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Abstract: Metastatic melanoma is one of the most aggressive tumors, with frequent mutations
affecting components of the MAPK pathway, mainly protein kinase BRAF. Despite promising initial
response to BRAF inhibitors, melanoma progresses due to development of resistance. In addition
to frequent reactivation of MAPK or activation of PI3K/AKT signaling pathways, recently, the p53
pathway has been shown to contribute to acquired resistance to targeted MAPK inhibitor therapy.
Canonical tumor suppressor p53 is inactivated in melanoma by diverse mechanisms. The TP53 gene
and two other family members, TP63 and TP73, encode numerous protein isoforms that exhibit
diverse functions during tumorigenesis. The p53 family isoforms can be produced by usage of
alternative promoters and/or splicing on the C- and N-terminus. Various p53 family isoforms are
expressed in melanoma cell lines and tumor samples, and several of them have already shown to
have specific functions in melanoma, affecting proliferation, survival, metastatic potential, invasion,
migration, and response to therapy. Of special interest are p53 family isoforms with increased
expression and direct involvement in acquired resistance to MAPK inhibitors in melanoma cells,
implying that modulating their expression or targeting their functional pathways could be a potential
therapeutic strategy to overcome resistance to MAPK inhibitors in melanoma.

Keywords: melanoma; MAPK inhibitors; resistance; p53; p63; p73; p53 family isoforms

1. Metastatic Melanoma—Progress, but Still no Cure

Metastatic melanoma is the most aggressive type of skin cancer and is responsible
for the majority of skin cancer related deaths; its incidence has increased in the developed
world in the last decades [1]. Melanoma has a high rate of somatic mutations compared to
other solid tumors [2]. Frequent mutations occur in the mitogen-activated protein kinase
(MAPK) pathway, including BRAF, NRAS, and KRAS genes. The BRAF gene encodes a ser-
ine/threonine protein kinase, which is an important regulator of the RAS/RAF/MEK/ERK
kinase signaling pathway involved in many important cellular functions, including cellular
proliferation, differentiation, and survival [3].

Somatic BRAF mutations have been found in nearly 60% of all melanoma, of which
almost 90% harbor the V600E mutation, which results in the constitutive activation of
MEK and ERK signaling, leading to increased cellular proliferation and survival and
cancer progression [4,5]. The discovery of the BRAF V600E hotspot mutation led to de-
velopment of targeted molecular therapies for melanoma [5]. Vemurafenib (PLX4032,
Plexxikon or RG7204, Roche Pharmaceuticals), a potent inhibitor of BRAF (BRAFi) with
high selectivity for BRAF V600E, was the first molecularly targeted therapy licensed for
the treatment of advanced melanoma [6]. Initial response to vemurafenib was impres-
sive compared to traditional chemotherapeutic agents; unfortunately, disease relapse was
observed in patients within 6 to 8 months of therapy initiation [7,8]. Soon afterwards,
combinations of specific inhibitors were shown to be more effective compared with single
agent treatment [9–11]. Administration of combined BRAFi and MEK inhibitor (MEKi), i.e.,
vemurafenib with cobimetinib, or dabrafenib with trametinib, delayed acquired resistance
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and resulted in significantly improved progression-free survival (PFS; 13.7 months), overall
response rate (ORR; 87%), and median overall survival (OS; 28.5 months) compared to
BRAFi monotherapy [12,13]. Another approach in the treatment of metastatic melanoma
that has emerged in the last decade is checkpoint inhibitor immunotherapy, aiming to pro-
mote elimination of tumor cells by immune response. Negative regulators of the immune
response cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and the programed death
receptor 1 (PD-1), as well as its ligands, programmed death ligands 1 and 2 (PD-L1 and
PD-L2), became main targets of tumor immunotherapies [14]. The expression of PD-L1
and 2 has been found in different cells, including melanomas [15]. The first approved im-
munotherapies used single antibodies (e.g., anti-PD-1 or anti-CTLA-4); however, the latest
studies show significant increase in survival after using combinatory therapy, as compared
to monotherapies [14,16]. Although combined immunotherapy is currently favored as
the first therapy for metastatic melanoma, for advanced patients with unresectable and
metastatic BRAF-mutated melanoma with high symptomatic disease burden, the combined
BRAFi/MEKi targeted therapy remains the primary option due to its stronger/faster initial
response [11,16]. Investigation of novel therapeutic approaches involving combinations of
several anti-melanoma agents (such as dual targeting of BRAF/MEK and cyclin-dependent
kinases CDK4/6) could provide significant improvement in the prognosis of BRAF-mutated
metastatic melanoma patients [17,18].

