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Molčanov, K.; Škorić, I. New
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Abstract: This study aims to test the inhibition potency of new thienobenzo/naphtho-triazoles toward
cholinesterases, evaluate their inhibition selectivity, and interpret the obtained results by molecular
modeling. The synthesis of 19 new thienobenzo/naphtho-triazoles by two different approaches
resulted in a large group of molecules with different functionalities in the structure. As predicted, most
prepared molecules show better inhibition of the enzyme butyrylcholinesterase (BChE), considering
that the new molecules were designed according to the previous results. Interestingly, the binding
affinity of BChE for even seven new compounds (1, 3, 4, 5, 6, 9, and 13) was similar to that reported
for common cholinesterase inhibitors. According to computational study, the active thienobenzo-
and naphtho-triazoles are accommodated by cholinesterases through H-bonds involving one of
the triazole’s nitrogens, π-π stacking between the aromatic moieties of the ligand and aromatic
residues of the active sites of cholinesterases, as well as π-alkyl interactions. For the future design of
cholinesterase inhibitors and search for therapeutics for neurological disorders, compounds with a
thienobenzo/naphtho-triazole skeleton should be considered.

Keywords: cholinesterases; photochemistry; synthesis; 1,2,3-triazoles; inhibition

1. Introduction

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are two related en-
zymes existing in plants and vertebrates. In humans, the enzymes share about half of their
amino acid sequence identity [1]. The crucial divergence in their active site is the presence
of 14 aromatic amino acid residues in AChE, which is in tune with eight aromatic and six
aliphatic residues in BChE [2], enabling BChE to hydrolyze substantially more molecules
than AChE [3–6]. Enzyme AChE plays an indispensable physiological role in the body
controlling the channeling of nerve impulses in the cholinergic synapses of the central and
peripheral nervous system by hydrolysis of the neurotransmitter acetylcholine. Moreover,
AChE takes part in many other processes, for instance, dopamine neuronal activation and
the formation of amyloid fibers characteristic of Alzheimer’s disease [7–9]. The role of
BChE is appointed to the catalytic and stoichiometric detoxification of xenobiotics (for
example, organophosphates, cocaine, aspirin, etc.) and the bioactivation of drugs (heroin,
etc.) [10,11]. It is important to emphasize that BChE can co-regulate cholinergic neuro-
transmission, effectively catalyzing acetylcholine hydrolysis [12]. It was established that
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high BChE levels are interconnected with the distinctive neuropathologic characteristic of
Alzheimer’s disease (AD) [13,14]. Both enzymes BChE and AChE are pharmacologically ap-
propriate targets in neurodegenerative disorders. The treatment of these disorders currently
comprises cholinesterase inhibitors such as galantamine, donepezil, or rivastigmine [15].
Therefore, many other compounds acting as inhibitors of cholinesterases are contemplated
as potentially being AD beneficial [16–20].

In our previous research [21,22], we were able to design and synthesize new potential
cholinesterase enzyme inhibitors, which structurally belonged to naphtho/thienobenzo-
triazoles (Figure 1, structures A and B). In doing so, we also showed some selective
interconnection of the cholinesterase inhibitory and anti-inflammatory activity with the
inhibition of TNFα cytokine production. The most potent BChE inhibitor was the allyl-
thienobenzotriazole (Figure 1, structure C, IC50 3.8 µM; IC50 (galantamine) = 7.9 µM),
showing good TNFα production inhibition in lipopolysaccharide (LPS)-stimulated hu-
man peripheral blood mononuclear cells (PBMCs) simultaneously. Very good inhibitory
activity against BChE was also shown by the n-propyl derivative (Figure 1, structure
D, IC50 48.8 µM). Additionally, experimental results showed a much more potent anti-
inflammatory effect of naphtho-triazoles (Figure 1, structure A) compared to thienobenzo-
triazoles (Figure 1, structure B).
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Figure 1. Previously investigated thienobenzo/naphtho-triazoles (A–D) with cholinesterase in-
hibitory activity.

Contrary to that fact, the testing of inhibitory activity confirmed that thienobenzo-
triazoles (Figure 1, structure B) were more potent and selective BChE inhibitors than
the naphtho-triazoles (Figure 1, structure A). Regarding the presented findings, in the
design of new cholinesterase inhibitors (especially for BChE [23]), it is concluded that
the focus should be on thienobenzo-triazoles. As they were previously obtained by the
photochemical methodology [21,22], the same electrocyclization reaction was applied in
this research as well. However, an alternative approach to obtain target structures is
introduced for cases where photocyclization cannot be successfully carried out or ap-
plied. The alternative reaction pathway gives a wide range of molecules with either
dihydro-thienobenzo-triazole moiety or the final aromatized thienobenzo-triazole core to
evaluate their impact on the cholinesterase inhibitory activity. The molecular docking of
the selected new thienobenzo/naphtho-triazoles into the active site of AChE and BChE
provides insight into the formed complexes’ structure and enables the identification of
stabilizing interactions between the potential inhibitor and the enzyme. In this research,
19 thienobenzo/naphtho-triazoles are synthesized, differing in the substituent attached
to the triazole ring or in the aromatic character of the central ring. This study aims to test
their inhibition potency toward cholinesterases (especially BChE), evaluate their inhibition
selectivity, and identify the most significant interactions responsible for experimentally
obtained inhibitory potential.

