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Abstract Some noncommutative (NC) theories posses a
certain type of dualities that are implicitly built within their
structure. In this paper we establish still another example of
this kind, and we do this perturbatively in the first order of the
Seiberg–Witten expansion. More precisely, we show that a
particular model of noncommutative U (1)� gauge field cou-
pled to a NC scalar field and to a classical geometry of the
Reissner–Nordström (RN) type is to a first order in deforma-
tion completely equivalent at the level of equations of motion
to the commutative U (1) gauge theory coupled to a commu-
tative scalar field and to a classical geometry background,
different from the starting RN background. The new (effec-
tive) metric is obtained from the RN metric by switching
on an additional nonvanishing r − φ component. Using this
first order duality between two theories and physical systems
they describe, we formulate an effective approach to study-
ing a dynamics of spin 1

2 fields on the curved background
of RN type with an abiding noncommutative structure. As
opposed to that, we also investigate in a more formal way
a dynamics of spin 1

2 fields, and we do this perturbatively,
within a first order in deformation parameter, by studying a
semiclassical theory which describes the NC U (1)� gauge
field coupled to NC spin 1

2 field and also coupled to grav-
ity, which is however treated classically. Upon utilising the
Seiberg–Witten (SW) map in order to write the NC spinor and
NC gauge fields in terms of their corresponding commutative
degrees of freedom, we find that the equation of motion for
the fermion field obtained within the formal approach exactly
coincides with the equation of motion obtained within the
effective approach that utilises first order noncommutative
duality. Therefore, linearized equations of motion for a spinor
field in SW expansion turn out to be the same as equations
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of motion in a perturbed metric. We then use these results
to analyze the problem of stability of solutions of the equa-
tions of motion and the associated issue of superradiance, as
related to fermions in RN spacetime with an all-pervasive
noncommutative structure.

1 Introduction

Many distinct approaches to a unification of quantum
mechanics with gravity in the ultraviolet sector point toward
the existence of absolute minimal length scale, whose very
presence puts a lower bound to the minimal possible resolu-
tion of space as its intrinsic property. As a consequence, one
of the cornerstones of quantum mechanics, the Heisenberg
uncertainty relations, start to call for a revision, resulting in
a generalized uncertainty principle [1,2], which is also sug-
gested by perturbative string theory [3,4], quantum gravity
[5,6] and black hole physics [7]. Moreover, in loop quantum
gravity a process of quantization gives rise to the area and
volume operators which have discrete spectra, whose lowest
possible eigenvalues are being proportional to the square and
cube of the Planck length, respectively [8,9]. This, together
with the generalized uncertainty principle, implies the exis-
tence of a minimum uncertainty in position [7,10–12].

One of the more known patterns to implement a minimal
length scale in quantum mechanics, quantum field theory
(QFT) and gravity is provided by the frame of noncommu-
tative (NC) geometry, which is characterized by the fact that
the spacetime coordinates get raised to the level of the opera-
tors and thus generally fail to commute [13–18]. The idea of
noncommutativity of spacetime was first clearly articulated
by Snyder [19] and expounded further in terms of geometric
notions by Connes [20,21]. Correspondingly, a possibility to
observe the consequences of spacetime noncommutativity
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and the existence of a minimal length scale led to the inten-
sive study of noncommutative versions of quantum mechan-
ics, QFT and gravity with the aim of revising the standard
theories as diverse as the gauge theory, particle physics and
the Quantum Hall effect (QHE), thermodynamics and the
black-hole physics and cosmology, so that they may keep
the track with and accommodate the eventual novel features
into their framework [22–33].

It is known in general that various noncommutative mod-
els, including models of noncommutative field theory and
noncommutative gravity allow for a representation in terms
of classical commutative fields either in a compact and closed
form or in a form of a perturbation expansion up to a certain
order in a deformation parameter. The most known exam-
ple of this kind is obtained by means of the Seiberg–Witten
(SW) map [16], which is a field transformation that allows to
rewrite a gauge theory on noncommutative space as a gauge
theory on commutative space. In an attempt to map a noncom-
mutative gauge field theory to its commutative counterpart
from which it emerged as a result of deforming an associated
Poisson structure, the SW map undoubtedly becomes highly
important.

Related to this, it is noteworthy to recall that the SW map
helped to resolve some of the issues that had appeared by the
introduction of the star-product into the action, among them
being the advent of the field operator ordering ambiguities, as
well as the breaking of the ordinary gauge invariance and the
problem with the charge quantisation. This map also ensures
that by going from a set of degrees of freedom describ-
ing noncommutative gauge symmetry to a corresponding set
describing local commutative gauge symmetry the number
of degrees of freedom stays the same. This way a number
of NC deformed QFT’s could be properly defined for arbi-
trary gauge group representations, which has facilitated the
building of the whole range of semi-realistic NC deformed
particle physics [34–42] and gravity models [43–47].

Another interesting situation where the NC theory allows
for an interpretation in terms of commutative degrees of free-
dom involves a class of noncommutative models which have
been shown to exhibit a specific type of duality relations that
are implicitly built-in at the level of equations of motion. This
feature has been observed in some hybrid or semi-hybrid
noncommutative models investigated within a so called real-
ization framework [48–54], which utilizes the representation
of NC coordinates and NC field operators in terms of formal
power series of generators of the undeformed Heisenberg
algebra. The Lagrangian density in these models, which is
expressed partially or completely in terms of NC degrees of
freedom (that’s why these models are being labelled as hybrid
or semi-hybrid), allowed not only for a reinterpretation of
the Lagrangian density in terms of commutative degrees of
freedom, but also allowed for a radical refashioning of the
initial semi-hybrid NC model so that it could take on a form

of an effective commutative model realized within a similar
or even the same physical setting, but with modified system
parameters. Such reinterpretation was then able to give non-
commutativity a definite physical meaning. For example, in
[55–59] it has been found that the semi-hybrid model of NC
massless scalar field coupled to a classical nonrotational BTZ
geometry is dual to the model of massive commutative scalar
field probing the geometry of a rotating BTZ black hole. In
this way, the noncommutativity took on the role of an agent
medium that has put a black hole into a state of rotation.
Besides, the noncommutativity was shown to be responsi-
ble for a mass generating mechanism, as applied to a scalar
probe, and for inducing certain back-reaction effects.

A similar situation has been encountered in [60], where
the analogy between NC version of the Schwarzschild black
hole and the commutative Reissner–Nordström black hole
with a stretched horizon was drawn. Likewise, in [61] the
authors have shown that the minimal U(1) NCQED based on
a reversible Seiberg–Witten (SW) map is equivalent to the
Moyal NCQED without SW map, as manifested at the level
of tree-level scattering amplitudes [61]. In this case the equiv-
alence between two models comes as a result of a mutual can-
cellation between terms induced by the reversible SW map,
which might also be viewed as being due to a presence of
the specific duality relations that are inherent to the noncom-
mutative model being considered. Similarly, the features of
this kind can be found in supersymmetric noncommutative
field theories related by the theta-exact Seiberg–Witten map
[62]. In most of these cases (certainly for the case studied
in [55–59]) the notion of duality refers to an exact math-
ematical correspondence that may be drawn between two
different physical systems having different system parame-
ters, though governed by the same Lagrangian density and the
associated equation of motion. A duality understood that way
gives an example of the equivalence that can be established
between noncommutative and commutative model, where
each of these models separately describes its own respective
physical system. As these two systems that commutative and
noncommutative models refer to are actually being governed
by the same equations of motion and the same Lagrangian
density, they may too be characterized as being equivalent
with each other. Therefore, referring in the current context
to a duality itself that exists between two different physical
systems, it shouldn’t come as a surprise that it gets mani-
fested through a set of exact mathematical transformations
that connect the parameters of these two physical systems,
thus making them dual with each other.

