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* Correspondence: ivana.samarzija@irb.hr

Simple Summary: Prostate cancer is a highly heterogenous disease with respect to molecular, mor-
phological and clinical features. Therefore, one of the major tasks in its management is to define the
risk subgroups that would guide the treatment approach. Amino acid metabolism-related genes
are involved in several aspects of prostate cancer progression. In this publication, we show that
their expression is highly aberrant in prostate cancer, which could be potentially exploited for the
establishment of disease progression parameters and therapeutic targets. We show that among the
variables studied, the Gleason score was the strongest prognostic factor of progression-free survival
in multivariate analysis. Additionally, the expression of SERINC3 and CSAD genes strongly differ-
entiated between better and worse prognosis (low and high risk) for high and low Gleason scores,
respectively. These results offer a suggestion for potential biomarkers of prostate cancer progression
in patients that are stratified by the Gleason score.

Abstract: Prostate cancer is among the leading cancers according to both incidence and mortality. Due
to the high molecular, morphological and clinical heterogeneity, the course of prostate cancer ranges
from slow growth that usually does not require immediate therapeutic intervention to aggressive
and fatal disease that spreads quickly. However, currently available biomarkers cannot precisely
predict the course of a disease, and novel strategies are needed to guide prostate cancer management.
Amino acids serve numerous roles in cancers, among which are energy production, building block
reservoirs, maintenance of redox homeostasis, epigenetic regulation, immune system modulation
and resistance to therapy. In this article, by using The Cancer Genome Atlas (TCGA) data, we
found that the expression of amino acid metabolism-related genes is highly aberrant in prostate
cancer, which holds potential to be exploited in biomarker design or in treatment strategies. This
change in expression is especially evident for catabolism genes and transporters from the solute
carrier family. Furthermore, by using recursive partitioning, we confirmed that the Gleason score is
strongly prognostic for progression-free survival. However, the expression of the genes SERINC3
(phosphatidylserine and sphingolipids generation) and CSAD (hypotaurine generation) can refine
prognosis for high and low Gleason scores, respectively. Therefore, our results hold potential for
novel prostate cancer progression biomarkers.

Keywords: prostate cancer; prognosis; progression-free survival; recursive partitioning; Gleason
score; CSAD; SERINC3; hypotaurine; phosphatidylserine and sphingolipids

1. Introduction

Prostate cancer is among the leading cancers according to both incidence and mortality.
It is estimated that in 2020, there were 1,414,259 (7.3% of all sites) new cases diagnosed
and 375,304 (3.8% of all sites) deaths from this disease [1]. Common treatment options for
confined prostate cancer include surgical removal of the prostate (radical prostatectomy)
and radiotherapy. However, biochemical recurrence, defined by a significant rise in blood
levels of prostate-specific antigen, occurs within approximately 10 years in 20–40% of
patients after radical prostatectomy and 30–50% after radiotherapy [2]. The biochemical
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recurrence can lead to a progressive disease, which is accompanied by symptoms or
evidence of disease progression on imaging [3]. One of the major problems in prostate
cancer management is to predict the course of a disease, that is, to differentiate between
the tumors that will grow slowly and require minimal or no treatment and those that
are more aggressive and will progress fast. Therefore, novel treatment strategies and
therapeutic targets are needed, as well as better biomarkers, which would guide prostate
cancer management.

Metabolic rewiring is one of the hallmarks of cancer [4], through which the cancer
cell satisfies its high demands for energy and biomass building blocks to sustain its rapid
proliferation. In comparison to other solid cancer types, which largely rely on aerobic
glycolysis (the Warburg effect), prostate cancer cells use oxidative phosphorylation more
than non-transformed prostate cells [5–7]. However, in advanced stages of prostate cancer,
an increased glycolytic phenotype has been observed. In addition to these specificities, a
hallmark of the metastatic, castration-resistant prostate cancer (mCRPC) is lipid metabolism
rewiring, which manifests as increased fatty acids and cholesterol synthesis, uptake and
oxidation [8].

Along with carbohydrates and fatty acids, amino acids are among the main sources of
nutrients for energy homeostasis (alternative fuels) and building blocks for macromolecular
biosynthesis. Additionally, amino acids help to maintain the redox balance as they are
the main elements for reduced glutathione (GSH) and nicotinamide adenine dinucleotide
phosphate (NADPH) generation, which are among the key molecules involved in control
of the cellular redox state. Amino acid derivatives contribute to epigenetic modifications
and posttranscriptional regulation. Namely, one-carbon units from the methionine and
folate cycle are methyl donors for DNA and histone methylation, while acetyl-CoA derived
from a group of amino acids can be used for histone acetylation. Amino acids also largely
influence immune system responses in tumorigenesis and metastasis formation by creating
an immunosuppressive or immunoeffective microenvironment [9]. Moreover, amino acids
enable cancer cells to circumvent anticancer therapies [10]. The metabolism and uptake
of amino acids, therefore, are aberrantly upregulated in many cancer types, and some of
those cancer types are characterized by addiction to particular amino acids [11]. For these
reasons, amino acid depletion therapies are extensively being explored in the area of cancer
research [12].

The amino acid profile in prostate cancer, unlike in other solid tumors, is characterized
by their anaplerotic roles more than by energy-production roles. Anaplerotic reactions are
chemical reactions that form intermediates of a metabolic pathway and fuel that certain
pathway. Many of the amino acids are implicated in prostate cancer, and their involvement
has been recently reviewed [13,14]. For example, amino acids commonly related to prostate
cancer include glutamine, leucine, serine, glycine, sarcosine, proline and arginine. In the
light of the results of this paper, we describe further the roles of serine and taurine in
prostate cancer.

Serine/glycine biosynthesis and one-carbon metabolism are intertwined and essential
in promoting cancer cell survival and rapid proliferation. The excessive activation of ser-
ine/glycine biosynthesis pathways drives tumorigenesis and provides a single carbon unit
for one-carbon metabolism. One-carbon metabolism, which is based on the chemical reac-
tions of methionine and folate compounds, is used for the de novo synthesis of nucleotides,
polyamines, amino acids, creatine and phospholipids. Serine is also a precursor for the
synthesis of glycine and cysteine, both of which contribute to the production of glutathione,
which is essential for redox homeostasis [15,16]. In prostate cancer, it was recently shown
that increased serine and one-carbon pathway metabolism promote a neuroendocrine
phenotype, which is the most lethal subtype of castration-resistant prostate cancer [17].
This characteristic represents a targetable vulnerability for prostate cancer [18,19]. In line
with these findings, the role of alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) was
studied. ASCT2 is a Na+-dependent transporter involved in the cellular uptake of neutral
amino acids, that is, amino acids with small, hydrophilic side chains, such as serine, cys-
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teine, asparagine and glutamine, but also alanine with the nonpolar methyl side chain [20].
The inhibition of ASCT2 suppresses prostate cancer cell growth in vitro. However, the
contribution of serine to this process was not delineated, and the preferred substrate for
ASCT2 is the conditionally essential amino acid glutamine [21,22]. Along with ASCT2
and several other transporters, SERINC3 (Serine Incorporator 3) protein was predicted to
enable L-serine transmembrane transporter activity.

