature first chooses the dimension D of the manifoldM, according to Axiom 1. (Of
course, the word “chooses” should not be understood in the anthropomorphic sense.) Then
it chooses the signature (n, m) according to Axiom 5. After that it choosesMB according to
Axiom 6. The next step is to choose a set of fields {ϕa} which will describe the dynamics,
making a difference between the physical and the gauge fields, but not yet specifying its
specific dependence on x. The very next step, the central one in my philosophy, is to choose
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the differential equations (or Lagrangian) which will provide that any essentially regular
boundary condition will lead to an essentially regular solution, according to Axiom 5. Of
course, these differential equations must also satisfy some additional principles, such as
covariance (Axiom 3) and probably some other principles, which are not important here.
At the end it only remains to choose some particular boundary condition onMB, according
to Axiom 6, which then uniquely determines the Universe.

The six axioms proposed so far still cannot explain all the differences between the role
of space and time itemized in the Introduction. We need one additional axiom which will
provide that disorder increases with time and thus explains the time arrow. This axiom
must essentially say that the boundary condition is not completely random, but rather
ordered somehow, as discussed in Section 2. It is not easy to formulate this axiom in a
mathematically rigorous way. Thus I formulate this in a way which is not very rigorous,
but rather intuitive:

Axiom 7. The boundary condition onMB is partially ordered, rather than random. In particular,
absolute values of various fields are not homogeneous, but rather lumped in localized lumps. However,
the field derivatives in the normal direction toMB, needed for the uniqueness of the solution of the
Cauchy problem, are random.

The last sentence in Axiom 7 corresponds to the assumption that the initial velocities
are random, which provides that disorder increases in both time directions from the so-
called initial hypersurfaceMB, so both time directions are equivalent.

4. The Differences between Space and Time in Classical Physics

In this section I discuss how all the differences between the role of space and time in
classical physics emerge from the axioms of Section 3. However, it is important to note
that most of the discussion is valid even if novel principles of this article are not realized in
nature. Only Axioms 1 and 5 are really novel principles, in the sense that they differ from
the conventional point of view and can be tested, at least in principle. In order to provide a
complete and clear picture, I find it necessary to review some already-known results.

If dynamical fields satisfy second-order differential equations, then it follows from
Axioms 3 and 5 that the differential equations must be hyperbolic, i.e., the signature of
the metric must be (1, D− 1) (see, for example, [4] and references therein). We shall see in
Section 6 that Axiom 5 also explains why dynamical fields are not described by differential
equations of order higher than second.

In order to satisfy Axiom 5, the hyperbolicity is necessary, but not sufficient. For free
fields, for example, we have seen in Section 2 that m2 cannot be negative. The fact that m2

cannot be negative explains why the D-momentum of a free physical particle cannot be
spacelike. If we assume that the propagation velocity of a free wave packet is given by the
so-called group velocity

vg =
dω

dk
, (3)

where ω =
√

k2 + m2, then we see that there are no velocities greater than c ≡ 1, which
then explains why the separation of causally connected events cannot be spacelike, at least
for the free case.

However, it is fair to mention that the propagation velocity of a free wave packet is
not always given by (3). Thus it is not strange that there are solutions of all known free
relativistic wave equations (such as free Klein–Gordon, Maxwell, and Dirac equations)
which propagate with superluminal velocities, i.e., velocities that are greater than c [6–9].
However, there are no real paradoxes with these solutions because it turns out that the
corresponding physical quantities (such as the Poynting vector for the electromagnetic
field) do not propagate faster than c. Thus the principle that no energy or information can
propagate faster than c is not violated, and this is what we understand when we claim that
fields do not propagate faster than c.
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The requirement that m2 ≥ 0, which was obtained for free fields, in the case of
interacting fields generalizes to the requirement that the energy should be bounded from
below. To see this, we consider the Lagrangian for the real scalar field φ(x):

L =
1
2

∂µφ∂µφ−V(φ) , (4)

where

V(φ) = −µ2

2
φ2 +

λ

4
φ4 . (5)

The parameters µ2 and λ are real constants. The corresponding equation of motion
can be written in the form

∂µ∂µφ(x) + m2
eff(x)φ(x) = 0 , (6)

where
m2

eff(x) = −µ2 + λφ2(x) . (7)

If we require stable time evolution, and if λ 6= 0, then for a large φ2(x) the relation
m2

eff(x) ≥ 0 must be fulfilled [10]. This means that the relation λ > 0 must be fulfilled,
which is actually the consequence of Axiom 5, because the stability requirement is essen-
tially the same requirement as Axiom 5.