In this paper we set out to find another example of this
kind within the semi-hybrid NC model studied in [63–65]. In
particular, here we show that noncommutative U (1)� gauge
theory coupled to NC scalar field and to a classical geom-
etry of the Reissner–Nordström type is equivalent within a
first order of deformation to a commutative U (1) gauge the-
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ory coupled to a commutative scalar field and to a classi-
cal geometry background, which however does not coincide
with the initial RN metric, but instead represents an effective
metric which encodes the impacts of the spacetime deforma-
tion. In other words the former model can be recast into a
latter by redefining the components of the initial RN met-
ric. In this way we end up with an effective, but equivalent
description in which the redefined metric has an important
role, forming one of the crucial building blocks that charac-
terize the dual system and the duality transformation itself.
From now on we refer to this redefined metric as the effec-
tive metric characterizing the first order dual picture, or the
first order effective dual metric in short. It can be viewed as
having ensued from a specific deformation of the RN metric
which brings in a nonvanishing r−φ component. This whole
scheme thus establishes a first order duality relation between
two models, one (semiclassical hybrid) noncommutative and
the other fully commutative, and two physical systems they
describe.

As a further step, we study a dynamics of fermions on
a curved background with a deformed spacetime structure,
where as an exemplar for the curved geometry we use the
RN black hole background. This study has been carried
out within two different approaches: effective and formal.
The effective approach uses standard notions of commuta-
tive differential geometry, with parallel implementation of
the noncommutative-born effects through the utilisation of
the type of duality just explained, where the effective dual
metric mimics the impacts of noncommutativity. The for-
mal approach is a level beyond more rigorous in a sense
that it attempts to stay in line and be compatible with the
requirements that the NC U (1)� Dirac action on a curved
background remains invariant under NC gauge transforma-
tions, as well as under the undeformed local SO(1, 3). With
that in mind, we put forth a proposal for the NC U (1)� Dirac
action that could meet these requirements. As this NC U (1)�
Dirac action that we propose is being expressed in terms of
the NC spin 1

2 field and the NC U (1)� gauge field that are
both coupled to gravitational degrees of freedom, it is impor-
tant to stress that it will remain invariant under the NCU (1)�
gauge transformations as long as we assume that the grav-
ity is unaffected by them, i.e. δ�gμν = 0 (or alternatively
δ�eaμ = δ�ω

ab
μ = 0). In other words, our formal approach

assumes that the NC spin 1
2 field, and the NC U (1) gauge

field are the only degrees of freedom that get affected by the
NC gauge transformations. In addition, we will assume that
the local SO(1, 3) symmetry is unaffected by NC deforma-
tion. The NC U (1)� Dirac action that we propose is in a line
with the proposals made in [43,44].

The main result of this paper is to show that these two dif-
ferent approaches surprisingly give rise to the same equation
of motion describing a dynamics of fermions on a curved

space in presence of a NC structure of spacetime, therefore
explicitly demonstrating the equivalence between the effec-
tive and formal, more rigorous approach. Namely, what has
been shown in the present paper is that the equation of motion
obtained by using the SW map for spin 1

2 and gauge fields,
and by varying the NC U (1)� Dirac action that is invariant
under NC gauge transformations and S0(1, 3)� group at the
end of the day appears to be the same as the equation of
motion obtained by simply writing the Dirac equation on a
geometric background described by the effective dual metric.

Dirac equation in the context of noncommutative spaces is
important from many reasons and was studied intensively in
the literature. The range of topics where it finds application
is vast, going from the high energy physics, all through the
gravitational physics and cosmology and all the way down to
the problems in condensed matter. In particular, the problems
related to high energy physics involve a study of the hydro-
gen atom spectrum on Moyal [66] and kappa-Minkowski
space [67], the impact of quantum deformation on the spin-
1
2 Aharonov–Bohm effect [68], the problem of Yukawa cou-
plings and seesaw neutrino masses in noncommutative gauge
theory [40], photon-neutrino interaction in noncommutative
field theory [69], renormalizability and dispersion of chiral
fermions in NCQED [70] and the impact on neutrino oscilla-
tions due to noncommutativity of spacetime [71] to name just
a few. Besides canonical and kappa-Minkowski type of non-
commutativity (for a recent review see [72]), other types of
spacetime noncommutativity that have been frequently stud-
ied in the past include that of Snyder type (for the review
see [73,74]), as well as that which is usually referred to as
the “spin noncommutativity”, first introduced in [75,76], and
which could be theoretically understood as a non-relativistic
analog of the original Snyder’s model [19]. In [77], the spin
noncommutativity was obtained by means of a consistent
deformation of the Berezin–Marinov pseudoclassical model
for the spinning particle [78]. Like the Snyder model, spin
noncommutativity exhibits preservation of the Lorentz sym-
metry. Within this framework a modification of the Dirac
equation was proposed and a dynamics of a Dirac fermion
in the presence of spin noncommutativity was studied in
[77,79].

In condensed matter, the topic of special interest is the
integer and in particular the fractional quantum Hall effect
and a related attempt to procure the explanation for the lat-
ter in terms of the Dirac oscillator [80] and especially in
terms of the Dirac oscillator on NC space [81–89]. Due to
the same reasons the study of relativistic Landau levels or
Dirac-Landau levels, including the breaking of their degen-
eracy, becomes increasingly more important and even more
so as these results were being applied to the graphene and
the related nanostructures [90,91].

Another intriguing field where the Dirac equation under
conditions of discretized spacetime was being analyzed
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involves deformed relativistic wave equations, namely the
Klein–Gordon and Dirac equations in a Doubly Special
Relativity (DSR) scenario [92–97]. Besides the algebraic
approach to this problem, which originally started by con-
sidering the standard real form of the quantum anti-de Sitter
algebra, SOq(3, 2) and then by consistently modifying the
related coproduct [98], there recently appeared a geomet-
ric approach [99–102] to the same problem, which is based
on the geometry of a curved momentum space [103–109].
While Dirac equation obtained in [98] is invariant under the
spin-half representation of the κ-Poincaré algebra, it doesn’t
yield the Casimir after squaring. Instead, its square gives rise
to the κ-deformed Pauli–Lubanski vector. Contrary to that,
Dirac equation obtained in [102] gives rise to the κ-Poincaré
Casimir upon squaring, along with having the required sym-
metry properties. This geometric approach should be seen as
complementary to the more spread algebraic one [110–116].
Finally, it is worthy to mention that Dirac equation has an
important role in studying wide range of physical processes
that occur near the black hole horizon, such as the scattering
and absorption processes for Dirac particles [117], the spec-
tral power emission of Dirac fermions [118,119], including
the study of superradiance [120] and the quasinormal mode
(QNM) spectrum for the fermionic perturbations. In the lat-
ter case, of special interest is the study of the impact of NC
spacetime deformation on QNM spectrum of the fermionic
perturbations of black holes [58].

The paper is organized as follows. After a very brief review
of NC deformation that we analyze in this paper, in Sect. 3
we study semiclassical NCU (1)� gauge theory coupled with
NC spin 1

2 field and NC gravitational degrees of freedom,
whose action is invariant under NC gauge transformations
and the undeformed local SO(1, 3) group. Upon utilising
the Seiberg–Witten map in order to write NC spinor and NC
gauge fields in terms of their corresponding commutative
degrees of freedom, the equation of motion for the fermion
field is obtained by varying the action over �̄. The effective
dual metric (derived in Appendix A) is then used in Sect. 4
to write a noncommutative version of the equation of motion
for the fermions in a curved background of RN type, thus
putting forth an effective approach to the same problem that
is treated in a formal, more rigorous way in Sect. 3. Here we
find that surprisingly, both of these two approaches, formal
and effective, yield the same final result. In Sect. 5 we show
that the resulting equation of motion is separable, yielding
two pairs of equations, one for the angular part and the other
for the radial part. Noncommutative deformation appears to
affect only the radial part, with the angular part being solved
by the same spin 1

2 spherical harmonics as in the case of Dirac
equation for the hydrogen atom in flat or Schwarzschild case.
At the end, we utilise the general properties of the fermionic
solutions deduced here to investigate the problem of their sta-
bility. In particular, the issue of superradiance is considered

as related to the solutions of the Dirac equation in RN space-
time, and especially the impact of noncommutative defor-
mation on the effect of superradiance is addressed. We end
up with two Appendices. In Appendix A we demonstrate the
equivalence between semiclassical NC U (1)� gauge theory
with NC scalar field on a classical RN background and com-
mutative U (1) gauge theory with ordinary scalar field on the
background with the effective dual metric. Furthermore, we
find the explicit form of the effective dual metric in a first
order of deformation. In Appendix B we briefly discuss pos-
sible generalizations of our model to include settings with
more nontrivial geometric backgrounds, as well as types of
deformation.