2. Results and Discussion
2.1. Synthesis of New Thienobenzo/Naphtho-Triazoles 1–19

New naphtho-triazoles 1 and 2 and thienobenzo-triazoles 3–6 were prepared by photo-
cyclization from the corresponding triazolo-stilbenes 1a and 2a and triazolo-thienostilbenes
3a–6a (Scheme 1). Triazolo-stilbenes 1a and 2a and triazolo-thienostilbenes 3a–6a, as mix-
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tures of cis- and trans-isomers, were prepared by the Wittig reaction according to the
described procedure in moderate to good yields (45–60%) [21,24] and transformed to the
new naphtho-triazoles 1 and 2 and thienobenzo-triazoles 3–6 as new biological targets
(Scheme 1). The Wittig reactions were performed with aryl- and 2-thienyl-phosphonium
salts in absolute EtOH, sodium ethoxide, and different triazole aldehydes. The reaction
mixtures were left to stir for 24 h at room temperature with a nitrogen balloon. Although
compounds 1 and 2, the only naphtho-triazoles in this research, are known from a previ-
ous study [21], they were prepared again because their inhibitory activity was not tested
due to insufficient samples in the previous analysis. In aerobic conditions, a mixture of
isomers of compounds 1a–-6a was dissolved in toluene (~2.5 × 10−3 M) and irradiated
with 10 UV lamps at 313 nm in a quartz vessel with the addition of a catalytic amount of
iodine in a photochemical reactor Rayonet for 3–5 h to achieve almost complete conversion.
The obtained photoproducts 1–6 were isolated in high yields (Scheme 1, 50–63%) and
completely characterized by NMR spectroscopy (see Section 3 and Figures S1–S79 in ESI).
The isolated yields of 1–6 from the photochemical reaction are quite similar regardless of
the substituent on the triazole ring, and there are no by-products, while the conversions
are over 90%. The formation of the electrocyclization photoproducts 1–6 was generally
accompanied by the appearance of some high-molecular-weight products, which were not
investigated. In their 1H NMR spectra, the disappearance of the ethylenic protons’ signals
and the protons’ singlets on the 1,2,3-triazole rings can be detected compared with the
starting triazolo(thieno) stilbenes 1a–6a.
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Scheme 1. Reaction pathway for the synthesis of naphtho-triazoles 1 and 2 [21] and thienobenzo-
triazoles 3–6. Numbers given in parentheses represent isolated yields.

For the synthesis of other new thienobenzo-triazoles 7–12, the alternative synthetic route
was used (Scheme 2) and compared with the photochemical synthesis on the example of
the fluorine derivative 4. The reactions started from 4-keto-4,5,6,7-tetrahydrothianaphthene
dissolved in toluene, followed by the addition of 1-azido-4-nitro-benzene, corresponding
amines, acetic acid, and 4 Å molecular sieves. The reaction mixtures were stirred at 100 ◦C
overnight, cooled to room temperature and worked up. The obtained crude dihydro-
thienobenzo-triazoles 13–19 were dissolved in dioxane, and the 2,3-dichloro-5,6-dicyano-
1,4-benzoquinone was added to the solution. Reaction mixtures were stirred at 70 ◦C.
After leaving them overnight, reaction mixtures were cooled to room temperature and
worked up. Previous research [21] showed that photocyclization is not always successful
depending on the substituent on the triazole ring. Hence, developing a different synthetic
route is very profitable in the long run. According to the literature [25–27], in the first
step, a solution of tetrahydrothianaphthene in toluene, with 1-azido-4-nitro-benzene, the
corresponding amine, acetic acid, and 4 Å molecular sieves as a reaction mixture was stirred
at 100 ◦C overnight, then worked up and purified to obtain final products, non-aromatized
dihydro-thienobenzo-triazoles 13–19 (Scheme 2, 27–57%). In the second step, the dihydro
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derivatives 13–19 were aromatized using DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone)
in dioxane by stirring the reaction mixture at 70 ◦C overnight, then working it up and
purifying it to obtain the final product, aromatized thienobenzo-triazoles 4, 7–12 (Scheme 2,
see also Section 3).
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aromatized precursors 13–19 (Numbers given in parentheses represent isolated yields.).

The obtained products 4, 7–12 were isolated in moderate to good isolated yields (20–65%)
and completely characterized by NMR spectroscopy (see Section 3 and Figures S1–S79 in ESI).
In their 1H NMR spectra, the disappearance of the aliphatic protons in the central ring and
two new doublets for the new aromatic protons of the same ring in comparison with the
starting non-aromatized analogs 13–19 can be detected (See Section 3, and Figures S1–S79
in ESI and Figure 2 for the transformation of 17 to 10, and 16 into 9). For most derivatives,
the isolated yields in the two reaction stages (Scheme 2) are within similar limits to the path
via photocyclization (Scheme 1). Only the synthesis of derivatives via an alternative route
is somewhat less efficient for compounds 13 and 14 for the first steps, and compounds
10 and 11 for the second stage of synthesis (Scheme 2). Specifically for the synthesis of
derivative 4, the overall yield is slightly better for the first synthetic route. However, this
new approach via condensation and aromatization applies to all derivatives, and remains
an important choice in further research.

2.2. Inhibitory Activity of Thienobenzo/Naphtho-Triazoles 1–19 toward Enzymes Cholinesterases

Given the promising results of the previous study [21], we conducted this research
to test the inhibitory activity of newly synthesized thienobenzo/naphtho-triazoles 1–19
toward cholinesterase enzymes, primarily BChE. Introducing new substituents on the
triazole ring can show whether there is an additional improvement in biological activity; it
can identify the relationship between structure and inhibitory activity in the new group of
prepared analogs.
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Figure 2. Comparison of the 1H NMR spectra (CDCl3) of investigated compounds (a) 17; (b) 10;
(c) 16; (d) 9.

While compound 2 had the best anti-inflammatory activity of all the tested compounds
in the previous series [21], it shows no inhibitory activity towards cholinesterases. From the
aforementioned experimental data, it can be concluded that the anti-inflammatory effect
of compound 2 is not caused by the inhibition of cholinesterase but by some other target,
such as the TNFα receptor, which remains to be further investigated. However, compound
1, with ten times weaker anti-inflammatory activity than 2, is one of the best potential
cholinesterase inhibitors among all synthesized naphtho-triazoles so far (Tables 1 and S3).
Although it has excellent enzymatic activity, additional work on SAR (structure-activity re-
lationship) should be done to see the effect in experiments related to a particular pathology,
for instance, inflammation. For naphtho-triazoles, the suitable combination of substituents
at the aryl and triazole ring can lead to promising inhibitory activity. The best inhibition of
both enzymes among newly prepared thienobenzo-triazoles 3–19 was shown by compound
4, possessing the para-F-benzyl substituent on the triazole ring (Tables 1 and S3).

The comparison of molecules 4, 7–12 with analogues 13–19 possessing a nonaromatic
central ring indicates that the substituent on the triazole ring has more influence on the
inhibitory activity than the structural feature related to whether the molecule’s central ring
is aromatized. Notably, the IC50 values for BChE of compounds 1, 3, 4, 5, 6, 9, and 13 were
similar to the common reversible cholinesterase inhibitor huperzine (IC50 53.6 µM) [28]
and just somewhat weaker than galantamine (IC50 7.9 µM). In previous research, the
n-propyl derivative of the thienobenzo-triazole (Figure 1, structure D) also showed very
good inhibitory activity toward BChE (IC50 48.8 µM), which is in the range of the commons
mentioned above. Analogs 3, 5, and 9 stand out as the most effective BChE inhibitors:
compound 9 is a selective compound toward BChE, showing the most intense inhibition
among all new derivatives 1–19. Of these three thienobenzotriazole analogs, two have
a para-OCH3 group on the triazole ring (analogs 3 and 9), and the third most prominent
compound (5) has an additional thiophene nucleus. Interestingly, regarding the selective
inhibitory activity towards AChE, dihydro-thienobenzo-triazole 17 (but not its aromatized
analog) showed the best biological activity.
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Table 1. Calculated IC50 values for compounds 1–19.

