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Kučerová-Chlupáčová, M. Review

and Chemoinformatic Analysis of

Ferroptosis Modulators with a Focus

on Natural Plant Products. Molecules

2023, 28, 475. https://doi.org/

10.3390/molecules28020475

Academic Editor: Andrea Trabocchi

Received: 3 December 2022

Revised: 23 December 2022

Accepted: 24 December 2022

Published: 4 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Review and Chemoinformatic Analysis of Ferroptosis
Modulators with a Focus on Natural Plant Products
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Abstract: Ferroptosis is a regular cell death pathway that has been proposed as a suitable thera-
peutic target in cancer and neurodegenerative diseases. Since its definition in 2012, a few hundred
ferroptosis modulators have been reported. Based on a literature search, we collected a set of diverse
ferroptosis modulators and analyzed them in terms of their structural features and physicochemical
and drug-likeness properties. Ferroptosis modulators are mostly natural products or semisynthetic
derivatives. In this review, we focused on the abundant subgroup of polyphenolic modulators,
primarily phenylpropanoids. Many natural polyphenolic antioxidants have antiferroptotic activities
acting through at least one of the following effects: ROS scavenging and/or iron chelation activities,
increased GPX4 and NRF2 expression, and LOX inhibition. Some polyphenols are described as
ferroptosis inducers acting through the generation of ROS, intracellular accumulation of iron (II),
or the inhibition of GPX4. However, some molecules have a dual mode of action depending on the
cell type (cancer versus neural cells) and the (micro)environment. The latter enables their success-
ful use (e.g., apigenin, resveratrol, curcumin, and EGCG) in rationally designed, multifunctional
nanoparticles that selectively target cancer cells through ferroptosis induction.
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1. Introduction

Cancer is one of the most common causes of death in humans worldwide [1]. Pre-
vention programs and early cancer detection through regular medical check-ups and with
the use of specific biomarkers, as well as the development of novel therapeutics (such as
the development of various protein kinase inhibitors and immunotherapeutics), reduce
cancer mortality [2,3]. Cancer therapy (chemotherapy, targeted therapy, radiotherapy, or
immunotherapy) generally aims to destroy cancer cells without too many harmful effects
on healthy cells. The induction of natural, programmed cell death pathways through the
use of low-molecular-weight (MW) compounds has been widely explored as a way to
combat death-escaping cancer cells. In cancer chemoprevention and chemotherapy, the
induction and promotion of cancer cell apoptosis by small molecule agents have been
extensively studied [4,5]. However, the main limitation of this approach is that cancer
acquires resistance to such drugs, including targeted therapies, leading to their failure [4].
Dysregulated mechanisms that sustain cancer resistance to various other types of cell death
pathways have also been studied in solid tumors and hematological malignancies [6].

Cancer initiation and promotion are generally linked with oxidative stress [7]. Oxida-
tive stress causes DNA mutations, cell component damage, and pro-oncogenic signaling
and, thus, triggers and sustains carcinogenesis [8]. Sustained overproduction of reactive
oxygen species (ROS) may lead to persistent, chronic oxidative stress and injury through
nonlethal modifications of normal cellular growth control mechanisms such as modified
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intercellular communication, protein kinase activity, membrane structure and function, and
gene expression. Most conventional chemotherapeutic agents increase ROS production
and, thus, cause cell and tissue damage and activate an inflammatory response.

Ferroptosis is a regulated cell death mechanism caused directly by (over)production
and accumulation of specific kinds of ROS, which may enable the selective killing of cancer
cells without causing significant toxicity to normal cells. The druggability of ferroptosis by
low-MW compounds has already been demonstrated. In fact, ferroptosis was discovered to
be a programmed cell death pathway by using low-MW compounds [9]. The treatment of an
NRAS oncogene mutant containing HT-1080 fibrosarcoma cells with the compound erastin
(10 µM) induced a time-dependent, continuous increase in cytosolic and lipid ROS, which
resulted in cell death with a distinct non-apoptotic phenotype. Cell death was suppressed
by each of the following low-MW agents: iron chelators deferoxamine (100 µM) and
ciclopirox olamine (5 µM), the glutathione peroxidase mimetic organoselenium compound
ebselen (5 µM), the mitogen-activated protein kinase (MEK) inhibitor U0126 (5 µM), and
the antioxidants trolox (100 µM) and ferrostatin-1 (EC50 = 60 nM). Since ferroptosis was
described as a distinct regulated cell death pathway in 2012, more than a few hundred
low-MW inducers and inhibitors of ferroptosis have been reported.

Recently, many reviews on ferroptosis relating to various biological aspects have been
published [10–12]. Herein, we collect sets of 30 representative inducers (Tables 1 and S1)
and 48 suppressors/inhibitors (Tables 2 and S2) of ferroptotic cell death with a MW of
less than 800 and analyze them in relation to structural, physicochemical/drug-likeness,
and biological/pharmacological aspects. Thereafter, the review focuses on describing the
biological activities/effects of the subset of (poly)phenolic ferroptosis modulators since, to
our knowledge, there has been no such comprehensive review of polyphenols as ferroptosis
modulators [13–17]. We focus only on the activities of (poly)phenolic compounds (many of
which are already known) in conjunction with their reported (anti)ferroptotic effects. We
review their influence on ferroptosis through activities affecting the three major components
of ferroptosis. Tables 1 and 2 list these activities for natural plant molecules and put them
in the context with other ferroptosis modulators with analogous effects.

Table 1. Ferroptosis inducer representatives—chemical structures with the main mode of action 1

and predicted lipophilicity coefficient and potential for crossing the blood-to-brain barrier (BBB) by
the program ADMET Predictor™ [18].

Inducer Name 2D Structure Mode of Action logP BBB

(1S,3R)-RSL3
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Table 1. Cont.

Inducer Name 2D Structure Mode of Action logP BBB

epunctanone
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1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
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Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1

and predicted lipophilicity coefficient and potential for crossing the BBB.

Inhibitor Name Structure Mode of Action logP BBB

butylatedhydroxytoluene

Molecules 2023, 28, x FOR PEER REVIEW 4 of 30 
 

 

sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 
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antioxidative 3.3 high 

antioxidative 5.5 high

ferrostatin-1
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α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high 

antioxidative 3.7 high

α-tocopherol
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sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 

1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
other mechanisms. 

Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1 
and predicted lipophilicity coefficient and potential for crossing the BBB. 

Inhibitor Name Structure Mode of Action logP BBB 
butylated 

hydroxytoluene 
 

antioxidative 5.5 high 

ferrostatin-1 
 

antioxidative 3.7 high 

α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high 

antioxidative 11.5 high

β-carotene
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sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 

1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
other mechanisms. 

Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1 
and predicted lipophilicity coefficient and potential for crossing the BBB. 

Inhibitor Name Structure Mode of Action logP BBB 
butylated 

hydroxytoluene 
 

antioxidative 5.5 high 

ferrostatin-1 
 

antioxidative 3.7 high 

α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high 

antioxidative 11.6 high

glutathione
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sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 

1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
other mechanisms. 

Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1 
and predicted lipophilicity coefficient and potential for crossing the BBB. 

Inhibitor Name Structure Mode of Action logP BBB 
butylated 

hydroxytoluene 
 

antioxidative 5.5 high 

ferrostatin-1 
 

antioxidative 3.7 high 

α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high 

antioxidative −3.4 low

N-acetylcysteine
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sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 

1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
other mechanisms. 

Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1 
and predicted lipophilicity coefficient and potential for crossing the BBB. 

Inhibitor Name Structure Mode of Action logP BBB 
butylated 

hydroxytoluene 
 

antioxidative 5.5 high 

ferrostatin-1 
 

antioxidative 3.7 high 

α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high 

antioxidative −0.6 low

ascorbic acid
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sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 

1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
other mechanisms. 

Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1 
and predicted lipophilicity coefficient and potential for crossing the BBB. 

Inhibitor Name Structure Mode of Action logP BBB 
butylated 

hydroxytoluene 
 

antioxidative 5.5 high 

ferrostatin-1 
 

antioxidative 3.7 high 

α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high 

antioxidative −1.6 low

edaravone

Molecules 2023, 28, x FOR PEER REVIEW 4 of 30 
 

 

sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 

1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
other mechanisms. 

Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1 
and predicted lipophilicity coefficient and potential for crossing the BBB. 

Inhibitor Name Structure Mode of Action logP BBB 
butylated 

hydroxytoluene 
 

antioxidative 5.5 high 

ferrostatin-1 
 

antioxidative 3.7 high 

α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high 

antioxidative 1.3 high

GSK2334470
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sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 

1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
other mechanisms. 

Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1 
and predicted lipophilicity coefficient and potential for crossing the BBB. 

Inhibitor Name Structure Mode of Action logP BBB 
butylated 

hydroxytoluene 
 

antioxidative 5.5 high 

ferrostatin-1 
 

antioxidative 3.7 high 

α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high 

antioxidative 4.3 low

liproxstatin-1
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sorafenib 
 

Xc‾ system ↓ 5.1 low 

erastin 
N

O

Cl

O
N

N

O
N O

 

Xc‾ system ↓ 3.8 low 

sulfasalazine 
 

Xc‾ system ↓ 3.1 low 

ferroptocide 

 

Other 2.1 low 

maneb 
 

other 0.2 low 

gambogic acid 

 

other 7.4 low 

paraquat 
 

other −6.3 low 

soyauxinium 
 

other 0.4 high 

erianin 
 

other 3.4 high 

1 Mode of action: GPX4 ↓ inhibition of GPX4; iron ↑/ROS ↑ intracellular accumulation of iron/ROS; 
other mechanisms. 

Table 2. Ferroptosis inhibitor representatives—chemical structures with the main mode of action 1 
and predicted lipophilicity coefficient and potential for crossing the BBB. 

Inhibitor Name Structure Mode of Action logP BBB 
butylated 

hydroxytoluene 
 

antioxidative 5.5 high 

ferrostatin-1 
 

antioxidative 3.7 high 

α-tocopherol 
 

antioxidative 11.5 high 

β-carotene 
 

antioxidative 11.6 high 

glutathione 
 

antioxidative −3.4 low 

N-acetylcysteine 
 

antioxidative −0.6 low 

ascorbic acid 
 

antioxidative −1.6 low 

edaravone 
 

antioxidative 1.3 high 

GSK2334470 

 

antioxidative 4.3 low 

liproxstatin-1 
 

antioxidative 3.3 high antioxidative 3.3 high

trolox

Molecules 2023, 28, x FOR PEER REVIEW 5 of 30 
 

 

trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative 2.9 low

α-lipoic acid
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trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative; NRF2 ↑ 2.7 low

7-O-cinnamoyltaxifolin

Molecules 2023, 28, x FOR PEER REVIEW 5 of 30 
 

 

trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative 3.7 low

7-O-feruloyltaxifolin
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trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative 3.1 low

butein
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trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative 2.8 low

butin
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trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative 1.9 low

isorhapontigenin
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trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative 3.0 high
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Table 2. Cont.