Taurine was also suggested to be potentially involved in prostate cancer progres-
sion. Namely, taurine was shown to attenuate the expression of epithelial–mesenchymal
transition-related genes in human prostate cancer cells [23]. It also promoted apoptosis
and inhibited proliferation of the prostate cancer cell line DU145, probably through the
MST1/Hippo signaling pathway [24]. In another paper, it was shown that taurine sup-
pressed PSA and metastasis-related genes expression in the human prostate cancer cell
lines LNCaP and PC-3. In addition, taurine inhibited the migration of LNCaP and PC-3
cells [25]. Hypotaurine is a sulfinic acid that is an intermediate in the biosynthesis of
taurine. An important gene in the metabolism of (hypo)taurine is CSAD (cysteine sulfinic
acid decarboxylase). Its protein product catalyzes the decarboxylation of L-aspartate, 3-
sulfino-L-alanine and L-cysteate to beta-alanine, hypotaurine and taurine, respectively. The
preferred CSAD substrate is 3-sulfino-L-alanine.

In this introductory part we aimed to briefly present the global metabolic changes in
prostate cancer and to place the changes in specific amino acid metabolism-related genes
into this big picture. Furthermore, in a search for biomarkers that could predict the course
of prostate cancer, in this article, we analyzed The Cancer Genome Atlas (TCGA) prostate
adenocarcinoma (PRAD) dataset for the expression of amino acid metabolism-related
genes. We found that their expression is highly aberrant in prostate cancer. By using a
machine learning approach, we found that the expression of the genes CSAD and SERINC3
discriminates between better and worse prognosis (low and high risk) for progression-free
survival (PFS) of prostate cancer patients when they are stratified according to the Gleason
score. In brief, this article aimed at analyzing the expression and the prognostic significance
of amino acid metabolism-related genes in prostate cancer. We believe that this publication
(a) adds to the big picture of potential metabolic changes in prostate cancer and (b) suggests
potential biomarkers for prostate cancer prognosis. Another value of this paper, in our
opinion, is methodological, and that is because (c) we used machine learning techniques
(recursive partitioning and survival tree) for the definition of prognostic subgroups, unlike
many of the scientific papers with a similar topic that used Cox proportional hazards
regression analysis for the definition of each gene’s prognostic abilities. Considering the
prostate cancer heterogeneity, we believe that our method better captures its complexity.

2. Materials and Methods
2.1. Data Preparation and Differential Gene Expression Analysis

Amino acid metabolism-related genes were retrieved from The Molecular Signatures
Database (MSigDB) [26] by using Gene Ontology Biological Process (GOBP) categories.
The genes that were used in our analyses are listed in the Supplementary Table S1. Briefly,
the following categories were considered: amino acid activation, homeostasis, transport,
salvage, biosynthesis, metabolism, catabolism, response to amino acid starvation and C-
and N-terminal protein amino acid modification. The final list contained 518 genes.

The Cancer Genome Atlas [27] prostate adenocarcinoma (PRAD) dataset, contain-
ing gene expression data and clinical information for 497 prostate cancer patients and
corresponding control (surrounding, non-transformed) tissues for a subset of 52 patients,
was downloaded and analyzed using the TCGAbiolinks R package [28–30]. To obtain
more thorough insight into differentially expressed amino acid metabolism-related genes
and to search deeper for their transcriptional changes in prostate cancer in comparison
to non-transformed prostate tissue, we chose the threshold of |log2FC| ≥ 0.585 (|fold
change| ≥ 1.5) and p adjusted < 0.01. The data based on differentially expressed amino
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acid metabolism-related genes obtained in this way (N = 121) are listed in Supplementary
Table S2. The expression represents the value of normalized counts.

The clinical data shown in Table 1 were obtained from cBioPortal [31] and the NCI
Genomic Data Commons (GDC, TCGA) portal [32]. In total, there were 493 patients with
clinical information (age, Gleason score, TNM stage, information related to residual tumor
and radiation therapy) available. The event that we analyzed was progression-free survival
(93 patients with this event), since, fortunately, only a smaller subset of patients experienced
an event needed for the overall survival calculation. Some variables contained missing
data. However, decision trees that we obtained in survival analysis by using recursive
partitioning method are not as adversely affected by missing data as traditional statistical
methods [33].

Table 1. Clinical information of TCGA patients. The number (N) and the percentage (in parenthesis)
of patients belonging to a certain category is shown. In some categories, there are unknowns (NAs).

No Progression Progression

N, total 400 93

Age, years <60 166 (41.5%) 34 (36.6%)
≥60 234 (58.5%) 59 (63.4%)

Gleason score

6 44 (11%) 1 (1.1%)
7 221 (55.3%) 24 (25.8%)
8 49 (12.3) 13 (14%)
9 84 (21%) 53 (57%)

10 2 (0.5%) 2 (2.2%)

Clinical T stage

cT1 158 (39.5%) 17 (18.3%)
cT2 137 (34.3%) 35 (37.6%)
cT3 28 (7%) 24 (25.8%)
cT4 1 (0.3%) 1 (1.1%)
NA 76 (19%) 16 (17.2%)

Clinical M stage
cM0 362 (90.5%) 89 (95.7%)
cM1 2 (0.5%) 1 (1.1%)
NA 36 (9%) 3 (3.2%)

Pathologic T stage

pT2 172 (43%) 14 (15.1%)
pT3 215 (53.8%) 75 (80.7%)
pT4 7 (1.8%) 3 (3.2%)
NA 6 (1.5%) 1 (1.1%)

Pathologic N stage
pN0 280 (70%) 62 (66.7%)
pN1 56 (14%) 22 (23.7%)
NA 64 (16%) 9 (9.7%)

Residual tumor

R0 266 (66.5%) 46 (49.5%)
R1 102 (25.5%) 44 (47.3%)
R2 5 (1.3%) 0
RX 13 (3.3%) 2 (2.2%)
NA 14 (3.5%) 1 (1.1%)

Radiation therapy
Yes 48 (12%) 46 (49.5%)
No 313 (78.3%) 43 (46.2%)
NA 39 (9.8%) 4 (4.3%)

2.2. Functional Enrichment Analysis

The 121 differentially expressed amino acid metabolism-related genes (DEGs) from
Supplementary Table S1 were subjected to a functional enrichment analysis, which was
conducted by using the Enrichr web server [34,35]. The top 10 Gene Ontology Molecular
Function (MF) and Biological Process (BP) terms are shown in Table 2. Table 3 lists the func-
tional annotation of the solute carrier family genes with differential expression in prostate
cancer retrieved from www.genecards.org [36]. Additionally, Table 4 lists the functional
annotation of the catabolic genes from the category Cellular amino acid catabolic process
(GO:0009063) with differential expression in prostate cancer. The functional information
was also retrieved from www.genecards.org [36].

www.genecards.org
www.genecards.org
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Table 2. Enrichment analysis for the differentially expressed amino acid metabolism-related genes (N = 121). The gene ontology (GO) Molecular Function (MF) and
Biological Process (BP) categories are listed.