2 Preliminary settings

A solution to Einstein equations representing a charged non-
rotating black hole with mass M and charge Q is given by
the Reissner–Nordström (RN) metric

ds2 =
(

1 − 2MG

r
+ Q2G

r2

)
dt2 − dr2

1 − 2MG
r + Q2G

r2

−r2(dθ2 + sin2 θdφ2). (1)

Being static and spherically symmetric, the spacetime of RN
black hole has four Killing vectors, among which ∂t and ∂φ

are included, and t and φ are the time and polar variables of
the spherical coordinate system xμ = (t, r, θ, φ).

In the previous paper [63] we have introduced a semiclas-
sical model describing a charged NC scalar field �̂ and NC
U (1) gauge field Â on a classical gravitational background
of RN type. By semiclassical we mean that while the grav-
itational field in this model was assumed to be a classical
degree of freedom (i.e. not deformed by noncommutativity),
the scalar and gauge field propagating in that classical gravi-
tational background were assumed to be affected by noncom-
mutative nature of spacetime. In a sense, we are therefore
dealing with a situation where the scalar and gauge field are
quantized and gravitational field is not. It is however impor-
tant to stress that the gauge and scalar field are not quantized
in a sense of quantum field theory.

The model was built by using deformation quantization
techniques based on Drinfeld twist operator and the explicit
twist operator that was used in the construction was the so
called angular twist operator [63,64]

F = e− i
2 θαβ∂α⊗∂β

= e− ia
2 (∂t⊗∂φ−∂φ⊗∂t ), (2)

with α, β = t, r, θ, φ and θ tφ = −θφt = a as the only non-
zero components of the deformation tensor θαβ . The small
constant parameter a is the deformation parameter that sets
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up the NC scale, commonly related to the Planck length. This
twist operator is a Killing twist, since it is built from the vector
fields that are actually Killing vectors for the metric (1). In
this way it is ensured that the geometry (1) stays unaffected
by the deformation as the twist (2) does not act on the RN
metric.

The star product, the wedge star product between forms,
the coproduct and other structural maps of the related sym-
metry algebra can all be obtained from the twist operator (2).
In particular, the star product between functions is given by

f � g = μ ◦ F−1 ( f ⊗ g) = μ{e ia
2 (∂t⊗∂φ−∂φ⊗∂t ) f ⊗ g}

= f g + ia

2
(∂t f (∂φg) − ∂t g(∂φ f )) + O(a2), (3)

where the map μ represents the usual pointwise multiplica-
tion. The remaining ingredients of the differential calculus
are described in [63].

3 Spinor field on the noncommutative RN background:
formal analysis

A massive and charged spinor field � on a fixed gravitational
background can be described by the following action

S =
∫

d4x |e|�̄
(
iγ μDμ� − m�

)
. (4)

The mass and the charge of the spinor field � are respectively
m and q. The determinant of the vierbein eaμ we label with
|e| = √−g and the covariant derivative Dμ includes both
the spin connection ωμ and the U (1) gauge field Aμ

Dμ� = ∂μ� − i

2
ω ab

μ �ab� − iq Aμ�. (5)

Matrices �ab are the (hermitian) generators of the local
Lorentz transformations and they close the Lorentz algebra

[�ab, �cd ] = i(ηad�bc + ηbc�ad − ηac�bd − ηbd�ac).

The spin connection is not an independent field, but a function
of eaμ, calculated from the torsion free condition

T a
μν = ∇μe

a
ν − ∇νe

a
μ = 0,

with ∇μeaν = ∂μeaν + ω a
μ b ebν . For more details on the

spin connection, vierbeins and the notation we use, we refer
to the beginning of Sect. 4.

The action (4) is invariant under the local U (1) transfor-
mations

δα� = iα(x)�, δα�̄ = −i�̄α(x), δαAμ = 1

q
∂μα(x).

(6)

Note that these transformations do not act on the gravita-
tional background, that is on eaμ and ωμ. The action (4) is

also invariant under the general coordinate transformations
and the local SO(1, 3) symmetry. In this paper we use the
semiclassical analysis and promote only theU (1) gauge sym-
metry to the noncommutative U (1)� gauge symmetry. In our
future work we will lift this approximation and allow for the
noncommutative local SO(1, 3)� symmetry. The equation of
motion for the spinor field � is obtained by varying the action
(4) with respect to �̄ and it is given by

iγ μ
(
∂μ� − iωμ� − iq Aμ�

)
− m� = 0. (7)

Following the steps from [63], we now introduce an action
functional that describes the NC U (1)� gauge theory of a
charged spinor field on the RN background1 (1)

S� =
∫

d4x |e| �
¯̂
� �

(
iγ μ

(
∂μ�̂ − iωμ � �̂

−iq Âμ � �̂
) − m�̂

)
. (8)

Noncommutative fields are now labeled with a ˆ and the �-
product is given by (3). One can show that this action is invari-
ant under the following infinitesimal U (1)� gauge transfor-
mations:

δ��̂ = i�̂ � �̂,

δ� Âμ = ∂μ�̂ + i
(
�̂ � Âμ − Âμ � �̂

)
,

δ�ωμ = δ�e
a
μ = 0, (9)

where �̂ is the NC gauge parameter. In particular, note that

δ�Dμ�̂ = i�̂ � Dμ�̂

since the twist (2) does not act on the gravitational field and
therefore ωμ � � = ωμ · � = � � ωμ. Note that the action
(8) can be written in a more geometric way [121] such that
the general coordinate transformation invariance is manifest

S ∼
∫ (

(D�̂)B � �̂A − ¯̂
�B � (D�̂)A

)

∧� (e ∧� e ∧� eγ5)BA, (10)

with spinor indices A, B explicitly written and the vierbein
one form e. The covariant derivative one-form is given by
D�̂ = d�̂ − iω � �̂ − i Â � �̂, with the gauge potential
one-form Â and the spin connection one-form ω. When the
Killing twist is used and the action (10) is expanded in a
chosen coordinate basis, the action (8) is obtained.

Similarly to [63], we can add the action for the NC U (1)�
gauge field Âμ to (8), promoting the gauge field Âμ into
a dynamical field. However, since later on we will be inter-
ested in propagation of NC spinor field on the fixed RN back-
ground, we do not write the action for the NC U (1)� gauge
field Âμ explicitly here.

1 Actually, it can be any background with Killing vectors ∂t and ∂φ .
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To simplify the calculation, from now on we redefine
Aμ = q Aμ. Then we use the Seiberg–Witten (SW)-map
[16,27] in order to express NC fields �̂ and Âμ as functions
of the corresponding commutative fields and the deformation
parameter a. The SW-map assumes an expansion in orders of
the deformation parameter and this expansion is known to all
orders for an arbitrary Abelian twist deformation [27,44,45]
of which the twist (2) is only one example. For the twist oper-
ator (2), SW-map gives rise to the following expansions for
the fields:

�̂ = � − 1

2
θρσ Aρ(∂σ �), (11)

Âμ = Aμ − 1

2
θρσ Aρ(∂σ Aμ + Fσμ). (12)

The expanded action up to first order in a is given by

S� =
∫

d4x |e|�̄
(
iγ μDμ� − m�

)

+1

2
θαβ

(
− i Fμα�̄γ μDU(1)

β � − i

2
�̄γ μωμFαβ�

−1

2
Fαβ�̄

(
iγ μDU(1)

μ � − m�
)
.

