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1. Introduction

Many different approaches to quantum gravity suggest that a continuous differential manifold does not
provide an adequate description of spacetime at very small length scales. Indeed, probing ever smaller distances
of space requires more and more energetic particles which sooner or later reach their energy threshold that sets
a natural bound on the process of spacetime inquiry. Whilst this energy threshold is being given by the Planck
mass, its very exitence points toward a quantum nature of spacetime.

At the same time a natural question arises as to how could one experimentally verify that the actual structure
of spacetime is quantized. One route to verify this extremely challenging premise involves quantum spacetime
and quantum gravity phenomenology where there has been a long standing interest in the possibility of Planck
scale departures from Lorentz symmetry [1],[2],[3]. In particular, a research in quantum gravity phenomenology
has focused on the question of the fate of Lorentz invariance largely through a perspective of modified energy-
momentum dispersion relations. Over the years several scenarios have arisen for dispersion of light motivated
by theories and hypotheses about quantum gravity [4],[5].

These include a study of many different aspects among which we mention various scenarios of variable
speed of light (VSL) [6],[7], corrections to neutrino propagation [8],[9], different schemes for implementing a
relativity theory with minimum length [10],[11],[12],[13],[14], the principle of relative locality [15] and time
delay in arrival of photons with different energy [16],[17],[18],[19]. There are diverse theoretical frameworks
[20],[21],[22],[23],[24],[25] based on noncommutative (NC) spacetime which give rise to modified dispersion
relations.

Although all physical effects predicted along the lines just described are really tiny, one can still hope to get
a meassurable outcome. The crucial point in this and in all such kind of experiments in general, is that the effects
are cumulative. Thus for example, in the case of time delay in arrival of two light beams of different frequencies
emitted by gamma ray bursts, the photons created in the process travel across the space and while traversing large
cosmic distances, they accumulate all these tiny little outcomes in a manner similar to a snowball rolling down a
snowy hill, so that by the time they reach detector, the total effect of time delay becomes observable.

The idea of probing the physics of quantum gravity with high energy astrophysical observations has been
out there for quite some time already, but with the launch of the Fermi gamma ray telescope [26] it stepped out
into a new era with a lot more possibilities.

Another intriguing possibility for trapping any potential signal of a quantized structure of spacetime may
eventually be found in the quasinormal mode (QNM) spectrum of a generic black hole exhibited during its relax-
ation phase, when it goes through a so called ringdown period of quasinormal ringing. During this period black
holes emit gravitational waves, which became accessible to an experimental inquiry since their first detection
ever took place in the recent LIGO experiment [27]. In essence the purpose of the papers [28],[29], as well as
of the present paper is to investigate this idea on the example of a realistic 4-dimensional black hole 1. Specif-
ically, besides assuming that quantum nature of spacetime may leave its trace in the QNM spectrum of a black
hole, we also propose a specific model which enable us to sort out the trace of quantum spacetime and quantify
analytically the associated signatures of spacetime noncommutativity.

Quasinormal modes [32],[33],[34],[35],[36],[37],[38],[39],[40],[41],[42] dominate the relaxation phase of
the black hole perturbation dynamics, which according to the uniqueness and no-hair theorems [43],[44],[45],[46],[47],
after some time acquires a form of the Kerr-Newman geometry characterized solely by the black-hole mass,
charge, and angular momentum. Moreover, quasinormal modes accommodate features enclosed by these theo-
rems, in particular the property that in asymptotically flat spacetimes, spherically symmetric charged black holes
cannot support any external static matter configurations made of charged massive scalar fields [48]. As this im-
plies that perturbation fields left outside the newly created black hole would either be radiated away to infinity or

1The effect of noncommutativity on the QNM spectrum of 3-dimensional asymptotically adS spacetimes were investigated in
[30],[31].
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swallowed by the black hole, the boundary conditions defining QNMs comply with the requirement of behaving
as purely outgoing waves at spatial infinity and purely ingoing waves crossing the event horizon.