GO Molecular Function (First 10 Terms) and
Biological Process (Last 10 Terms) Categories Overlap p-Value Adj. p-Value Genes

Amino acid transmembrane transporter
activity (GO:0015171) 16/49 3.26 × 10−24 6.98 × 10−22

SLC36A1; SLC6A19; SLC38A1; SLC47A1; SLC43A1; SLC3A1; SLC38A11;
SLC7A11; SLC6A1; SLC7A1; SLC7A4; SLC7A5; SLC6A6; PDPN;

SLC16A2; SLC38A5
L-amino acid transmembrane transporter

activity (GO:0015179) 13/53 5.15 × 10−18 5.51 × 10−16 SLC36A1; SLC38A1; SLC47A1; SLC43A1; SLC1A3; SLC3A1; SLC7A11; SLC7A1;
SLC7A5; SLC25A15; SLC25A12; SLC25A22; SLC38A5

Organic anion transmembrane transporter
activity (GO:0008514) 17/144 1.67 × 10−17 1.19 × 10−15

SLC36A1; SLC38A1; SLC1A3; SLC3A1; SLC6A1; SLC7A1; SLC6A6; SLC25A15;
SLC7A5; GJA1; PDPN; SFXN3; SLC25A21; SFXN2; SLC25A12;

SLC25A22; SLC38A5
Carboxylic acid transmembrane transporter

activity (GO:0046943) 12/57 7.73 × 10−16 4.14 × 10−14 SLC36A1; SLC7A4; SLC7A5; SLC6A6; SLC38A1; PDPN; SLC3A1; SLC6A11;
SLC38A11; SLC16A2; SLC7A1; SLC38A5

Neutral amino acid transmembrane transporter
activity (GO:0015175) 9/32 2.00 × 10−13 8.57 × 10−12 SLC36A1; SLC6A6; SLC7A5; SLC6A19; SLC38A1; SLC43A1; SFXN3;

SFXN2; SLC38A5
Cation transmembrane transporter activity

(GO:0008324) 9/48 1.10 × 10−11 3.94 × 10−10 SLC36A1; SLC6A6; SLC7A5; SLC25A15; SLC38A1; SFXN3; SFXN2;
SLC7A1; SLC38A5

Pyridoxal phosphate binding (GO:0030170) 6/21 2.18 × 10−9 6.66 × 10−8 SDS; OAT; SHMT2; CBS; PSAT1; ACCS
Amino acid: sodium symporter activity

(GO:0005283) 5/12 3.35 × 10−9 7.96 × 10−8 SLC38A1; SLC6A15; SLC1A3; SLC6A11; SLC6A1

Transaminase activity (GO:0008483) 5/12 3.35 × 10−9 7.96 × 10−8 OAT; AADAT; PSAT1; BCAT1; BCAT2
Amino acid binding (GO:0016597) 6/32 3.45 × 10−8 7.38 × 10−7 GRM7; SHMT2; NOS1; NAGS; ASS1; GNMT

Cellular amino acid catabolic process
(GO:0009063) 25/90 2.11 × 10−35 2.40 × 10−32

SHMT2; HAAO; SDSL; DDO; GCSH; IL4I1; TDO2; CBS; SLC25A21; NOS1;
PRODH; GLUL; HMGCLL1; ACAD8; MCCC2; SDS; AADAT; GAD1; AMT;

PIPOX; GSTZ1; BCAT1; ASPA; IDO1; BCAT2
Alpha-amino acid metabolic process

(GO:1901605) 16/46 9.80 × 10−25 5.57 × 10−22 OAT; AADAT; FOLH1B; ASNS; PYCR1; ASS1; GNMT; FOLH1; CPS1; CBS;
NOX4; DPEP1; RIMKLA; SLC25A12; GLUL; ASPA

Amino acid transport (GO:0006865) 16/50 4.77 × 10−24 1.81 × 10−21
SLC36A1; SLC6A19; SLC38A1; SLC6A17; SLC6A15; SLC43A1; SLC3A1;
SLC38A11; SLC16A10; SLC7A11; SLC7A1; SLC7A4; SLC7A5; SLC6A6;

PDPN; SLC38A5
Amino acid transmembrane transport

(GO:0003333) 14/45 5.77 × 10−21 1.64 × 10−18 SLC36A1; SLC38A1; SLC47A1; SLC38A11; SLC7A11; SLC7A1; SLC6A6;
SLC7A5; SFXN3; SFXN2; SLC16A2; SLC25A12; SLC25A22; SLC38A5

Amino acid import (GO:0043090) 10/22 2.73 × 10−17 6.21 × 10−15 SLC36A1; SLC6A6; SLC7A5; SLC47A1; SFXN3; SLC1A3; SFXN2; SLC6A1;
SLC16A2; SLC7A1

Glutamine family amino acid metabolic process
(GO:0009064) 11/37 1.87 × 10−16 3.54 × 10−14 OAT; GLYATL1; CPS1; AADAT; PYCR1; NAGS; PRODH; RIMKLA; GLUL;

NIT2; ART4
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Table 2. Cont.

GO Molecular Function (First 10 Terms) and
Biological Process (Last 10 Terms) Categories Overlap p-Value Adj. p-Value Genes

Nitrogen compound transport (GO:0071705) 15/143 8.73 × 10−15 1.42 × 10−12 SLC36A1; SLC6A19; SLC38A1; SLC11A1; SLC6A15; SLC43A1; SLC3A1;
SLC16A10; SLC7A11; SLC7A1; SLC7A4; SLC6A6; SLC7A5; PDPN; SLC38A5

Organic acid transport (GO:0015849) 13/100 3.43 × 10−14 4.88 × 10−12 SLC36A1; SLC6A19; SLC38A1; SLC6A15; SLC43A1; SLC3A1; SLC16A10;
SLC7A11; SLC7A1; SLC7A4; SLC6A6; PDPN; SLC38A5

Import into cell (GO:0098657) 10/41 4.3 × 10−14 5.44 × 10−12 SLC36A1; SLC6A6; SLC7A5; SLC38A1; SLC47A1; SLC1A3; ATP1A2; SLC16A2;
SLC7A1; GLUL

Aspartate family amino acid metabolic process
(GO:0009066) 9/30 1.01 × 10−13 1.07 × 10−11 FOLH1; FOLH1B; SMS; ASNS; SLC25A12; ASPA; NIT2; ASS1

Table 3. Functional annotation of solute carrier (SLC) family genes for which expression changes were observed in prostate cancer. The up- and down-regulated
genes are listed separately. FC indicates fold change (tumor, T vs. normal, N), and FDR is the false discovery rate.