2. Molecular Mechanisms of Resistance to Targeted Therapy

Generally, the main problem of effective cancer treatment is the rapid occurrence of
resistance to drug therapy. Resistance to therapy may be intrinsic (pre-existing) or acquired
(induced by treatment). A significant number, around 20%, of melanoma patients harboring
BRAF V600E mutation show disease progression early after beginning targeted therapy
treatment, indicating the presence of intrinsic resistance in a proportion of melanoma cells
within the tumor. Drivers of intrinsic resistance include different oncogenic alterations
(including PTEN or NF1 loss, CCND1 amplification, RAC1 or HOXD8 mutations) or factors
secreted by the tumor microenvironment (including HGF/c-MET and HIF-1α) [19,20].
Likewise, acquired resistance to BRAFi/MEKi involves various oncogenic mutations that
can also cause reactivation of the MAPK (including NRAS, KRAS, and MEK1/2 activat-
ing mutations, BRAF aberrant splicing, and BRAF amplification) and activation of the
PI3K/AKT (AKT1 mutation, loss of PTEN) pathway [21–23]. In addition to the mutations
in the signalling pathways, other adaptive mechanisms like overexpression of MITF, per-
sistent activation of receptor tyrosine kinases, expression of NGFR, nerve growth factor
receptor (also known as CD271), and phenotype switching (a phenomenon of antago-
nism between proliferation and invasion driven by slow-cycling cell population) seem
to have important roles in the development of therapy resistance in melanoma [24–27].
An unexpected role of the tumor suppressor p53 was recently discovered in a therapy-
resistant melanoma subpopulation; p53 is stabilized by Wnt signaling, leading to the
slow-cycling phenotype, one of the recently recognized hallmarks of BRAFi/MEKi therapy
resistance [28]. Interestingly, BRAFi/MEKi treatment increases the level of NGFR (CD271)
in drug-adapted, slowly-growing melanoma cell populations [26]. The NGFR is a crucial
regulator of phenotype switching in melanoma, is important in controling melanoma
cell growth vs. invasiveness [29], and positively controls gene networks associated with
melanoma progression [30]. Furthermore, NGFR negatively regulates p53 pathway in
melanoma-initiating cells and is required for different cell properties, e.g., stemness, pro-
liferation, and tumorigenicity [31]. Thus, the targeting of NGFR induces apoptosis of
BRAFi/MEKi-resistant melanoma cells and prevents melanoma invasion and metastasis
formation in vivo [32]. Additional recurrent mutations and/or epigenetic changes of genes
involved in PI3K/AKT signaling, cell cycle control (RB1, CDKN2A, and TP53), and other
pathways were found in cutaneous melanoma; these regulate the course of the disease and
could become targets of new therapeutic approaches [33,34]. The use of small molecules to
inhibit the proteins involved in re-sensitization of melanoma cells harboring mutant BRAF
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to BRAFi/MEKi would enable future application of new drug combinations that could
enhance sensitivity and/or delay resistance to targeted therapy in metastatic melanoma.

3. The p53 Family Isoforms

The tumor suppressor protein p53, classified as the “guardian of the genome”, elicits
cell cycle arrest, apoptosis, and senescence in response to cellular stress, coordinating di-
verse signaling pathways. The p53 family comprises p53 itself, p73, and p63. Transcription
from alternative promoters, alternative splicing, and diverse translation initiation sites
contribute to the family complexity [35,36], and several protein isoforms with distinct
N- and C- termini are encoded. Thus, all p53 family isoforms, apart from the full-length
canonical p53 and TAp63α/TAp73α isoforms, are missing part of the N- and/or C-termini
and, consequently, are deficient in some of the functional domains (Figure 1). Consequently,
twelve p53 protein isoforms are encoded by a single TP53 gene [37] and ten p63 proteins
by the TP63 gene; TP73 can theoretically be transcribed into 35 different mRNAs, which
could be translated into 28 different proteins, but so far not all of them have been found to
be expressed in cell lines or tissues [38,39].