Compound 1 Structure IC50 (µM)
AChE

IC50 (µM)
BChE Compound Structure IC50 (µM)

AChE
IC50 (µM)

BChE

1
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2.3. Computational Study of Thienobenzo/Naphtho-Triazoles 1–19 as Cholinesterase Inhibitors

Among experimentally evaluated compounds showing inhibitory activity toward both
cholinesterases, the best results were achieved with naphtho-triazole 1 and thienobenzo-
triazole 4. The most promising candidate within the set of active molecules was compound
17, while thienobenzo-triazole 9 showed excellent inhibitory potential toward BChE, as
shown in Table 1. We performed a molecular docking study to obtain the structures and
identify stabilizing interactions in the complexes between the best-performing compounds
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and the cholinesterases’ active site. The structures of the most stable complexes of 1 and 4
with the active site of AChE, obtained by docking, are presented in Figure 3. We used the
crystal structure obtained from an electric eel (Electrophorus electricus, 1EEA.pdb), but it
should be kept in mind that this structure does not completely reproduce the exact enzyme
sequence as in the electric eel. Due to this structure’s low resolution, it includes an amino
acid sequence taken from the tertiary structure of Torpedo californica AChE (see details in
Section 3.6).
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triazole 4 (b). Molecules of the potential inhibitors are presented using a ball-and-stick model.

The structure of the complex between the naphtho-triazole 1 and the active site of
AChE reveals several stabilizing interactions. The orientation of the triazole toward the
peripheral anionic site enables the formation of the hydrogen bond between one of the
tw sp2 nitrogens in the triazole ring and the -OH group of Tyr121. The strong interactions
between triazole and Tyr121 have been reported in earlier studies on AChE inhibitors
containing a triazole ring [29–32]. Furthermore, the isopropyl at triazole is involved in
the π-alkyl interaction with Tyr334, another tyrosine from the peripheral anionic site. The
“face-on” dispersive attraction between the chlorine of the ligand and Trp84 is identified:
the distance between Cl and the center of the tryptophan aromatic ring is 3.8 Å, with the
carbon atom (of the same ring) closest to the chlorine at 3.5 Å from the Cl. The difference
between these two values up to 0.3 Å defines this Cl-π interaction as a “face-on”, while the
difference larger than 0.3 Å classifies it as an “edge on” [33]. Finally, π-π stacking between
the aromatic core of the ligand and some residues is also observed: the residues engaged
in it are His440, Phe330, and Phe290. Figure 3b shows the complex between thienobenzo-
triazole 4 and the active site of AChE. Similar to the structure of 1 docked into AChE, the
hydrogen bond between triazole nitrogen and the -OH group of Tyr 121 is formed. The
phenyl core of the ligand is involved in perpendicular π-π stacking with His330, while
the thiophene ring achieves a similar interaction with Phe330. The fluorinated phenyl at
triazole is also engaged in π-π stacking with Tyr334.

Compound 17, the best-performing potential inhibitor of AChE, has a nonaromatic
middle core. The structure of 17 docked in the active site of AChE (Figure 4) shows that 17
takes a pose similar to that of 1 and 4, with a triazole ring oriented toward the peripheral
anionic site. Thus, the H-bond between triazole nitrogen and the -OH group of Tyr121
occurs again.
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Figure 4. The structure of the complex between compound 17 (presented with a ball-and-stick model)
and the active site of AChE. Hydrogens of the enzyme residues are omitted for clarity.

The π-alkyl attraction is observed between the ethyl chain at triazole and Tyr334, while
thiophene engages in π-π stacking with His440, Phe330, and Trp84.

As already mentioned, naphtho -triazole 1 and thienobenzo-triazole 4 were the most
active among compounds that showed inhibitory potential toward both cholinesterases;
therefore, we performed molecular docking of 1 and thienobenzo-triazole 4 into the active
site of BChE too. Here, we used the structure of the human enzyme (see Section 3.6).
Structures of obtained complexes are presented in Figure 5. The most stable pose obtained
by the docking of compound 1 in the active site of BChE shows that, again, the H-bond
with one of the tyrosines (Tyr332) in the peripheric anionic site is formed. Additional
stabilizing interactions include π-π stacking between the naphthalene core of 1 and Trp82.
For molecule 4 in BChE, the H-bond(s) between one of sp2 triazole nitrogens and the
proton-donating residue was not observed; however, the sulfur of the thiophene is engaged
in the interaction with Tyr332. The remaining aromatic rings of the ligand are involved in
π-π stacking with Trp82 and His440, as presented in Figure 5b.
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Finally, the most promising candidate for inhibition of BChE is compound 9, with an
excellent experimental value of IC50 (Table 1). The structure of the BChE active site docked
with 9, shown in Figure 6, reveals that there are two possible H-bonds: one is formed
between the triazole nitrogen and hydroxyl of the Tyr128 (analogously to the occurrence of
hydrogen bond between triazole nitrogen and Tyr121 in AChE), and the other is possible
due to the proximity of the oxygen of the ligand’s methoxy group and proton of the -OH
group of the Tyr332. π-π stacking between the triazole ring of the ligand and the residue
Trp82 is present, as well as π-alkyl interaction between the ethyl (that connects triazole and
methoxy phenyl) and His438.
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According to experimental data in Table 1, the most promising inhibitory potential
toward BChE was shown by compounds 1, 3, 4, 5, 6, 9, and 13. The inspection of their free
energies of binding (∆Gbind) estimated by molecular docking shows that they are compara-
ble with galantamine, whose ∆Gbind is −6.26 kcal mol−1, obtained by the same docking
procedure. Free energies of binding for these compounds vary from −5.85 kcal mol−1

for compound 6 to −6.37 kcal mol−1 for molecule 9, the latter being even slightly lower
than the value for galantamine (Table S1). However, it should be considered that the
docking study gives only a crude estimation of ∆Gbind, and does not intend to offer an
exact thermodynamical description of our systems.