Gene Function FC (T/N) FDR

SLC3A1 Transports neutral and basic amino acids in the renal tubule and intestinal tract. 2.72 2.93 × 10−5

SLC6A11 Sodium-dependent transporter that uptakes gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, which ends the
GABA neurotransmission. 3.72 7.57 × 10−13

SLC6A15 Encodes a member of the solute carrier family 6 protein family, which transports neutral amino acids. 2.15 0.003273

SLC6A17 Responsible for the presynaptic uptake of neurotransmitters. The encoded vesicular transporter is selective for proline, glycine,
leucine and alanine. 3.61 8.27 × 10−10

SLC6A19 Encodes a system B(0) transmembrane protein that actively transports most neutral amino acids across the apical membrane of
epithelial cells. 6.40 0.000127

SLC7A1 Enables L-arginine transmembrane transporter activity and L-histidine transmembrane transporter activity. 1.52 9.93 × 10−8

SLC7A11 Encodes a member of a heteromeric, sodium-independent, anionic amino acid transport system that is highly specific for cysteine
and glutamate. 3.67 6.95 × 10−22

SLC11A1 Member of the proton-coupled divalent metal ion transporters family; encodes a multi-pass membrane protein that functions as a
divalent transition metal (iron and manganese) transporter involved in iron metabolism. 1.79 2.91 × 10−11

SLC16A10 Member of a family of plasma membrane amino acid transporters that mediate the Na(+)-independent transport of aromatic
amino acids across the plasma membrane. 1.56 0.000213

SLC25A15
Member of the mitochondrial carrier family. The encoded protein transports ornithine across the inner mitochondrial membrane
from the cytosol to the mitochondrial matrix. The protein is an essential component of the urea cycle and functions in ammonium

detoxification and biosynthesis of the amino acid arginine.
1.74 3.49 × 10−14

SLC25A21 Mitochondrial carrier that transports C5-C7 oxodicarboxylates across inner mitochondrial membranes. 1.98 5.81 × 10−12

SLC25A22 Encodes a mitochondrial glutamate carrier. 1.88 1.43 × 10−24
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Table 3. Cont.

Gene Function FC (T/N) FDR

SLC36A1 The encoded protein functions as a proton-dependent, small amino acid transporter. 1.80 3.82 × 10−6

SLC38A11 Predicted to enable amino acid transmembrane transporter activity. 2.45 1.02 × 10−6

SLC43A1 Belongs to the system L family of plasma membrane carrier proteins that transports large neutral amino acids. 2.72 2.92 × 10−17

SLC1A3 Member of a high affinity glutamate transporter family. 0.55 1.63 × 10−12

SLC6A1 The protein encoded by this gene is a gamma-aminobutyric acid (GABA) transporter that localizes to the plasma membrane. 0.65 3.31 × 10−5

SLC6A6 This gene encodes a multi-pass membrane protein that is a member of a family of sodium and chloride-ion-dependent
transporters. The encoded protein transports taurine and beta-alanine. 0.64 1.32 × 10−9

SLC7A4 Predicted to enable amino acid transmembrane transporter activity. Predicted to be involved in amino acid transport. 0.53 0.001077

SLC7A5 Enables L-leucine transmembrane transporter activity, L-tryptophan transmembrane transporter activity and thyroid hormone
transmembrane transporter activity. 0.31 2.00 × 10−26

SLC16A2 Encodes an integral membrane protein that functions as a transporter of thyroid hormone. 0.58 1.00 × 10−17

SLC25A12 Encodes a calcium-binding mitochondrial carrier protein. The encoded protein localizes to the mitochondria and is involved in
the exchange of aspartate for glutamate across the inner mitochondrial membrane. 0.64 3.29 × 10−24

SLC38A1 An important transporter of glutamine, an intermediate in the detoxification of ammonia and the production of urea. 0.64 9.92 × 10−14

SLC38A5 The encoded protein transports glutamine, asparagine, histidine, serine, alanine and glycine across the cell membrane, but does
not transport charged amino acids, imino acids, or N-alkylated amino acids. 0.45 3.30 × 10−16

SLC47A1 Among its related pathways are the transport of inorganic cations/anions and amino acids/oligopeptides. 0.39 6.09 × 10−29

Table 4. Functional annotation of Cellular amino acid catabolic process (GO:0009063) genes from Table 2 for which expression changes were observed in prostate
cancer. The up- and down-regulated genes are listed separately. FC indicates fold change (tumor, T vs. normal, N), and FDR is the false discovery rate.

Gene Function FC (T/N) FDR

AADAT

Aminoadipate aminotransferase. Highly similar to mouse and rat kynurenine aminotransferase II. The rat protein is a homodimer
with two transaminase activities. One activity is the transamination of alpha-aminoadipic acid, a final step in the saccaropine
pathway, which is the major pathway for L-lysine catabolism. The other activity involves the transamination of kynurenine to

produce kynurenine acid, the precursor of kynurenic acid.

2.01 6.04 × 10−12

ACAD8
Acyl-CoA dehydrogenase family member 8. This gene encodes a member of the acyl-CoA dehydrogenase family of enzymes that

catalyzes the dehydrogenation of acyl-CoA derivatives in the metabolism of fatty acids or branch-chained amino acids. The
encoded protein is a mitochondrial enzyme that functions in catabolism of the branched-chain amino acid valine.

1.67 2.96 × 10−5

BCAT1
Branched chain amino acid transaminase 1. This gene encodes the cytosolic form of the enzyme branched-chain amino acid
transaminase. This enzyme catalyzes the reversible transamination of branched-chain alpha-keto acids to branched-chain

L-amino acids essential for cell growth.
1.71 0.00045
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Table 4. Cont.

Gene Function FC (T/N) FDR

BCAT2
Branched chain amino acid transaminase 2. This gene encodes a branched-chain aminotransferase found in mitochondria. The
encoded protein forms a dimer that catalyzes the first step in the production of the branched-chain amino acids leucine, isoleucine

and valine.
1.51 3.01 × 10−12

CBS Cystathionine beta-synthase. The protein encoded by this gene acts as a homotetramer to catalyze the conversion of homocysteine
to cystathionine, the first step in the transsulfuration pathway. 2.23 2.09 × 10−14

GAD1
Glutamate decarboxylase 1. This gene encodes one of several forms of glutamic acid decarboxylase, identified as a major

autoantigen in insulin-dependent diabetes. The enzyme encoded is responsible for catalyzing the production of
gamma-aminobutyric acid from L-glutamic acid.