N-terminally truncated isoforms of p53 lack first 39, 132, or 159 amino acids and are
called ∆40p53, ∆133p53, or ∆160p53, respectively. Consequently, ∆40p53 has lost TAD1,
the first transactivating domain, but retains TAD2 and the entire DNA binding domain
(DBD). ∆133p53 and ∆160p53 isoforms, produced from internal promoter P2, have lost both
TADs as well as proline rich domain, PRD. ∆133p53 also lacks a part of the first conserved
cysteine box of the DBD, which is completely deficient in ∆160p53, but both isoforms retain
DBD. The p53 isoforms differ also in C-terminus. In contrast to α isoforms, which contain
oligomerization domain (OD) and C-terminal domain (CTD), β and γ isoforms lack part of
the OD and the entire CTD due to alternative splicing of exon 9 and premature termination
codons (PTCs) [37,40].

There is a high degree of homology between the p53 and p63/p73 isoforms, the
highest in DBDs, highlighting the role of transcription factors binding to the promoters
of many overlapping target genes. The highest diversity between family members is
at the C-terminus; instead of the CTD at the C-terminus of p53, the p63/p73 proteins
possess a unique sterile αmotif (SAM) domain, involved in protein–protein interactions
and modulation of the transcriptional activity, as well as an inhibitory domain (ID). The
SAM region of p63/p73 is subjected to intensive alternative splicing and, consequently,
PTC. Only α isoforms contain an entire SAM domain. So far, five (α, β, γ, δ, and ε) and
seven (α, β, γ, δ, ε, ζ, and η) different 3′-splice variants have been found for p63 and p73,
respectively [38,41].

Both TP63 and TP73 genes generate two classes of isoforms, which are produced
by alternative promoters and differ at N-termini: TAp63/TAp73 generated from P1 and
containing the entire TAD, and those lacking it, ∆Np63/∆Np73, transcribed from internal
P2. The P1 transcript can be alternatively spliced, giving rise to other isoforms lacking
the TAD (∆Ex2p73, ∆Ex2/3p73, and ∆N’p73) [35,42–44]. Of importance, the ∆Np73 and
∆N’p73 transcripts encode the same protein due to the use of a second translational start
site because of an upstream PTC in ∆N’p73 [42]. Accordingly, transactivating isoforms
TAp63/TAp73 are potent transactivators of target genes and manifest tumor suppressor
activities. In contrast, ∆Np63/∆Np73 are mostly transcriptionally inactive and, in addition,
they are dominant-negative inhibitors of p53 and TAp63/TAp73 isoforms.
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The transactivation activity of the isoforms of the p53 protein family is performed by
the formation of tetramers. Two units form a dimer, which binds to a half-site on the consen-
sus DNA sequence and is then stabilized by binding of the second dimer [45]. There is a sig-
nificant cross-talk between family members in tumors, and the transcriptional activity of the
individual tetramer depends on which isoforms it is composed of. Previously, we and other
researchers determined the physical interactions between certain isoforms of p53/p63/p73,
which can form heterotetramers that are involved in carcinogenesis [44,46–48]. The forma-
tion of mixed heterocomplexes between oncogenic (certain p53 mutants and p53 isoforms,
∆Np63/∆Np73) and antioncogenic family members (wt p53, TAp63, and TAp73), which
was confirmed under physiological conditions in mammalian cells, correlates with the
loss of transactivation of their target genes and, consequently, the loss of suppressor func-
tions [35]. The dominant-negative effect of the oncogenic isoforms is performed either
through heterocomplex formation or through competition for promoter binding with p53,
TAp63, and TAp73 [49,50].

The expression and stability of p53 family isoforms can be modulated by several
mechanisms on different levels (transcriptional, posttranscriptional, translational, and
posttranslational), influencing their biological activities and functions (extensively reviewed
in [39]).

Co-expression of different p53 isoforms and their potential interactions contribute
to the diverse biological activities and functions of p53. Accordingly, their unbalanced
expression can cause cancer, premature aging, inflammation, developmental disorders,
or deficiency in tissue regeneration [37,40]. Many biological functions of p53 isoforms
have been described, including cell-cycle regulation, apoptosis, senescence, DNA repair,
stem-cell regulation, cancer stemness, metabolism, autophagy, cellular invasion, migration,
and angiogenesis, immunosuppression, and inflammation (reviewed in [39]).

