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2Rudjer Bošković Institute, Bijenička c.54, HR-10002 Zagreb, Croatia

3Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
(Dated: February 14, 2023)

We study the noncommutative corrections to the entropy of the Reissner-Nordström black hole
using a κ-deformed scalar probe within the brick-wall framework. The noncommutativity is encoded
in an Abelian Drinfeld twist constructed from the Killing vector fields of the Reissner-Nordström
black hole. We show that the noncommutative effects naturally lead to a logarithmic correction to
the Bekenstein-Hawking entropy even at the lowest order of the WKB approximation. In contrast,
such logarithmic corrections in the commutative setup appear only after the quantum effects are
included through higher order WKB corrections or through higher loop effects. Our analysis thus
provides further evidence towards the hypothesis that the noncommutative framework is capable of
encoding quantum effects in curved spacetime.

I. INTRODUCTION

Interpretation of the horizon area as the black hole entropy was proposed by Bekenstein [1] and Hawking [2]
within the framework of semi-classical gravity. Initial attempts to understand the origin of the black hole entropy
involved statistical mechanics of the in-falling particles [3] or that of scalar fields, using a brick-wall cutoff to
regulate the ultraviolet divergence [4, 5]. Subsequently, there have been attempts to obtain the Bekenstein-Hawking
area law from various microscopic descriptions of gravity, including string theory [6], quantum geometry [7] and
conformal field theory [8, 9]. This process went beyond the validation of the Bekenstein-Hawking formula and a
nonperturbative quantum geometry approach predicted a logarithmic correction to the black hole entropy [10]. Such
logarithmic corrections have since been found in various quantum descriptions of black holes including conformal field
theory [11–13], string theory [14, 15] and within the context of AdS/CFT duality [16]. The higher loop corrections
[17, 18] as well as nonlocal effective field theories of gravity [19, 20] also lead to such logarithmic corrections.
The area law of the black hole entropy can be also related to the entanglement between degrees of freedom in-
side and outside the horizon [21, 22] and various corrections to the area law in that context have also been found in [24].

There is another approach to microscopic description of the spacetime which offers an opportunity to derive the
Bekenstein-Hawking area law. The theory of general relativity together with the quantum uncertainty principle
suggests that the spacetime coordinates obey the noncommutative (NC) algebra [25, 26]. The NC algebra comes
with a fundamental length parameter, whose effect is expected to be manifest at the quantum gravity scale, or
equivalently the Planck scale. Another feature of the NC algebra is that it is inherently non-local. This is made
explicit by writing the NC algebra in terms of the star product [27], which often can be defined using the Drinfeld
twist operator [28] (see also [29, 30]). Any physical theory described within the NC framework is expected to capture
certain quantum and non-local effects. In this paper we propose to investigate to what extent such an expectation is
actually realized in the context of black hole entropy.

One way to analyze how the NC framework captures the quantum effects is to explore the NC corrections to the
black hole entropy. To that end, we investigate the entropy of the NC Reissner-Nordström (RN) black hole in the
brick-wall approach using the WKB technique [4, 5]. In a commutative theory, the WKB method in the leading order
does not generate any logarithmic correction to the black hole entropy. Only after including the higher order WKB
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corrections the logarithmic terms appear [31]. This happens as WKB is a semi-classical method and the higher order
terms are necessary in the commutative framework to capture the quantum effects. We will show here that in the
NC setup, even at the lowest order in WKB, the logarithmic terms appear naturally in the expression of the black
hole entropy. This is consistent with and provides further evidence towards the idea that the quantum and nonlocal
effects are already built into the NC spacetime algebra [25, 26].

In our analysis, we shall use a NC scalar field in a classical RN background, coupled to a NC U(1) gauge field
[36–39]. The NC algebra used in our model is the κ-deformed spacetime1 [40–45], which is well known to be relevant
for black hole physics [46–49] and cosmology [50]. This NC algebra associated with a particular type of Drinfeld
twist operator, known as the angular twist [35–37], which respects the symmetries of the RN black hole and can be
expressed in terms of Poincaré generators, in contrast to certain previous attempts [51–53]. The model used in our
analysis has been derived in [36] by first developing a NC differential calculus along the lines of [54, 55] and then by
using the Seiberg-Witten map [56, 57] to derive the NC gauge theory (see Appendix B for details.) To our knowledge,
the analysis presented in this paper provides the first derivation of the logarithmic correction to the entropy of a
3+1 dimensional black hole arising from a Drinfeld twist, which is completely different from similar attempts in the
context of dilatonic black holes in 1+1 dimensions [32], the GUP framework [33] or noncommutative Schwarzschild
black hole [34].