3.07 4.07 × 10−13

GCSH

Glycine cleavage system protein H. The degradation of glycine is brought about by the glycine cleavage system, which is
composed of four mitochondrial protein components: P protein (a pyridoxal phosphate-dependent glycine decarboxylase), H

protein (a lipoic acid-containing protein), T protein (a tetrahydrofolate-requiring enzyme), and L protein (a lipoamide
dehydrogenase). The protein encoded by this gene is the H protein, which transfers the methylamine group of glycine from the P

protein to the T protein.

1.62 1.98 × 10−5

GSTZ1

Glutathione S-transferase zeta 1. This gene is a member of the glutathione S-transferase (GST) super-family that encodes
multifunctional enzymes important in the detoxification of electrophilic molecules, including carcinogens, mutagens and several

therapeutic drugs, via conjugation with glutathione. This enzyme catalyzes the conversion of maleylacetoacetate to
fumarylacetoacatate, which is one of the steps in the phenylalanine/tyrosine degradation pathway.

1.51 1.98 × 10−9

IDO1
Indoleamine 2,3-dioxygenase 1. This gene encodes indoleamine 2,3-dioxygenase (IDO)—a heme enzyme that catalyzes the first
and rate-limiting step in tryptophan catabolism to N-formyl-kynurenine. This enzyme acts on multiple tryptophan substrates,

including D-tryptophan, L-tryptophan, 5-hydroxy-tryptophan, tryptamine, and serotonin.
1.51 0.009556

IL4I1 Interleukin 4 induced 1. This gene encodes a secreted L-amino acid oxidase protein, which primarily catabolizes L-phenylalanine
and, to a lesser extent, L-arginine. 1.81 5.50 × 10−10

MCCC2 Methylcrotonyl-CoA carboxylase subunit 2. This gene encodes the small subunit of 3-methylcrotonyl-CoA carboxylase. This
enzyme functions as a heterodimer and catalyzes the carboxylation of 3-methylcrotonyl-CoA to form 3-methylglutaconyl-CoA. 2.45 5.63 × 10−12

SDS
Serine dehydratase. This gene encodes one of three enzymes that are involved in metabolizing serine and glycine. L-serine

dehydratase converts L-serine to pyruvate and ammonia and requires pyridoxal phosphate as a cofactor. The encoded protein can
also metabolize threonine to NH4+ and 2-ketobutyrate.

3.32 1.36 × 10−14

SDSL Serine dehydratase like. Predicted to be involved in the isoleucine biosynthetic process and threonine catabolic process. 1.52 3.11 × 10−10

SHMT2

Serine hydroxymethyltransferase 2. This gene encodes the mitochondrial form of a pyridoxal phosphate-dependent enzyme that
catalyzes the reversible reaction of serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. The encoded

product is primarily responsible for glycine synthesis. The activity of the encoded protein has been suggested to be the primary
source of intracellular glycine.

1.69 7.99 × 10−17
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Table 4. Cont.

Gene Function FC (T/N) FDR

SLC25A21
Solute carrier family 25 member 21. Homolog of the S. cerevisiae ODC proteins, mitochondrial carriers that transport C5-C7

oxodicarboxylates across inner mitochondrial membranes. One of the species transported by ODC is 2-oxoadipate, a common
intermediate in the catabolism of lysine, tryptophan and hydroxylysine in mammals.

1.98 5.81 × 10−12

TDO2 Tryptophan 2,3-dioxygenase. This gene encodes a heme enzyme that plays a critical role in tryptophan metabolism by catalyzing
the first and rate-limiting step of the kynurenine pathway. 3.45 0.0044

AMT Aminomethyltransferase. This gene encodes one of four critical components of the glycine cleavage system. 0.52 7.11 × 10−13

ASPA Aspartoacylase. This gene encodes an enzyme that catalyzes the conversion of N-acetyl-L-aspartic acid (NAA) to aspartate and
acetate. 0.24 6.87 × 10−31

DDO D-aspartate oxidase. The protein encoded by this gene is a peroxisomal flavoprotein that catalyzes the oxidative deamination of
D-aspartate and N-methyl D-aspartate. 0.50 1.01 × 10−15

GLUL Glutamate-ammonia ligase. The protein encoded by this gene belongs to the glutamine synthetase family. It catalyzes the
synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. 0.64 7.49 × 10−16

HAAO 3-Hydroxyanthranilate 3,4-dioxygenase is a monomeric cytosolic protein belonging to the family of intramolecular dioxygenases
containing nonheme ferrous iron. HAAO catalyzes the synthesis of quinolinic acid (QUIN) from 3-hydroxyanthranilic acid. 0.45 2.36 × 10−19

HMGCLL1
3-Hydroxymethyl-3-methylglutaryl-CoA lyase like 1. Non-mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase that

catalyzes the cation-dependent cleavage of (S)-3-hydroxy-3-methylglutaryl-CoA into acetyl-CoA and acetoacetate, a key step in
ketogenesis.

0.32 5.18 × 10−15

NOS1 Nitric oxide synthase 1. The protein encoded by this gene belongs to the family of nitric oxide synthases, which synthesize nitric
oxide from L-arginine. 0.28 2.12 × 10−14

PIPOX Pipecolic acid and sarcosine oxidase. Enables L-pipecolate oxidase activity and sarcosine oxidase activity. Involved in L-lysine
catabolic process to acetyl-CoA via L-pipecolate. 0.39 3.84 × 10−24

PRODH Proline dehydrogenase 1. This gene encodes a mitochondrial protein that catalyzes the first step in proline degradation. 0.35 1.70 × 10−24
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2.3. Survival Analysis

Pre-processed and normalized, but un-filtered, TCGA [27] expression data for the
amino acid metabolism-related genes were obtained through the TCGAbiolinks R pack-
age [28–30]. The clinical data were added to expression data, organized in a data matrix
and analyzed using the data analysis software R [37], version 4.2.1.