Let us now see what it has to do with the sign of energy. We introduce the canonical
energy–momentum tensor

Θµ
ν =

∂L
∂(∂µφ)

∂νφ− gµ
νL . (8)

The corresponding energy density for the Lagrangian (4) is

H = Θ0
0 = Θ00 =

[
φ̇2

2
+

(∇φ)2

2

]
+ V(φ) . (9)

The term in the square brackets represents the kinetic part of Θ0
0. We see that it has the

definite (positive) sign. It is easy to see that, owing to the (1, D− 1) signature of the metric,
no other component of Θµ

ν or Θµν has definite sign of its kinetic part for D > 2. Since
λ > 0, we see that V(φ) is bounded from below. Thus we see that the boundedness of the
energy from below is actually the consequence of Axiom 5 (i.e., the stability requirement).
A similar connection between Axiom 5 and the boundedness of the energy from below
can be seen in a similar way for most of the other Lagrangians. The positivity of energy is
then obtained from the appropriate energy shift, which does not change the physical laws
(except gravity, at least in the conventional approach).

We see that if E is some admissible energy, then−E may not be admissible energy. The
consequence of this is that energy does not transform as a time component of a D-vector
with respect to time inversion.

Let us discuss now the consequences of Axiom 7. (In the following I use the term
“disorder“ rather than “entropy”, because the former is a more general concept, while the
latter corresponds to some particular measure of disorder, which can be inappropriate for
some purposes). According to this axiom, the so-called initial state of the Universe is quite
ordered. We assume that the degree of orderliness is homogeneous on the initial spacelike
manifoldMB. This manifold defines the natural foliation of spacetime into the class of
spacelike manifolds Σ(t), with the property Σ(0) =MB. We choose t in such a way that
the orderliness is homogeneous (at least at some large scale) on the whole Σ for any fixed t.
Disorder increases in both time directions from t = 0, so there is no special time direction.
The causal, psychological, and electrodynamic time arrows are consequences of the disorder
increase. The positive time direction is defined as a direction fromMB to the present time.
Thus t defines the natural cosmological time, but still not uniquely, because t can be replaced
by some h(t), where h is some strictly increasing function, satisfying h(0) = 0. In order to
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define the time coordinate uniquely, we can require gtt = 1. For a given universe,MB can
be uniquely identified as a (D− 1)-dimensional spacelike manifold Σ with the smallest
measure of disorder (entropy). The instant t = 0 can be considered as the instant of the
“creation“ of the Universe (whatever this means) by some yet-unknown mechanism.

According to Axiom 7, the fields are initially lumped. Since fields cannot propagate
faster than c, no part of the boundary of a D-dimensional lump can be spacelike. Therefore,
from the covariant conservation laws of the form

∂µ Jµ = ∂t J0 +∇J = 0 , (10)

it follows that various quantities are conserved in time, but not in space:

d
dt

∫
V

dD−1x J0(x, t) = 0 . (11)

Let us now consider the question why we cannot travel in time. This question can
be answered from several points of view, corresponding to slightly different definitions
of the notion of time travel. First, one can argue that a time traveler can observe that
he arrived at the past only if he remembers the future, which is extremely improbable.
The second approach is based on the consideration of the difference between space and
time travel. The fact that material objects can travel in both space directions but only in
one time direction can be stated rigorously as: the trajectory of a material object x(t) is a
single-valued function, whereas its inverse t(x) is not necessarily a single-valued function.
To clarify this, let us consider a 1 + 1 dimensional example of a trajectory which would
correspond to the time travel in that sense: t(x) = −x2. This can be viewed as an object
traveling first in the positive time direction, but at t = 0 it starts to travel in the negative
time direction. However, this is how it really would look like for an independent observer:
two identical objects (which is rather improbable by itself if these are not two elementary
particles) approach each other, they finally collide at t = 0 and then disappear for t > 0,
thus violating the conservation laws. In other words, objects can travel in both space
directions, but only in one time direction because they are localized in space and thus
conserved in time.

The third approach to time travel, based on the possibility that the Universe can
possess topology or a metric tensor which admits closed timelike curves, is the subject of
many current theoretical investigations. One of the most important contributions against
time travel is given in [11], where it is argued that various conditions (topological defects
and metric tensors which do not possess the (1, D − 1) signature everywhere) needed
for various mechanisms of time travel cannot be realized in practice, essentially because
their realizations require infinite energy. However, in my opinion, the strongest argument
against the time travel, discussed also in [11] and particularly clearly in [12], is the consis-
tency requirement: for any space-time point x, all physical fields ϕa(x) must be uniquely
determined. The consistency in the Cauchy-problem approach is automatically provided
by Axioms 1 and 4. The time travel based on metric tensors which do not possess the
(1, D− 1) signature everywhere is also excluded by Axiom 2. In [11] the possibility of time
travel if it is possible to travel in space faster than light is discussed, but we have already
excluded the possibility of traveling faster then light.