Inhibitor Name Structure Mode of Action logP BBB

morachalcone D
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trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative 1.7 low

piceatannol-3′-O-
glucoside
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trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
 

antioxidative 3.1 low 

rhapontin 
 

antioxidative 0.6 low 

synthetic chalcone 1 2 
 

antioxidative 3.8 low 

Baicalein 2 
 

antioxidative; 
15-LOX ↓ 

3.0 low 

dopamine 
 

GPX4 ↑ −0.3 low 

galangin 
 

GPX4 ↑ 2.7 low 

apigenin 
 

GPX4 ↑ 2.9 low 

silibinin 
 

iron chelation 1.8 low 

deferoxamine iron chelation −1.3 low 

phytic acid 

 

iron chelation −11.2 high 

8-hydroxyquinoline 
 

iron chelation 2.1 high 

ciclopirox olamine 
 

iron chelation 2.5 high 

deferasirox 

 

iron chelation 3.8 low 

antioxidative 0.4 low

rhapontigenin
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trolox 
 

antioxidative 2.9 low 

α-lipoic acid 
 

antioxidative; 
NRF2 ↑ 2.7 low 

7-O-cinnamoyltaxifolin 
 

antioxidative 3.7 low 

7-O-feruloyltaxifolin 
 

antioxidative 3.1 low 

butein 
 

antioxidative 2.8 low 

butin 
 

antioxidative 1.9 low 

isorhapontigenin 
 

antioxidative 3.0 high 

morachalcone D 
 

antioxidative 1.7 low 

piceatannol-3’-O-
glucoside 

 

antioxidative 0.4 low 

rhapontigenin 
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iron chelation; 
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melatonin 
 

NRF2 ↑ 1.7 high 
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5-LOX ↓ 1.9 high 

bakuchiol 
 

other 5.7 high 

psoralidin 
 

other 4.1 low 

1 Mode of action: GPX4 ↑/NRF2 ↑ activation of GPX4/NRF2; 5-LOX ↓/15-LOX ↓ inhibition of 5-
LOX/15-LOX; antioxidative—radical scavenging; other mechanisms. 2 Conventional notation of 
rings used within text for discussion. 

2. Ferroptosis—Three Main Factors 
Ferroptosis was described in 2012 as a non-apoptotic cell death mechanism. It is a 

regulated form of cell death that is triggered and driven by the (over)production and ac-
cumulation of lipid and phospholipid (hydroxy)peroxides, the formation of which is spe-
cifically mediated by Fe2+ ferrous ions. It is named after Fe2+ ferrous ions since cytosolic 
and mitochondrial Fe2+ ions are essential factors in ferroptosis. Once ignited, ferroptosis 
can remain local or rapidly spread to surrounding cells, depending on the ignition mech-
anism [19]. It is morphologically, biochemically, and genetically distinct from apoptosis, 
necrosis, and autophagy but similar to oxytosis. Ferroptosis is closely associated with mi-
tochondria, and its primary morphological markers are aberrant mitochondria character-
ized by a reduced number of mitochondrial cristae, inner membrane condensation, outer 
membrane rupture, and size shrinkage [20,21]. Physiologically, ferroptosis may contribute 
to embryonic development, erythropoiesis, aging, and antiviral and anticancer defense 
mechanisms [11]. Pathologically, it is associated with neurological diseases, myocardial 
infarction, atherosclerosis, renal and liver diseases, and cancer. 

iron chelation −0.6 high

maltol
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2. Ferroptosis—Three Main Factors 
Ferroptosis was described in 2012 as a non-apoptotic cell death mechanism. It is a 

regulated form of cell death that is triggered and driven by the (over)production and ac-
cumulation of lipid and phospholipid (hydroxy)peroxides, the formation of which is spe-
cifically mediated by Fe2+ ferrous ions. It is named after Fe2+ ferrous ions since cytosolic 
and mitochondrial Fe2+ ions are essential factors in ferroptosis. Once ignited, ferroptosis 
can remain local or rapidly spread to surrounding cells, depending on the ignition mech-
anism [19]. It is morphologically, biochemically, and genetically distinct from apoptosis, 
necrosis, and autophagy but similar to oxytosis. Ferroptosis is closely associated with mi-
tochondria, and its primary morphological markers are aberrant mitochondria character-
ized by a reduced number of mitochondrial cristae, inner membrane condensation, outer 
membrane rupture, and size shrinkage [20,21]. Physiologically, ferroptosis may contribute 
to embryonic development, erythropoiesis, aging, and antiviral and anticancer defense 
mechanisms [11]. Pathologically, it is associated with neurological diseases, myocardial 
infarction, atherosclerosis, renal and liver diseases, and cancer. 

iron chelation 0.0 high
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Table 2. Cont.

Inhibitor Name Structure Mode of Action logP BBB
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iron chelation 1.9 low 
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iron chelation −0.7 low 

sterubin 
 

iron chelation 2.0 low 

fisetin 
 

iron chelation; 
NRF2 ↑ 

2.2 low 

carnosic acid 
 

NRF2 ↑ 4.5 low 

melatonin 
 

NRF2 ↑ 1.7 high 

zileuton 
 

5-LOX ↓ 1.9 high 

bakuchiol 
 

other 5.7 high 

psoralidin 
 

other 4.1 low 

1 Mode of action: GPX4 ↑/NRF2 ↑ activation of GPX4/NRF2; 5-LOX ↓/15-LOX ↓ inhibition of 5-
LOX/15-LOX; antioxidative—radical scavenging; other mechanisms. 2 Conventional notation of 
rings used within text for discussion. 

2. Ferroptosis—Three Main Factors 
Ferroptosis was described in 2012 as a non-apoptotic cell death mechanism. It is a 

regulated form of cell death that is triggered and driven by the (over)production and ac-
cumulation of lipid and phospholipid (hydroxy)peroxides, the formation of which is spe-
cifically mediated by Fe2+ ferrous ions. It is named after Fe2+ ferrous ions since cytosolic 
and mitochondrial Fe2+ ions are essential factors in ferroptosis. Once ignited, ferroptosis 
can remain local or rapidly spread to surrounding cells, depending on the ignition mech-
anism [19]. It is morphologically, biochemically, and genetically distinct from apoptosis, 
necrosis, and autophagy but similar to oxytosis. Ferroptosis is closely associated with mi-
tochondria, and its primary morphological markers are aberrant mitochondria character-
ized by a reduced number of mitochondrial cristae, inner membrane condensation, outer 
membrane rupture, and size shrinkage [20,21]. Physiologically, ferroptosis may contribute 
to embryonic development, erythropoiesis, aging, and antiviral and anticancer defense 
mechanisms [11]. Pathologically, it is associated with neurological diseases, myocardial 
infarction, atherosclerosis, renal and liver diseases, and cancer. 

iron chelation 2.0 low

curcumin
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1 Mode of action: GPX4 ↑/NRF2 ↑ activation of GPX4/NRF2; 5-LOX ↓/15-LOX ↓ inhibition of 5-
LOX/15-LOX; antioxidative—radical scavenging; other mechanisms. 2 Conventional notation of 
rings used within text for discussion. 

2. Ferroptosis—Three Main Factors 
Ferroptosis was described in 2012 as a non-apoptotic cell death mechanism. It is a 

regulated form of cell death that is triggered and driven by the (over)production and ac-
cumulation of lipid and phospholipid (hydroxy)peroxides, the formation of which is spe-
cifically mediated by Fe2+ ferrous ions. It is named after Fe2+ ferrous ions since cytosolic 
and mitochondrial Fe2+ ions are essential factors in ferroptosis. Once ignited, ferroptosis 
can remain local or rapidly spread to surrounding cells, depending on the ignition mech-
anism [19]. It is morphologically, biochemically, and genetically distinct from apoptosis, 
necrosis, and autophagy but similar to oxytosis. Ferroptosis is closely associated with mi-
tochondria, and its primary morphological markers are aberrant mitochondria character-
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2. Ferroptosis—Three Main Factors

Ferroptosis was described in 2012 as a non-apoptotic cell death mechanism. It is
a regulated form of cell death that is triggered and driven by the (over)production and
accumulation of lipid and phospholipid (hydroxy)peroxides, the formation of which is
specifically mediated by Fe2+ ferrous ions. It is named after Fe2+ ferrous ions since cytosolic
and mitochondrial Fe2+ ions are essential factors in ferroptosis. Once ignited, ferroptosis
can remain local or rapidly spread to surrounding cells, depending on the ignition mech-
anism [19]. It is morphologically, biochemically, and genetically distinct from apoptosis,
necrosis, and autophagy but similar to oxytosis. Ferroptosis is closely associated with
mitochondria, and its primary morphological markers are aberrant mitochondria character-
ized by a reduced number of mitochondrial cristae, inner membrane condensation, outer
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membrane rupture, and size shrinkage [20,21]. Physiologically, ferroptosis may contribute
to embryonic development, erythropoiesis, aging, and antiviral and anticancer defense
mechanisms [11]. Pathologically, it is associated with neurological diseases, myocardial
infarction, atherosclerosis, renal and liver diseases, and cancer.

Three factors are necessary for the induction of and maintaining ferroptosis. These
are: (i) the intracellular accumulation of Fe2+ ferrous ions, (ii) the accumulation of lipid
peroxides generated from polyunsaturated fatty acids (PUFA) with bis-allylic fragments
localized mainly in membranes, and (iii) the deficient repair of lipid peroxides. It is possible
to induce or inhibit ferroptotic cell death in a relatively straightforward manner by directly
or indirectly targeting one of the three necessary factors. They are considered markers
for ferroptosis.