With a purpose of studying the signature of quantum spacetime as revealed within a QNM spectrum, we con-
sider the nearly spherical gravitational collapse of a charged scalar field to form a charged Reissner-Nordström
black hole. This we achieve by studying dynamics of the charged massive scalar perturbation field. The focus
would be on the relaxation phase of the charged perturbation fields which were left outside the newly created
black hole.

Quantum structure of spacetime may be implemented in various ways, with noncommutative deformation
being one of the most notable ones. The noncommutativity itself can be as well introduced in many different ways
[49],[50],[51]. Here we follow the twist approach [52] and deform the Poincaré algebra to a twisted Poincaré al-
gebra, so that the whole deformation is squeezed into a coalgebraic sector, while the algebra remains unchanged.
The change in the coalgebra is relavant for multiparticle states [53],[54],[55],[56],[57],[58],[59],[60],[61]. One
of the adventages of the twist deformation is that it induces a deformed differential calculus in a well defined
way. In particular, it introduces a deformed product of functions, the ?-product, and more generally, deformed
tensor product between tensor fields, including deformed wedge product ∧? between differential forms.

In order to realize this approach, we choose a twist operator of the form

F = e−
i
2 θ αβ ∂α⊗∂β

= e−
ia
2 (∂t⊗∂ϕ−∂ϕ⊗∂t). (1.1)

Vector fields X1 = ∂t , X2 = ∂ϕ are commuting vector fields, [X1,X2] = 0, therefore the twist (1.1) is an Abelian
twist [63]. It is dubbed as "angular twist" becuase the vector field X2 = ∂ϕ is a generator of rotations around
z-axis. The twist (1.1) defines the ?-product of functions,

f ?g = µ{e
ia
2 (∂t⊗∂ϕ−∂ϕ⊗∂t) f ⊗g}

= f g+
ia
2
(∂t f (∂ϕg)−∂tg(∂ϕ f ))+O(a2). (1.2)

2. Introducing the model

As indicated in the previous section, in order to study a ringdown phase, that is a relaxation dynamics of
charged matter around a newly formed black hole horizon, we consider the action

S[φ̂ , Â] =
∫ (

dφ̂ − iÂ? φ̂

)+
∧? ∗H

(
dφ̂ − iÂ? φ̂

)
−
∫

µ2

4!
φ̂
+ ? φ̂ εabcd ea∧? eb∧? ec∧? ed− 1

4q2

∫
(∗H F̂)∧? F̂ . (2.1)

that governs dynamics of a massive, charged scalar field φ̂ in some gravity background (which, unlike the scalar
and gauge field, is supposed to be fixed and not treated as a dynamical degree of freedom, see down below). The
scalar field φ̂ has the mass µ and charge q and transforms in the fundamental representation of NC U(1)?. The
one-form noncommutative (NC) U(1) gauge field Â = Âµ ? dxµ is introduced in the model through a minimal
coupling. Likewise, the two-form field-strength tensor is defined as

F̂ = dÂ− Â∧? Â =
1
2

F̂µν ?dxµ ∧? dxν . (2.2)

The presence of deformed structural maps in the action (2.1), i.e. deformed wedge product ∧? and star
product (1.2), together with the fact that (2.1) is being written in terms of a maximal volume form, ensures that
the action (2.1) is invariant under twisted diffeomorphisms. Note however that we work in a fixed geometry,
therefore the diffeomorphisms are limited to those that preserve a given fixed background metric. In a special
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case of a flat Minkowski space-time, without any coupling to gravity, a corresponding form of the action (2.1) is
invariant under a twisted Poincare algebra which is obtained by twisting the original Poincaré algebra with the
particular type of Drinfeld twist operator (1.1). Of course, the presence of deformed structural maps in the action
(2.1) also ensures the implementation of quantum deformation techniques in the theory.