The diversity in structure leads to diversity in subcellular localization and conse-
quently in various biochemical/biological activities, which are cell-type dependent. Finally,
p53-mediated cell response is the sum of the activities of co-expressed p53 isoforms [37].
Currently, the roles of p53 isoforms in tumor formation are still being investigated. The p53
isoforms cannot be categorized as exclusively oncogenic or tumor-suppressive since their
biological activities and thus their prognostic values are associated with the cell context.

While the mutations of TP53 are frequent in human cancers, the mutations of TP63
are not common in somatic cells, and TP73 essentially is never targeted by inactivating
mutations [35].

4. The Role of p53 Family Isoforms in Melanoma

In melanoma, p53 and other family members, p63 and p73, fail to function as tumor
suppressors and to regulate target genes related to apoptosis and cell cycle, implying that
deviant functioning of p53 could support melanoma progression [51]. Reduced levels
of p53 or its mutations contribute to aggressiveness and resistance to therapy [52–55].
TP53 and TP63 genes are mutated in 27 and 22% of melanoma samples, respectively,
according to cBioPortal [56–58] (Figure 2). Several diverse mechanisms of p53 inactivation
in melanoma have been proposed, including mutations of CDKN2A (CDKN2A encodes
for both p16INK4A and p14ARF), upregulation of MDM2 (an E3 ubiquitin ligase that
controls p53 expression and function) or MDM4 (negative regulator of p53) overexpression,
activation of iASPP (inhibitor of apoptosis stimulating protein of p53) or deubiquitinase
USP5, and silencing of the TP53 gene by epigenetic mechanisms [55,59–62]. However, this
phenomenon is not fully understood.
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Figure 2. Genetic alterations of TP53, TP63, BRAF, and NRAS in 696 melanoma patients/samples
(downloaded data from cBioPortal Oncoprint view, https://www.cbioportal.org/, accessed on
27 October 2022) [56–58].