Remembering that Fαβ = ∂αAβ − ∂β Aα and choosing the
electromagnetic potential to be that of the RN black hole, the
only non-zero component of Fαβ is Frt = qQ

r2 . This leads to
a simplified NC action

S� =
∫

d4x |e|�̄
(
iγ μDμ� − m�

)

− i

2
θαβ�̄Fμαγ μDU(1)

β � (13)

and the corresponding equation of motion for the spinor �

iγ μ
(
∂μ� − iωμ� − i Aμ�

)

−m� − ia

2
Frtγ

r∂φ� = 0. (14)

Inserting the explicit expressions for Frt and γ r = e r
a γ a,

this equation reduces to

iγ μ
(
∂μ� − iωμ� − i Aμ�

)

−m� − ia

2

qQ

r2

√
f γ 1∂φ� = 0. (15)

For a later comparison with the result that will be obtained
in an effective approach, it is instructive to write this equa-

tion in terms of two-component spinors � =
(

�1

�2

)
. Note

that the spin connection part ωμ and vielbeins refer to RN
background.2

2 How they look like in RN background may be inferred from relations
(28), (22) and (23), by taking into account that ωμ ≡ − 1

2 ω cd
μ �cd and

by setting a to zero.

i
1√
f
i

(
0 1

1 0

)
∂t� + i

√
f i

(
0 σ3

−σ3 0

)
∂r�

+i
1

r
i

(
0 σ1

−σ1 0

)
∂θ� + i

1

r sin θ
i

(
0 σ2

−σ2 0

)
∂φ�

+
(
e t

0 γ 0ωt + e θ
2 γ 2ωθ + e φ

3 γ 3ωφ

)
� + e t

0 γ 0At� − m�

+a

2

qQ

r2

√
f

(
0 σ3

−σ3 0

)
∂φ� = 0. (16)

The particular model of NC gauge theory applied to NC
spinor field, that we consider here, involves NC spinor field
which is minimally coupled to both, NCU (1) gauge field and
classical gravitational field of the RN background. While the
gauge field itself is fixed to be the Coulomb field, but only
until after rejecting all except the first order terms in the
SW expansion and varying the action to get the equation of
motion, the gravitational field is fixed from the very begin-
ning to be that of the RN background. In practice this means
that the only propagating degrees of freedom in this model
are those of the matter fields. We point out that the working
setting just described is completely analogous (even identi-
cal) to the one that we used in our previous work [63] when
studying a particular model of NC gauge theory, as applied
to NC scalar field. The main assumption of this setting is
that a gravitational field is being considered as a classical
(commutative) object, and matter fields along with a gauge
field are being considered as noncommutative objects. From
this reason we term this kind of working framework as semi-
classical, bearing on the fact that it does not correspond to a
full NC gauge theory, but only to a description of NC matter
field in a particular setup (static charge, black hole geometry).
The immediate consequence of the gravitational degrees of
freedom (either components of the metric or vielbeins) being
classical is that they do not change/transform under infinites-
imal NC gauge transformations. Therefore, an immutability
of the gravitational degrees of freedom is an assumption and
a starting point of this particular NC framework, and not its
consequence.

Mathematically, the semiclassical approximation mani-
fests itself in (13) in the following way: the covariant deriva-
tive Dμ� = ∂μ�−i Aμ�−iωμ� includes both the electro-
magnetic (U (1)) and the gravitational part, while the covari-
ant derivative DU(1)

β � = ∂β� − i Aβ� has only the elec-
tromagnetic part. In the NC correction only the U (1) part
appears.

4 Spinor fields on the noncommutative RN
background: effective approach

In our previous paper [63] we have analyzed a propagation
of the NC scalar field in the RN background. The equation
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of motion governing the evolution of the scalar field is given
by

(
1

f
∂2
t − � + (1 − f )∂2

r + 2MG

r2 ∂r + 2iqQ
1

r f
∂t − q2Q2

r2 f
− μ2

)
�

+aqQ

r3

((
MG

r
− GQ2

r2

)
∂φ + r f ∂r∂φ

)
� = 0, (17)

with f = 1 − 2MG
r + Q2G

r2 . In [56,57], within first order of
deformation, an equivalence between the NC scalar field on
the non-rotating BTZ background and a commutative scalar
field on the rotating BTZ background was established. We
will follow that idea here and try to understand if there is
an effective description of the NC scalar field on the RN
background.

It can be shown that the equation of motion (17) may
be rewritten as the equation of motion governing a charged
commutative scalar field with the same charge q as its NC
counterpart, and propagating in some effective metric. That
this process of finding a metric from the given equation of
motion can indeed be carried out3 within a first order of
deformation is shown in Appendix A. There the first order
effective dual metric has been derived and shown to pick up
the form of a modified RN geometry

ds2 =
(

1 − 2MG

r
+ Q2G

r2

)
dt2 − dr2

1 − 2MG
r + Q2G

r2

−aqQ sin2 θdrdφ − r2(dθ2 + sin2 θdφ2). (18)

It appears that new, first order effective dual metric (18)
acquires an additional off-diagonal term which is induced
purely by noncommutative nature of spacetime. This fea-
ture comes into play only in the presence of charged matter.
Unlike in the case of scalar field in the (NC) BTZ background,
in this case the effective metric cannot be interpreted as a met-
ric of a background rotating geometry (of either RN or any
other type).

Having established the effective metric (18), we now
investigate the propagation of a charged massive spinor field
� in this geometry. In particular, it is interesting to see if this
effective approach agrees with the more rigorous approach
from Sect. 2. The Dirac equation in a curved background
given by the effective noncommutative (NC) metric

(iγ a∇a − m)� = 0, (19)

where the Latin indices such as a, (a = 0, 1, 2, 3) refer to
intrinsic coordinates and γ a are the standard flat space Dirac

3 It can be carried out at least for the type of geometry and deforma-
tion considered in this paper, i.e. a deformation with the Killing twist
operator. For more general examples of deformation, see Appendix B.

gamma matrices, {γa, γb} = 2ηab, where

ηab = ηab =

⎛
⎜⎜⎝

+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (20)

If in addition, the spinor field is charged, this gives rise to a
Dirac equation in which the gauge potential Aμ is minimally
coupled to a Dirac operator on a curved background

(
iγ a(∇a − i Aa) − m

)
� =

(
iγ ae μ

a (∇μ − i Aμ) − m

)
� = 0.

(21)

The gravitational covariant derivative ∇μ is defined as
∇μ� = ∂μ� − i

2ω ab
μ �ab�. The Dirac operator γ a∇a on

a curved space is introduced in terms of tetrads (vierbeins)
eaμ and their inverse e μ

a , satisfying eaμe
ν

a = δ ν
μ and

eaμe
μ

b = δab. Tetrads written in components are eaμ =
(ea t , e

a
r , e

a
θ , e

a
φ) and e μ

a = (e μ
0 , e μ

1 , e μ
2 , e μ

3 ). They

also satisfy gμν = eaμe
b
νηab and gμν = e μ

a e ν
b ηab. In

what follows we use the setting defined in [122] with the
vierbein frame chosen to be

eaμ =

⎛
⎜⎜⎜⎝

√
f 0 0 0

0 1√
f

0 0

0 0 r 0
0 aqQ

2r sin θ 0 r sin θ

⎞
⎟⎟⎟⎠ (22)

with the corresponding inverse matrix

e μ
a =

⎛
⎜⎜⎜⎝

1√
f

0 0 0

0
√

f 0 − aqQ
2r2

√
f

0 0 1
r 0

0 0 0 1
r sin θ

⎞
⎟⎟⎟⎠ . (23)

The representation of gamma matrices is

γ 0 = i γ̃ 0 = i

(
0 1

1 0

)
, γ 1 = i γ̃ 3 = i

(
0 σ3

−σ3 0

)
,

γ 2 = i γ̃ 1 = i

(
0 σ1

−σ1 0

)
, γ 3 = i γ̃ 2 = i

(
0 σ2

−σ2 0

)
,

(24)

where γ̃ 0, γ̃ 1, γ̃ 2 and γ̃ 3 are gamma matrices in chiral (Weyl)
representation, while σi , (i = 1, 2, 3) are the usual Pauli
matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (25)
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By writing out a detailed structure of the covariant derivative
∇a, the Dirac equation (21) takes the form4