In order that the mass term for the scalar field φ̂ takes on a geometrical form, we had to introduce the
vierbein one-forms ea = ea

µ ? dxµ , which satisfy gµν = ηabea
µ ? eb

ν . Here we point out that the metric gµν and
vierbeins in the action (2.1) are not treated as dynamical variables. Instead, the metric is fixed to be that of the
Reissner-Nordström (RN) type,

ds2 = (1− 2MG
r

+
Q2G

r2 )dt2− dr2

1− 2MG
r + Q2G

r2

− r2(dθ
2 + sin2

θdϕ
2), (2.3)

where M and Q are the mass and charge of the RN black hole, respectively. In view of that, the vector fields X1

and X2 are two Killing vectors for this metric. In particular, the twist (1.1) does not act on the RN metric. In this
way we ensure that the geometry remains intact by the deformation. For details of the construction the reader is
referred to references [28],[29].

In index notation, the action (2.1) can be written in the form

S[φ̂ , Â] = Sφ +SA,

Sφ =
∫

d4x
√
−g?

(
gµν ?Dµ φ̂

+ ?Dν φ̂ −µ
2
φ̂
+ ? φ̂

)
, (2.4)

SA = − 1
4q2

∫
d4x
√
−g?gαβ ?gµν ? F̂αµ ? F̂βν . (2.5)

where the covariant derivative is defined as

Dµ φ̂ = ∂µ φ̂ − iÂµ ? φ̂ .

The list of symmetries of the action (2.1) (or equivalently of the action (2.4),(2.5)) can be supplemented by
the following infinitesimal U(1)? gauge transformations,

δ
?
φ̂ = iΛ̂? φ̂ ,

δ
?Âµ = ∂µ Λ̂+ i[Λ̂ ?, Âµ ], (2.6)

δ?F̂µν = i[Λ̂ ?, F̂µν ],

δ
?gµν = 0.

where Λ̂ is the NC gauge parameter. The last transformation in (2.6) makes clear that the model (2.1) studied
here is semiclassical. By this we mean that only scalar and gauge field are subject to a NC deformation, while
gravitational field remains unaffected. In this sense, the gravitational field as described in the model (2.1) may
be deemed classical. The most general situation dealing with noncommutative deformation of gravity becomes
increasingly more involved. For more details see [62],[63],[64] and references therein.

Our approach is perturbative and we have to expand the action (2.4) up to first order in the deforamtion
parameter a. To do that we expand the ?-products in (2.4) and use the Seiberg-Witten (SW) map. SW map
enables to express NC variables as functions of the coresponding commutative variables. In this way, the problem
of charge quantization in U(1)? gauge theory does not exist. In the case of NC Yang-Mills gauge theories, SW
map guarantees that the number of degrees of freedom in the NC theory is the same as in the corresponding
commutative theory. That is, no new degrees of freedom are introduced.

Using the SW-map NC fields can be expressed as function of corresponding commutative fields and can be
expanded in orders of the deformation parameter a. Expansions for an arbitrary Abelian twist deformation are
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known to all orders [64]. Applying these results to the twist (1.1), expansions of fields up to first order in the
deformation parameter a follow. They are given by:

φ̂ = φ − 1
4

θ
ρσ Aρ(∂σ φ +Dσ φ), (2.7)

Âµ = Aµ −
1
2

θ
ρσ Aρ(∂σ Aµ +Fσ µ). (2.8)

F̂µν = Fµν −
1
2

θ
ρσ Aρ(∂σ Fµν +Dσ Fµν)+θ

ρσ FρµFσν . (2.9)

The U(1) covariant derivative of φ is defined as Dµφ = (∂µ− iAµ)φ . Using the SW-map solutions and expanding
the ?-products in (2.4) we find the action up to first order in the deformation parameter a. It is given by

Sφ +SA =
∫

d4x
√
−g
(

gµνDµφ
+Dνφ −µ

2
φ
+

φ (2.10)

+
θ αβ

2
gµν
(
− 1

2
Dµφ

+Fαβ Dνφ +(Dµφ
+)FανDβ φ +(Dβ φ

+)FαµDνφ
))

.