4.1. The Expression and Activities of p53 Isoforms in Melanoma

A handful of clinical studies reported the expression of p53 isoforms in several tumor
types, confirming that small molecular weight p53 isoforms might play an important role
in tumorigenesis [63–70]. In addition, a paucity of studies have investigated the expression
and biological functions of p53 family isoforms in melanoma (Figure 3, [28,69,71–80]). It has
been shown that the human melanoma cell lines express a broad pattern of p53 isoforms,
including p53α, p53β, ∆40p53α, ∆133p53α, ∆133p53β, and ∆160p53α, with the latter be-
ing the most variable. Interestingly, their expression differed from primary melanocytes.
∆160p53α, and to a minor degree, ∆160p53β, can be recruited to chromatin, and all ∆160p53
isoforms are shown to stimulate proliferation and in vitro migration [79]. The ∆160p53 iso-
forms are shown to bear pro-oncogenic traits, since they contribute to mutant p53-induced
properties, e.g., increased survival, proliferation, migration, adhesion, and invasion, and
thus are required for pro-oncogenic “gain of function” p53 [81]. In addition to ∆160p53α, el-
evated levels of small molecular weight p53 isoform ∆133p53αwere observed in metastatic
melanoma tumors compared to normal tissues [73]. It has been shown that all ∆133p53
isoforms promote invasion, with ∆133p53β being the most efficient. The overexpression of
∆133p53β promotes cancer stem cell potential and metastasis and correlates with a worse
cancer patient outcome, including for melanoma [73,82,83]. Additionally, ∆133p53 has been
shown to promote invasion and metastasis of B16 melanoma cells to the lungs, dependent
on secreted factors, including IL-6 and the chemokine CCL2 [74]. Additionally, the elevated
levels of ∆133p53β isoform promote an immunosuppressive environment in prostate cancer
by regulating the expression of CD274, which encodes PD-L1 [84] and boosts a chemoresis-
tant environment in glioblastoma [85], leading to aggressive cancer. Therefore, along with
∆160p53, ∆133p53 acts in a similar manner to the “gain of function” mutant p53 proteins
to promote migration, invasion, and metastasis, which may contribute to poor survival in
patients with ∆133p53-expressing tumors. Recent findings have shown that the ∆133p53β
activity is negatively regulated through aggregation. However, its interacting partners,
such as CCT chaperon complex or ∆Np63, a p53 family isoform, can recruit ∆133p53β
from aggregates, thus contributing to its tumor invasive activity [86]. Similar to ∆133p53,
∆40p53 can exhibit the dominant-negative effect on p53α and can alter p53-mediated tran-
scriptional activity, apoptosis, and growth suppression when co-transfected with p53. It
has been shown that both ∆40p53 and p53β have increased expression in melanoma cell
lines compared to fibroblasts and melanocytes and show aberrant subcellular localization,
and their expression can be induced by DNA damaging agents, e.g., cisplatin. Interestingly,
these two isoforms can alter p53 function in melanoma cells; ∆40p53 can inhibit while
p53β can enhance the p53-dependent transcription of p53 target genes, p21 and PUMA [69].
Similarly, ∆40p53, independently of full-length p53, promotes cell survival by activating
the transcription of the antiapoptotic ligand netrin-1. Inhibiting netrin-1 causes apoptosis
and inhibits tumor growth in vivo; a positive correlation was found between ∆40p53 and
netrin-1 gene expression in human melanoma biopsies. Interestingly, knockout of FLp53
by sgRNA increased the expression of ∆40p53 in human skeletal myoblasts [87]. Though,
when exogenously overexpressed, ∆40p53 can increase the level and activate endogenous
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p53, and can promote apoptosis over cell-cycle arrest (even with γ-irradiation) in melanoma
cells and thus reactivate p53-dependent tumor suppression function and impact melanoma
cell fate [76]. In melanoma tissues, ∆40p53β expression was reduced compared to healthy
tissue, while reduced p53β expression or increased p53αmRNA expression correlated with
poorer overall survival of melanoma patients [73].
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4.2. The Expression and Activities of p73 Isoforms in Melanoma

In contrast to p53 and p63, p73 is essentially never mutated in cancer, but it is of-
ten overexpressed [35,88], including in melanoma [89]. Increased expression of p73 in
metastatic melanoma could imply that the p73 is a positive regulator of melanoma pro-
gression from primary tumor to metastasis [89]. There is a paucity of studies that have
analyzed the p73 isoforms’ expression in melanoma. A study of the expression and effect of
particular p73 isoforms in metastatic melanoma showed overexpression of TAp73, Ex2p73,
and Ex2/3p73 (spliced transcripts derived from the first promoter), whereas ∆Np73 was the
predominant isoform in benign nevi [72], which is in line with our findings of gene expres-
sion [73]. On the protein level, decreased expression of ∆Np73β but increased expression of
∆Np73α was observed in metastatic melanoma tissue compared to healthy tissue [73]. Sig-
nificantly greater expression of ∆Np73α protein in melanoma [73] is reasonable considering
that N-terminally truncated isoforms, e.g., ∆Ex2/3p73, can be expressed more in melanoma
metastasis compared to primary melanoma. Furthermore, ∆Ex2/3p73 was shown to drive
EMT-like (epithelial-to-mesenchymal transition, EMT) phenotypic switch, migration, and
invasion of melanoma cells via EPLIN depletion and IGF1R-AKT/STAT3 signaling. These
changes can be reversed with TAp73, confirming once again the interplay between p73 and
N-terminally truncated isoforms. In vivo, ∆Ex2/3p73 expressing tumors were significantly
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more invasive and developed micrometastases in lungs and liver. ∆Ex2/3p73 levels posi-
tively, while EPLIN negatively, correlates with Breslow depth of the primary melanomas,
and higher level of ∆Ex2/3p73 transcript in combination with a loss of EPLIN expression
was found in melanoma metastases compared to the primary group [90]. Furthermore, it
has been shown that ∆Np73 overexpression enhances tumor vascularization and increases
the angiogenic potential of B16-F10 melanoma cells in vivo. In more detail, higher vessel
density indicated by the number of CD31+ structures, higher mitotic index, and increased
expression of VEGF-A were observed in B16-∆Np73 tumors a few weeks after injection into
C57BL/6 mice, which supports the pro-angiogenic role of ∆Np73 in melanoma cells [75].
In addition to ∆Np73β, the expression of TAp73α and TAp73β was reported in a panel
of human melanoma cells, and significantly higher expression of TAp73 was observed
in wild-type cell lines for both BRAF and p53 compared to other mutation groups [79].
This is in line with the results of previous findings, where expression of both proapoptotic
TAp73 and anti-apoptotic N-truncated p73 isoforms were observed in melanoma cell lines,
suggesting that their ratio could also determine potential drug response in melanoma.
Indeed, upregulation of TAp73β expression by adenoviral transfection enhances the sen-
sitivity of melanoma cells to standard chemoterapeutic agents, such as adriamycin and
cisplatin, both in vitro and in vivo [71]. Since TAp73α is associated with the suppression
of apoptosis in non-melanoma cancer cells [91], the abovementioned findings also imply
that the treatment-mediated apoptosis depends on the content of p73 C-terminus in a cell
context/type–dependent/specific manner. Protein interactions between TAp73α, TAp73β,
∆Np73α, and p53β with the p53α protein were observed in the A375M melanoma cell line
(Hanžić et al., unpublished results), some using already reported FRET-FLIM analysis [92],
implying that these isoforms could be involved in altering p53 function in melanoma.