The results of the docking study can show the possibilities of the ligands’ placement
into the active site. They can identify the main interactions between the new ligands and
the enzymes, thus helping to rationalize inhibitor activities observed by the experiment.
In summary, the thienobenzo- and naphtho-triazoles tested here are accommodated by
cholinesterases through H-bonds involving one of the triazole’s nitrogens, π-π stacking
between the aromatic moieties of the ligand, and aromatic residues of the active sites of
cholinesterases, as well as π-alkyl interactions.
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2.4. Crystal Structure of Compound 5

The crystal structure of compound 5 is also successfully determined. It is one of the
most active potential BChE inhibitors in this research, which is why information about it is
gaining attention. The asymmetric unit of 5 contains two symmetry-independent molecules
labeled A and B (Figure 7).
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Their conformations are enantiomeric-like (Figure 8a). The molecules stack in columns
parallel to the axis a in an alternating fashion ( . . . ABAB . . . ) (Figure 8b). The stacks are
laterally connected by weak C-H···N hydrogen bonds.
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3. Materials and Methods
3.1. General Remarks

Nuclear magnetic resonance (NMR) spectroscopic data for 1H and 13C nuclei were
recorded at room temperature on Bruker Avance 300 and 600 MHz spectrometers. Deuter-
ated chloroform, CDCl3, with tetramethylsilane as standard, was used for recording NMR
spectra. Chemical shifts were reported in parts per million. All used solvents were commer-
cially available and were purified by distillation. Anhydrous magnesium sulfate, MgSO4,
was used for drying organic layers after extractions. Column chromatography was per-
formed on columns with silica gel (60 Å, technical grade) and by a Biotage Isolera system
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utilizing a silica column (Interchimthe Si-HC puriFlash, 50 µ) with the appropriate sol-
vent system. The abbreviations used in this experimental procedure were NMR—nuclear
magnetic resonance, Cy-hex—cyclohexane, EtOAc—ethyl acetate, PE—petroleum ether,
E—diethylether, EtOH—ethanol, MeOH—methanol, DCM—dichloromethane. Preparative
photochemical reactions were performed in a closed vessel in a photochemical reactor,
Rayonet, equipped with UV lamps of 313 nm. High-resolution mass spectrometry (HRMS)
analyses were carried out on a mass spectrometer (MALDI TOF/TOF analyzer) equipped
with an Nd:YAG laser operating at 355 nm with a fitting rate of 200 Hz in the positive (H+)
or negative (-H) ion reflector mode. All solvents were removed from the solutions by a
rotary evaporator under reduced pressure.

3.2. General Procedure for the Synthesis of Starting Compounds 1a–6a

Starting compounds 1a–6a were mixtures of cis- and trans-isomers of heterostilbenes
synthesized by the Wittig reaction. The reaction apparatus was purged with nitrogen for
15 min before adding the reagents. In three-necked round-bottom flasks (100 mL), solutions
of the 2-thienyl-phosphonium salt (11 mmol) were dissolved in 50 mL of absolute EtOH
(dried on 3 Å sieves). Solutions of sodium ethoxide (11 mmol, 1.1 eq of Na dissolved in
10 mL of absolute ethanol) were added in strictly anhydrous conditions under nitrogen
dropwise. Different triazole aldehydes (11 mmol) were added directly to stirred solutions.
The reaction mixtures were left to stir for 24 h at room temperature with a nitrogen balloon.
After removing the solvent by a rotary evaporator under reduced pressure, the solid
reaction mixtures were extracted with toluene p.a. (3 × 25 mL). The organic layers were
dried under anhydrous MgSO4. Final products as mixtures of cis- and trans-isomers of
1a–6a were isolated by column chromatography on silica gel using PE/E as an eluent and
confirmed by 1H NMR spectroscopy and HRMS analyses.

3.3. General Procedure for the Synthesis of the Electrocyclization Photoproducts 1–6

Mixtures of previously synthesized compounds 1a–6a were dissolved in toluene p.a.
(~2.5 × 10−3 M) and transferred to a quartz vessel (50 mL) with the addition of a catalytic
amount of iodine and irradiated with 10 UV lamps at 313 nm in a Rayonet photochemical
reactor for 3–5 h to achieve almost complete conversions. After removing the solvent by a
rotary evaporator under reduced pressure, the photoproducts 3–6 (for the spectroscopic
data of compounds 1 and 2, see [21]) were purified by column chromatography using
PE/E (10%) as eluent from the traces of the starting substrates (in the first fractions) and
were completely spectroscopically characterized by NMR and HRMS measurements.
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1-(4-methoxybenzyl)-1H-thieno [3’,2′:3,4]benzo[1,2-d][1,2,3]triazole (3): 7 mg 

(isolated yield 55%); Rf (PE/E (10%)) = 0.53; 1H NMR (CDCl3, 300 MHz) δ/ppm: 7.99 (d, J = 
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128.6, 127.9, 127.7, 127.1, 122.7, 120.3, 119.2, 116.1, 114.5, 55.3, 52.6; HRMS (m/z) for 
C16H13N3OS (obtained for the pure product): [M + H]+calcd = 295.0779, [M + H]+measured = 
295.0774. 
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yield 59%); Rf (PE/E (10%)) = 0.27; 1H NMR (CDCl3, 300 MHz) δ/ppm: 8.00 (d, J = 8.9 Hz, 
1H), 7.82 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 5.5 Hz, 1H), 7.49 (d, J = 5.5 Hz, 1H), 7.21–7.16 (m, 
2H), 7.01 (t, J = 8.9 Hz, 2H), 6.09 (s, 2H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 162.6 (d, JC-F = 
250 Hz), 144.7, 140.2, 130.9, 128.6, 128.4, 127.9, 122.6, 119.9, 119.3, 116.2, 116.1, 52.4; HRMS 
(m/z) for C15H10FN3S (obtained for the pure product): [M + H]+calcd = 283.0580, [M + 
H]+measured = 283.0575. 