In (2.10) the coupling constant q is absorbed into a definition of Aµ , so that Aµ → qAµ .
Since the RN background also fixes the electromagnetic setting, we may write for the U(1) gauge field Aµ

and the corresponding field strength tensor Fµν ,

A0 =−
qQ
r
, Fr0 =

qQ
r2 . (2.11)

Varying the action (2.10) with respect to the field φ and taking into account (2.11), one gets the equation of
motion in the form (1

f
∂

2
t −∆+(1− f )∂ 2

r +
2MG

r2 ∂r +2iqQ
1
r f

∂t −
q2Q2

r2 f

)
φ

+
aqQ
r3

(
(
MG

r
− GQ2

r2 )∂ϕ + r f ∂r∂ϕ

)
φ = 0, (2.12)

where ∆ is the usual Laplace operator.
In order to solve this equation one assumes [28] the ansatz

φlm(t,r,θ ,ϕ) = Rlm(r)e−iωtY m
l (θ ,ϕ) (2.13)

with spherical harmonics Y m
l (θ ,ϕ). Inserting (2.13) into (2.12) yields an equation for the radial function Rlm(r)

f R′′lm +
2
r

(
1−MG

r

)
R′lm−

( l(l +1)
r2 − 1

f
(ω− qQ

r
)2 +µ

2
)

Rlm

−ima
qQ
r3

(
(
MG

r
− GQ2

r2 )Rlm + r f R′lm
)
= 0. (2.14)

While the first line of this equation describes the system without deformation, the second line in its entirety arises
from a quantum deformation of spacetime. From now on we set G = 1.

3. Results for the QNM spectrum

In order to obtain a QNM spectrum for the massive scalar perturbations of the background RN metric (2.3),
under conditions in which the underlying spacetime structure is deformed, we need to solve the equation (2.14)
under specific boundary conditions, those that require purely ingoing waves at the horizon and purely outgoing

4
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waves at infinity. The asymptotic form of the soultions that are fully congruent with QNM boundary conditions
may be expressed in terms of the tortoise coordinate y [29] in a manner as

R(r)→


ZouteiΩyy−1−i ωqQ−µ2M

Ω
−amqQΩ, for r→ ∞, (y→ ∞)

Zine
−i

(
ω− qQ

r+

)(
1+iam qQ

r+

)
y
, for r→ r+, (y→−∞)

. (3.1)

where Zout and Zin are the respective amplitudes which do not depend on r (or y).

We shall apply two approaches, the first one is based on the method of continued fractions and the second
approach is essentially an analytic one. This analytic approach is though applicable to only a near extremal
regime of the system parameters. However, since the near extremal regime is where a convergence of the contin-
ued fraction method appears to be rather slow, and hence this method does not seem to be the most adequate in
that case, the latter approach based on analytic method may be considered as complemental. In this sense both
these methods complement each other and when applied together, they form a coherent combination, covering
results for all possible ranges of the system parameters. The only exception may be the exactly extremal case
which might need a specific modification of the continued fraction method [65].

3.1 Method of continued fractions

Therefore, in order to determine the QNM spectrum of a massive charged scalar field around the RN black
hole in the presence of the noncommutative deformation of space-time, we first implement the continued fraction
method [66],[67],[68]. The same method was used in [69],[70],[71] to study the undeformed (commutative)
(un)charged scalar and Dirac QNM spectrum in the RN background.