For the survival analysis, we used rpart module [38,39] in the programming language
R [37]. rpart stands for Recursive PARTitioning and is the most used application for
the construction of survival trees. Survival trees obtained via this method enable visual
identification and comparisons of prognostic factors in a simple and straightforward
manner [40,41]. The method is insensitive to missing data, in contrast to classical statistical
methods, and gives reliable and robust conclusions in most clinical scenarios. The method
is described in more detail in our previous publications [42]. Briefly, at the beginning of the
analysis, all patients are included and in subsequent steps, they are divided into prognostic
subgroups in a survival tree. At the first split (root node), a logical check is performed.
If the criterion of that node is met, the left side of the tree is approached; otherwise it is
the right. This is repeated at each stage (decision node) until the terminal node is reached.
Therefore, a survival tree obtained in this way is composed of decision nodes and terminal
nodes (leaves). Each decision node uses a provided variable to subdivide patients into
two subgroups with a maximum difference in hazard ratios (HRs). The terminal nodes
are reached when no further improvement in subdivision is possible. Patients in the first
decision node have hazard ratio of 1. The hazard ratio for patients in each node is expressed
in comparison to this value. To avoid overfitting, that is, an extensive fragmentation of
the tree for which it would be hard to infer a biological meaning, we set the complexity
parameter CP to 0.0373.

2.4. Kaplan–Meier Survival Estimate

The difference in survival between patients in terminal nodes was analyzed using
a log-rank test and is presented as survival curves based on the Kaplan–Meier survival
estimate [43]. This part of the analysis was based on the EZR package [44] in programming
language R. Data were considered statistically significant if the p value of the log-rank test
was ≤0.05.

3. Results
3.1. Prostate Cancer Amino Acid Metabolism-Related Gene Expression Appears to Be
Highly Aberrant

As elaborated previously, amino acid metabolism-related genes play important roles
in prostate cancer. To search for amino acid metabolism-related genes that are specifically
changed in prostate cancer, we conducted differential gene expression analysis. The
results with thresholds |log2FC| > 0.585 and p adjusted < 0.01 revealed 4215 differentially
expressed genes (DEGs) in total. Among them, there were 121 differentially expressed
amino acid metabolism-related genes, which are listed in Supplementary Table S2. The
enrichment analysis conducted on those 121 differentially expressed genes (Table 2) showed
that the expression of genes involved in amino acid transmembrane transport (mainly of
the solute carrier family) is highly perturbed. The functional annotation of the solute carrier
family genes listed in Supplementary Table S2 is provided in Table 3.

Table 4 lists the roles of Cellular amino acid catabolic process (GO:0009063) genes from
Table 2 for which expression changes were observed in prostate cancer. Some important
genes involved, for example, in the synthesis of glycine from serine, such as SHMT2 (serine
hydroxymethyltransferase 2), showed increased expression in tumor tissue. The activity of
SHMT2 has been suggested to be the primary source of intracellular glycine. Genes that
encode proteins involved in the catabolism of L-lysine (AADAT), valine (ACAD8), glycine
(GCSH), phenylalanine/tyrosine (GSTZ1), tryptophan (IDO1, TDO2), L-phenylalanine and
L-arginine (IL4I1) and serine and glycine (SDS) also showed increased expression. The
genes encoding proteins involved in production of the branched-chain amino acids leucine,
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isoleucine and valine (BCAT2, BCAT1) were also increased in tumor vs. non-transformed
tissue. On the other hand, genes with decreased expression in tumor tissue were AMT,
which is involved in glycine cleavage system; GLUL, which catalyzes the synthesis of
glutamine from glutamate and ammonia; NOS1, nitric oxide synthase, which synthesizes
nitric oxide from L-arginine; PIPOX, which is involved in L-lysine catabolic process; and
PRODH, which catalyzes the first step in proline degradation.

For the genes that we show are involved in prostate cancer prognosis (see further sec-
tion), CSAD had increased expression in prostate cancer (fold-change = 1.61,
FDR < 0.001, Supplementary Table S2), while the expression of SERINC3 did not change
according to the criteria used.

3.2. CSAD and SERINC3 Genes Further Refine the Prognostic Value of the Gleason Score in
Prostate Cancer

Prognostic values of variables listed in Table 1 (age, Gleason score, TNM staging,
residual tumor information and radiation therapy) supplemented with gene expression
data for amino acid metabolism-related genes were determined using recursive partitioning,
the recommended method by the AJCC (American Joint Committee on Cancer) for the
analysis of prognostic studies [40,41]. The importance of individual variables is shown in
Figure 1. The four most informative variables were the Gleason score and the expression
of CSAD, GABBR1 and SERINC3 genes. Among them, only GABBR1 did not appear in
multivariate analysis. The GABBR1 gene encodes a receptor for gamma-aminobutyric acid
(GABA), which is the main inhibitory neurotransmitter in the mammalian central nervous
system. Its role in the progression of prostate cancer has been documented [45].
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Figure 1. Variable importance determined via the rpart method. CSAD, cysteine sulfinic acid
decarboxylase; GABBR1, gamma-aminobutyric acid type B receptor subunit 1; SERINC3, serine
incorporator 3; ACCS, 1-aminocyclopropane-1-carboxylate synthase homolog (inactive); SLC25A29,
solute carrier family 25 member 29; ATF4, activating transcription factor 4; MAPK1, mitogen-activated
protein kinase 1; GMPS, guanine monophosphate synthase; AZIN1, antizyme inhibitor 1; SLC7A4,
solute carrier family 7 member 4; ARL6IP1, ADP ribosylation factor-like GTPase 6 interacting
protein 1; XK, X-linked Kx blood group antigen, Kell and VPS13A-binding protein; SERINC5, serine
incorporator 5; MPST, mercaptopyruvate sulfurtransferase; NAA38, N-alpha-acetyltransferase 38,
NatC auxiliary subunit; ATP7A, ATPase copper transporting alpha; AVPR1A, arginine vasopressin
receptor 1A.
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However, AJCC criteria for prognostic studies require that a prognostic value of
a variable must be always assessed in the context of other variables [40,41]. The rpart
algorithm obeys this criterion since rpart uses all variables (multivariate approach) in the
analysis. The rpart results are presented on a survival tree (Figure 2). Figure 2 shows
that by using three variables, patients could be subdivided into three decision nodes and
four terminal nodes (leaves). Variables used in the decision nodes were as follows: (1) the
Gleason score, (2) CSAD gene expression (for Gleason score < 9), and (3) SERINC3 gene
expression (for Gleason score ≥ 9). The importance of variables was determined by their
position in the survival tree: the topmost variable (Gleason score) is the most informative,
the variable below topmost is the second one by information value, and so on. The first
number in a decision node rectangle denotes the hazard ratio (HR) and the numbers in the
second row denote patients with the event (progression) vs. the total number of patients.
The number in a third row denotes the percentage of patients in that node. Therefore, it
is evident that, while the analysis starts with all patients included in the study (decision
node 1; N = 493; N with progression = 93), decision node 2 is based on 71% and decision
node 3 on 29% of patients. Further refinement of survival data revealed four prognostic
groups: low Gleason score, low CSAD expression (28% of patients); low Gleason score, high
CSAD expression (43%); high Gleason score, low SERINC3 expression (6%); and finally,
high Gleason score, high SERINC3 expression (23%). The leftmost terminal node represents
the group of patients at a very low risk (HR = 0.088), and the second represents patients at
a medium risk (HR = 0.97). The second terminal node from the right represent patients at a
low risk (HR = 0.48) and the right-most terminal node describes patients at a high risk of
prostate cancer progression (HR = 2.9) (Table 5). To emphasize once again, patients in the
first decision node have a hazard ratio of 1. The hazard ratio for patients in each node is
expressed in comparison to this value. In conclusion, by using the information based on the
Gleason score and the expression of CSAD and SERINC3 genes, a subdivision of prostate
cancer patients into four prognostic groups with substantially different HRs was achieved.
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Table 5. Risk subgroups extracted via rpart analysis.