1-(thiophen-2-ylmethyl)-1H-thieno[3’,2′:3,4]benzo[1,2-d][1,2,3]triazole (5): 23 mg 
(isolated yield 50%); Rf (PE/E (10%)) = 0.32; 1H NMR (CDCl3, 300 MHz) δ/ppm: 7.99 (d, J = 
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NMR (CDCl3, 150 MHz) δ/ppm: 144.6, 140.2, 137.3, 128.3, 127.8, 127.3, 126.5, 126.1, 122.6, 
120.1, 119.3, 116.1, 48.4; HRMS (m/z) for C13H9N3S2: [M + H]+calcd = 271.0238, [M + H]+measured 
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1-(4-fluorobenzyl)-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole (4): 30 mg (isolated

yield 59%); Rf (PE/E (10%)) = 0.27; 1H NMR (CDCl3, 300 MHz) δ/ppm: 8.00 (d, J = 8.9 Hz,
1H), 7.82 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 5.5 Hz, 1H), 7.49 (d, J = 5.5 Hz, 1H), 7.21–7.16 (m,
2H), 7.01 (t, J = 8.9 Hz, 2H), 6.09 (s, 2H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 162.6 (d,
JC-F = 250 Hz), 144.7, 140.2, 130.9, 128.6, 128.4, 127.9, 122.6, 119.9, 119.3, 116.2, 116.1, 52.4;
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HRMS (m/z) for C15H10FN3S (obtained for the pure product): [M + H]+
calcd = 283.0580,

[M + H]+
measured = 283.0575.

1-(thiophen-2-ylmethyl)-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole (5): 23 mg (iso-
lated yield 50%); Rf (PE/E (10%)) = 0.32; 1H NMR (CDCl3, 300 MHz) δ/ppm: 7.99 (d,
J = 8.8 Hz, 1H), 7.82 (d, J = 9.2 Hz, 1H), 7.69 (d, J = 5.6 Hz, 1H), 7.63 (d, J = 5.58 Hz, 1H),
7.24 (dd, J = 4.9, 1.2 Hz, 1H), 7.02–7.01 (m, 1H), 6.93 (dd, J = 5.0, 3.6 Hz, 1H), 6.27 (s,
2H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 144.6, 140.2, 137.3, 128.3, 127.8, 127.3, 126.5,
126.1, 122.6, 120.1, 119.3, 116.1, 48.4; HRMS (m/z) for C13H9N3S2: [M + H]+

calcd = 271.0238,
[M + H]+

measured = 271.0236.
Ethyl 3-(1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazol-1-yl)propanoate (6): 57 mg (iso-

lated yield 63%); Rf (DCM/EtOAc (20%)) = 0.65; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.95
(d, J = 8.9 Hz, 1H), 7.89 (d, J = 5.5 Hz, 1H), 7.83 (d, J = 9.1 Hz, 1H), 7.74 (d, J = 5.6 Hz, 1H),
5.21 (t, J = 7.5 Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 3.19 (t, J = 8.2 Hz, 2H), 1.23 (t, J = 7.1 Hz,
3H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 150.3, 128.1, 119.7, 119.2, 116.1, 61.2, 45.1,
34.5, 14.0 (3 singlets are missing); HRMS (m/z) for C13H13N3S: [M + H]+

calcd = 275.0728,
[M + H]+

measured = 275.0727.

3.4. General Procedure for the Synthesis of the Thienobenzo-Triazoles 7–12

4-keto-4,5,6,7-tetrahydrothianaphthene (1 eq) was dissolved in toluene.
1-azido-4-nitro-benzene (1 eq), corresponding amines (1.4 eq), acetic acid (0.3 eq), and 4 Å
molecular sieves were added, and reaction mixtures were stirred at 100 ◦C overnight.
Reaction mixtures were cooled to room temperature, and solvents were removed by a
rotary evaporator under reduced pressure. Oily products were extracted with EtOAc and
water. Organic layers were dried over sodium sulfate, Na2SO4 filtered, and evaporated
until dryness to obtain crude products 13–19. 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(1.2 eq) was added to solutions of thienobenzo-triazoles 13–19 (1 eq) in dioxane. Reaction
mixtures were stirred at 70 ◦C. After leaving them overnight, the reaction mixtures were
cooled to room temperature and extracted with EtOAc and 1M KOH. Organic layers were
dried over Na2SO4, filtered, and evaporated till dryness to obtain crude products 7–12.
Crude products were purified by a system utilizing silica columns (Interchim Si-HC
puriFlash, 50 µ) using an appropriate solvent system. Appropriate fractions were
combined and evaporated under reduced pressure to obtain the final pure products 7–12.
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1-(4-(trifluoromethyl)benzyl)-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole (7): 71 mg
(isolated yield 46%); Rf (Cy-hex/EtOAc (50%)) = 0.47; 1H NMR (CDCl3, 600 MHz) δ/ppm:
8.04 (d, J = 9.0 Hz, 1H), 7.86 (dd, J = 8.9, 0.8 Hz, 1H), 7.61–7.60 (m, 3H), 7.46 (dd, J = 5.6,
0.8 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 6.21 (s, 2H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 144.9,
140.5, 139.3, 130.8, 128.8, 128.4, 127.1, 126.4, 122.6, 119.8, 119.7, 116.4, 52.7 (the characteristic
CF3 coupling is not detected due to an insufficient number of scans); HRMS (m/z) for
C16H10F3N3S: [M+H]+

calcd = 333.0548, [M + H]+
measured = 333.0542.

1-(4-(trifluoromethoxy)benzyl)-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole (8): 98 mg
(isolated yield 59%); Rf (Cy-hex/EtOAc (50%)) = 0.55; 1H NMR (CDCl3, 600 MHz) δ/ppm:
8.03 (d, J = 8.9 Hz, 1H), 7.85 (d, J = 9.0 Hz, 1H), 7.61 (d, J = 5.8 Hz, 1H), 7.51 (d, J = 5.5 Hz,
1H), 7.26 (d, J = 9.2 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.15 (s, 2H); 13C NMR (CDCl3, 150 MHz)
δ/ppm: 149.3, 144.8, 140.4, 134.0, 128.8, 128.3, 128.3, 127.7, 119.9. 119.6, 116.3, 52.4 (the
characteristic CF3 coupling is not detected due to an insufficient number of scans); HRMS
(m/z) for C16H10F3N3OS: [M + H]+

calcd = 349.0497, [M + H]+
measured = 349.0489.
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1-(4-methoxyphenethyl)-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole (9): 106 mg
(isolated yield 56%); Rf (Cy-hex/EtOAc (50%)) = 0.43; 1H NMR (CDCl3, 600 MHz) δ/ppm:
7.99 (d, J = 9.1 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.74 (d, J = 5.6 Hz, 1H), 7.71 (d, J = 5.6 Hz,
1H), 7.13 (d, J = 8.2 Hz, 2H), 6.85 (d, J = 8.2 Hz, 2H), 5.11 (t, J = 7.9 Hz, 2H), 3.79 (s, 3H),
3.33 (t, J = 8.0 Hz, 2H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 158.7, 144.3, 139.9, 129.7, 128.9,
127.8, 122.5, 119.4, 118.9, 116.2, 114.2, 101.7, 55.3, 51.1, 35.7; HRMS (m/z) for C17H15N3OS:
[M + H]+

calcd = 309.0936, [M + H]+
measured = 309.0928.
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288.1040. 