As the equation (2.14) has an irregular singularity at r =+∞ and three regular singularities at r = 0, r = r−
and r = r+, the implementation of Leaver’s method assumes writing the solution in terms of powers series around
r = r+. Then the radial part of the scalar field looks as

R(r) = eiΩr(r− r−)
ε

∞

∑
n=0

an

(r− r+
r− r−

)n+δ

, (3.2)

where, in accordance with (3.1), the parameters Ω, δ and ε are fixed to be

Ω
2 = ω

2−µ
2, δ =−i

r2
+

r+− r−

(
ω− qQ

r+

)
, ε =−1− iqQ

ω

Ω
+ i

r++ r−
2Ω

(
Ω

2 +ω
2
)
. (3.3)

Inserting the general expansion (3.2) into the equation (2.14) gives rise to the following 6-term recurrence
relations

Anan+1 +Bnan +Cnan−1 +Dnan−2 +Enan−3 +Fnan−4 = 0,

A3a4 +B3a3 +C3a2 +D3a1 +E3a0 = 0,

A2a3 +B2a2 +C2a1 +D2a0 = 0,

A1a2 +B1a1 +C1a0 = 0,

A0a1 +B0a0 = 0, (3.4)

5
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where the coefficients An,Bn,Cn,Dn,En and Fn are given as

An = r3
+αn,

Bn = r3
+βn− iamqQ(r+− r−)r+(n+δ )− 1

2
iamqQ(r++ r−)r+

+ iamqQr+r−−3r2
+r−αn−1,

Cn = r3
+γn +3r+r2

−αn−2 + iamqQ(r+− r−)(2r++ r−)(n+δ −1)− iamqQ(r+− r−)r+ε

+
1
2

iamqQ(r++ r−)(2r++ r−)−3iamqQr+r−+amqQΩ(r+− r−)
2r+−3r2

+r−βn−1+,

Dn =−r3
−αn−3 +3r+r2

−βn−2−3r2
+r−γn−1 + iamqQ(r2

+− r2
−)ε +3iamqQr+r−−amqQΩ(r+− r−)

2r−

− iamqQ(r+− r−)(r++2r−)(n+δ −2)− 1
2

iamqQ(r++ r−)(r++2r−),

En = 3r+r2
−γn−2− r3

−βn−3 + iamqQ(r+− r−)r−(n+δ −3)

− iamqQ(r+− r−)r−ε +
1
2

iamqQ(r++ r−)r−iamqQr+r−,

Fn =−r3
−γn−3,

and the coefficients αn,βn,γn are the analogous coefficients appearing in the 3-term recurrence relations which
result from (2.14) when the deformation a is switched off (see the references [29],[70],[71]). The first relation in
(3.4) is a general 6-term recurrence relation, while the remaining four relations are the indicial equations relating
the lowest order coefficients an in the general expansion (3.2). They serve as boundary conditions for the first
relation in (3.4).

The 6-term recurrence relations need to be reduced to the 3-term recurrence relations

A(3)
n an+1 +B(3)

n an +C(3)
n an−1 = 0,

A(3)
0 a1 +B(3)

0 a0 = 0. (3.5)

This is achieved in a gradual process which consists of applying the Gauss elimination successively three times
in a row (for more details see the reference [29]). As a result of this process, one gets the coefficients of the
third level, A(3)

n ,B(3)
n ,C(3)

n expressed in terms of both the coefficients of the zeroth level An,Bn,Cn,Dn,En,Fn and
the coefficients αn,βn,γn. Having that, the QNM frequencies, and in particular the fundamental QNM frequency
will be obtained by solving the equation

0 = B(3)
0 −

A(3)
0 C(3)

1

B(3)
1 −

A(3)
1 C(3)

2

B(3)
2 −

A(3)
2 C(3)

3

B(3)
3 −· · ·

A(3)
n C(3)

n+1

B(3)
n+1−· · ·

. (3.6)

Using a specially devised root finding algorithm [29] as applied to (3.6) to determine the QNM spectrum,
it is possible to portray graphically a behaviour of the fundamental mode as a function of the electromagnetic
coupling qQ (Figures 1 and 2), as well as to portray its behaviour as a function of the scalar field mass µ (Figures
3 and 4). In both cases the NC parameter a is set to a = 0.01.