4.3. The Expression and Activities of p63 Isoforms in Melanoma

The third member of the p53 family, transcription factor p63, is recognized as an
important regulator of the development of stratified epithelia, including skin. A complex
network of p63 transcriptional targets involves both positive and negative regulation,
which orchestrate processes crucial for the development and differentiation of the skin [93].
p63 can repress the expression of CDKN1A, which encodes the cyclin-dependent kinase
inhibitor p21, and HES1, which is an effector of the Notch pathway, thus maintaining cell
proliferation in basal keratinocytes (basal layer of the epidermis) [94,95]. In addition, p63
activates the expression of several genes important for cell adhesion (ITGA6 and ITGB4
encoding integrins, BPAG1 and PERP encoding components of hemidesmosomes, CDH3
encoding P-cadherin, FRAS1 encoding extracellular protein, and KRT14 encoding for the
component of keratin intermediate filaments) [96–101]. The ∆Np63α isoform was shown
to be the most frequently expressed among the p63 isoforms in normal skin and cutaneous
tumors [93]. p63 is frequently expressed in undifferentiated and poorly differentiated
tumors that originate from epithelial cells [102]. There remains controversy regarding the
p63 expression in melanoma. Initial studies rarely revealed p63 expression in malignant
melanoma [102–104]; however, more recent studies report the existence of p63 expression
and mutations in cutaneous melanoma [77,105]. p63 was found to interact with p53
in melanoma, thereby influencing its tumor suppressor role. It seems that p63 has an
oncogenic role in melanoma, since increased expression of p63 on a gene and protein level
was observed in melanoma cell lines and clinical tumor samples. In addition, its reactivity
correlates with worse clinical outcome of melanoma patients [77]. Furthermore, p63 seems
to be a negative regulator of apoptosis through a twofold mechanism in melanoma, e.g.,
translocation to the mitochondria, subsequently influencing expression of BCL-2 family
members and repression of p53 in the nucleus. By acting as a dominant-negative inhibitor
of p53, p63 renders melanoma cells resistant to standard chemotherapy and targeted BRAFi
therapy [77].
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5. The Role of p53 Family Isoforms in Resistance to Targeted Therapy