Now a few notes on the different roles of time and space in the Hamiltonian formalism.
Historically, the Hamiltonian formalism was first developed for pointlike particles, i.e., for
the objects which are strictly localized in space and exist for all times. This is the difference
between the role of space and time already at the kinematic level. Thus, it is not strange
that particle mechanics has a formulation, such as the Hamiltonian formalism, which treats
space and time in different ways.

However, such an argument cannot be directly applied to field theories. The Hamilto-
nian formulation of them was probably partly influenced by our intuitive notion of time,
which is the consequence of the time arrow, leading to the intuitive picture that dynamics
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is something that changes with time. This leads to the notion of “degree of freedom” as
a real variable which can (at the kinematic level) possess arbitrary dependence on time.
Thus, the set of all degrees of freedom of a real scalar field is given by all space points
x, not by all space-time points (x, t). Dynamics, i.e., an equation of motion, is something
that determines the actual time dependence. In the Hamiltonian approach to field theory,
dynamics is given by the Hamiltonian densityH = H(φ(x), π(x)). The Poisson brackets
among functions of φ(x) and π(x) are actually equal-time Poisson brackets [13]. They can
be viewed as Poisson brackets among initial conditions. Thus, the phase space is space of
all initial conditions. In the spirit of the axioms of Section 3, it is most natural to consider
the degrees of freedom as variables which can be arbitrarily chosen onMB (except that they must
be essentially regular and ordered). Such a viewpoint will be exploited for the formulation
of the canonical quantum theory.

I want to emphasize that the canonical formalism in classical field theory is only a
convenience of calculation. Nothing is really lost if one does not at all introduce Hamiltoni-
ans and Poisson brackets, but rather uses only Lagrangians and corresponding manifestly
covariant equations of motion. The existence of the Hamiltonian formalism in classical
field theory still does not mean that space and time take different roles. For example, one
could also formulate a variant of the canonical formalism in which the x1 coordinate takes
a special role, by introducing the Legendre transformation

H(1) = π(1)(x)
∂φ(x)

∂x1 −L , (12)

where
π(1)(x) =

∂L
∂(∂1φ(x))

. (13)

(Note that (12) is equal to Θ1
1 in (8)). In particular, this would lead to a new kind of

Poisson brackets which would be interpreted as equal-x1 Poisson brackets.
At the end of this section let me give a few notes on theories with constraints. The

constraints appear in the Lagrangians which are invariant with respect to some local gauge
transformations [14]. For such systems, some of the equations of motion are interpreted
as constraint equations, which can be understood as constraints to the initial condition.
Thus the initial condition is not arbitrary, i.e., the number of fields which can be arbitrarily
fixed on the initial Cauchy surface is smaller than it seems at first sight. Axiom 5 refers
to these physical degrees of freedom, which are actually the fields for which the initial
condition can be arbitrarily chosen (this refers to their initial time derivatives too), whereas
the initial values of other fields are determined via the constraint equations. In order to
provide a well-posed Cauchy problem, some additional gauge conditions must be chosen
before determining the time evolution.

5. The Differences between Space and Time in Quantum Physics

In this section I discuss the origin of the differences between space and time in quan-
tum physics. The connection with classical physics is the most manifest in the Heisenberg
picture, which I use to formulate the quantization as a boundary condition for field op-
erators. As in Section 4, for the sake of completeness and clarity, I also review some
already-known results. The main new idea of this section is a suggestion that quantum
physics cannot remove, in a satisfactory way, singularities of the corresponding classical
theory, so we need to modify the classical theory in order to remove the singularities.

The Heisenberg-picture quantization is based on equal-time commutators among
canonical coordinates and conjugated momenta, which gives different roles to time and
space. One could wonder whether we can use the equal-space Poisson brackets resulting
from the formalism based on (12) to propose the corresponding equal-space commutation
relations, without changing the physical content of the resulting theory. The answer is
no, owing to the fact that the Poisson brackets are defined to be what they are, while the
corresponding commutation relations are postulated. In other words, introduction of the
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Poisson brackets does not change the physics, while introduction of the commutation
relations does change the physics. Thus the difference between space and time in quantum
physics is even deeper than in classical physics.

Let me stress some other important facts about the Heisenberg-picture quantization.
The “general” solution of the equation of motion for a free real scalar field, which is usually
used, is

φ(x) =
∫ dD−1k

(2π)D−12ω
[a(k)e−ik·x + a†(k)eik·x] , (14)

where ω =
√

k2 + m2, and integration is performed over all real vectors k. Let us em-
phasize once again that this is not really the general solution, because there are also other
solutions connected with imaginary ω and k. However, this is the general solution if we
restrict ourselves to the solutions which are consistent with Axioms 5 and 6. A more general
solution would lead to different physical results. In particular, fields would not commute
for spacelike separations.