In effect Figures 1 and 2 show respectively a dependence of the real and imaginary part of the fundamental
QNM frequency ω = Reω + iImω on the charge of the scalar field qQ, whereat the charge of the RN black hole
Q is kept fixed. Other parameters in the model are given as: µ = 0.05, l = 1 and M = 1. The ratio Q

M between
the charge and the mass of the RN black hole measures how much this black hole is close to the extremal
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condition. Figures 1 and 2 present the results for ten different values of the ratio Q
M , which runs in between 0.01

and 0.999999.
Likewise, Figures 3 and 4 show a dependence of the fundamental frequency Re ω and Im ω on the mass µ

of the scalar field φ . Other system parameters are given as: qQ = 1, l = 1 and M = 1. The results for different
ratios Q

M are shown in different colors. The values of Q
M run in between 0.01 and 0.9999.

The characteristic features of the fundamental mode that can be drawn from Figures 1 and 2 include a
mostly linear behaviour of the real part of the fundamental frequency with respect to the charge q (at least for the
larger values of qQ) and the existence of a specific constant value at which the imaginary part of the fundamental
frequency saturates. Moreover, it is clearly visible that there exists a critical value of the electromagnetic coupling
at which the real part of the fundamental frequency Re ω approaches zero as qQ decreases. It is also interesting
to observe a behaviour of the fundamental mode as the extremal limit is approached, Q

M → 1. We can see from
Figures 1 and 2 that in this limit the real part of the fundamental frequency behaves as qQ

r+
≈ q, while the imaginary

part acquires smaller and smaller values.
At the same time, the characteristic feature of the fundamental mode that is clearly visible from Figures

3 and 4 includes the appearance of quasi-resonances, special values of the mass when Imω = 0, implying the
existence of non-decaying modes. They are present for all values of the ratios Q

M .

-1 1 2 3 4 5
qQ

1

2

3

4

5
Re Ω

Q�M=0.999999

Q�M=0.9999

Q�M=0.99
Q�M=0.95
Q�M=0.9
Q�M=0.8
Q�M=0.7
Q�M=0.5
Q�M=0.01

Figure 1: Dependence of Re ω on the charge qQ of the
scalar field with the mass µ = 0.05 and the orbital momen-
tum l = 1. Different extremalities are shown in different col-
ors.

-1 1 2 3 4 5
qQ

-0.15

-0.10

-0.05

Im Ω

Q�M=0.999999

Q�M=0.9999

Q�M=0.99
Q�M=0.95
Q�M=0.9
Q�M=0.8
Q�M=0.7
Q�M=0.5
Q�M=0.01

Figure 2: Dependence of Im ω on the charge qQ of the
scalar field with the mass µ = 0.05 and the orbital momen-
tum l = 1. Different extremalities are shown in different col-
ors.

0.5 1.0 1.5
Μ

0.2

0.4

0.6

0.8

1.0

1.2

Re Ω

Q�M=0.9999

Q�M=0.9
Q�M=0.8
Q�M=0.75
Q�M=0.7
Q�M=0.6
Q�M=0.55
Q�M=0.5
Q�M=0.01

Figure 3: Dependence of Re ω on the mass µ of the scalar
field with the charge qQ= 1 and the orbital momentum l = 1.

0.5 1.0 1.5
Μ

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

Im Ω

Q�M=0.9999

Q�M=0.9
Q�M=0.8
Q�M=0.75
Q�M=0.7
Q�M=0.6
Q�M=0.55
Q�M=0.5
Q�M=0.01

Figure 4: Dependence of Im ω on the mass µ of the scalar
field with the charge qQ= 1 and the orbital momentum l = 1.