Iron is an essential metal in the human body, and its uptake, distribution, storage, and
retrieval are coordinated at cellular and systemic levels by a complex and finely balanced
network of regulatory pathways. Iron is involved in a variety of physiological functions
and processes, including DNA replication, the tricarboxylic acid cycle, ATP production
via the electron transport chain, and signal transduction. It is a cofactor in 6.5% of all
human enzymes, localized mainly in the endoplasmic reticulum and mitochondria in the
form of iron ions, heme, or iron–sulfur (FeS) clusters [22]. Its aberrant metabolism, leading
to excessive Fenton reactions and/or impairment of mitochondrial function and energy
metabolism, induces ferroptosis. Free, non-protein-bound Fe2+ ions can be quickly released
from labile iron pools that are available within living cells and serve as a transient hub
of the cellular iron metabolism. Intracellular accumulation of free iron can lead to high
production of ROS which can override the antioxidant defense of a cell.

Other forms of regulated cell death mechanisms such as apoptosis, necroptosis, and py-
roptosis may also depend on iron-induced ROS and oxidative stress. However, ferroptosis
is dependent on lipid peroxidation. Ferroptosis is characterized by excessive peroxidation
of PUFA bound in certain phospholipids such as phosphatidylethanolamines (e.g., perox-
ides of phosphoethanolamines (PEs) with arachidonic acid (AA) (18:0/20:4(5Z,8Z,11Z,14Z)
PE-AA) or adrenic acid (AdA) (18:0/22:4 (7Z,10Z,13Z,16Z) PE-AdA), phosphatidylcholines,
and other types of phospholipids [23]. These phospholipids are synthesized mainly
in the membranes of mitochondria and the endoplasmic reticulum. Lipids are peroxi-
dized through non-enzymatic and enzymatic mechanisms involving Fe2+ ions. In the
non-enzymatic Fenton reaction of Fe2+ ions with hydrogen peroxide (H2O2), hydroxyl
radicals (HO•) are produced, which can cause oxidative damage to cellular components
such as lipids and induce cell death. Lipoxygenase (LOX) enzymes are non-heme, iron-
containing dioxygenases that catalyze the stereospecific oxygenation of free and esterified
PUFAs, generating a spectrum of bioactive lipid mediators that can initiate autocatalytic
lipid autoxidation.

Since lipid peroxidation fuels the spread of ferroptosis, regulation of the activity
and expression of proteins involved in lipid metabolic pathways has a major impact on
ferroptosis [24]. These are the enzymes responsible for the formation of phospholipids and
their incorporation into various cell membranes (ACSL4 (acyl-CoA synthetase long-chain
family member 4/long-chain fatty-acid-CoA ligase 4) and LPCAT3 (lysophospholipid
acyltransferase 5)), as well as enzymes regulating lipid peroxidation such as LOXs and
GPX4 (glutathione peroxidase 4). Lipid peroxide radicals are neutralized non-enzymatically
by exogenous, lipophilic free radical scavengers such as α-tocopherol and β-carotene
and enzymatically by the selenoprotein GPX4. GPX4 is unique among the eight GPX
isoforms in that it is the only enzyme capable of reducing oxidized, esterified fatty acids
and cholesterol hydroperoxides, thus, protecting against lipid peroxidation in cells and
structural function in mature sperm cells [25,26]. It reduces fatty acids/phospholipid
hydroperoxides to lipid alcohols with the help of glutathione (GSH) as a cofactor, even
if they are incorporated in lipoproteins and membranes. There are three isoforms of
GPX4: mGPX4 distributed in mitochondria, nGPX4 distributed in nucleoli, and cGPX4
distributed in the nucleus and cytosol and also strongly associated with membranes. GPX4
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activity decreases under GSH depletion and can also be directly inhibited via a covalent
interaction with selenocysteine in the active site. Deficiency of GPX4 in quantity and/or
activity leads to ferroptosis. Its cofactor, GSH, is synthesized from cysteine and glutamate,
and cystine is a precursor of cysteine. GPX4 activity can be reduced by depletion of
GSH through inhibition of the cystine/glutamate antiporter Xc

– system, which exchanges
intracellular L-glutamate for extracellular L-cystine across the cellular plasma membrane.
The Xc

–/GSH/GPX4 axis crucially controls ferroptosis. The heterodimeric Xc
– system

consists of two transmembrane amino acid transporters: SLC3A2 (solute carrier family
3 member 2) and cystine/glutamate transporter SLC7A11 (solute carrier family 7 member
11). Glutamate itself can be replenished by importing glutamine via transporter SLC1A5.
Cystine is reduced inside cells to cysteine. The enzyme ACSL4 enriches cellular membranes
with longω-6 PUFAs, determining the ferroptosis sensitivity of cells [27]. It was found to
be preferentially expressed in a panel of basal-like breast cancer cell lines.

3. Ferroptosis as a Potential Therapeutical Target

Cell death is impaired in cancer, and the common method of cancer therapy is to
induce death mechanisms in immortal cancer cells. Cancer cells are characterized by a
rapid proliferation rate that requires a high iron load, and they are well adapted to acquire
iron and prevent its loss [28]. Iron plays an important role in modulating the tumor mi-
croenvironment and metastasis, maintaining genomic stability, and controlling epigenetics.
To meet the high iron demand, neoplastic cells remodel iron metabolic pathways, including
iron uptake, storage, and efflux, making the manipulation of iron homeostasis an important
approach for cancer therapy [29]. Metabolic reprogramming of cancer cells also involves
mitochondrial dysfunction and dysregulated p53 expression, which has been implicated in
the regulation of ferroptosis [30,31]. To facilitate iron uptake, TfR1 (transfer iron protein
receptor 1) is highly expressed on the surface of cancer cells, and iron is accumulated within
cells transformed with the oncogene RAS because of the upregulation of TfR1. Ferritin,
an intracellular protein that stores iron, is also elevated in many cancers, including breast
cancer, and can be used as a prognostic marker for breast cancer progression.

The process of ferroptosis involves signaling pathways that play a role in cancer biology,
such as the AMP-activated protein kinase (AMPK)-RAS/MAPK and AMPK/mTOR/p70S6k
pathways and the NRF2-KEAP1 pathway. NRF2 (nuclear factor erythroid 2-related factor 2)
is an important transcription factor in the regulation of oxidative stress and plays a major
role in the induction of drug insensitivity or resistance in cancer cells. Its activity affects the
expression of antiferroptosis genes encoding for GPX4, SLC7A11, and iron storage protein
ferritin subunits—FTH1 (ferritin heavy chain 1) and FTL (ferritin light chain) [32]. Cancer
chemoresistance may be caused by activation of the NRF2 and downstream NRF2/FTH1 or
NRF2/SLC7A11 pathways, resulting in the lowering of free intracellular iron (TfR1 downregu-
lation and ferritin upregulation) or enhanced neutralization of lipid peroxides (GPX4 and FSP1
(ferroptosis suppressor protein 1) upregulation) compared to those in drug-sensitive cells.
Thus, ferroptosis is a specific weakness of cancer suitable for use in the treatment of certain
therapy-resistant cancers. Inducing ferroptosis in synergy with classic chemotherapeutic
agents can sensitize cancer cells to treatments.

Several dozen compounds have been reported to induce ferroptosis in cancer cells by
direct modulation of the ferroptosis targets (Table 1). Sensitivity profiling of 177 cancer cell
lines to 12 ferroptosis-inducing small molecules (including erastin, RSL3, and their analogs)
revealed that diffuse large B-cell lymphomas and renal cell carcinomas are particularly
susceptible to ferroptosis through GPX4 inhibition [26]. Some natural inducers promote
ferroptosis by regulating the ROS/AMPK/mTOR signaling pathways to inhibit cancer cell
viability and proliferation, such as dihydroartemisinin (DHA) and amentoflavone.

Since ferroptosis is associated with neurodegeneration, numerous modulators have
been discovered through studies of neurological, pathological conditions. It was found that
ferroptosis induced by erastin is similar in cancer cells and primary neurons [33]. Therefore,
we collected compounds discovered to act as ferroptosis modulators in cancer and/or neu-
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ronal cells and analyzed them in relation to chemical/structural and physicochemical/drug-
likeness molecular aspects.

In the context of ferroptosis, it should be stressed that an additional, important com-
mon factor in cancer, neuronal networks, and ferroptosis is hydrogen peroxide (H2O2)
(Figure 1). Cancer cells including melanomas, neuroblastoma, colon carcinoma, ovarian
carcinoma, and cancer-associated fibroblasts, as well as myofibroblasts, macrophages,
and neutrophils, are the major producers of H2O2 [34]. H2O2 is not only used as an
effective biological weapon but is also an important signaling molecule in cancer and
neuronal networks [35,36]. The localized and concentrated production of H2O2 and ROS
is enabled by the packaging of active ingredients including ferroptotic modulators in
multifunctional nanosystems.
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The iron-seeking phenotype of cancers can be exploited in two ways: (i) to restrict
iron availability and (ii) to exploit the redox properties of excess iron to promote cytotoxic
oxidative stress in cancer cells. To foster ROS generation, nanoparticles provide rationally
designed strategies to preferentially deliver drugs/active ingredients into cancer cells [37].
Recently, different ferroptotic inducers have also been applied in the form of rationally
designed, multifunctional nanoparticles on a variety of cancer cells. Their efficacy has been
enhanced by the delivery of nanoparticles to a target place in chemotherapy, radiotherapy,
and immunotherapy [38]. The development of nanotherapeutics offers a route to over-
come the toxic, off-target effects of ferroptosis on normal cells and the shortcomings of
ferroptosis-driven therapeutics due to their low bioavailability caused by their low aqueous
solubility and membrane permeability. Some ferroptosis-driven nanotherapeutics contain
the two basic elements of the Fenton response: Fe2+ ions and/or H2O2 to trigger and
promote a Fenton reaction in cancer cells. The lower pH caused by hypoxia in the tumor
microenvironment facilitates the release of iron ions from nanomaterials, which triggers the
Fenton reaction and leads to the ferroptotic death of cancer cells. Some nanotherapeutics en-
hance the uptake of ferroptosis inducers into cancer cells, while others provide exogenous
regulation of lipid peroxidation to cancer cells through, e.g., PUFA supplementation.

4. Chemical Aspects of Ferroptosis Modulators

The induction and inhibition of ferroptosis by small compounds have been well
characterized so far. They alter the concentration of ROS and, thus, of (per)oxidized lipid
species through general mechanisms such as free radical scavenging and iron chelation
and/or by modulation of specific biochemical pathways.