There is one more important property of the operator φ̂(x, t) and its corresponding
Hilbert space. For any fixed instant t = t0 and for any regular function φ(x), there is a
Hilbert state |ψ〉 such that

φ̂(x, t)|ψ〉 = φ(x)|ψ〉 , for t = t0 . (15)

A similar statement is true for the operator π̂(x, t). However, similar statements are
not true if the roles of time coordinate and one of the space coordinates are exchanged.

This fact leads to an important additional physical motivation for Axiom 5. This
axiom essentially says that singular field configurations can never form in a proper classical
theory. We know very well that Einstein’s theory of gravity does not possess this property,
because it leads to cosmological and black-hole-like singularities. Almost everyone agrees
that singularities do not really exist in the real world. However, there is a wide belief that
quantum theory of gravity, when found one day, could remove such pathologies, even if the
corresponding classical theory does possess these pathologies. I want to argue that quantum
physics cannot remove, in a satisfactory way, the singularities of the corresponding classical
theory; we should rather modify the theory of gravity for strong fields already at the
classical level.

For this reason, I consider a simple example: a particle moving in a spherically
symmetric potential V(r), such that V(∞) = 0 and V(0) = −∞. Classically, the particle
can fall into the potential well, thus reaching infinite kinetic energy (but finite total energy,
which is the constant of the motion and is the sum of the kinetic and the potential energy). It
is often said that quantum physics prevents such pathological behavior because it prevents
the particle falling into the center of the potential well. However, is this really true?
The Schrödinger equation gives a set of eigenfunctions of the Hamiltonian {Ψn(x; t) =
ψn(x)e−iEnt}, which serves as a basis for the general solution of the Schrödinger equation.
This means that the particle can be found everywhere, including the singular point r = 0.
The set of functions {ψn(x)} is complete, which means, in particular, that the wave function
at some particular instant can be proportional to δD−1(x), or to eip·x for any particular p,
which are eigenstates of the operators x̂ and p̂, respectively. In other words, the particle
can attain any position or any momentum. The only restriction is that these two quantities
are not mutually independent, because the corresponding operators do not commute. In
the language of energy, the particle can possess any mean potential energy or any mean
kinetic energy, including the infinite one. The only restriction is that it cannot possess a
mean total energy smaller than the ground-state energy E0, and this is not a much better
situation than in classical physics, because in a typical physical classical situation we do
not expect a negative infinite total energy either.

However, why is an atom still stable? This is because the probability density for states
with a fixed energy Pn(x) = |ψn(x)|2 does not depend on time, so lasts forever. On the
other hand, if the wave function is proportional, for example, to δD−1(x) at some instant
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t, then it is a state which possesses components of many admissible energies. Thus P(x)
changes with time, being strictly localized only at one particular instant t. Thus we have
much better chances to find the particle in a state with a fixed energy.

Similarly, if the classical theory of gravity possesses a singular solution gµν(x) for
some instant t, then we must expect that in the corresponding quantum theory there exists
a state |ψ〉 which corresponds to this solution at some instant t. The best we can expect
is that we shall never observe such a state because its duration is too short. However, I
believe that singular states should not exist at all, so I require that singularities should not
appear even in classical physics.

Now we are finally ready to propose an axiom for the quantization of fields. It must
explain, rather than postulate, why time has a special role in quantization and why in (14)
we take only real ω and k. We do not know how to canonically quantize theories with
higher than second derivatives in the equations of motion, but it seems that such theories
cannot be consistent with Axiom 5, as I discuss in Section 6. Thus I assume that all fields
that can be arbitrarily chosen (except that they must be essentially regular and ordered) on
MB, can be divided into a set of fields {ϕa} and conjugate momentum fields {πa}, where

πa =
∂L

∂(∂t ϕa)
(16)

and t is the coordinate defined as in Section 4. Having all this in mind, I propose:

Axiom 8. Let x, x′ ∈ MB. All fields {ϕa} and {πa} are quantized in such a way that

[ϕ̂a(x, 0), π̂b(x′, 0)]± = iδabδD−1(x− x′) ,

[ϕ̂a(x, 0), ϕ̂b(x′, 0)]± = [π̂a(x, 0), π̂b(x′, 0)]± = 0 . (17)

Furthermore, the field operators {ϕ̂a(x)} and {π̂a(x)} satisfy classical equations of motion and
they are quantized in such a way that for given functions ϕa(x) and πa(x) there exist states |ψϕa〉
and |ψπa〉 such that

ϕ̂a(x, 0)|ψϕa〉 = ϕa(x)|ψϕa〉 ,

π̂a(x, 0)|ψπa〉 = πa(x)|ψπa〉 , (18)

if and only if ϕa(x) and πa(x) are essentially regular functions.