Risk Subgroup Hazard Ratio Rule

Very low risk 0.088 Gleason score < 9 AND CSAD < 771

Low risk 0.480 Gleason score ≥ 9 AND SERINC3 < 4007

Medium risk 0.974 Gleason score < 9 AND CSAD ≥ 771

High risk 2.923 Gleason score ≥ 9 AND SERINC3 ≥ 4007

3.3. Kaplan–Meier Estimate on Prostate Cancer Patients Stratified According to Gleason Score and
CSAD and SERINC3 Expression

The results of recursive partitioning (Figure 2) were further supplemented by survival
curves (Kaplan–Meier method) for subgroups defined in each decision node. The difference
for subgroups defined by the left and right branches of decision node 1 is shown in Figure 3,
and it was statistically significant (log-rank test, p < 0.001). The subgroups defined by the
left and right branches of node 2 are shown in Figure 4 (log-rank test, p < 0.001). Figure 5
shows that the difference between subgroups of node 3 was also statistically significant
(log-rank test, p < 0.001).Cancers 2023, 15, x FOR PEER REVIEW 13 of 21 
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4. Discussion
4.1. Metabolites and Metabolism-Related Genes in the Prognosis of Prostate Cancer

The driving events in prostate cancer progression include entangled actions of several
signaling pathways that are potentiated by changes in gene expression, genetic and epi-
genetic alterations [46] and post-transcriptional and post-translational modifications [47].
However, although a substantial amount of information is gathered in regard to the men-
tioned processes, one of the major obstacles in prostate cancer management is still the
inability to predict the course of a disease, that is, to differentiate between slowly growing
cancers that do not require immediate treatment and those that are more aggressive and
will progress fast.

The metabolic landscape in cancers is highly perturbed in comparison to that in
healthy tissue and metabolic genes and molecules, therefore, hold potential to be exploited
in a search for disease biomarkers and novel therapeutic targets. This is especially the
case since, not only primary tumors, but also metastases from certain tissues (e.g., liver
and some other sites [48,49]), acquire changes in metabolism-related gene expression
profiles. Metabolic profiles in prostate cancer have been thoroughly studied and reviewed
by Kelly et al. [50] who analyzed the articles reporting metabolites in prostate tissue,
blood, urine and prostatic secretions. They showed that amino acids are among the most
promising metabolic diagnostic biomarkers and biomarkers of tumor aggressiveness. Some
amino acids (e.g., glutamine) were also used in terms of predicting disease recurrence [5].
In addition to metabolites themselves, the repertoire of metabolic genes as a source of
prostate cancer biomarkers has already been studied. Namely, Zhang et al. identified three
metabolism-associated prostate cancer clusters that were characterized by significantly
different outcomes in disease-free survival (DFS), clinical stage, stemness index, tumor
microenvironment (including stromal and immune cells), presence of DNA mutation (TP53
and SPOP), copy number variation and microsatellite instability [51]. In a further paper,
they established metabolism-scores of tumors to predict the prognosis of prostate cancer.
This metabolic score was closely related to the tumor microenvironment, presence of
DNA mutations and drug sensitivity [52]. Feng et al. studied energy metabolism-related
genes in prostate cancer and defined an energy metabolism-related gene prognostic index,
which proved to predict biochemical recurrence for patients with prostate cancer that were
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undergoing radical prostatectomy [53]. Finally, Zhao et al. were able to predict biochemical-
recurrence-free survival (BRFS) using a three-metabolic-gene risk score model in prostate
cancer patients [2].

4.2. Differentially Expressed Amino Acid Metabolism-Related Genes in Prostate Cancer

Although, as elaborated, several papers already dealt with the potential of metabolic
genes in predicting the outcome of prostate cancer patients, none of them, to the best of our
knowledge, analyzed the amino-acid metabolism-related genes separately. Since amino
acids themselves, as already mentioned [50], are involved in the prognosis for prostate
cancer patients, it is to be expected that the genes encoding proteins that participate in their
metabolism would also show prognostic capabilities. In very recent papers, the amino acid
metabolism genes already showed good performance in the prognosis of e.g., colorectal
cancer [54], hepatocellular carcinoma [55], clear cell renal cell carcinoma [56], glioma [57]
and head and neck squamous cell carcinomas [58]. In this research, we studied the potential
of amino acid metabolism-related genes to predict progression-free survival (PFS) using
The Cancer Genome Atlas prostate adenocarcinoma (PRAD) dataset.

The first relevant finding of this paper is that the expression of the genes encoding
proteins that are involved in amino acid transport across both the cellular (majority) and the
mitochondrial (to a lesser extent) membrane show changed expression. Namely, the solute
carrier (SLC) family genes were among the top terms in functional enrichment analysis
of both Gene Ontology (GO) Molecular Function and GO Biological Process categories
of differentially expressed genes (DEGs) (Tables 2 and 3). The SLC group of membrane
transport proteins include over 400 members organized into 66 families. Solutes that are
transported by the various SLC proteins are extremely diverse and include charged and
uncharged organic molecules, inorganic ions and the gas ammonia. However, most of the
SLC group members listed in Table 3 are involved in amino acid transport as they were se-
lected because of their connection with amino acid metabolism. Although more of the SLCs
are up-regulated (15) than down-regulated (10) in prostate cancer, it is hard to speculate
about the ‘big picture’, that is, to establish which of the amino acids are largely influenced
by these changes in the expression of SLCs. What is known is that some of these gene
products were shown to be implicated in prostate cancer progression, such as, for example,
SLC7A5 [59], SLC7A11 [60], SLC11A1 [61], SLC43A1 [62] and SLC1A3 [63]. Although
not listed in the Table 3, a recent paper documented metabolic reprogramming and the
predominance of several solute carrier genes (SLC12A5, SLC25A17 and SLC27A6) during
acquired enzalutamide resistance in prostate cancer [64], emphasizing the importance of
the SLC family members in prostate cancer.

Another group of genes with changed expression in prostate cancer includes the
genes coding for proteins that are involved in the catabolism of different amino acids, as
elaborated in the Results section and shown in Tables 2 and 4.