Ferroptosis inducers are compounds that stimulate iron accumulation and/or inhibit
GPX4 expression and/or activity, thereby promoting lipid ROS production and accumu-
lation. GPX4-regulated ferroptosis can be induced in two ways. Class I inducers such
as erastin inhibit GPX4 by causing depletion of its cofactor, intracellular GSH. Class II
inducers such as RSL3 directly inhibit GPX4 by binding to it. Ferroptosis inhibitors, such
as iron chelators and lipophilic antioxidants, have the opposite effect of reducing lipid
ROS concentration.

In this analysis, a set of 78 organic ferroptosis modulators (Tables 1 and 2) with a MW
up to 800 is described and compared in relation to the aspects of structural diversity and
drug-likeness. The collected ferroptosis modulators represent different chemical scaffolds
that have been employed as privileged scaffolds for designing novel chemical libraries of
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ferroptosis inducers or inhibitors and for structure–activity relationship (SAR) analysis.
The dendrograms in Figure 2a,b depict the structural diversity of the collected inducers and
inhibitors, respectively. The collected set of ferroptosis inducers is a group of chemically
diverse compounds. Employing a TC value of 0.85 (Jaccard = 1 − TC of 0.15; cyan line in
Figure 2a,b) as a lower limit of chemical similarity, only artemisinin and its dihydrogenated
derivate DHA are mutually structurally similar, and they are placed within the same
group. Other inducers are structurally unique compounds forming one-member clusters.
In comparison, ferroptosis inhibitors are more mutually similar molecules (Figure 2b). The
23 polyphenolic antioxidants are grouped into three clusters as they possess the same core
scaffolds with various numbers and positions of OH substituents and/or sugars. The
inducers and the inhibitors have a few structural similarities (Figure 2c).
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prints and using the Jaccard index (1 − TC) as a dissimilarity measure (y-axis). Cluster dendrograms
for (a) 30 inducers and (b) 48 inhibitors. Clusters are denoted with borders drawn at a TC level of 0.6,
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The structures of ferroptosis modulators are compared to those of drugs available on
the market(s) by principal component analysis (PCA). Most of the modulators (53/78 in to-
tal; 16/30 inducers; 37/48 inhibitors) are grouped in the bottom-right part of the PCA score
plot (Figure 2d), following their proximity already shown in the dendrograms (Figure 2a,b).
They are inhibitors with antioxidative (20/25), iron chelation (11/15), and GPX4 activation
(3/3) modes of action plus inducers with iron accumulation (6/6) or GPX deactivation
(5/10) effects. They are clustered together with around two-thirds of the drugs from the
ATC groups D (dermatologicals), G (genito-urinary system and sex hormones), and H
(systemic hormonal preparations, excluding sex hormones and insulins). The rest of the
ferroptosis modulators are scattered in the score plot.

The placement of ferroptosis modulators within the structural space of drugs also
implies their drug-like character (Figure 2d). The general, whole-molecule physicochemical
properties of compounds are known to influence their ADME (absorption, distribution,
metabolism, and excretion) profile and drug-likeness [39]. Although research on the sig-
nificance of ferroptosis in anticancer therapy has progressed, there are still limitations to
its clinical application because of the low solubility and poor membrane permeability of



Molecules 2023, 28, 475 12 of 30

ferroptosis modulators (Tables S1 and S2). For instance, the iron-chelating agent deferox-
amine is a classic ferroptosis inhibitor used to avoid excessive ferroptosis and injury to
normal cells and tissues. However, its low solubility limits its application. The poor ADME
profiles of compounds not only decrease target efficiency but also increase the likelihood of
undesirable, off-target effects on normal cells.

The majority of low-MW ferroptosis modulators are natural or natural-based molecules
that fit the drug-likeness profile in terms of logP values and numbers of H-bond donors,
which are considered the two most important parameters in predicting oral bioavailability
and drug-likeness [39]. The 10 ferroptosis modulators do not obey the well-known Lipinski
rule of five, mainly due to molecular size and the number of H-bond donors greater than
500 and 5, respectively. The 75 molecular physicochemical features important for biolog-
ical activities were calculated and used for uncovering the (di)similarity of ferroptosis
modulators by applying PCA. Five statistically significant molecular features were found
to be important for the differentiation of ferroptosis modulators in a physicochemical
space. They are: molecular weight (MW), diffusion coefficient in water (Hayduk–Laudie
formula) (log(Diff × 10−5/(cm2/s)), the number of hydrogen-bond-donating atoms (HBD),
lipophilicity coefficient (logP), and the number of amide groups (Amide) (Figure 3). These
descriptors are known to influence aqueous solubility and distribution properties such as
passing biological membranes [40].

Ferroptosis modulators with different modes of action have different physicochemical
profiles (Figure 3b). Ferroptosis inhibitors with antioxidant activity are diverse molecules in
terms of their structures and mechanisms of action, as well as their physicochemical profiles.
Small, hydrophilic antioxidants such as vitamin C, N-acetylcysteine, and GSH acting in the
aqueous environment are placed in the lower-left part of the PCA plot. Relatively large
lipophilic antioxidants such as α-tocopherol and β-carotene scavenge lipid ROS in the
hydrophobic environment in membranes. Iron-chelating inhibitors are scattered in the
PCA plot, which illustrates that they have various H-bond/H-atom-donating capacities
and molecular size, but almost all lie under the x-axis, showing that they are, in general,
hydrophilic compounds. Xc

– system inhibitors and iron accumulation inducers are among
the largest and most lipophilic ferroptosis modulators.
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The ferroptosis-activating or -suppressing effects of low-MW compounds were mainly
detected in terms of their in vitro anticancer and neuroprotective effects on cancer cell lines
and neuronal cells, respectively. Hence, the estimation of the capacity of a compound for
crossing the BBB and retention in the brain once taken up (Tables 1, 2, S1 and S2) was
used to assess whether or not a compound is likely to be active in the central nervous
system (CNS). CNS activity may be a(n) (un)desirable side effect of a cancer chemother-
apeutic. Dozens of inducers (e.g., FINO2, dihydroisotanshinone I, artemisinin, DHA,
2-phenethylisothiocyanate, altretamine, piperlongumine) and inhibitors (e.g., α-tocopherol,
bakuchiol, butylated hydroxytoluene, liproxstatin-1, ferrostatin-1, 8-hydroxyquinoline) are
estimated to cross the BBB and be retained in the brain (Tables S1 and S2) [33,41].

5. Biological Aspects of Ferroptosis Modulators

We further analyzed the SAR for ferroptosis modulators. We used the ClassyFire ap-
proach to assign chemical (super)classes (Tables S1 and S2) [42]. The class was determined
by the core scaffold in a compound. Most ferroptosis modulators are natural products or
semisynthetic derivatives belonging to the superclasses of “phenylpropanoids and polyke-
tides” (29 compounds) or “lipids and lipid-like molecules” (13 compounds) according to
their biosynthetic origin (Tables 1 and 2). The majority of the remaining modulators are
derivatives of organic acids or compounds with structurally diverse, heterocyclic scaffolds.

Almost one-third of the inducers and some inhibitors belonging to the “lipids and
lipid-like molecules” are prenol lipids synthesized by the condensation of isoprene sub-
units. This class includes the inducers artesunate, ruscogenin, and salinomycin, which
increase intracellular iron(II) concentration and lipid peroxidation, and lipophilic antiox-
idant inhibitors α-tocopherol and β-carotene. Of the 29 ferroptosis modulators from
“phenylpropanoids and polyketides”, six molecules are ferroptosis inducers, and most
of the remaining 23 molecules are polyphenolic ferroptosis inhibitors belonging to the
flavonoid stilbene and linear 1,3-diarylpropanoid chalcone types. Other ferroptosis in-
hibitors are lipophilic (vitamin A and α-lipoic acid) and hydrophilic (GSH, vitamin C,
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dopamine) compounds (Table 2). In this article, we focus mainly on (poly)phenols that act
as ferroptosis inducers and inhibitors, or both, and which belong mainly to the superclass
of “phenylpropanoids and polyketides”.

5.1. Ferroptosis Inducers

The first ferroptosis modulators discovered were the inducers erastin and RAS-
selective lethal 3 RSL3 ((1S,3R)-RSL3 given the stereochemistry). Erastin is an inhibitor
of the Xc

– system, while RSL3 is a covalent inhibitor of GPX4. These synthetic com-
pounds were discovered as ferroptosis inducers by the screening of diverse compounds.
In 2003, erastin was detected to induce a new form of non-apoptotic cell death in RAS-
overexpressing cancer cells [43]. In 2007, it was found to bind directly to voltage-dependent
anion channel protein VDAC2 in the mitochondrial outer membrane, leading to mito-
chondrial production of ROS, mitochondrial dysfunction, and non-apoptotic cell death
of RAS-overexpressing cancer cells. In 2008, RSL3 was revealed to induce cell death by
involving labile iron [44]. Erastin, glutamate, sorafenib, and sulfasalazine are type I in-
ducers that block the Xc

– system, resulting in a decrease in GSH levels. RSL3, altretamine,
ML162, and FIN56 are type II inducers that affect GPX4 either by directly inhibiting the
enzyme or by reducing its expression level. Erastin and RSL3 are not readily bioavailable
molecules. However, erastin analogs (e.g., PRLX 93936) and other Xc

– system inhibitors,
such as multikinase inhibitors sorafenib and sulfasalazine, as well as GPX4 inhibitors,
e.g., altretamine and withaferin A, are under clinical anticancer investigation [45].

Some currently used drugs have been found to induce ferroptosis in addition to their
already known mechanisms of action [46]. For example, the cancer chemotherapeutic
agent cisplatin not only prevents DNA repair but also induces ferroptosis by depleting
intracellular GSH in lung A549 and colon HCT116 cancer cells [47]. The most potent anti-
malarial drug isolated from traditional Chinese herb Artemisia annua L., artemisinin, and
its derivative DHA, selectively targets KRAS-reprogrammed pancreatic cancer cells that
are resistant to apoptosis. They accumulate in lysosomes and increase ferritin degradation
and, thus, iron release, which promotes the accumulation of cellular ROS and leads to fer-
roptotic cancer cell death. DHA was found to accelerate the degradation of ferritin through
downregulation of the activity of the mTOR/p70S6k signaling pathway by activating
the phosphorylation of AMPK. DHA also induced ferroptosis of acute myeloid leukemia
(AML) cells through autophagy by regulating the activity of the AMPK/mTOR/p70S6k
signaling pathway. The water-soluble artemisinin derivative artesunate selectively killed
head and neck cancer (HNC) cells but not normal cells by decreasing cellular GSH level
and increasing lipid ROS levels [48]. Inhibition of the NRF2 pathway (by NRF2 genetic
silencing or by trigonelline) increased the artesunate sensitivity of ferroptosis-resistant
HNC cells.