[
iγ ae μ

a

(
∂μ + i

2
ω cd

μ �cd − i Aμ

)
− m

]
� = 0. (26)

Here �cd = i
4 [γc, γd ] and the coefficients of the spin con-

nection ω ab
μ are given by

ω ab
μ = eaνη

bc∂μe
ν

c + eaνη
bce λ

c �ν
μλ

= 1

2
eaν

(
∂μe

b
ν − ∂νe

b
μ

)
− 1

2
ebν

(
∂μe

a
ν − ∂νe

a
μ

)

−1

2
eaρebσ

(
∂ρecσ − ∂σ ecρ

)
ecμ,

where �ν
μλ = 1

2g
νδ

(
∂μgδλ + ∂λgμδ − ∂δgμλ

)
are the coef-

ficients of the affine connection. Note that ω ab
μ = −ω ba

μ .
With the tetrads given in (22), one gets that the only non

zero components of the spin connection are

ω 01
t = −ω 10

t = − Mr−Q2

r3 , ω 12
θ = −ω 21

θ = √
f ,

ω 13
φ = −ω 31

φ = √
f sin θ, ω 23

φ = −ω 32
φ = cos θ,

ω 23
r = −ω 32

r = aqQ
2r2 cos θ, ω 13

r = −ω 31
r = aqQ

√
f

2r2 sin θ.

(27)

In subsequent analysis we will also use the sums ω cd
μ �cd :

ω cd
t �cd = 2ω 01

t �01 = −2
Mr − Q2

r3

i

4
[γ0, γ1]

= −i
Mr − Q2

r3

(−σ3 0
0 σ3

)
,

ω cd
r �cd = 2ω 23

r �23 + 2ω 13
r �13

= −aqQ

2r2 cos θ

(
σ3 0
0 σ3

)
+ aqQ

√
f

2r2 sin θ

(
σ1 0
0 σ1

)
,

ω cd
θ �cd = 2ω 12

θ �12 = −√
f

(
σ2 0
0 σ2

)
,

ω cd
φ �cd = 2ω 13

φ �13 + 2ω 23
φ �23 = √

f sin θ

(
σ1 0
0 σ1

)

− cos θ

(
σ3 0
0 σ3

)
. (28)

Inserting these into (26) leads to the Dirac equation
[
iγ 0e t

0

(
∂t − i At + i

2
ω cd
t �cd

)

+iγ 1e r
1

(
∂r − i Ar + i

2
ω cd
r �cd

)

4 Since implementation of (24) as our representation of γ−matrices
involves a flip in their hermiticity properties (hermitian turns into
antihermitian), the covariant derivative gets changed, ∇μ = ∂μ −
i
2 ω cd

μ
i
4 [γc, γd ] → ∇μ = ∂μ − 1

2 ω cd
μ

1
4 [γc, γd ], which amounts to

changing the sign in the covariant derivative in front of the spin part,
∇μ = ∂μ + i

2 ω cd
μ �cd = ∂μ + i

2 ω cd
μ

i
4 [γc, γd ].

+iγ 2e θ
2

(
∂θ − i Aθ + i

2
ω cd

θ �cd

)

+iγ 1e φ
1

(
∂φ − i Aφ + i

2
ω cd

φ �cd

)

+iγ 3e φ
3

(
∂φ − i Aφ + i

2
ω cd

φ �cd

)
− m

]
� = 0. (29)

With the spinor field � written in terms of two two-

component spinors �1 and �2, namely � =
(

�1

�2

)
and

the gauge potential Aμ = (At , A) = (− qQ
r , 0), the Eq. (29)

splits into two two-component equations
[

− 1√
f
1∂t − √

f σ3∂r − 1

2

Mr − Q2

r3

1√
f
σ3 −

√
f

r
σ3

−1

r
σ1∂θ + aqQ

2r2

√
f σ3∂φ − 1

r sin θ
σ2∂φ

− 1

2r
cot θσ1 − iqQ

r
√

f
1

]
�2 − m1�1 = 0,

[
− 1√

f
1∂t + 1

2

Mr − Q2

r3

1√
f
σ3 + √

f σ3∂r +
√

f

r
σ3

+1

r
σ1∂θ − aqQ

2r2

√
f σ3∂φ + 1

r sin θ
σ2∂φ

+ 1

2r
cot θσ1 − iqQ

r
√

f
1

]
�1 − m1�2 = 0. (30)

We see that these equations have the same form as the
Eq. (15). The only NC correction is of the form aqQ

2r2

√
f γ 1∂φ�.

Therefore we can conclude that the rigorous approach of
the NC gauge theory and the SW expansion described in
Sect. 3 and the effective approach described here lead to the
same result. However, two comments are in order. Firstly, our
results are valid up to first order in the deformation param-
eter a, implying that the linearized equations of motion for
a spinor field in SW expansion turn out to be the same as
equations of motion in a perturbed (first order effective dual)
metric. Secondly, the result in Sect. 3 was deduced using the
semiclassical approximation. In our future work we plan to
investigate if this duality holds more generally.

5 Discussion and outlook

Before we go on to analyze the set of equations (30), note
that the main result of our paper may be restated in a slightly
different way, by using interpretation in terms of a process of
reversed engineering described in Sect. 4 and Appendix B,
which has led to the first order effective dual metric (18). In
this respect, it is important to emphasize that the process of
reversed engineering as applied to the equations of motion
resulting from two different NC gauge theory models, one
for NC scalar field, and the other for NC spin one-half field,
may not necessarily lead to the same first order effective dual
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metric. Quite opposite, it would be highly unlikely for this
to happen. However, within our semiclassical model of NC
gauge theory, we have manifestly demonstrated that this is
indeed the case, and this constitutes the main result of our
paper. More precisely, two first order effective dual metrics,
obtained by two different and independent back engineering
processes, one applied on the particular NC scalar field model
and the other on the related NC spin one-half model, are the
same! We have shown this by establishing the first order
equivalence between the formal and the effective approach
to the semiclassicalU (1) gauge theory applied on NC spinor
field. This way we have gone around and bypassed the pro-
cess of reversed engineering on the equation of motion for
the NC spinor field. To be more precise, we took one of the
first order effective dual metrics, the one obtained by back
engineering the NC scalar field equation of motion and then
we used this metric to write down the equation of motion for
the ordinary commutative spinor field. Interestingly enough,
it turned out that this equation is the same as the equation
of motion obtained in a more formal approach to the semi-
classical model of NC gauge theory, as applied to NC spin
one-half field.

Let us now analyze the Eq. (30) in more detail. This equa-
tion can be used to study various effects, such as NC spinor
bound states or quasinormal modes in the RN background.

In order to solve (30) for the wavefunction � ≡
�(t, r, θ, φ), we follow [122] and take the ansatz

� =
(

�1

�2

)
=

⎛
⎜⎜⎜⎜⎝

�
(1)
1

�
(2)
1

�
(1)
2

�
(2)
2

⎞
⎟⎟⎟⎟⎠

= 1

r
f −1/4

(
ψ1

ψ2

)
= (

r4 f
)−1/4

(
ψ1

ψ2

)

=
(
r4 − 2Mr3 + Q2r2

)−1/4

⎛
⎜⎜⎜⎜⎝

ψ
(1)
1

ψ
(2)
1

ψ
(1)
2

ψ
(2)
2

⎞
⎟⎟⎟⎟⎠

. (31)

After plugging this ansatz into (30) and performing some
simplifications, the set of Eq. (30) reduces to

[
− r√

f
1∂t − r

√
f σ3∂r − σ1∂θ − 1

sin θ
σ2∂φ

−1

2
cot θσ1 + aqQ

2r

√
f σ3∂φ − iqQ√

f
1

]
ψ2 − mr1ψ1 = 0,

[
− r√

f
1∂t + r

√
f σ3∂r + σ1∂θ + 1

sin θ
σ2∂φ

+1

2
cot θσ1 − aqQ

2r

√
f σ3∂φ − iqQ√

f
1

]
ψ1 − mr1ψ2 = 0.