It is, of course, understood that we use anti-commutators if both fields possess half-
integer spin and commutators otherwise. For fermion degrees, ϕa(x) and πa(x) are prod-
ucts of a complex essentially regular function and a Grassmann number. Since this quanti-
zation is canonical, it is not manifestly covariant. However, we expect that covariance is
preserved because the field operators satisfy the covariant equations of motion. This can be
explicitly proved for free fields and on the perturbative level for fields in interaction, but I
shall not consider these rather technical problems. One of the most important consequences
of covariance is that the statements of Axiom 8 are valid not only for t = 0, but also for all
other times, obtained by time evolution or coordinate transformation.

Axiom 8 can be understood as an initial condition for the field operators. It proposes
that we have to quantize those classical variables which can be arbitrarily chosen onMB.
It can also be viewed as an explanation why in the quantum theory of particles (i.e., first
quantization) there is an x̂-operator, but there is no t̂-operator.

An important ingredient of Axiom 8 is that it proposes that only physical degrees of
freedom should be quantized. This is extremely important for quantum gravity, because the
quantum theory of gravity in which both physical and nonphysical degrees are quantized is
not equivalent to the theory in which only physical degrees are quantized. The quantization
of the physical degrees only is also one of the ways how to solve the problem of time in
quantum gravity [15].
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It is also important to note that the consistency of the canonical quantization requires
the topology of spacetime to be Σ×R, which is provided by Axiom 1.

It is straightforward to convert operators and states from the Heisenberg to the
Schrödinger picture. This leads to the functional Schrödinger equation, which determines
the wave functional Ψ[φ(x); t), being a functional with respect to φ(x) and a function with
respect to t. Both the Heisenberg and the Schrödinger picture of quantum field theory
manifestly express the fact that space and time are not treated in the same way. On the
other hand, it is usually stated that the functional-integral formulation is manifestly co-
variant, which might seem to be in contradiction with the fact that space and time have
different roles in quantization. However, space and time have different roles even in the
functional-integral formulation, because it is given by

〈φ f (x), t f |φi(x), ti〉 =
∫
[dφ(x, t)][dπ(x, t)]×

exp
{

i
∫ t f

ti

dt
∫

dD−1x[π(x, t)φ̇(x, t)−H(φ(x, t),∇φ(x, t), π(x, t))]
}

, (19)

where |φ(x), t〉 ≡ Ψ[φ(x); t). The left-hand side obviously gives different roles to space and
time. This is manifested on the right-hand side in the fact that the functional integral is not
performed over all functions φ(x, t), but only over functions which satisfy

φ(x, t f ) = φ f (x) , φ(x, ti) = φi(x) . (20)

Furthermore, t takes values from the finite interval t ∈ [ti, t f ], while x takes values
from the infinite interval x ∈ RD−1. At the end, the sub-integral function πφ̇−H(φ,∇φ, π)
is not Lorentz invariant. The invariant form is obtained only when the π-dependence is
integrated out, the vacuum-to-vacuum amplitude is considered, and ti → −∞, t f → ∞;

〈φ f (x) = 0, t f → ∞|φi(x) = 0, ti → −∞〉 ≡ Z

=
∫
[dφ(x)] exp

{
i
∫

dDx L(φ(x), ∂µφ(x))
}

. (21)

However, the left-hand side still treats space and time in different ways and the
functional integral on the right-hand side is still restricted to functions which satisfy (20).
The general expression (19) is equivalent to the Schrödinger equation, while the Lorentz-
invariant expression (21) is only a special case, from which the Schrödinger equation cannot
be derived.

It is also important to note that in (19), for a given space-time point (x, t 6= ti, t f ),
the integration is performed over all possible finite real values of φ and π. This is the
direct consequence of the fact that for any regular functions φ(x), π(x) and for any t there
exist states such that these functions are eigen-values of the corresponding field operators.
This means that in theories with constraints the functional integral is performed only over
the physical degrees of freedom, which is important for quantum gravity. Note also that,
according to my axioms, in the case of quantum gravity there is no sum over topologies;
only the global RD topology is included.