Polyphenols are natural products known for a plethora of bioactivities, including their
diverse effects on ferroptosis cell death [13–17,49]. They have shown significant anticancer
activity in vitro, even against an aggressive type of cancer, and their chemopreventive role
has been summarized elsewhere [50,51]. Grounded in many in vitro and in vivo (mostly
rodent) preclinical studies, clinical trials with polyphenols alone or in a combination with
anticancer drugs have been carried out on hormone-dependent prostate and breast cancers,
bladder and renal cancers, and colorectal and lung cancers, as well as on leukemia. They
can trigger several cell death mechanisms simultaneously. They can act as ferroptosis
inducers or inhibitors or both. It is known that the dominant target activity of polyphenols
depends on the dose, treatment duration, and cell/tissue specificity [52].

Polyphenols have already been used in dermatology and are known to exert antipro-
liferative, proapoptotic, and antimetastatic activities on melanoma cell lines, whereas they
have no cytotoxic effect in healthy cells [53,54]. Since ferroptotic pathways contribute to
the regulation of the differentiation state of melanoma cells and their resistance to certain
therapeutic agents, ferroptosis inducers are expected to have strong therapeutic potential
in melanoma [55]. The majority of collected polyphenolic ferroptosis modulator representa-
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tives were found to be structurally most similar to drugs from related ATC groups D, G, and
H (Figure 2d). The local, topical application of polyphenols may have advantages over their
oral administration because these molecules are generally rapidly metabolized and weakly
bioavailable, in addition to having multitargeting effects. The observed effects on cancer
cells of ferroptosis inducers from the “phenylpropanoids and polyketides” superclasses
(except gallic acid) are described further.

Typhaneoside, a major flavonoid in the extract of Typha spp. (Typhaceae) pollen, was
found to strongly inhibit the proliferation and growth of AML cells by interacting with
multiple targets simultaneously [56]. Typhaneoside (40 µM) induced apoptosis, autophagy,
and ferroptosis in AML cells. The induction of ferroptosis was iron-dependent and attended
by mitochondrial dysfunction and reduced GSH and GPX4 levels. It triggered autophagy in
AML cells by promoting AMPK signaling, which contributes to ROS accumulation, ferritin
degradation, and ferroptotic cell death. The anticancer activity of typhaneoside was also
confirmed in vivo using BALB/c mice xenografts bearing HL60 cells.

A biflavonoid obtained by the oxidative coupling of two molecules of apigenin ro-
bustaflavone A isolated from Selaginella trichoclada (Selaginellaceae) induced ferroptosis in
breast cancer cells MCF-7 with a cytotoxic IC50 value of 11.89 µM (doxorubicin 12.62 µM,
MTT test) [57]. It (5 and 10 µM) decreased the expression of E3 ubiquitin ligase Nedd4
(neuronal precursor cell-expressed developmentally downregulated 4), thereby reducing
the ubiquitination and proteasomal degradation of VDAC2 proteins. In response, VDAC2
protein expression was enhanced, leading to lipid peroxidation and ROS production in
mitochondria and MCF-7 cell death. After the addition of the ferroptosis inhibitors, the
antioxidant ferrostatin-1, or the iron chelator deferoxamine, the MCF-7 viability was signifi-
cantly increased. Recently, by RNA sequencing and KEGG functional enrichment analysis,
robustaflavone A was shown to reduce the expression of ferroptosis-related genes including
ACSL4, NOXO1, NOXA1, ACSL5, STEAP3, LPCAT3, ATG7, and TP53 in MCF-7 cells [58].

Another biflavonoid of apigenin, widely distributed in the Selaginella species,
amentoflavone was reported to have a multitarget anticancer ability. This polyphenol
(10 and 20 µM) was found to suppress growth and induce death of glioblastoma cells U251
and U373 by triggering ferroptosis in an autophagy-dependent manner [59,60]. Its inhibitory
effect on cell proliferation was suppressed by deferoxamine and ferrostatin-1 as well as by the
upregulation of FTH1. In cells U251 and U373, amentoflavone increased intracellular levels
of iron, malondialdehyde (MDA), and lipid ROS and decreased GSH level and mitochon-
drial membrane potential. Selectively, in glioma cells, and not in normal human astrocytes,
amentoflavone induced ferroptosis by modulating iron homeostasis through suppression of
FTH1 levels. It induced autophagy via the AMPK/mTOR/p70S6K pathway, which resulted
in the downregulation of FTH1 expression. Its effect on inhibition of tumor growth by induc-
ing autophagy-dependent ferroptosis was additionally demonstrated in vivo in a xenograft
mouse model.

Erianin is a natural polyphenol found in Dendrobium chrysotoxum Lindl (Orchidaceae),
and it has anticancer activity against various cancers—osteosarcoma, nasopharyngeal car-
cinoma, bladder, and lung cancer. Erianin inhibited the proliferation and metastasis of
lung cancer via calcium/calmodulin-dependent ferroptosis in vitro and in vivo [61]. In
lung cancer cells H460 and H1299, erianin (at concentrations ranging from 12.5 to 100 nM)
induced G2/M-phase arrest, ROS accumulation, lipid peroxidation, GSH depletion, and
downregulation of the expression of the negative regulatory proteins for ferroptosis, GPX4,
CHAC2, SLC40A1, SLC7A11, and glutaminase. The ferroptosis inhibitors ferrostatin-1
and liproxstatin-1, but not the pan-caspase inhibitor Z-VAD-FMK, the potent inhibitor
of autophagy chloroquine, or the potent inhibitor of necroptosis necrostatin-1, rescued
cells from erianin-induced cell death. Calcium/calmodulin signaling is a critical mediator
of erianin-induced ferroptosis. The blockade of this signaling with ruthenium red and
antagonist calmidazolium, significantly rescued cell death induced by erianin treatment
by suppressing ferroptosis. Inhibition of calcium/calmodulin signaling significantly re-
duced the expression of transferrin and increased the expression of GPX4 and SLC7A11.
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Ferroptosis was also found to contribute largely to the erianin-induced cell death of blad-
der cancer in vitro and in vivo [62]. Erianin (100 µg/mL, i.e., 314 µM) suppressed the
growth of bladder cancer cell lines KU-19–19 and RT4. It induced G2/M-phase arrest,
ROS, and MDA accumulation, GSH depletion, and downregulation of ferroptosis-related
proteins FTH1, GPX4, HO-1, glutaminase, and Xc

–/SLC7A11 and inactivated NRF2. The
compound tert-butylhydroquinone, an NRF2 activator, suppressed erianin-induced ferrop-
tosis, whereas NRF2 inhibition by shRNA augmented the ferroptosis response induced by
erianin treatment.

Epunctanone, a polyprenylated benzophenone isolated from two African plants
Garcinia epunctata (Clusiaceae) and Ptycholobium contortum (Fabaceae), has been identified as
a promising cytotoxic molecule against nine cancer cell lines including multidrug-resistant
ones [63]. It was shown to induce ferroptosis in addition to apoptosis in leukemia cells
CCRF-CEM (at a concentration of 11.8 µM).

Piperlongumine, an electrophilic, natural compound isolated from the long pepper
Piper longum L. (Piperaceae), was selectively toxic to cancer cells in vitro and in vivo [64,65].
It induced the death of human pancreatic cancer cells PANC-1, in part by ferroptosis [66].
The combined treatment of piperlongumine (5–10 µM) with the plant growth regulator
cotylenin A (24.1 µM) and/or the clinically approved ferroptosis inducer sulfasalazine
(200 µM) enhanced PANC-1 cell death. Its cancer-cell-killing activity was inhibited by the
antioxidant N-acetylcysteine (3 mM) and the ferroptosis inhibitors ferrostatin-1 (1 µM) and
liproxstatin-1 (1 µM), as well as the iron chelator deferoxamine (200 µM), but not by the
apoptosis inhibitor Z-VAD-FMK or the necrosis inhibitor necrostatin-1. Piperlongumine
in the form of a nanosystem was found to induce the non-apoptotic cell death of mouse
breast cancer cell line TH1 via ferroptosis and pyroptosis (an inherently inflammatory
kind of programmed cell death activated by caspases 1, 4, and 5). The nanosystem Tf-
LipoMof@PL consists of piperlongumine (PL) encapsulated in an iron-containing metal–
organic framework (MOF) coated with a transferrin-decorated, pH-sensitive lipid layer
(Tf-Lipo). In this multifunctional nanosystem, piperlongumine contributed to ferroptotic
cell death by providing H2O2 to increase ROS generation through the Fenton reaction [64].
Transferrin facilitated the accumulation of intracellular iron levels, while a pH-sensitive
DOPE (dioleoylphosphatidylethanolamine) lipid layer enhanced cellular uptake, prevented
early drug leakage, and enabled pH-responsive piperlongumine release in response to
low pH at the tumor site. The anticancer effect of the dual-inductive nanosystem was
demonstrated in vivo on the xenograft mice model.