The mutations of TP53 and TP63 are found in more than 20% and 15% of the BRAF-
mutated tumors, respectively (Figure 2), and are certainly involved in the acquisition of
resistance. Nevertheless, there is increasing evidence indicating the influence of specific p53
family isoforms in acquired resistance to MAPK inhibitor (MAPKi) targeted therapy. For ex-
ample, the specific isoform expression pattern, such as increased potentially pro-oncogenic
∆40p53β isoforms and reduced tumor-suppressive TAp73β isoforms, was detected in
both primary and metastatic melanoma cells with acquired resistance to BRAFi targeted
therapy, i.e., vemurafenib. In addition, reduced ∆133p53β expression was observed in
BRAFi-resistant melanoma cells. Furthermore, reduced levels of TAp73 and ∆Np73 were
observed in BRAFi-resistant primary melanoma cells with the activation of the PI3K/AKT
pathway, while increased levels of TAp73 and ∆Np73 were detected in resistant metastatic
melanoma cells with the re-activation of the MAPK pathway [79]. The BRAFi-resistant
primary melanoma cells show features of slow-cycling cells, e.g., mesenchymal morphol-
ogy, reduced proliferation and migration, increased resistance to chemotherapeutic agents,
i.e., cisplatin and etoposide, as well as altered cell cycle profile and levels of cell cycle
regulators [106], implying that the specific p53 isoform expression pattern could correlate
with specific features of BRAFi-resistant melanoma cells. Interestingly, the slow-cycling cell
phenotype, known to be a feature of a targeted therapy-resistant melanoma cells [28,106],
can be prevented by the inhibition of p53, thus sensitizing melanoma cells to BRAFi/MEKi-
targeted therapy [28]. In more detail, it has been shown that the slow-cycling phenotype is
driven by non-canonical Wnt signaling via the Wnt5A protein, which stabilizes and utilizes
p53. Wnt5A promotes expression of p53 and p21, which drive cells into a slow-cycling
state where they resist therapy. Furthermore, a single dose of pifithrin-α, a p53 inhibitor,
sensitized melanoma cells in vivo and in vitro to BRAFi/MEKi, while the BRAFi/MEKi
therapy increased the number of p53-expressing cells in melanoma tissue [28]. Although
inhibition of p53 could have disadvantages, the possibility of abolishing MAPKi resistance
in slow-cycling cells dependent on the Wnt5A/p53 axis by using a single dose of p53
inhibitors could be a potential therapeutic strategy to overcome MAPKi resistance.

Interestingly, melanoma cells with acquired resistance to MAPKi, i.e., BRAFi (vemu-
rafenib) or combined with MEKi (trametinib), can show reduced levels of TAp73 and
enhanced sensitivity to platinum-based agents [80]. In more detail, TAp73 was shown to
mediate resistance toward platinum-based agents and influence DNA damage response
by regulating the nucleotide excision repair (NER) mechanism in melanoma cells. Conse-
quently, lower TAp73 levels reduce the efficiency of NER and enhance the accumulation
of DNA double-strand breaks after treatment with platinum-based agents in MAPKi-
resistant melanoma cells. These results provide the possibility of stratifying patients with
MAPKi-resistant melanoma, dependent on TAp73 expression status, which could benefit
platinum-based chemotherapy [80].

As mentioned, by interacting with p53 and influencing its tumor suppressor function,
p63 acts as a negative regulator of apoptosis and contributes to chemoresistance. It has
been shown that the treatment with BRAFi or chemotherapeutic agents, e.g., etoposide,
paclitaxel, and cisplatin, increases the apoptosis of melanoma cells upon depletion of p63.
In addition, the depletion of p63 caused increased expression of phosphorylated ERK1/2
and MEK, thereby most probably elevating the activity of the MAPK pathway in the A375M
melanoma cell line, which was more pronounced upon BRAFi treatment. This implies
that the reactivation of the MAPK pathway, as a mechanism of melanoma resistance to
BRAFi therapy, could be regulated via the p63 pathway [77]. In addition, overexpression
of ∆Np63β was shown to elevate EGFR expression, resulting in increased expression of
phosphorylated MEK1/2 in WM164 metastatic melanoma cells. These results further
support the role of p63 in influencing MAPK signaling via EGFR in melanoma cells [78].
Interestingly, melanoma cells with acquired resistance to MAPKi, i.e., BRAFi (vemurafenib)
or MEKi (trametinib), show increased expression of both TAp63 and ∆Np63 isoforms
on an mRNA level as well as ∆Np63α/β/γ on a protein level in different melanoma
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cell lines. In addition, the upregulation of p63 was shown to contribute resistance to
targeted MAPKi therapy in cell lines and clinical samples, and by modulating its expression,
MAPKi-resistant melanoma cells can be sensitized to MAPKi treatment. Interestingly,
increased p63 level was shown to be a result of lower degradation, dependent on E3
ubiquitin ligase FBXW7, which is negatively regulated by MDM2 [78], a known negative
regulator of certain p53 and p73 isoforms [107–112]. Consequently, in MAPKi-resistant
melanoma cells, nuclear enrichment of MDM2 most probably resulted in downregulation
of FBXW7 and subsequent upregulation of p63. Therefore, the targeting of MDM2 by
inhibitor Nutlin-3A re-established/upregulated FBXW7 in a p53-dependent manner and
resulted in p63 degradation and thus made MAPKi-resistant melanoma cells susceptible to
MAPKi treatment [78]. These results suggest the possibility of abolishing MAPKi resistance
dependent on the MDM2/FBXW7/p63 axis by using Nutlin-3 as a therapeutic strategy to
defeat MAPKi resistance.