As the effects of noncommutative deformation in our model are not clearly visible from Figures 1-4, we
have introduced a quantity called frequency splitting, which is defined as ω± = ωm=±1−ωm=0, where m =

−l, −l+1, ..., l is the projection of the orbital angular momentum l. In case that the orbital angular momentum l
is greater than 1, the frequency splitting receives a generalization in the form ω±±···± = ωm−ωm=0. Specifically,
ω±± = ωm=±2−ωm=0. Here we shall consider only quantities ω± and ω±±. They are demonstrated at Figures
5 and 6 for the angular momentum channel l = 2 and for the value of the ratio Q

M = 0.5. On these figures the real
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and the imaginary part of the frequency splittings ω± and ω±± is shown as a function of the scalar field charge
q. The frequency splitting can be graphically presented for any value of the ratio Q

M .

-2 -1 1 2 3 4 5
qQ

-0.00004

-0.00002

0.00002

0.00004

Re Ω

Q�M=0.5

Ω--

Ω-

Ω+

Ω++

Figure 5: Dependence of Re ω±, Re ω±± on the charge qQ
of the scalar field with the mass µ = 0.05, orbital momentum
l = 2 and extremality Q

M = 0.5.

-2 -1 1 2 3 4 5
qQ

-0.00015

-0.00010

-0.00005

0.00005

0.00010

0.00015

Im Ω

Q�M=0.5

Ω--

Ω-

Ω+

Ω++

Figure 6: Dependence of Im ω±, Im ω±± on the charge qQ
of the scalar field with the mass µ = 0.05, orbital momentum
l = 2 and extremality Q

M = 0.5.

3.2 Analytic method in the near extremal approximation

The second approach that we adopt here is based on an analytic method [72],[73] which is however only
accurate in a highly restrictive regime of system parameters that is related to conditions of near extremality. The
main idea behind this approach is to solve separately the equation (2.14) in two distinct regions, first in the region
relatively close to the horizon and then in the region relatively far from the horizon and afterwards to extrapolate
both solutions into a region of common overlap. As a result of matching of the two extrapolated solutions, the
quantization condition emerges that determines a QNM spectrum for the scalar perturbations of the RN black
hole. This quantization condition is given by

Γ(1−2iσ)Γ(−2iσ −2ρ̃)

Γ(1
2 − iσ − ik− ρ̃)Γ(1

2 − iσ + ik− iΩ− ρ̃)Γ(1
2 − iσ − iκ)

=− Γ(1+2iσ)Γ(2iσ +2ρ̃)τ−2ρ̃

Γ(1
2 + iσ − ik+ ρ̃)Γ(1

2 + iσ + ik− iΩ+ ρ̃)Γ(1
2 + iσ − iκ)

×
(
−2i

√
ω2−µ2 r+τ

)−2iσ
,

(3.7)

where the quantities ρ̃,k,σ , ,κ,Ω are all functions of the system parameters (the mass and the charge of the
RN black hole, as well as the mass and the charge of the scalar field), the frequency ω and the deformation
parameter a. In addition, τ is the extremality parameter, τ = r+−r−

r+
. For details see the reference [28]. In general,

this condition cannot be solved analytically. In the following, we present some numerical results for the QNM
frequencies, obtained by Wolfram Mathematica which result from the analytic condition (3.7). In particular, only
the fundamental quasinormal mode will be analysed.

In this way Figures 7 and 8 show a dependence of the real and imaginary part of the fundamental QNM
frequency ω on the charge q of the scalar field. In order to make comparison for different (albeit still close to 1)
values of the ratio Q

M , we plot the results for two choices of "extremality": Q
M = 0.9999 and Q

M = 0.999999. The
former one corresponds to the "extremality" parameter τ = 0.0278891617, while the latter corresponds to τ =

0.0028244321. It is important to note that a derivation of the condition (3.7) was made within the approximation
that the NC deformation parameter a is of the same order as the extremality τ . Therefore, in the case Q

M = 0.9999
we set a= 0.1, while in the case Q

M = 0.999999 we set a= 0.01. The q dependance of Reω and Imω is presented
in Figures 7 and 8, where it was assumed that the mass of the scalar field is fixed at µ = 0.05.
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0.05 0.10 0.15 0.20
q

0.05

0.10

0.15

0.20

0.25
Re Ω

Q�M=0.999999

Q�M=0.9999

Figure 7: Dependance of Reω on the charge q of the scalar
field with the mass µ = 0.05, l = 1.