The anticancer effect of classical chemotherapeutics, targeted drugs, or radiotherapy
can be enhanced by combination with ferroptosis inducers [47]. Gallic acid (3,4,5-trihydroxy
benzoic acid, GA) is a phenolic compound with anticancer and antioxidant properties [67].
It was found to cause the death of cervical cancer cells HeLa by early-stage ferroptosis via
inhibition of GPX4 activity, mid-stage apoptosis, and late-stage necroptosis at 50 µg/mL con-
centration (i.e., 294 µM) [68,69]. In another study, while low-level laser irradiation (red) was
unable to cause death in breast (MDA-MB-231) and melanoma (A375) cancer cell lines, the
pre-irradiation followed by treatment with gallic acid (IC50 of 25 and 50 µg/mL, i.e., 147 µM
and 294 µM, respectively) reduced the cancer cell survival significantly more than gallic
acid alone [68]. The viability of the human skin fibroblasts was not altered, and the effect
was greater than that caused by the first treatment with gallic acid followed by low-level
laser irradiation. Irradiation of the cells promoted penetration of gallic acid and caused
(in addition to apoptosis) ferroptosis via decreasing GPX4 activity and increasing lipid
peroxidation. The biomimetic nanoreactor was composed of 4,4′-azonzenecarboxylic acid
(Azo)–BSA functionalized hybrid zeolitic imidazolate framework (ZIF), which encapsu-
lated Fe(III)–gallic acid and glucose oxidase (GOx, for sustained oxygen consumption
resulting in hypoxia microenvironment) [70]. This Fe(III) –GA/GOx@ZIF–Azo nanoplat-
form was applied to the MCF-7 breast cell line. It enabled hypoxia-activated positive
feedback of cellular uptake and more efficient ferroptotic therapy. The Fenton reaction was
accelerated not only by the sustained supply of Fe2+ and H2O2 but also by the low pH
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and photothermal stimulation of the reduction of Fe3+ to Fe2+ ions. Gallic acid has also
been used for the synthesis of nanoprobes applicable for magnetic resonance imaging and
photothermal cancer therapy [71]. The nanoprobes were constructed using luminescence
nanoparticles (UCNP) as the core and the Fe3+/gallic acid complex as the shell, allowing
the release of Fe3+ ions in the tumor microenvironment in response to the slightly acidic
pH. UCNP@GA-FeIII probes acquire specific tumor-targeting ability by absorbing the
unsaturated transferrin from serum that recognizes the overexpressed TfR1 on the surface
of various solid, malignant tumor cells, including colorectal cancer cells LS180.

5.2. Ferroptosis Inhibitors

Ferroptosis inhibitors can act as GPX4 activators, free radical scavengers, iron chelators,
and/or NRF2 activators. The most commonly used ferroptosis inhibitors for in vitro
experiments, ferrostatin-1 and liproxstatin-1, act as antioxidants. Many polyphenols are
well characterized as radical scavengers, iron chelators, and/or NRF2 activators [51,72],
which contributes to their suppressive effect on ferroptosis. The mechanism of their
antioxidant effects depends on the number and position of hydroxy groups on the core
benzo-γ-pyrone fragment, as well as on the dose and cell type [7].

The food flavonoid apigenin (20 µM) inhibited ferroptosis induced by kainic acid in
human neuroblastoma cells SH-SY5Y [73]. Apigenin also rescued mouse brain in vivo from
myeloperoxidase (MPO)-mediated oxidative stress. Kainic-acid-induced upregulation of
MPO, and, thus, HClO generation, was accompanied by reduced activities of SIRT1 and
GPX4, while apigenin treatment decreased expression of MPO and upregulated expression
of SIRT1 and the intracellular antioxidants GPX4, TrxR (thioredoxin reductase), and GSH.
Conversely, in multiple myeloma cell line NCl-H929, apigenin (5–40 µM) induced cell death
by ferroptosis even in the presence of ferrostatin-1 and deferoxamine [74]. Chloroform
extract from Fumaria officinalis (Fumariaceae), which contains two flavonoids, apigenin
and isoquercetin, in addition to isoquinoline alkaloids, also stimulated iron-dependent
death in the cell line NCI-H929 [75]. Apigenin also induced the death of lung cancer
cells A549 partly through ferroptosis (in addition to apoptosis) [76]. The ferroptotic effect
of apigenin (API) on A549 cells was synergistically enhanced by its incorporation into
magnetic iron oxide nanoparticles modified on the surface with polysaccharide hyaluronic
acid Fe2O3/Fe3O4@mSiO2-HA. Such a nanocomposite enabled the sustained release of
poorly water-soluble apigenin and the specific targeting of cancer cells with expressed
channel protein CD44 on the cell membrane. The API-Fe2O3/Fe3O4@mSiO2-HA nanosys-
tem was found to significantly increase ROS and cell lipid peroxidation levels, as well as
downregulate GPX4 and FTH1 in A549 cells, compared to pure apigenin.

Two other 3-hydroxy flavones, or so-called flavonols, galangin and kaempferol
(Figure 4), protect neurons from ferroptosis. Galangin, a flavonol from the Chinese medici-
nal herb Alpinia officinarum (Zingiberaceae), protected hippocampal neurons in gerbils after
ischemia reperfusion by inhibiting ferroptosis via activation of the SLC7A11/GPX4 axis.
A deficiency of GSH indirectly caused suppression of GPX4 activity [77]. Kaempferol has
been used to treat neuronal cells after oxygen-glucose deprivation/reoxygenation associ-
ated with ischemic stroke. It protected cells by activation of the NRF2/SLC7A11/GPX4
signaling pathway [78].

Naringenin, a flavanone from fruits and herbs, was studied in cardiomyocytes H9C2 [79].
Hypoxia reperfusion induced with erastin in cardiomyocytes was alleviated by naringenin,
as it increased the expression of proteins NRF2, SLC7A11, GPX4, FTH1, and the iron export
protein ferroportin 1 (FPN1) and decreased the expression of NADPH oxidase NOX1. Iron
uptake mediated the activation of NOX1 signaling, which induced the release of ROS and
mitochondrial damage. All four polyphenols shared resorcinol moiety in ring A (Figure 4)
and suppressed ferroptosis through regulation of the NRF2/SLC7A11/GPX4 axis.

Another polyphenolic antioxidant with a para-OH group in B-ring puerarin, 8C-glucoside
of isoflavone daidzein (Figure 4), was shown to inhibit ferroptosis and lipopolysaccharides
(LPS)-induced inflammatory response in A549 cells. Total iron and divalent iron levels,
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lipid peroxidation, and the NOX1 expression were decreased significantly upon addition
of puerarin in LPS-modified A549 cells. In contrast, the expression of SLC7A11, GPX4, and
FTH1 was increased [80].
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There are plenty of structurally diverse polyphenols containing catechol (1,2-dihydroxy
benzene) or galloyl (1,2,3-trihydroxy benzene) moieties, which are responsible for their
strong antioxidant activity. In addition to their high potential to directly scavenge free
radicals, they can form complexes with Fe2+ ions, which can further stimulate the oxidation
of Fe2+ to Fe3+ and prevent the recycling of Fe2+ ions [81].

Quercetin, named after Quercus sp. (oak tree) [82], is a catecholic flavonol. Its antiox-
idant and chelating effects, as well as its anticancer activity, have been reviewed many
times [6,83–86]. Its metal-chelating activity has been linked to antioxidant activity, and
its metal complexes also exert antioxidant activity [82,87]. Quercetin could chelate Fe2+

ion by catechol functionality at a stoichiometric ratio of 1:2 metal/ligand and attenuated
lipid peroxidation, as well as protein oxidation, in the liver, kidneys, and hearts of mice
overloaded by iron–dextran complex [88]. Quercetin is more toxic to cancer cells than to
normal cells [83]. While quercetin has antioxidant and chemopreventive effects at low
concentrations, it exhibits pro-oxidant effects at high doses [86,89]. The oxidized product
quercetin quinone is responsible for its pro-oxidant activity, and the pro-oxidant effects
of quercetin also depend on the intracellular GSH levels [51]. Quercetin can also exist in
plants as quercetin Diels–Alder anti-dimer (QDAD, Figure 5). The antiferroptotic activity
of quercetin and its biflavonoid QDAD was investigated in erastin-induced ferroptosis
in a bone-marrow-derived mesenchymal stem cell model [90]. Quercetin had better anti-
ferroptotic activity than QDAD, which may be due to the stronger antioxidant action of
quercetin. The IC50 value for the antioxidant effect against lipid peroxidation for quercetin
(2.2 µM) was better than for QDAD (15.5 µM) and referent antioxidants trolox (136 µM)
and ascorbic acid (3.0 µM). Quercetin alleviated ferroptosis in pancreatic β-cells in diabetic
mice in vivo [91]. It also inhibited ferroptosis and subsequent inflammation in renal prox-
imal tubular epithelial cells, which contributed to the mitigation of acute kidney injury
in vivo [92]. Quercetin reduced MDA and lipid ROS levels and increased GSH level. It was
found to inhibit ferroptosis by blocking the expression of activation transcription factor
3 (ATF3), the activation of which plays an important role in cell ferroptosis. It did not affect
the ATF3 level in normal mice.
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Taxifolin (Figure 5) is a dihydrogenated quercetin derivative belonging to the fla-
vanonol subclass of flavonoids. Its synthetic 7-O-esters with cinnamic and ferulic acids
(Table 2) showed antiferroptotic activity in the mouse hippocampal neuron cell model
HT22, in a way that was different from parent taxifolin and phenolic acids [93]. The HT22
cell line represents immortalized mouse hippocampal neuronal cells that do not express
cholinergic and glutamate receptors such as mature hippocampal neurons in vivo. They
are commonly used in in vitro studies of the neuronal differentiation and neurotoxicity
implicated in brain injuries or neurological diseases.

Taxifolin’s analog, without the group 3-OH and with the methylated 7-OH group, the
flavanone sterubin from Yerba santa (Eriodictyon californicum, Boraginaceae), was studied
in association with neuroprotective compounds that can be used against Alzheimer’s
disease [94]. It was also found to have dose-dependent protection against ferroptosis
inducers erastin and RSL3 in hippocampal cells HT22. It has a chelating ability that has
been determined in a ferrozine-based assay.

The demethylated derivative of sterubin, eriodictyol (Figure 5), found in the peel of
citrus fruits and some Chinese herbal medicines, also showed an anti-Alzheimer’s-disease
effect through antiferroptotic activity in vitro in HT22 cells and in vivo in the APP/PS1
mouse model of Alzheimer’s disease [95]. Treatment with eriodictyol (50 mg/kg) inhibited
ferroptosis in the brains of APP/PS1 mice by reduction of the levels of Fe2+ ions and total
iron, as well as the reduction of the expression levels of TfR1 and FTH1, and increase of the
GPX4 and vitamin D receptor (VDR) levels in the cortex and hippocampus of APP/PS1
mice. The iron export protein FPN1 was also upregulated upon eriodictyol treatment. This
suggests that eriodictyol might maintain iron balance in cells by reducing iron intake and
increasing iron output. The mechanism of antiferroptotic action investigated in HT22 cells
was shown to be related to the activation of the NRF2/heme oxygenase-1 (HO-1) signaling
pathway mediated by VDR.