Let us now discuss the meaning of the discussion presented in Section 4 from the
point of view of quantum field theory. Although the whole Section 4 refers to the classical
field theory, all arguments are correct at the macroscopic level, because we know that
classical theory is a good approximation at the macroscopic level. In particular, the law of
disorder increasing, as a statistical law, is valid only on the macroscopic level. On the other
hand, there are arguments that quantum mechanics possesses the intrinsic, fundamental
time arrow, connected with the “fact” that wave functions collapse. However, excellent
arguments against such conclusions are given in [16]. There are also arguments, based
on the considerations of the wave function of the Universe, that entropy would start to
decrease when the Universe starts to contract. It is remarkable to note that Hawking was
the first that came to such a conclusion [17], but later he corrected himself [5], claiming that
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his conclusions were based on certain misinterpretations. A general discussion on various
misunderstandings of the time arrow is given in [18]. It seems to me that all conclusions
made by some authors about the different status of the time arrow in classical and quantum
physics, if not incorrect, are at least interpretation dependent, because there are various
interpretations of quantum mechanics and no one knows yet which is the correct one. The
origin of the collapse of the wave function is still not understood. My personal belief is
that quantum mechanics is just some effective, incomplete theory, while the underlying
more fundamental theory is some deterministic nonlocal hidden variable theory, which
obeys some laws not very different from the axioms of Section 3. Actually, it is very likely
that only Axiom 3 should be modified. For example, in the de Broglie–Bohm interpretation
of quantum field theory [19], the classical equations of motion are modified by adding
an external force proportional to h̄2, in which fields are integrated over space, but not
over time. This term breaks Lorentz covariance and locality, but the resulting theory still
possesses a well-posed initial-value problem. In this interpretation, Lorentz covariance and
locality are statistical effects, which are the only ones measured in present experiments.

Having in mind the remarks of the last paragraph, we may conclude that quantum
mechanics probably does not change the origin of the time arrow.

6. Do Our Theories Satisfy Axiom 5?

We have argued that equations of motion must obey some properties, such as hyper-
bolicity and boundedness of energy from below, in order to satisfy Axiom 5. However,
nothing provides that these properties are enough. We have to check whether our theories
really satisfy this axiom, and if they do not, whether they can be modified in such a way
as to still agree with present observations. I give only some qualitative discussion of this,
without intention to be rigorous.

Let us start from electrodynamics. Electromagnetic fields and charges obey Lenz’s
law, which essentially states that any change tends to be canceled. This speaks in favor
of satisfying Axiom 5. One could argue that classical electrodynamics has problems with
infinities connected with pointlike charges. However, one should not forget that we are
considering a field theory of charges, i.e., continuous distributions of charge. Because of
Axiom 6, there are no initial infinite charge densities and thus there are no initial pointlike
charges. Since the force among charges of the same sign is repulsive, pointlike charges will
never form. Of course, both classical and quantum electrodynamics still cannot determine
the size of the electron and its electromagnetic mass, but the important thing is that classical
electrodynamics does not predict the singularities of this kind.

However, it seems that classical electrodynamics can still lead to some divergences
under very specific initial conditions. For example, one can consider a free electromagnetic
wave which is exactly spherically symmetric and moves toward the center of the sphere.
This will result in an infinite energy density in the center when the wave arrives there.
However, the Lagrangian of electrodynamics is certainly not correct for very strong fields,
so it is very likely that formation of such infinities is prevented on high energy scales,
by some yet-unknown interactions. Similar discussion can be conducted for all other
non-gravitational interactions.

The inconsistency of Einstein’s theory of gravity with Axiom 5 is more obvious than
that of other theories, because it is shown by Hawking and Penrose [20,21] that singularities
will develop under very general initial conditions in Einstein’s classical theory of gravity.
This is one of the motivations to find an alternative theory of gravitation. The status of
singularities in various alternative theories of gravitation is reviewed in [22].

One class of alternative gravity theories are higher derivative theories, based on
addition of higher powers of the curvature tensor to the Lagrangian of Einstein’s theory.
However, even if these terms can prevent cosmological and black-hole-like singularities,
their inconsistency with Axiom 5 is even more obvious. It turns out [23] that in such
theories the energy is not bounded from below and thus runaway solutions appear. Similar
problems appear in various non-gravitational higher derivative theories as well. There
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is no general theorem which provides that every higher derivative partial differential
equation possesses such problems, but such problems are found in physically interesting
cases. This is why we usually disregard higher derivative theories. It is also often claimed
that such theories violate causality. This is because one needs to impose the boundary
conditions at t → ±∞ in order to remove these runaway solutions. The presence of
runaway solutions is also connected to the violation of Einstein causality, i.e., to non-
vanishing (anti)commutators outside the light-cone. This connection can be easily seen on
the example of tachyon fields [24].

Another class of generalizations of Einstein’s theory of gravitation are gauge theories
of gravity [1,25]. The most important of them is the Einstein–Cartan theory, which leads
to the existence of torsion. It turns out that singularities in such theories do not develop
under such wide conditions as in Einstein’s theory, but they can still appear, for example,
for spin-less matter, which does not feel torsion.