(32)

We further make a factorization of the spinor wavefunctions
ψ1 and ψ2 according to

ψ1 ≡ ψ1(t, r, θ, φ) = ei(νφ−ωt)

(
ψ

(1)
1 (r, θ)

ψ
(2)
1 (r, θ)

)

= ei(νφ−ωt)

(
−R2(r)S1(θ)

−R1(r)S2(θ)

)
,

ψ2 ≡ ψ2(t, r, θ, φ) = ei(νφ−ωt)

(
ψ

(1)
2 (r, θ)

ψ
(2)
2 (r, θ)

)

= ei(νφ−ωt)

(
R1(r)S1(θ)

R2(r)S2(θ)

)
, (33)

where ω and ν are respectively energy and projection of the
angular momentum of the spin 1/2 particle. Note that this
factorization is not arbitrary, but is singled out by a demand
of having separable equation of motion. Indeed, it gives rise
to a straightforward separation of the equation of motion into
radial and angular parts, as we show below.

The first step in utilizing the factorization (33), which
includes a separation of the azimuthal and time variables,
gives rise to the set of two 2-component equations
[
iωr√

f
1 − r

√
f σ3∂r − σ1∂θ − iν

sin θ
σ2

−1

2
cot θσ1 + iν

aqQ

2r

√
f σ3 − iqQ√

f
1

]
ψ2(r, θ)

−mr1ψ1(r, θ) = 0,[
iωr√

f
1 + r

√
f σ3∂r + σ1∂θ + iν

sin θ
σ2

+1

2
cot θσ1 − iν

aqQ

2r

√
f σ3 − iqQ√

f
1

]
ψ1(r, θ)

−mr1ψ2(r, θ) = 0. (34)

The second step, which involves a separation of the radial
and polar angle variables, leads to the set of four coupled
partial differential equations

iωr√
f
R1S1 − r

√
f (∂r R1)S1 − R2∂θ S2 − iν

sin θ
(−i)R2S2

−1

2
cot θR2S2 + iν

aqQ

2r

√
f R1S1 + mr R2S1

− iqQ√
f
R1S1 = 0,

iωr√
f
R2S2 + r

√
f (∂r R2)S2 − R1∂θ S1 − iν

sin θ
i R1S1

−1

2
cot θR1S1 − iν

aqQ

2r

√
f R2S2 + mr R1S2

− iqQ√
f
R2S2 = 0,

− iωr√
f
R2S1 − r

√
f (∂r R2)S1 − R1∂θ S2 − iν

sin θ
(−i)R1S2

−1

2
cot θR1S2 + iν

aqQ

2r

√
f R2S1 − mr R1S1
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+ iqQ√
f
R2S1 = 0,

− iωr√
f
R1S2 + r

√
f (∂r R1)S2 − R2∂θ S1

− iν

sin θ
i R2S1 − 1

2
cot θR2S1 − iν

aqQ

2r

√
f R1S2

−mr R2S2 + iqQ√
f
R1S2 = 0. (35)

After dividing above equations respectively with R2S1, R1S2,
R1S1, R2S2 one finds that this system of equations is com-
pletely separable,

iωr√
f

R1

R2
− r

√
f
∂r R1

R2
+ iν

aqQ

2r

√
f
R1

R2
− iqQ√

f

R1

R2

+mr = ∂θ S2

S1
+ ν

sin θ

S2

S1
+ 1

2
cot θ

S2

S1
≡ λ,

iωr√
f

R2

R1
+ r

√
f
∂r R2

R1
− iν

aqQ

2r

√
f
R2

R1
− iqQ√

f

R2

R1

+mr = ∂θ S1

S2
− ν

sin θ

S1

S2
+ 1

2
cot θ

S1

S2
≡ λ1,

− iωr√
f

R2

R1
− r

√
f
∂r R2

R1
+ iν

aqQ

2r

√
f
R2

R1
+ iqQ√

f

R2

R1

−mr = ∂θ S2

S1
+ ν

sin θ

S2

S1
+ 1

2
cot θ

S2

S1
= λ,

− iωr√
f

R1

R2
+ r

√
f
∂r R1

R2
− iν

aqQ

2r

√
f
R1

R2
+ iqQ√

f

R1

R2

−mr = ∂θ S1

S2
− ν

sin θ

S1

S2
+ 1

2
cot θ

S1

S2
= λ1. (36)

Moreover, it is easily seen that two separation constants λ

and λ1, which have appeared in a process of separation are
not mutually independent, but subject to the requirement λ =
−λ1. In effect, the system of equations (36) gives rise to two
angular equations

∂θ S2 + ν

sin θ
S2 + 1

2
cot θ S2 = λS1,

∂θ S1 − ν

sin θ
S1 + 1

2
cot θ S1 = −λS2, (37)

and two radial equations

iωr√
f
R1 − r

√
f ∂r R1 + iν

aqQ

2r

√
f R1

− iqQ√
f
R1 =

(
λ − mr

)
R2,

iωr√
f
R2 + r

√
f ∂r R2 − iν

aqQ

2r

√
f R2

− iqQ√
f
R2 = −

(
λ + mr

)
R1. (38)

This system of radial equations can be used to study the
behaviour of spinor quasinormal modes in the RN back-
ground.

This discussion we close with the analysis of the stability
of chargeless, but massive fermionic modes. For that purpose
we recall that for the bosonic fields on Kerr spacetime there
exists a regime in which bosonic modes become unstable,
due to superradiant growth [120,123–128]. Contrary to that,
in the same regime where the bosonic modes manifest insta-
bility, the fermionic fields on Kerr spacetime under condition
of extra slow rotation do not,5 resulting in them being stable
and subject to a decay only [129–133]. In other words, unlike
the equations of motion governing the bosonic fields, the
single-particle Dirac equation is not subject to superradiance,
and thus all modes decay in that particular regime, which
includes a setting where mM � (l + 1

2 ), as well as the limit
of slow rotation, �/M 
 1.6 Interestingly, fermionic fields
on Schwarzschild or Reissner–Nordström spacetime display
somewhat different characteristics, which makes them more
susceptible of exhibiting the effect of superradiance and thus
not remaining stable. These observations may be drawn by
inspecting the bosonic and fermionic modes in question,
either by inspecting the imaginary part of their bound state
frequencies or by investigating the properties of the flux pass-
ing into the horizon and the corresponding conservation law.

Here we set to examine a possibility that a noncommu-
tative deformation of RN spacetime, realized in a form of
the effective metric (A7), introduces certain changes to the
above statements. To start with, let us recall the form of the
wave function that solves the Dirac equation

� = ei(νφ−ωt)(r4 f
)−1/4

(
ψ1

ψ2

)

= ei(νφ−ωt)
(
r4 − 2Mr3 + Q2r2

)−1/4

⎛
⎜⎜⎜⎝

−R2(r)S1(θ)

−R1(r)S2(θ)

R1(r)S1(θ)

R2(r)S2(θ)

⎞
⎟⎟⎟⎠ .

(39)

Its corresponding hermitian conjugate is defined as

�̄ = −�†γ 0 = −i�†
(

0 1

1 0

)
, (40)

and the covariant derivatives that include the spin connection
part are given by

∇μ� = ∂μ� − �μ� = ∂μ� − 1

4
ω bc

μ γbγc�,

∇μ�̄ = ∂μ�̄ + �̄�μ = ∂μ�̄ + 1

4
ω bc

μ �̄γbγc.

5 The absence of superradiance for Dirac field in a Kerr or Kerr–
Newman background was proved for a first time in [120].
6 Note that m is the mass of the perturbing field, M is the mass of the
black hole, l is the orbital angular momentum number and �M is the
angular momentum of a black hole.
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With these quantities at hand, one may define the stress–
energy tensor as

Tμν

= i

4

[
�̄γμ∇ν� + �̄γν∇μ� − (∇μ�̄

)
γν� − (∇ν�̄

)
γμ�

]
.