By screening a natural product library, a flavon baicalein with the galloyl ring A,
was found to be a ferroptosis inhibitor. It markedly inhibited erastin-induced ferrop-
tosis in pancreatic cancer cells compared to known ferroptosis inhibitors. It limited
erastin-induced Fe2+ iron accumulation, GSH depletion, and lipid peroxidation by sup-
pressing erastin-mediated degradation of GPX4 [96]. Another mechanism that may con-
tribute to the antiferroptotic effect of baicalein is the significant and selective inhibition
of 12/15-lipoxygenase (12/15-LOX), which was demonstrated in an experiment with
RSL3-stimulated lipid peroxidation in acute lymphoblastic leukemia (ALL) model cell lines
Molt-4 and Jurkat [97]. In a study focused on Alzheimer’s disease, baicalein decreased
ferroptosis markers lipid ROS, 4-hydroxynonenal, and COX2 (cyclooxygenase-2) and inhib-
ited the expression of 12/15-LOX in a HT22 cell model of iron-induced injury, which was
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also validated in a mouse model of posttraumatic epilepsy [98]. The antiferroptotic effect
of baicalein was also confirmed in melanocytes in vitiligo. Baicalein upregulated GPX4 and
reduced TfR1 levels in melanocytes treated with RSL3 and ferric ammonium citrate [99].
7-O-glycoside baicalin (Figure 5), found in the roots of the traditional Chinese medicinal
plant Scutellaria baicalensis (Lamiaceae), suppressed autophagy-dependent ferroptosis in
a study which focused on early brain injury following subarachnoid hemorrhage. The
study was based on in vitro and in vivo models, and the evaluated parameters were Fe2+,
MDA, ROS, and GSH levels [100]. However, in contrast, baicalin exerted anticancer activity
by triggering FTH1-dependent ferroptosis in bladder cancer cells in vitro (in cell lines
5637 (50–60 µg/mL, i.e., 112–134 µM) and KU-19-19 (100–120 µg/mL, i.e., 224–269 µM))
and in vivo (in mice, 200 mg/kg), accompanied by intracellular ROS and iron accumula-
tion [101]. The ferroptosis inhibitor deferoxamine rescued baicalin-induced cell death in
both 5637 and KU-19-19 cell lines.

A change in iron concentration may influence the dominant mechanism of action of
polyphenols. While an excess of iron does not influence the beneficial effects of flavanone
sterubin, this is not the case with flavonol fisetin. Differently to Cu2+ ions, Fe2+ ions
have a significant influence on its anti-inflammatory effect [102]. The antioxidant activity
of fisetin, suppression of ROS production, and maintenance of GSH levels are altered
differently by metals. Fisetin (5 µM) has been tested in several assays in association with
its neuroprotective and anti-inflammatory activities. It has direct antioxidant activity and
can also chelate Fe2+ ions. Fisetin induced NRF2 in hippocampal HT22 cells and microglial
BV-2 cells, but not in the presence of Fe2+. Iron ions blocked NRF2 induction by fisetin in
cells of both types. Fisetin additionally reduced glutamate-induced ROS production, but
the presence of Fe2+ also blocked this effect. In HT22 cells, fisetin completely blocked the
ROS production induced by RSL3. While ROS production was not significantly increased
by Fe2+ ions, it was greatly potentiated by the combination of RSL3 and Fe2+ ions with
fisetin. This was attributed to the ability of iron to oxidize fisetin and, thereby, change
fisetin’s effect on the induction of antioxidant transcription factor NRF2. The oxidized form
of fisetin acts as a strong pro-oxidant. In contrast, although sterubin also binds iron, the
metal does not affect the ability of sterubin to induce NRF2.

Gossypitrin is a hydrophilic 7-O-glucoside of flavonol gossypetin, isolated from
Talipariti elatum Sw. (Majagua azul from the Malvaceae family), which has antioxidant
activity [103]. It was tested on iron-induced oxidative damage in HT22 cells and mitochon-
dria isolated from rat brains [104]. It was able to rescue HT22 cells from damage induced by
100 µM Fe(II)-citrate, with an EC50 of 8.6 µM. The effect was associated with the prevention
of iron-induced mitochondrial membrane potential dissipation and ATP depletion. This
substance also prevented Fe(II)-citrate-induced mitochondrial lipid peroxidation with an
IC50 value of 12.45 µM, which was about nine times more efficient than the prevention of
tert-butylhydroperoxide-induced peroxidation. It also decreased Fe2+ concentration with
time, while increasing the O2 consumption rate and impairing Fe3+ reduction by ascorbate.
Gossypitrin forms a complex with ferrous Fe2+ ions in a 2:1 ratio, accelerates its oxidation
to a more stable complex with iron in the ferric Fe3+ state, and, thus, impedes iron recycling
back to the pro-oxidant Fe2+ state required for the ROS production and, thus, suppresses
the propagation phase of lipid peroxidation.

The flavonoid group also includes catechins (Figure 6), which belong to the subgroup
of flavan-3-ols. These compounds are present in fruits, vegetables, various beverages,
wine, juice, cocoa, and chocolate. They are known to be favorable components of green
tea [105]. They have cardiac and neurological beneficial effects [106]. The anticancer activi-
ties of catechins through various mechanisms have been summarized, and controlled cell
death has also been implicated in the mechanisms [107]. (−)-Epigallocatechin (EGC) and
(−)-epigallocatechin gallate (EGCG), as well as other catechins, are potent scavengers of
superoxide radicals, but they may also act as pro-oxidants [7,108]. The ability to chelate Fe3+

decreases in the order EGCG > epicatechin gallate (ECG) > EGC > (−)-epicatechin [106].
Brain-permeable (−)-epicatechin (15 mg/kg) reduced lesion volume and ameliorated neuro-
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logic deficits in a collagenase model of intracerebral hemorrhage in mice. It downregulated
ferroptosis-related gene expression and acted through NRF2-dependent and independent
pathways [109]. The neuroprotective function of EGCG was investigated in cerebellar
granule neurons as a simulation of spinal cord injury. EGCG (50 µM) increased the survival
rate, inhibited ferroptosis, and upregulated phosphorylation of protein kinase D1 under
ferroptotic conditions. The effect was verified in rats [110]. Pretreatment of pancreatic
β-cell line MIN6 with EGCG or curcumin (20 µM) inhibited the iron accumulation and
ferroptotic cell death triggered by erastin. Both polyphenols attenuated GSH depletion,
GPX4 inactivation, and lipid peroxidation [111].
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In contrast, EGCG has been used in the preparation of nanocarriers aimed at inducing
ferroptosis selectively in cancer cells. Since EGCG can reduce Fe3+ to Fe2+, it has been
used in the preparation of nanoparticles with the trio doxorubicin/Fe3+/EGCG, able
to induce cancer cell death via ferroptosis and apoptosis. Fe3+ ions are released after
uptake by cancer cells because cancer cells are acidic and have a high level of glutathione.
EGCG is responsible for intracellular iron reduction and the consequent production of
hydroxyl radicals through the Fenton reaction and induction of ferroptosis, which enhanced
doxorubicin-induced apoptosis in mouse lung carcinoma cell line LL2 [112].

Chalcones (1,3-diphenylprop-2-en-1-ones) are compounds of natural origin serving
as starting components for flavonoid biosynthesis in plants [113,114]. Due to the inter-
esting range of biological activities of chalcone derivatives and analogs, the chalcone
scaffold is considered to be an important synthetic moiety in medicinal chemistry [115,116].
The antiferroptotic activity of synthetic, hydroxylated chalcones ((2E)-3-(3-methylphenyl)-
1-(2,3,4-trihydroxyphenyl)prop-2-en-1-one (synthetic chalcone 1 in Table 2), (2E)-3-(4-
chlorophenyl)-1-(2,3,4-trihydroxyphenyl)prop-2-en-1-one, and (2E)-3-(4-methoxyphenyl)-
1-(2,3,4-trihydroxyphenyl)prop-2-en-1-one), each containing the galloyl ring A, was tested
for lipid peroxidation inhibition in cellular assays. All three compounds were included
in the set of inhibitors for chemoinformatic analysis (Table S2). Pretreatment of cells with
each of the chalcones (25 µM) was shown to inhibit amyloid-β peptide (Aβ) aggregation in
human neuroblastoma SH-SY5Y cells as well as ferroptosis in human embryonic kidney
HEK-293 cells. They were able to reduce lipid peroxidation stimulated by RSL3 or erastin in
HEK-293 cells with an IC50 value of 0.45–1.77 µM and 3.15–3.88 µM, respectively, whereas
ECGC did not show any effect up to the concentration of 20 µM [117].

The natural chalcone butein was studied to inhibit ferroptosis, and its antioxidant
effect was compared to that of its cyclized product flavanone butin at a dose of 30 µM.
Butein inhibited ferroptosis more effectively in erastin-treated, bone-marrow-derived mes-
enchymal stem cells and showed a stronger antioxidant effect in five different antioxidant
assays than butin. The authors concluded that butein exerts an anti-apoptotic effect due to
antioxidant action based on the hydrogen-atom transfer pathway. The difference in action
between butein and butin was attributed to the decrease in π–π conjugation in butein due to
the saturation of the α,β double bond and loss of the 2-hydroxy group upon biocatalytical
isomerization [118].
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Morachalcone D (Table 2) and morachalcone E are prenylated chalcones isolated from
mulberry leaves. In HT22 cells, morachalcone D attenuated erastin-induced ferroptosis with
an EC50 value of 33.7 ± 0.89 µM. Its effect was compared to quercetin EC50 9.55 ± 0.43 µM.
Morachalcone E was only slightly active, which might have been influenced by the elimina-
tion of the active hydroxy group and different prenyl pattern. Morachalcone D inhibited
the iron accumulation triggered by erastin, which was confirmed by FeRhoNox™-1, an
activatable probe detecting labile Fe2+ ions in living cells via orange fluorescence. It also
upregulated the expression of genes involved in antioxidant defense, including GPX4, CAT,
SOD2, NRF2, HMOX1, and SLC7A11, in erastin-treated HT22 cells in a dose-dependent
manner [119].

The antiferroptotic effect of isoliquiritigenin (Figure 4), a component of licorice root,
was detected in human kidney epithelial tubular cell line HK2. Pretreatment of the cells with
this chalcone inhibited Fe2+ ions accumulation and lipid peroxidation in LPS-stimulated
HK2 cells. Isoliquritigenin increased the expression of GPX4 and the chain subunit of
the cystine/glutamate transporter SLC7A11 and attenuated mitochondria injury in renal
tubular following LPS injection in mice [120].