0.05 0.10 0.15 0.20 0.25
q

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

Im Ω

Q�M=0.999999

Q�M=0.9999

Figure 8: Dependance of Imω on the charge q of the scalar
field with the mass µ = 0.05, l = 1.

Likewise, the dependance of the fundamental QNM frequency ω on the mass µ of the scalar field, for the
fixed charge q = 0.075, is shown in Figures 9 and 10.

0.1 0.2 0.3 0.4 0.5
Μ

0.05

0.10

0.15

0.20

0.25

Re Ω

Q�M=0.999999

Q�M=0.9999

Figure 9: Dependance of Reω on the mass µ of the scalar
field with the charge q = 0.075, l = 1.

0.1 0.2 0.3 0.4
Μ

-0.04

-0.03

-0.02

-0.01

Im Ω

Q�M=0.999999

Q�M=0.9999

Figure 10: Dependance of Imω on the mass µ of the scalar
field with the charge q = 0.075, l = 1.

As in a previous method, a non-zero NC effect on the QNM spectrum may be inferred by studying the
quantities called frequency splitting. They were already defined before and denoted as ω±, ω±±. Figures 11
and 12 show a dependance of the real and imaginary part of the frequency splittings ω±, ω±± on the scalar field
charge q. The graphs are made for the following set of parameters: Q/M = 0.999999, µ = 0.05 and l = 2.

Two latter figures clearly demonstrate a phenomenon of frequency splitting, indicating lines that correspond
to m = ±2 and m = ±1. In this way they show the same patterns already outlined at Figures 5 and 6, thus
supporting the findings obtained by the continued fraction method. This effect, though being very tiny, is qual-
itatively very important, as it indicates a presence of NC driven features in the QNM spectrum, thus signalling
an essentially quantum nature of spacetime. Since the frequency splitting has its origin in a coupling between
the deformation parameter a and the azimuthal (magnetic) quantum number m (see equation (2.14)), this effect
is reminiscent of a Zeeman-like splitting in the spectrum of the hydrogen-like atoms, with deformation a taking
the role of a magnetic field.

Interestingly, all figures related to frequency splitting (Figures 5,6,11,12) show the same property, namely
ω+ = −ω− and ω++ = −ω−−. This feature was expected due to a parity symmetry of the model consid-
ered. Other features where two methods agree qualitatively in their findings include: the appearance of quasi-
resonances in the spectrum, the existence of constant values at which the imaginary part of the QNM frequency
saturates and the appearance of the linearly dependent pattern for larger values of qQ, representing the real part
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2. ´ 10-9
Re Ω

Q�M=0.999999
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Figure 11: Dependance of frequency splitting of Reω on
the charge q of the scalar field with the mass µ = 0.05, l = 2.

0.05 0.10 0.15 0.20 0.25 0.30
q

-1.5 ´ 10-9
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-5. ´ 10-10
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Figure 12: Dependance of frequency splitting of Imω on
the charge q of the scalar field with the mass µ = 0.05, l = 2.

of the QNM frequency as a function of the charge q .
Besides QNM spectra of black holes, there are many other important concepts in physics which may re-

quire an appropriate reassessment in terms of quantum nature of spacetime, such as the geodesic and quantum
completeness [74], the existence of naked singularities and related issue of validness of the cosmic censorship
hypothesis [75], the renormalization of black hole entanglement entropy [76] and a description of physics in
terms of fuzzy (Anti)-de Sitter space [77],[78],[79],[80] to name a few. We think that these issues should be
given a considerable attention in future studies.
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