(41)

For the fermionic field on the Kerr spacetime the form of
the solution for the wave function essentially (up to a different
prefactor) has the same general form as (39). The radial Dirac
current and the corresponding conservation law in this case
give rise to the condition

dN

dt
=

(
|R1|2 − |R2|2

)

r=rh

≤ 0, (42)

where N is the number density and rh is the outer horizon
radius, signalling the absence of superradiance [122]. For the
case considered in this paper, i.e. deformed RN metric (A7),
the radial component of the Dirac current Jμ = �̄γ μ� =
�̄e μ

a γ a� may be shown to have the form

Jr = �̄γ r� = �̄e r
a γ a�

= −i

(
r4 − 2Mr3 + Q2r2

)−1/2

×√
f
(
R∗

1 S
∗
1 R∗

2 S
∗
2 −R∗

2 S
∗
1 −R∗

1 S
∗
2

)

×

⎛
⎜⎜⎝

0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−R2S1

−R1S2

R1S1

R2S2

⎞
⎟⎟⎠

= 1

r2

(
|R1|2 − |R2|2

)(
|S1|2 + |S2|2

)
. (43)

At first glance, with the result (43) at hand, one might be led
to think that the fermionic field on deformed RN spacetime
might also exhibit the absence of superradiance. This is due
to the fact that the integral of the radial current evaluated
at the lower bound, i.e. at the outer horizon r = rh, has a
natural interpretation as the flux passing into the horizon and
the expression on the rhs of (43) not being positive-definite.

However, a deeper inspection seems not to confirm this
conclusion. In fact, a superradiance may be seen as a direct
consequence of the second law of black hole thermodynam-
ics. On the other hand, a crucial assumption that underlies
the second law of black hole thermodynamics is that the con-
dition Tμν tμtν ≥ 0 must hold for any time-like vector field,
tμtμ > 0, with Tμν being the stress–energy tensor. This
condition is known as the weak energy condition. There-
fore, for the purpose of demonstrating that a superradiance
is absent in a given system, or at least that it doesn’t show up
for a particular choice of the system parameters, we would
first have to make evident that there exists a sector in the
parameter space of that system where the weak energy con-
dition is violated. In order to examine if the weak energy

condition might possibly be violated within the context of
fermionic field on NC deformed RN background, opening
in this way a window for a possible violation of the sec-
ond law of thermodynamics and a consequent loss of the
effect of superradiance within the same context, we take
the time-like vector tμ ≡ e μ

0 = (e t
0 , e r

0 , e θ
0 , e φ

0 ) =
( 1√

f
, 0, 0, 0), tμtμ > 0, and first evaluate and then analyse

the bilinear form Tμν tμtν = Tμνe
μ

0 e ν
0 = Ttt e t

0 e t
0 . This

gives

Tμν t
μtν = i

4

[
�̄γt∇t� + �̄γt∇t� − (∇t �̄

)
γt� − (∇t �̄

)
γt�

]
e t

0 e t
0

= 2

[
i

4
�̄γt∇t�e t

0 e t
0 − i

4

(∇t �̄
)
γt�e t

0 e t
0

]
. (44)

Inserting (22),(24) and (39) into this equation leads to

Tμν t
μtν = 2

(
r4 − 2Mr3 + Q2r2

)−1/2

4
√

f

×
[
ω

(
|R1|2 + |R2|2

)(
|S1|2 + |S2|2

)

+i
Mr − Q2

2r3

(
|R1|2 − |R2|2

)(
|S1|2 + |S2|2

)]

−2

(
r4 − 2Mr3 + Q2r2

)−1/2

4
√

f

×
[

− ω

(
|R1|2 + |R2|2

)(
|S1|2 + |S2|2

)

+i
Mr − Q2

2r3

(
|R1|2 − |R2|2

)(
|S1|2 + |S2|2

)]

=

(
r4 − 2Mr3 + Q2r2

)−1/2

2
√

f
2ω

(
|R1|2 + |R2|2

)

×
(

|S1|2 + |S2|2
)

. (45)

It is clear that outside the outer horizon the expression
under the square root is greater than zero. Moreover, the
expression (45) as a whole is strictly positive-definite, that is
Tμν tμtν ≥ 0, implying that the noncommutative deforma-
tion of the Reissner–Nordström spacetime does not violate
the weak energy condition for the fermionic field. This in turn
implies that the weak energy condition is not violated for the
Dirac particle in a Reissner–Nordström spacetime subject to
a noncommutative deformation. Since the key assumption for
the second law of black hole thermodynamics is not violated,
the law continues to hold and the superradiance is expected
to occur for the fermionic field in the spacetime described by
the effective (deformed RN) metric, contrary to a first naive
impression obtained by considering the radial component of
the Dirac current. This result is different from the case of the
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fermionic field on Kerr spacetime in the near horizon region
f (r) → 0 and in the superradiant7 regime ω < ν �

2 Mrh
,

where ω is the frequency of the mode and ν is its azimuthal
number, �

2Mrh
is the angular frequency of the horizon and

rh is the horizon radius. In the latter case the weak-energy
condition is violated for the Dirac field on Kerr spacetime
and consequently the effect of superradiance is absent. In
our future work we plan to use the results obtained in this
paper in order to study the massless as well as the massive
fermionic perturbations of RN black hole in the presence of
spacetime noncommutativity.
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Jurić and Ivica Smolić for fruitful discussion and useful comments. This
research was supported by the Croatian Science Foundation Project No.
IP-2020-02-9614 Search for Quantum spacetime in Black Hole QNM
spectrum and Gamma Ray Bursts. The work of M.D.C. and N.K. is
supported by project 451-03-9/2021-14/200162 of the Serbian Min-
istry of Education and Science. This work is partially supported by
ICTP-SEENET-MTP Project NT-03 “Cosmology-Classical and Quan-
tum Challenges” in frame of the Southeastern European Network in
Theoretical and Mathematical Physics and the COST action CA18108
Quantum gravity phenomenology in the multimessenger approach.

Data Availability Statement This manuscript has associated data in
a data repository. [Authors’ comment: Data sharing not applicable to
this article as no datasets were generated or analysed during the current
study.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Effective metric from first order noncom-
mutative duality-calculation of the first order effective
dual metric

Here we show that the Eq. (17) can be reversely engineered to
yield the first order (in the deformation parameter a) effective
metric (18).

Equation (17) can be symbolically written in terms of an
extended Klein–Gordon operator, extended to include a cou-
pling to a gauge field

7 The term superradiant is here used because in this regime bosonic
fields rapidly grow in time, thus exhibiting a superradiance. Dirac fields
though remain stable in this regime, as they are not superradiant there.

(
�g′ + O(a)

)
�

≡
(
g′μν

(∇′
μ − i Aμ

)(∇′
ν − i Aν

) + O(a)

)
� = 0. (A1)

Corrections are included in O(a) that is a generic expression
and it designates symbolically a whole set of correction terms
in the Eq. (17) that are induced by the noncommutativity
and are therefore linear in NC parameter a. Likewise, ∇′

μ

is a covariant derivative with respect to the metric g′
μν

8 (1)
and �g′ is the Klein–Gordon operator for the metric g′

μν .
Note that by switching off a noncommutativity by letting
a −→ 0, all corrections that scale with a disappear, and the
KG equation reduces to

�g′� ≡ g′μν
(∇′

μ − i Aμ

)(∇′
ν − i Aν

)
�

= 1√−g′ (∂μ − i Aμ)

(√−g′ g′μν
(
∂ν − i Aν)

)
� = 0.

(A2)

At this stage one is naturally led to ponder over a possi-
bility that the terms in (17) which scale linearly with the NC
parameter a can actually be soaked up by the already present
KG operator �g′ to yield a KG operator �g with a redefined
metric that has managed to absorb within itself noncommu-
tative features of the original problem. More concisely, the
question to be posed is if there exists a metric which is able
to meet the requirement

(
�g′ + O(a)

)
� =

(
g′μν

(∇′
μ − i Aμ

)(∇′
ν − i Aν

) + O(a)

)
�

≡ �g� = gμν
(∇μ − i Aμ

)(∇ν − i Aν

)
�

= 1√−g
(∂μ − i Aμ)

(√−g gμν
(
∂ν − i Aν

))
� = 0,

(A3)

where ∇μ is a covariant derivative with respect to the new,
effective metric gμν . We point out that the gauge potential
did not change upon switching to a new setting and rewriting
dynamics of the system in terms of the effective metric.