In a study on constituents of traditional Chinese medicine, coumarins and coumestans
were isolated from the fruits of Psoralea corylifolia (syn. Cullen corylifolium, Fabaceae). Their
activity was explored in erastin-exposed HT22 cells. Among the isolated phytochemicals,
the coumestan psoralidin was the most active one, with an IC50 of 5.21 µM (for comparison,
IC50 for the standard compound ferrostatin-1 was 0.45 µM). The coumarins psoralen and
isopsoralen showed no significant activity [121].

The stilbenoid resveratrol protects cells against oxidative agents at low doses but can
promote the production of ROS at high concentrations. It stimulates the KEAP1/NRF2
pathway by activating NRF2 and increasing its expression [122,123]. Its precise mech-
anism of action is the modification of the amino acid residue Cys151 in KEAP1, which
causes newly formed NRF2 to escape from ubiquitination [124]. In mouse pancreatic β
cells MIN6, resveratrol inhibited ferroptosis induced by acrolein, a food and environmen-
tal pollutant and a risk factor for diabetes. The inhibition was determined by analysis
of the biomolecules associated with ferroptosis GPX4, COX2, ACSL4, MDA, GSH, and
5-hydroxyeicosatetraenoic acid (HETE) [125]. The ferroptosis inhibitory effect of resveratrol
was also observed in an oxygen-glucose deprivation/reoxygenation model of myocardial
ischemia–reperfusion injury in H9C2 cells. Resveratrol (10 µM) alleviated induced ox-
idative stress and inhibited ferroptosis. It decreased TfR1 expression and increased the
expressions of FTH1 and GPX4. It was found to inhibit ferroptosis via the regulation of
ubiquity-specific peptidase 19 (USP19)-Beclin1-induced autophagy. The attenuating effect
on ferroptosis was also confirmed in vivo in rats [126]. Resveratrol is also known for its
neuroprotective effects, but its poor oral bioavailability limits its clinical application. The
poor bioavailability of resveratrol has been improved by incorporation into MPEG-PLGA
nanoparticles. MPEG-PLGA nanoparticles containing resveratrol accumulated in the en-
doplasmic reticulum and lysosomes in Madin–Darby canine kidney (MDCK) cells and
passed across physiological barriers in a zebrafish model. They inhibited erastin-induced
ferroptosis in mouse hippocampal HT22 cells and an intracerebral hemorrhage injury
mouse model [127].

However, in head and neck cancer cells HN3 and HN4, resveratrol (20 µM) increased
ferroptosis when used in combination with RSL3. Resveratrol is a histone deacetylase SIRT1
inducer. The pharmacological activation of SIRT1 and associated epithelial–mesenchymal
transition (EMT) epigenetic reprogramming induced by resveratrol lead to increased sensi-
tivity to the ferroptosis inducer RSL3. The cell viability was significantly decreased after
the addition of resveratrol due to a weakened antioxidant system [128].

Another non-flavonoid, polyphenol curcumin (Table 2), is the main component of
turmeric, a dietary spice extracted from the root of Curcuma longa (Zingiberaceae). This
curcuminoid exerts plenty of biological activities, including anticancer and neuroprotective
ones. It possesses strong antioxidant activity at low concentrations, whereas, at higher con-
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centrations, it behaves as a potent pro-oxidant. In association with ferroptosis, iron chelation
by curcumin is worth mentioning. Its chelating ability was demonstrated at a concentration
of 25 µM in liver cancer cell line Huh7 with iron overload obtained by fe-nitriloacetic acid
or ferric ammonium citrate [129]. Curcumin is known to have renoprotective properties. It
has been studied in an acute kidney injury model in mice caused by rhabdomyolysis. Pre-
and posttreatment with curcumin (at a dose of 1 g/kg intraperitoneally) mediated HO-1
induction to prevent oxidative stress and inflammation in vivo. Analogous to the in vivo
results, an in vitro mechanistic study conducted in proximal murine tubular epithelial
cells showed that pretreatment with curcumin (10 µM) also reduced TLR4/NF-kB and
ERK1/2 activation. Within this study, it was demonstrated that ferroptosis is involved
in rhabdomyolysis-associated renal damage [130]. The disadvantages of curcumin, such
as its poor water solubility, limited oral bioavailability, and inability to efficiently transit
across physiological barriers, can be overcome by its encapsulation into polymer-based
nanoparticles (Cur-NPs). Cur-NPs (PEG-PTMC) were shown to attenuate the severity of in-
tracerebral hemorrhage injury in a mice model and to suppress erastin-induced ferroptosis
in HT22 cells. The absorption, distribution, and elimination properties of Cur-NPs were
explored in vitro in MDCK cells and a zebrafish model and in vivo in the brain and plasma
of treated mice. Cur-NPs were accumulated in lysosomes, the endoplasmic reticulum,
and mitochondria. In HT22 cells, Cur-NPs inhibited ROS production by regulating the
NRF2/HO-1 pathway [131]. Due to the presence of two enone moieties in the structure, it
can react with Cys151 in KEAP1 to permit NRF2 dissociation and stabilization [128].

However, in cancer cells, curcumin has been shown to induce ferroptosis. Curcumin
has anticancer properties that operate through a variety of mechanisms, including inhibition
of cancer cell proliferation, invasion and metastasis, regulation of apoptosis, and autophagy.
It has been shown to inhibit glioblastoma, breast, and non-small-cell lung cancer (NSCLC)
cells via the regulation of ferroptosis. It induced characteristic changes of ferroptosis
in vivo in tumor tissues and in vitro in cancer cell lines. Curcumin significantly triggered
the cytological and molecular characteristics of ferroptotic cell death in LLC (Lewis lung
cancer)-bearing mice (dose 100 mg/kg/day intraperitoneally) and in A549 and H1299 cells
(at a 30 µM dose), including depletion of GSH, lipid peroxidation, and accumulation of ROS
and iron. In the tumor tissue of mice, the protein level of ACSL4 was upregulated, while the
protein levels of SLC7A11 and GPX4 were significantly downregulated by curcumin [132].
In breast cancer cell lines MCF-7 and MDA-MB-231, curcumin (with cell viability IC50
values after 48 h of 41.90 µM and 53.51 µM, respectively) caused marked accumulation
of intracellular iron, ROS, lipid peroxides, and MDA, while it downregulated GSH levels
significantly. It was found to upregulate a variety of ferroptosis genes related to redox
regulation, including HO-1, but to downregulate the expression of GPX4 [133]. Curcumin
also induced ferroptosis in clear-cell renal cell carcinoma (ccRCC) cells resistant to sunitinib,
a tyrosine kinase inhibitor which blocks angiogenesis. Curcumin reversed resistance
and enhanced the sensitivity of 786-O-DR (drug-resistant) cells to sunitinib. It reduced
the iron content, upregulated the expression of the ADAMTS18 gene, and significantly
reduced expression levels of the ferritin autophagic cargo receptor NCOA4 (nuclear receptor
coactivator 4) and the proteins FTH1 and p53 in the cells [134].

6. Data Set and Methods

The sets of diverse inducers and inhibitors of ferroptosis were collected from the
literature. The collected ferroptosis modulators were compared mutually and with drugs
in terms of their structural and physicochemical/drug-likeness properties. The set of
1390 approved drugs was downloaded from the open-access drug discovery resource
ChEMBL (https://www.ebi.ac.uk/chembl, 29 August 2021) [135]. The Anatomical Ther-
apeutic Chemical (ATC) first-level categories of drugs were collected from databases
ChEMBL and KEGG [136].

Ferroptosis modulators and drugs are represented with SMILES and corresponding
MACCS keys calculated by the R package rcdk [137]. The physicochemical molecular

https://www.ebi.ac.uk/chembl
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features important for biological activities were calculated by the programs ADMET Predic-
tor™ 10.0 (Simulations Plus Inc., Lancaster, CA, USA) (43 descriptors) [18] and DataWarrior
(32 features) [138]. The ionization state of molecules was estimated by the program ADMET
Predictor™ (Supplementary Table S1).

Structural similarity of the compounds was estimated by applying clustering in terms
of MACCS fingerprints with Jaccard distance as a dissimilarity measure and principal com-
ponent analysis (PCA). The Jaccard distance equals the difference 1−Tanimoto coefficient
(TC). TC is the ratio of the number of common features to the number of different features
present in two compared molecules. The clustering and PCA were performed by the R
functions hclust using the complete linkage method and princomp, respectively [137]. The
biplot visualization was carried out with the R package factoextra.

The chemical classes of ferroptosis modulators were determined by the ClassyFire
algorithm [42].

All chemical structures have been drawn using the program CS ChemDraw Profes-
sional version 20.0.0.41 (PerkinElmer, Waltham, MA, USA).

Information on the ferroptosis-related activities of the selected natural and semisyn-
thetic derivatives was gathered through a literature search.

7. Conclusions

In the review, we aimed to present the results of our in silico analysis of the collected
structurally diverse representatives of ferroptosis modulators in terms of their structural
and physicochemical/drug-likeness properties and to summarize in vitro and in vivo re-
sults observed mainly for the large subgroup of natural ferroptosis modulators plant
(poly)phenols, primarily phenylpropanoids (Figure 7). Most polyphenols (at the micro-
molar range of concentrations) have antiferroptotic activity, which may contribute to their
neuroprotective capacity. The efficient anticancer activity of typhaneoside, robustaflavone
A, amentoflavone, and erianin (at µM levels) in vitro and in vivo is ascribed partly to their
capacity to induce ferroptosis. However, the effects of polyphenols considerably depend
upon their (micro)environment, for example, on the amount and type of free iron. Some
polyphenols (apigenin, baicalin, resveratrol, curcumin) can have an inducing or inhibitory
effect on ferroptosis depending on the cell type or composition of multifunctional nanofor-
mulation. Such a dependence enables the construction of different kinds of multifunctional,
nanoformulated drug delivery systems of active pharmacological ingredients, including
polyphenols, which allow selective and specific induction of ferroptosis in pathological
cancer cells.
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In addition, the performed in silico comparison with approved drugs placed (poly)phenols
in the same chemical space as around two-thirds of the drugs from the ATC groups D (dermato-
logicals), G (genito-urinary system and sex hormones), and H (systemic hormonal preparations,
excluding sex hormones and insulins). This observation is in accordance with already per-
formed studies on the anticancer activities of polyphenols on pancreatic, prostate, breast,
bladder, and renal cancers and melanoma.

Our results can be used to quickly gain insight into the chemical scaffolds and druglike
properties of ferroptosis inducers and inhibitors and to motivate relatively new, targeted
use of polyphenols.
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