4.3. Prognostic Value of Amino Acid Metabolism-Related Genes in Prostate Cancer

To get back to the primary question of this publication, which would be the prediction
of prostate cancer outcomes, several publications already used gene expression profiles
to foresee the prostate cancer prognosis (e.g., [65–72]). However, as already mentioned,
those still did not make it to the clinics; that is, the course of prostate cancer remains
mainly unpredictable. Therefore, in this paper, we extended the knowledge on potential
prostate cancer progression-free survival biomarkers to amino acid metabolism-related
genes. The changes in expression of those genes are extensive in prostate cancer and
therefore hold potential for biomarkers and therapeutic targets. We found that the Gleason
score is the strongest variable influencing prostate cancer progression-free survival in a
multivariate analysis. This is to be expected, since the Gleason score is highly informative
of the characteristics of tumor cells that constitute the tumor tissue. However, when the
patients were stratified according to a low/high Gleason score, the genes CSAD (for the
low Gleason score) and SERINC3 (for the high Gleason score) differentiated the risk of
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progression. That is, patients with higher CSAD and higher SERINC3 expression are at a
higher risk of progression (Figure 2).

CSAD protein is involved in the generation of beta-alanine, hypotaurine and tau-
rine. Although papers suggest that taurine has a beneficial role in prostate cancer (see
Introduction), it needs to be emphasized that hypotaurine is the preferential product of
the biochemical reaction involving CSAD. It was shown that hypotaurine potentiates a
malignant phenotype in glioma through aberrant hypoxic signaling. The authors show that
taurine, the oxidation metabolite of hypotaurine, decreased intracellular hypotaurine and
resulted in glioma cell growth arrest [73]. Therefore, the ratio of hypotaurine/taurine could
play a role in prostate cancer as well. Additionally, long non-coding RNA TUG1 (taurine
up-regulated 1) was originally identified in a genomic screen of taurine-treated mouse
retinal cells [74]. TUG1 accelerates prostate cancer progression [75,76]. Its knockdown
inhibits the tumorigenesis and progression of prostate cancer in vitro and in vivo [77] and
enhances radiosensitivity [78]. Finally, high expression of TUG1 correlates with progres-
sion of the disease and less favorable survival profiles in prostate cancer patients [79]. To
emphasize that CSAD plays versatile roles in different cancer types, data from The Human
Protein Atlas [80,81] state that CSAD is an unfavorable prognostic marker in renal and
colorectal cancer, which would agree with our study. However, it is favorable in urothe-
lial, liver, pancreatic and head and neck cancer. To add more complexity to the potential
mechanisms of action involving hypotaurine/taurine, CSAD also catalyzes the generation
of beta-alanine. It would be interesting to further detangle these complex relationships
(hypotaurine–taurine–beta–alanine), of which taurine is the most studied, and define their
impact on prostate cancer.

As elaborated in an introductory part, serine metabolism potentiates the malignancy of
prostate cancer. The serine incorporator (SERINC) proteins are a family of multipass trans-
membrane proteins associated with the biosynthesis of serine-containing phospholipids
and sphingolipids [82]. More precisely, SERINC2–4 are carrier proteins that incorporate the
polar amino acid serine into membranes to facilitate the synthesis of phosphatidylserine
and sphingolipids [83]. SERINC proteins were most studied in the context of viral infections
during which they are constitutive host resistance factors, which suppress viral infection
by incorporating into virus particles [83]. Phosphatidylserine (PS) is a serine-containing
phospholipid and a component of the cell membrane. It plays a key role in cell cycle
signaling, specifically in relation to apoptosis. Studies using pre-clinical models of prostate
cancer showed that antibody-mediated PS blockade reprograms the innate immune system
to promote anti-tumor responses. Therefore, bavituximab, a PS-targeting antibody, is being
assessed in multiple clinical trials, including those for prostate cancer [84]. Sphingolipids
are synthesized from serine and palmitoyl-CoA. Inhibitors of sphingolipid metabolism
were shown to antagonize pro-survival responses. Moreover, cancer cells use sphingolipid-
driven escape mechanisms to evade therapies. Sphingolipids have also been implicated in
prostate cancer, as recently reviewed [85]. This brief overview of the promoting roles of
phosphatidylserine and sphingolipids in prostate tumorigenesis agrees with our findings
that the increased expression of SERINC3, which potentiates their biosynthesis, represents
a higher risk of disease progression for prostate cancer patients that are stratified according
to the Gleason score. In addition to SERINC3, SERINC5, for which the gene product has a
similar function to SERINC3, is present on the list of genes implicated by our univariate
analysis (Figure 1). This further indicates that the processes conducted by proteins encoded
by these genes are potentially critically involved in prostate tumorigenesis.

4.4. Methodological Considerations

Besides dealing with biological processes involved in prostate cancer progression, our
paper differs from those with a similar topic in that we used machine learning to define
prognostic subgroups instead of using Cox proportional hazards regression analysis to
define gene-based prognosis. From the technical point of view, the recursive partitioning
method used has the advantage in that it establishes the hierarchy of the variables studied;
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that is, this method lists the variables by their importance for prognosis. In this way, sub-
groups of patients are defined, and the knowledge on their specificities is refined. Given the
heterogeneity of prostate cancer, we believe that this method is more suitable to define gene
expression-specific prostate cancer characteristics. Additionally, the survival tree, generated
through recursive partitioning, is easier to interpret than the Cox regression results.

5. Conclusions

In our study, we analyzed differentially expressed genes between prostate cancer and
surrounding non-transformed prostate tissue by using TCGA data. We found that the
expression of amino acid metabolism-related genes is highly aberrant in prostate cancer.
The groups of genes that are the most affected include solute carrier family of amino acid
transporters and the genes involved in the catabolism of amino acids, which are mainly
up-regulated. Furthermore, we found that the Gleason score is the strongest prognostic
factor for progression-free survival in prostate cancer patients, which is expected given
the amount of information provided by this parameter. However, when the patients are
stratified according to the Gleason score, the genes CSAD (low Gleason score) and SER-
INC3 (high Gleason score) further refine the prognosis. The high expression of both CSAD
and SERINC3 is correlated with worse outcomes. The CSAD gene product is involved
in hypotaurine generation, and the SERINC3 gene product is involved in the generation
of phosphatidylserine and sphingolipids. There are indications that hypotaurine, phos-
phatidylserine and sphingolipids promote prostate cancer progression. We believe that
our results hold potential for the future design of prognostic biomarkers in prostate cancer,
which is an intensive field of research, considering that the progression of prostate cancer
is currently hard to predict. Functional studies on CSAD and SERINC3 genes and their
regulators are needed to further delineate their roles in prostate cancer, which would reveal
their potential for further interventions.
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