In order to find the metric tensor which satisfies the
requirement (A3), one may try with the following ansatz

gμν =

⎛
⎜⎜⎝

f 0 0 0
0 − 1

f 0 grφ
0 0 −r2 0
0 grφ 0 −r2 sin θ

⎞
⎟⎟⎠ . (A4)

The novel nonvanishing entry grφ is assumed to depend only
on variables r and θ, since we expect that ∂t and ∂φ are
Killing vectors for the effective metric as well. Moreover, it is
assumed to be at least linear in NC parameter a, grφ ∼ O(a)

since the effective metric gμν has to reduce to the original

8 ∇′
μA

ν = ∂μAν + �′ν
λμA

λ and ∇′
μAν = ∂μAν − �′λ

μν Aλ.
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RN metric g′
μν in the limiting case a −→ 0. The inverse of

the metric tensor (A4) has nonvanishing entries at the same
places

gμν =

⎛
⎜⎜⎜⎜⎜⎝

1
f 0 0 0

0 − f + f 2g2
rφ

f g2
rφ−r2 sin2 θ

0 f grφ
f g2

rφ−r2 sin2 θ

0 0 − 1
r2 0

0 f grφ
f g2

rφ−r2 sin2 θ
0 1

f g2
rφ−r2 sin2 θ

⎞
⎟⎟⎟⎟⎟⎠

. (A5)

It can be seen that while off-diagonal elements have a lead-
ing correction term that is linear in a, the diagonal ele-
ments grr and gφφ have a leading correction term that is
quadratic in a. Likewise, the determinant and the square-
root of the determinant of the effective metric (A4) have a
leading correction term that is quadratic in the NC parame-
ter a,

√−g = r2 sin θ + O(a2). These observations will
have a crucial role in the subsequent analysis, whose aim is
to deduce the metric gμν, satisfying the requirement (A3).

The form of the metric (A4) dictates which terms are going
to survive after the Eq. (A3) is written out explicitly

�g� = 1√−g
(∂μ − i Aμ)

(√−g gμν
(
∂ν − i Aν

))
�

= 1√−g

[
(∂t − i At )

(√−ggtt
(
∂t − i At

))

+(∂r − i Ar )

(√−ggrr
(
∂r − i Ar

))

+(∂r − i Ar )

(√−ggrφ
(
∂φ − i Aφ

))

+(∂θ − i Aθ )

(√−ggθθ
(
∂θ − i Aθ

))

+(∂φ − i Aφ)

(√−ggφr (∂r − i Ar
))

+(∂φ − i Aφ)

(√−ggφφ
(
∂φ − i Aφ

))]
�.

Taking into account the fact that the gauge potential has only
time component, one finds that the equation of motion (A3)
further boils down to

1

f

[
∂2
t � − 2i At∂t� − A2

t �

]
+ 1√−g

[
∂r

(√−ggrr
)]

∂r�

+grr∂2
r � + 1√−g

[
∂r

(√−ggrφ
)]

∂φ�

+2grφ∂r∂φ� + 1√−g

[
∂θ

(√−ggθθ
)]

∂θ�

+gθθ ∂2
θ � + gφφ∂2

φ� = 0.

Focusing only on terms in the above equation that are at
most linear in a, and stacking it up against the Eq. (17) leads

to the following two relations:

aqQ

r3

(
MG

r
− GQ2

r2

)
∂φ� = 1√−g

[
∂r

(√−ggrφ
)]

∂φ�,

aqQ

r2 f ∂r∂φ� = 2grφ∂r∂φ�. (A6)

The solution to this set of relations, which is consistent
with the requirement grφ = f grφ

f g2
rφ−r2 sin2 θ

, finally gives for

the dual effective metric

gμν =

⎛
⎜⎜⎜⎝

f 0 0 0
0 − 1

f 0 − aqQ
2 sin2 θ

0 0 −r2 0
0 − aqQ

2 sin2 θ 0 −r2 sin2 θ

⎞
⎟⎟⎟⎠ (A7)

and for its inverse metric

gμν =

⎛
⎜⎜⎜⎝

1
f 0 0 0

0 − f 0 aqQ
2r2 f

0 0 − 1
r2 0

0 aqQ
2r2 f 0 − 1

r2 sin2 θ

⎞
⎟⎟⎟⎠ . (A8)

Note that we demand gμνgνρ = δ
ρ

μ + O(a2).

We have thus shown that the equation of motion for a
charged NC scalar field in a classical RN background, cou-
pled to NC U (1) gauge field may be rewritten in terms of the
equation of motion governing behaviour of a charged com-
mutative scalar field (having the same charge q as its NC
counterpart), propagating in a modified RN geometry

ds2 =
(

1 − 2MG

r
+ Q2G

r2

)
dt2 − dr2

1 − 2MG
r + Q2G

r2

−aqQ sin2 θdrdφ − r2(dθ2 + sin2 θdφ2). (A9)

Appendix B: More general choices of the twist

In this Appendix we briefly discuss more general forms of
the twist operator, leading to more general NC deformations.
This discussion if far from being complete, the detailed anal-
ysis we postpone for our future research.

1. For a deformation with a Killing twist operator, an arbi-
trary static, spherically symmetric metric

ds2 = f (r)dt2 − dr2

f (r)
− r2(dθ2 + sin2 θdφ2), (B1)

and an arbitrary static, spherically symmetric electromag-
netic potential Aμdxμ = A(r)dt , with arbitrary functions
f (r) and A(r), our results continue to be valid. More pre-
cisely, from equations (A6) it follows that the component
grϕ is related to the function f (r), while the radial deriva-
tive of grϕ is related to the radial derivative of f (r). Note
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that in the RN case, the term MG
r − GQ2

r2 is nothing else but
r
2∂r f . Therefore, the component grϕ will have the same
form as in (A8) with an arbitrary function f (r) from (B1).
On the other hand, in this more general case the only non-
vanishing component of the field strength tensor is Ftr =
−∂r A(r). We conclude that the effective metric will retain
the same general form (A7) with grφ = a r2

2 Ftr sin2 θ,

and its inverse metric will have a different grϕ compo-
nent given by grϕ = − a

2 Ftr f (r) = a
2 f (r)∂r A(r).

2. For a definition with a semi-Killing twist operator, such
as

F = e− ia
2 (∂t⊗∂r−∂r⊗∂t )

for the RN metric, the Seiberg–Witten expanded (up to
first order) action for the NC scalar field is given by

S =
∫

d4x
(√−g

(
gμνDμφ+Dνφ − μ2φ+φ + μ2

2
θαβFαβφ+φ

+1

2
θαβgμν

( − 1

2
Dμφ+Fαβ Dνφ + (Dμφ+)FανDβφ

+(Dβφ+)FαμDνφ
)) − i

2
θαβ∂α

(√−ggμν
)
Dμφ+Dβ Dνφ

))
.

where Dνφ = (∂ν − i Aν)φ. We notice that an additional
(compared to (3.34) in [63]) term − i

2θαβ∂α

(√−ggμν)

Dμφ+DβDνφ will lead to an equation of motion for the
field φ that is third order in derivatives. This immediately
signals that equation cannot be reduced to an equation
of motion for a commutative scalar filed in an effective
metric, since that equation is necessarily a 2nd order dif-
ferential equation.

3. For a completely arbitrary (within a physical reason) well
defined twist there is no guaranty that the first order dual-
ity will hold. Moreover, based on the results for the semi-
Killing twist deformation it is very likely that there will
be no duality between the propagation of the NC scalar
field on a fixed background and the propagation of com-
mutative scalar field in an effective background.

From this brief analysis we can conclude that the defor-
mation by a Killing twist is a special one and it is the only
one that corresponds to the semi-classical approximation we
use in our work.
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