The third class of alternative gravity theories, perhaps most in the spirit of the philoso-
phy of this article, are bi-metric theories. The main idea is to separate the metric tensor into
two parts

gµν = γµν + Φµν , (22)

where γµν is a non-dynamical, background metric, while Φµν is a dynamical field, deter-
mined by some differential equations. Such theories are often called “field theories of
gravitation” because such theories are the most similar to other field theories, describing a
field in a fixed background metric. In theories of this kind it is manifest that topology is not
dynamical, but rather fixed by the background metric γµν.

One of the variants of bi-metric theories is the theory developed by Logunov and
others [26–30]. The motivation for this theory has been criticized because this theory was
motivated by some incorrect criticism of Einstein’s theory of gravity. However, Logunov’s
theory itself is self-consistent and still possesses some advantages with respect to Einstein’s
theory. The background metric in this theory is flat Minkowski metric γµν = ηµν. The metric
gµν of a spherically symmetric object with a mass M takes the same form as a Schwarzschild
solution for r � 2MG. However, a small mass m is attributed to the gravitational field
Φµν, whose effect is that the gravitational force becomes repulsive for strong fields, thus
preventing black-hole and cosmological singularities. There are arguments that even a
small mass cannot be attributed to a graviton because it would significantly deviate from
experiments even in a small mass limit [31,32]. However, these arguments are applicable
only to Einstein’s theory of gravity, not to any theory of gravity. The effects of a small
enough graviton mass in Logunov’s theory are in agreement with experiments [33]. A
homogeneous and isotropic universe is infinite in space, exists for an infinitely long time and
oscillates. Thus it seems that this theory satisfies Axiom 5 and is manifestly in agreement
with Axiom 1. However, I am far from saying that this is the right theory. For example, the
corresponding quantum variant is certainly not renormalizable, essentially for the same
reasons as Einstein’s theory, because the same dimensional coupling constant G appears in
the Lagrangian. I am just arguing that this theory could be closer to the right theory which
we do not know yet.

Let us discuss at the end why there are no fields with spin higher than 2. Their status
is similar to the theories with derivatives higher than second; there is no general theorem,
but the simplest theories constructed, for example, in [34–36], possess some pathologies.
They violate Einstein causality, i.e., they propagate faster than light and (anti)commutators
do not vanish outside the light-cone. They also violate Cauchy causality, i.e., the Cauchy
problem is not well posed. The axioms of Section 3 assume, of course, that the Cauchy
problem must be well posed. The general relation between Einstein and Cauchy causality
is discussed in [37].

7. Discussion

As discussed already, only Axioms 1 and 5 are really novel principles, in the sense that
they differ from the conventional point of view and can be tested, at least in principle. Here
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I want to discuss whether these axioms can be rejected or weakened and what consequences
of this would be. I shall also give a few comments on the dimensionality of space.

Axiom 5 essentially says that for any finite everywhere initial condition the solution is
also finite everywhere. This axiom explains the hyperbolicity, i.e., the (1, D− 1) signature
of the metric. It also explains the absence of tachyons, the positivity of energy, and other
related properties of nature. However, from these properties Axiom 5 certainly cannot
be derived.

First, there is a possibility that infinities do exist, but almost no one believes that.
A much more probable possibility is that nature somehow chooses only those initial

conditions that will not lead to infinities. However, such a principle is quite unaesthetic;
Axiom 6 seems much simpler and more natural than this one.

The best alternative is probably the assumption that singularities can occur in classical
physics as long as quantum physics prevents them. However, as we have already discussed,
quantum physics cannot prevent the existence of states which correspond to the singular
behavior at some particular instant of time. The best we can expect from quantum physics
is that it is practically impossible to observe such states. One can be satisfied with this, but
Axiom 5, together with Axiom 8, is more satisfying, because it provides that singular states
do not exist at all.

It is difficult to test Axiom 5 experimentally, because we cannot measure infinities.
However, finding tachyons, for example, would be a strong argument against this axiom,
but this would also violate some widely accepted principles, such as Einstein causality.