In addition to their potential involvement in response to BRAFi/MEKi targeted ther-
apy, the regulation and activity of the p53 protein family members should also be taken
into account in other novel approaches to melanoma treatment. It was recently found
that CDK4/6 inhibitors (e.g., palbociclib), which are currently being tested clinically as
a potential therapy for melanoma, can activate p53 through modulation of alternative
splicing of MDM4, which is a known negative regulator of p53. This regulation is medi-
ated by the suppression of PRMT5, a protein arginine methyltransferase, an epigenetic
modifier that, among other functions, modulates pre-mRNA splicing affecting also MDM4,
leading to lower levels of MDM4 expression and consequently to increased p53 expres-
sion. Disruption of the palbociclib activity on the MDM4-PRMT5 pathway is one of the
hallmarks of the development of drug resistance to CDK4/6 inhibitor therapy. However, a
potent and prolonged response to the CDK4/6 inhibitor was achieved by combining with
the PRMT5 inhibitor, leading to suppression of cell proliferation and tumor growth [18].
Locus CDKN2A is the most frequently affected gene by germ-line mutations in cutaneous
melanoma. It encodes two distinct tumor suppressors, namely p16INK4A and p14ARF,
which positively regulate retinoblastoma (RB) and p53 pivotal tumor suppressors (by in-
activating MDM2), respectively [113]. A novel study on early stage primary cutaneous
melanoma shows significant presence of somatic mutations in TP53 and CDKN2A, being
present in 26 and 16% of the analyzed samples, respectively [114]. This and other studies
continue to emphasize that the role of p53 tumor suppressor has to be considered during
melanoma development and response to therapy. Furthermore, the development of novel
drugs targeting alternative splicing processes could be used as a novel therapeutic approach
in melanoma [115].

6. Conclusions

Metastatic melanoma is one of the most aggressive tumor types, with frequent muta-
tions mostly affecting components of the MAPK pathway, such as kinase BRAF. Regardless
of positive initial response to MAPK inhibitors, disease relapse occurs due to acquired
resistance largely as a result of reactivation of MAPK or activation of PI3K/AKT pathways.
The diverse biological functions and overall activity of p53 and its family members, p63
and p73, are a result of the balance between different p53 family isoforms. Most of the
p53 family isoforms interact with each other to form heterotetramers that interfere with
transactivation ability or assemble inactive homotetramers that compete for DNA binding.
Thereby, proteins with the transactivation domain can imitate the function of p53, trans-
activating many p53 target genes, whereas proteins without it show a dominant-negative
effect toward p53 and its family members. The p63 was found to interact with p53 in
melanoma, thereby influencing its tumor suppressor role. TP53 and TP63 mutations occur
in a respectable number of the BRAF-mutated melanomas, while p73 is never mutated but
overexpressed. Moreover, in melanoma there is unbalanced expression of different p53
family isoforms, which are also shown to contribute to melanoma aggressiveness and to
influence response to therapy. In this review, we summarized the p53 family isoforms that
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have imbalanced expression in melanoma and their potential to modulate p53 function,
exhibiting specific biological functions. Furthermore, we emphasized the findings showing
the involvement of specific p53 family isoforms in acquired resistance to MAPK inhibitor
targeted therapy. Therefore, revealing the specific expression patterns and roles of the
p53 family isoforms could potentially lead to uncovering of novel therapeutic targets in
melanoma. In addition, modulating expression of the p53 family isoforms or targeting their
functional pathways linked to MAPK inhibitor resistance could be a potential therapeutic
strategy to overcome resistance to MAPK inhibitors in melanoma.
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