4-(2-(1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazol-1-yl)ethyl)morpholine (10): 54 mg
(isolated yield 20%); Rf (DCM/MeOH (10%)) = 0.64; 1H NMR (CDCl3, 600 MHz) δ/ppm:
7.99 (d, J = 8.7 Hz, 1H), 7.84 (d, J = 9.1 Hz, 1H), 7.82 (d, J = 5.6 Hz, 1H), 7.73 (d, J = 5.5 Hz,
1H), 5.06 (t, J = 7.1 Hz, 2H), 3.68 (t, J = 4.4 Hz, 4H), 3.03 (t, J = 7.7 Hz, 2H), 2.58 (t,
J = 4.6 Hz, 4H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 144.5, 140.2, 128.8, 128.2, 122.8, 119.8,
119.2, 116.4, 66.9, 57.8, 53.9, 47.7; HRMS (m/z) for C14H16N4OS: [M + H]+

calcd = 288.1045,
[M + H]+

measured = 288.1040.
4-(3-(1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazol-1-yl)propyl)morpholine (11): 50 mg

(isolated yield 33%); Rf (DCM/MeOH (10%)) = 0.68; 1H NMR (CDCl3, 600 MHz) δ/ppm:
7.99 (d, J = 8.9 Hz, 1H), 7.90 (d, J = 5.7 Hz, 1H), 7.83 (d, J = 9.0 Hz, 1H), 7.71 (d, J = 5.7 Hz, 1H),
5.03 (t, J = 6.5 Hz, 2H), 3.66 (t, J = 4.1 Hz, 4H), 2.44 (t, J = 6.5 Hz, 2H), 2.40 (s, 4H), 2.28–2.24
(m, 2H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 144.4, 140.1, 128.9, 127.9, 122.9, 120.1, 119.2,
116.3, 67.1, 55.6, 53.8, 47.8, 27.2; HRMS (m/z) for C15H18N4OS: [M + H]+

calcd = 302.1201,
[M + H]+

measured = 302.1199.
4-(1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazol-1-yl)butan-1-ol (12): 34 mg (isolated

yield 63%); Rf (DCM/MeOH (10%)) = 0.51; 1H NMR (CDCl3, 600 MHz) δ/ppm: 7.98
(d, J = 8.9 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 5.6 Hz, 1H), 7.72 (d, J = 5.6 Hz, 1H),
4.99 (t, J = 7.1 Hz, 2H), 3.75 (t, J = 5.7 Hz, 2H), 2.23–2.19 (m, 2H), 1.73–1.69 (m, 2H), 1.67 (s,
1H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 144.6, 140.0, 128.7, 128.2, 122.9, 119.9, 119.2,
116.2, 62.2, 49.6, 29.5, 26.8; HRMS (m/z) for C12H13N3OS: [M + H]+

calcd = 247.0779,
[M + H]+

measured = 247.0776.
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1-(4-fluorobenzyl)-4,5-dihydro-1H-thieno[3’,2′:3,4]benzo[1,2-d][1,2,3]triazole (13): 

159 mg (isolated yield 28%); Rf (DCM/EtOAc (20%)) = 0.50; 1H NMR (CDCl3, 600 MHz) 
δ/ppm: 7.21–7.19 (m, 2H), 7.17 (d, J = 5.2 Hz, 1H), 7.06–7.03 (m, 2H), 6.96 (d, J = 5.1 Hz, 1H), 
5.72 (s, 2H), 3.17 (t, J = 2.6 Hz, 4H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 168.8, 166.2, 163.4, 
161.8, 141.7, 128.5, 124.4, 121.3, 116.1, 104.9, 51.8, 24.5, 21.3; HRMS (m/z) for C15H12FN3S: 
[M + H]+calcd = 285.0736, [M + H]+measured = 285.0731. 

1-(4-(trifluoromethyl)benzyl)-4,5-dihydro-1H-thieno[3’,2′:3,4]benzo[1,2-
d][1,2,3]triazole (14): 181 mg (isolated yield 27%); Rf (DCM/EtOAc (20%)) = 0.54; 1H NMR 
(CDCl3, 600 MHz) δ/ppm: 7.63 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 5.2 
Hz, 1H), 6.92 (d, J = 5.3 Hz, 1H), 5.81 (s, 2H), 3.21–3.15 (m, 4H); 13C NMR (CDCl3, 150 MHz) 
δ/ppm: 162.2, 157.9, 152.2, 127.1, 126.3, 124.8, 124.6, 121.6, 121.2, 100.6, 52.2, 24.7, 21.5; 
HRMS (m/z) for C16H12F3N3S: [M + H]+calcd = 335.0704, [M + H]+measured = 335.0695. 

1-(4-(trifluoromethoxy)benzyl)-4,5-dihydro-1H-thieno[3’,2′:3,4]benzo[1,2-
d][1,2,3]triazole (15): 100 mg (isolated yield 43%); Rf (DCM/EtOAc (20%)) = 0.53; 1H NMR 
(CDCl3, 600 MHz) δ/ppm: 7.26 (d, J = 9.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 5.3 
Hz, 1H), 6.96 (d, J = 5.3 Hz, 1H), 5.75 (s, 2H), 3.18 (t, J = 1.9 Hz, 4H); 13C NMR (CDCl3, 150 
MHz) δ/ppm: 165.7, 143.1, 133.7, 128.2, 124.5, 124.4, 123.1,121.5, 121.3, 121.1, 103.2, 51.8, 
24.6, 21.3; HRMS (m/z) for C16H12F3N3OS: [M + H]+calcd = 351.0653, [M + H]+measured = 351.0647. 