A more serious question is whether the topology is really a non-dynamical entity,
as proposed in Axiom 1. I want to emphasize once again that the topology is a more
fundamental concept than the metric tensor, in the sense that the former can be defined
without the latter. Moreover, the Einstein equation is manifestly a theory of the metric tensor,
not of the topology. If the Einstein equation is treated as a Cauchy problem, for example, by
numerical computation, the manifold of space-time points and its topology must be defined
before any computation of the metric tensor is performed. If the Cauchy problem is well
posed, then the space topology cannot change during the time evolution [38]. The fact that
some solutions of the Einstein equation correspond to some topologies still does not mean
that the Einstein equation describes the topology; it merely means that the solution must
be consistent with a given topology. Moreover, the metric tensor does not even uniquely
determine the topology. For example, the flat metric ηµν does not necessarily imply that
the corresponding manifold is infinite; it can also correspond to a torus or a cylinder. A
similar statement is true for any other differential equation; if the solution φ(x) satisfies
some periodicity conditions, we still do not know whether this solution corresponds to
a closed or an infinite manifold (i.e., set of points {x}). If the Einstein equation can say
anything at all about the topology, it can do that only indirectly. At least, this is so in
classical gravity. Can quantum gravity change this? The set of space-time points and its
topology is certainly a non-dynamical entity in all non-gravitational theories, both classical
and quantum. We just argued that this is also so in classical gravity. So I really do not
see why quantum gravity would change this, at least if quantum gravity is based on the
quantization of some classical theory of the metric tensor, such as Einstein’s theory. This can
be seen most explicitly in the Heisenberg picture; one writes the general solution of classical
equations consistent with a given topology and then just promotes all free parameters
to the operators (assuming that one can solve technical problems connected with this).
This can also be seen from the kinematics of the wave function Ψ[gµν(x); t); since it is a
functional of gµν(x), it can be defined only if the set of points {x} is previously well defined.
However, even if one proposes that various topologies must be allowed in quantum theory,
for example, by summing over topologies in a functional integral (although it is not clear
what would then stay on the left-hand side of the analog of (19) and what the analog of
the condition (20) would be), then one would expect that the sum over various signatures,
or even dimensionalities of spacetime should be performed as well, because the Einstein
equation itself does not fix them either. However, for some reason, such a possibility is
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not usually considered. The sum over dimensionalities in quantum gravity would imply
that even in nongravitational quantum theories the sum over dimensionalities should
be performed.

If the topology must be fixed, as I just argued, the next question is what is the topol-
ogy of the Universe? In order for the Cauchy problem to be well posed and canonical
quantization possible, it is necessary that the topology is of the form Σ × R. There are
no inconsistencies (as far as I know) for any choice of a connected, orientable (D − 1)-
dimensional manifold Σ without a boundary. Closed Σs would still allow only oscillatory
solutions, such as eik·x, no longer by the finiteness requirement, but rather by the periodic-
ity requirement. However, the choice Σ = RD−1 is the simplest and leads to the highest
degree of symmetry between space and time. Thus Axiom 1 seems to be very natural. Of
course, this axiom still allows effective closed topologies by an “accident”, if solutions
of the equations of motion satisfy some periodicity conditions. If all fields (and wave
functions) satisfy appropriate periodicity conditions, no observation can distinguish the
“really” closed universe from the periodic one.

At the end, let me make a few comments on the dimensionality of space. The axioms
of this article certainly cannot explain why space is three-dimensional. The answer to this
question should be sought elsewhere. For example, superstring theory predicts that D = 10.
It still cannot explain why six coordinates are compactified, but if they are, this is not in
contradiction with Axiom 1, as I just discussed. Some types of effective compactifications,
such as torus T6, are still possible.

There are interesting attempts to explain why space is three-dimensional based on
certain anthropic considerations [4]. However, such arguments do not seem too convincing
to me.

8. Conclusions

All differences between the role of space and time in nature can be explained by
proposing a set of principles in which none of the space-time coordinates has an a priori
special role. The essence of my approach is a proposal that all dynamical field equations
must be treated as a Cauchy problem. This requires that the topology of spacetime must
be fixed at the predynamical level. Various choices of topology of the form Σ × R are
admissible, but the choice RD is the most natural and is the only one that does not give an
a priori special role to any coordinate. The hyperbolicity, i.e., (1, D− 1) signature of the
metric, can be explained by proposing that any boundary condition that is finite everywhere
must lead to a solution which is also finite everywhere. It also explains the boundedness
of energy from below, the absence of tachyons, and other related properties of nature.
It is quite likely that this principle must be realized in nature because it automatically
prevents all kinds of physical singularities. The time arrow can be explained by proposing
that the boundary condition is ordered, rather than random. The quantization can be
considered as a boundary condition for the field operators. It appears natural to quantize
the physical degrees of freedom only. This, together with the treatment of spacetime as a
non-dynamical background, resolves a lot of conceptual problems in classical and quantum
gravity, including the problem of time in quantum gravity.

It was no intention of this article to be mathematically rigorous. The main intention
was to provide a complete conceptual understanding. A more rigorous treatment, as well
as many technical details of some questions considered here, can be found in references
cited. I hope that future investigations will also put all other ideas of this article into a more
rigorous framework.
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