1-(4-(trifluoromethoxy)benzyl)-4,5-dihydro-1H-thieno[3’,2′:3,4]benzo[1,2-
d][1,2,3]triazole (16): 252 mg (isolated yield 41%); Rf (DCM/EtOAc (20%)) = 0.43; 1H NMR 
(CDCl3, 600 MHz) δ/ppm: 7.26 (d, J = 4.9 Hz, 1H), 7.13 (d, J = 5.1 Hz, 1H), 7.10 (d, J = 8.3 
Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 4.69 (t, J = 7.8 Hz, 2H), 3.79 (s, 3H), 3.21 (t, J = 7.8 Hz, 2H), 
3.14 (s, 4H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 158.8, 142.7, 139.4, 129.9, 129.1, 125.1, 
124.5, 121.0, 117.7, 114.4, 55,4, 50.9, 36.1, 24.8, 21.4; HRMS (m/z) for C17H17N3OS: [M + 
H]+calcd = 311.1092, [M + H]+measured = 311.1090. 

1-(4-fluorobenzyl)-4,5-dihydro-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole (13): 159 mg
(isolated yield 28%); Rf (DCM/EtOAc (20%)) = 0.50; 1H NMR (CDCl3, 600 MHz) δ/ppm:
7.21–7.19 (m, 2H), 7.17 (d, J = 5.2 Hz, 1H), 7.06–7.03 (m, 2H), 6.96 (d, J = 5.1 Hz, 1H), 5.72
(s, 2H), 3.17 (t, J = 2.6 Hz, 4H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 168.8, 166.2, 163.4,
161.8, 141.7, 128.5, 124.4, 121.3, 116.1, 104.9, 51.8, 24.5, 21.3; HRMS (m/z) for C15H12FN3S:
[M + H]+

calcd = 285.0736, [M + H]+
measured = 285.0731.

1-(4-(trifluoromethyl)benzyl)-4,5-dihydro-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole
(14): 181 mg (isolated yield 27%); Rf (DCM/EtOAc (20%)) = 0.54; 1H NMR (CDCl3, 600 MHz)
δ/ppm: 7.63 (d, J = 8.6 Hz, 2H), 7.32 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 5.2 Hz, 1H), 6.92 (d,
J = 5.3 Hz, 1H), 5.81 (s, 2H), 3.21–3.15 (m, 4H); 13C NMR (CDCl3, 150 MHz) δ/ppm: 162.2,
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157.9, 152.2, 127.1, 126.3, 124.8, 124.6, 121.6, 121.2, 100.6, 52.2, 24.7, 21.5; HRMS (m/z) for
C16H12F3N3S: [M + H]+

calcd = 335.0704, [M + H]+
measured = 335.0695.

1-(4-(trifluoromethoxy)benzyl)-4,5-dihydro-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole
(15): 100 mg (isolated yield 43%); Rf (DCM/EtOAc (20%)) = 0.53; 1H NMR (CDCl3, 600 MHz)
δ/ppm: 7.26 (d, J = 9.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 5.3 Hz, 1H), 6.96 (d,
J = 5.3 Hz, 1H), 5.75 (s, 2H), 3.18 (t, J = 1.9 Hz, 4H); 13C NMR (CDCl3, 150 MHz) δ/ppm:
165.7, 143.1, 133.7, 128.2, 124.5, 124.4, 123.1,121.5, 121.3, 121.1, 103.2, 51.8, 24.6, 21.3; HRMS
(m/z) for C16H12F3N3OS: [M + H]+

calcd = 351.0653, [M + H]+
measured = 351.0647.

1-(4-(trifluoromethoxy)benzyl)-4,5-dihydro-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazole
(16): 252 mg (isolated yield 41%); Rf (DCM/EtOAc (20%)) = 0.43; 1H NMR (CDCl3, 600 MHz)
δ/ppm: 7.26 (d, J = 4.9 Hz, 1H), 7.13 (d, J = 5.1 Hz, 1H), 7.10 (d, J = 8.3 Hz, 2H), 6.84 (d,
J = 8.5 Hz, 2H), 4.69 (t, J = 7.8 Hz, 2H), 3.79 (s, 3H), 3.21 (t, J = 7.8 Hz, 2H), 3.14 (s, 4H); 13C
NMR (CDCl3, 150 MHz) δ/ppm: 158.8, 142.7, 139.4, 129.9, 129.1, 125.1, 124.5, 121.0, 117.7,
114.4, 55,4, 50.9, 36.1, 24.8, 21.4; HRMS (m/z) for C17H17N3OS: [M + H]+

calcd = 311.1092,
[M + H]+

measured = 311.1090.
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4-(2-(4,5-dihydro-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazol-1-yl)ethyl)morpholine
(17): 328 mg (isolated yield 57%); Rf (DCM/MeOH (10%)) = 0.64; 1H NMR (CDCl3,
600 MHz) δ/ppm: 7.29–7.27 (m, 2H), 4.65 (t, J = 7.4 Hz, 2H), 3.67 (t, J = 4.5 Hz, 4H),
3.18–3.12 (m, 4H), 2.91 (t, J = 7.4 Hz, 2H), 2.53 (t, J = 4.7 Hz, 4H); 13C NMR (CDCl3,
150 MHz) δ/ppm: 142.6, 139.6, 125.2, 124.6, 121.2, 113.9, 67.0, 58.0, 53.9, 47.2, 24.8, 21.5;
HRMS (m/z) for C14H18N4OS: [M + H]+

calcd = 290.1201, [M + H]+
measured = 290.1197.

4-(3-(4,5-dihydro-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazol-1-yl)propyl)morpholine
(18): 224 mg (isolated yield 45%); Rf (DCM/MeOH (10%)) = 0.63; 1H NMR (CDCl3,
600 MHz) δ/ppm: 7.36 (d, J = 5.7 Hz, 1H), 7.27 (d, J = 5.2 Hz, 1H), 4.62 (t, J = 7.6 Hz, 2H), 3.69
(t, J = 4.9 Hz, 4H), 3.18–3.12 (m, 4H), 2.42–2.40 (m, 6H), 2.16–2.11 (m, 2H); 13C NMR (CDCl3,
150 MHz) δ/ppm: 139.3, 128.6, 125.0, 124.2, 121.3, 112.3, 66.9, 55.2, 53.6, 46.9, 26.9, 24.6, 21.2;
HRMS (m/z) for C15H20N4OS: [M + H]+

calcd = 304.1358, [M + H]+
measured = 304.1356.

4-(4,5-dihydro-1H-thieno[3′,2′:3,4]benzo[1,2-d][1,2,3]triazol-1-yl)butan-1-ol (19): 172 mg
(isolated yield 35%); Rf (DCM/MeOH (10%)) = 0.54; 1H NMR (CDCl3, 600 MHz) δ/ppm:
7.29 (d, J = 5.5 Hz, 1H), 7.25 (d, J = 5.4 Hz, 1H), 4.60 (t, J = 6.6 Hz, 2H), 3.73 (t, J = 6.6 Hz,
2H), 3.18–3.12 (m, 4H), 2.11–2.06 (m, 2H), 1.71–1.66 (m, 2H), 1.61 (s, 1H); 13C NMR (CDCl3,
150 MHz) δ/ppm: 142.6, 139.5, 125.1, 124.7, 121.3, 116.6, 62.1, 49.1, 29.5, 26.8, 24.7, 21.4;
HRMS (m/z) for C12H15N3OS: [M + H]+

calcd = 249.0936, [M + H]+
measured = 249.0935.

3.5. Cholinesterase Inhibition Activity Measurements

AChE and BChE inhibition was determined using a modified spectrophotometric
Ellman’s method [34]. Acetylthiocholine iodide (ATChI), S-butyrylthiocholine iodide
(BTChI), AChE (EC 3.1.1.7, Electrophorus electricus), BChE (EC 3.1.1.8, equine serum) and
Trisma base were purchased from Sigma-Aldrich (St. Louis, MO, USA), while Ellman’s
reagent 5,50-dithiobis-(2-nitrobenzoic acid) (DTNB) was purchased from Zwijndrecht
(Antwerpen, Belgium). The reaction mixture contained 180 µL Tris-HCl buffer (50 mM,
pH 8.0), 10 µL of enzyme prepared in 20 mM Tris-HCl buffer, pH 7.5 (final concentration
0.03 U/mL), and 10 µL of tested solution (final concentrations 10–500 µM in ethanol,
depending on solubility). The assayed solution of the test compound was pre-incubated
for 5 min at 4 ◦C. The incubation time of 5 min is the exposure time of the enzyme to the
inhibitor. The sensitivity of the in vitro assay can be improved by increasing the contact
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time between the enzyme and the inhibitor. It is carried out at a low temperature and
in the dark so that there are no physico-chemical changes in the inhibitors or enzymes.
The reaction started with adding 10 µL of DTNB (final concentration 0.3 mM prepared in
Tris-HCl buffer) and 10 µL of ATChI/BTChI (final concentration of 0.5 mM prepared in
Tris-HCl buffer). The developing yellow color was measured at 405 nm over 6 min at room
temperature using a 96-well microplate reader (IRE 96, SFRI Medical Diagnostics). The
experiment was run in triplicate. The percentage of enzyme inhibition was calculated from
measured data according to the equation: Inhibition (%) = [(Ac − AT)/AC]·100, where
AC is the enzyme activity without the test sample and AT is the enzyme activity with the
test sample, calculated as mean values ± standard deviation. In the control measurement,
the tested compound was replaced by a buffer solution. Non-enzymatic hydrolysis was
measured as blank for each measurement. The IC50 value was calculated by a nonlinear fit
of compound concentration (log) values vs. response.

3.6. Computational Details

Geometry optimizations of the selected ligands were obtained at the M06-2X/6-31G(d)
level of theory using the Gaussian16 program package [35] and then utilized for molecular
docking. Molecular docking was performed using the Autodock program package [36],
with the crystal structure 1EEA.pdb [37] for AChE taken from the Protein Data Bank and
1P0I.pdb [38] for BChE. The quaternary structure of 1EEA.pdb corresponds well to the
tetramer of AChE found in electric eel; however, the amino acid sequence is taken from the
Torpedo californica AChE, as mentioned in Section 2.3. The docking results were obtained
using the Lamarckian Genetic Algorithm, with 25 requested genetic algorithm dockings
with 25 binding poses for each ligand. The residues of the enzymes were kept rigid during
the docking.

3.7. X-ray Diffraction

Single crystal X-ray diffraction data were collected on a dual source (Mo/Cu) Rigaku
Oxford Diffraction Synergy S diffractometer equipped with an Oxford Cryosystems Series
800 cryostat. The program package CrysAlis PRO [39] was used for data reduction and
numerical absorption correction.

The structure was solved using SHELXS97 [40] and refined with SHELXL-2017 [41].
Models were refined using the full-matrix least-squares refinement; all non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were located in a difference Fourier map and
refined as riding entities.

Molecular geometry calculations were performed by PLATON [42], and molecular
graphics were prepared using ORTEP-3 [43] and Mercury [44]. Crystallographic and
refinement data for structure 5 reported in this paper are shown in Table S2 in Electronic
Supplement Information.

4. Conclusions

The synthesis of 19 new thienobenzo/naphtho-triazoles 1–19 by two different ap-
proaches improved synthetic productivity. The final result was a more extensive set of
molecules to test with different functionalities on the triazole ring or differing in the
aromatic character of the central ring in the structure. As predicted, most prepared
molecules showed better inhibition of the enzyme butyrylcholinesterase, considering that
the new molecules 1–19 were designed according to the previous results. Seven compounds
show inhibitory activity towards BChE in the range of values characteristic of common
cholinesterase inhibitors, although their inhibitory potency varied with compound func-
tionalities. Therefore, for the future design of cholinesterase inhibitors and the search for
therapeutics for neurological disorders, compounds with a thienobenzo-triazole skeleton, a
para-OCH3-benzyl group on it, or the para-OCH3-phenyl group on the prolonged aliphatic
chain should be interesting. Furthermore, the para-F-benzyl group attached to the triazole
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with the dihydro or aromatic central ring, and the basic skeleton with an ethoxy group or
additional thiophene ring, should be considered in the design of new BChE inhibitors.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms24065879/s1.

Author Contributions: Conceptualization, I.Š.; methodology, I.Š. and I.Ć.; investigation, M.M. and
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Synthesis, photochemistry and computational study of novel 1,2,3-triazole heterostilbenes: Expressed biological activity of their
electrocyclization photoproducts. Bioorg. Chem. 2022, 121, 105701. [CrossRef] [PubMed]

23. Atatreh, N.; Al Rawashdah, S.; Al Neyadi, S.S.; Abuhamdah, S.; Ghattas, M.A. Discovery of new butyrylcholinesterase inhibitors
via structure-based virtual screening. J. Enz. Inh. Med. Chem. 2019, 34, 1373–1379. [CrossRef]
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