This paper is organized as follows. In section II we first briefly review the main steps of the brick-wall method
[4, 5] and in IIA we highlight the the role of the near-horizon limit for obtaining the entropy of the the Schwarzschlid
black hole within the same model. In section IIB we present the calculation for the entropy of the RN black hole
with the charged probe. Section III deals with the NC corrections to the entropy of the RN black hole. Here we
introduce the κ-deformed spacetime noncommutativity and the angular Drinfeld twist to obtain the NC corrections
to the RN black hole entropy. Our analysis in this Section demonstrates that for the NC RN case, a logarithmic
correction to the black hole entropy arises in the lowest order in WKB, which is one of the main results of this paper.
In Section IV we discuss how to get obtain the entropy in the near Schwarzschild limit as the charge of the RN black
hole tends to zero. Section V concludes the paper with some final remarks and an outlook. The paper also contain
two appendices to augment the main text.

Throughout the paper we are using the natural units where kB = ~ = c = 1.

II. BLACK HOLE ENTROPY VIA THE BRICK-WALL MODEL

It is known that any type of field theoretical calculation of the entropy of a black hole leads to a UV divergence,
which requires regularization to extract the relevant physical part [18]. The brick-wall method, developed by ’t Hooft
[4, 5] provides an appropriate regularization using the WKB approximation and is compatible with the one-loop
calculations [59]. In this method the analysis starts by examining the Klein-Gordon equation in a fixed black hole
background described by the metric gµν

�gΦ = 0. (1)

We separate the Klein-Gordon equation in the time, radial and angular parts using the ansatz Φ(x) =
e−iEtRlm(r)Ylm(θ, φ), where l and m denote the angular and azimuthal quantum numbers. Next we use the brick-wall
boundary condition given by

Rlm(r) = 0 for r = r+ + h and r = L (2)

is imposed, where r+ is the radius of the outer horizon, h is the brick-wall cutoff and L is the infrared cutoff. Using
the WKB approximation, the radial part of the scalar field can be written as

Rlm(r) = ei
∫
k(r)dr, (3)

1 The κ-deformation in question is defined by the Lie algebra relations given in (32). This Lie algebra is the Lie algebra of symmetries of
a 2D plane (x, y) = semidirect product of 2D translations and rotations generated by a 3rd axis, t. The NC algebra used in [40, 41] are
the simple Lie algebras so(3) or so(2, 1), which by a proper rescaling of generators can be reduced to the Lie algebra considered in the
present paper.
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which is plugged into (1) to obtain an equation for the radial wave number

k2 = H(r, E, l,m), (4)

where H is a function of r and other parameters of the theory. As long as k is non-negative the number of radial
modes n can be obtained by the Bohr-Sommerfeld rule

πn =

∫ L

r++h

k(r, E, l,m)dr, (5)

which gives the quantization of the energy. The total number of wave solutions with the energy less or equal to E is
given by

N(E) =

lmax
∑

l=0

l
∑

m=−l

n −→ 1

π

∫ L

r++h

dr

∫ lmax

0

dl

∫ l

−l

dm k(r, E, l,m), (6)

where the summation has been replaced with the integral. Notice that N(E) counts the number of classical eigenmodes
of a scalar field in the vicinity of a black hole. We are interested in the thermodynamic properties of such a system
and assume that each eigenmode may be occupied by any integer number of quanta. The free energy F at some
inverse temperature β of such a system is given by

F = −
∫ ∞

0

N(E)

eβE − 1
dE = − 1

π

∫ ∞

0

dE

∫ L

r++h

dr

∫ lmax

0

dl

∫ l

−l

dm
k(r, E, l,m)

eβE − 1
. (7)

When calculating (7) one has to be careful and integrate only over the values for which the radial wave number
k is non-negative. We will see later that this means that lmax depends on r. Also, we are interested in the main
contributions to the free energy F coming from the horizon. Therefore the integral over r can be split into two parts

∫ L

r++h

dr(...) =

∫ R

r++h

dr(...) +

∫ L

R

dr(...), (8)

where in the first term one keeps the most divergent part as h → 0, while in the second term L ≫ r+. The second term
constitutes the usual contribution from the vacuum surrounding the system at large distances and can be omitted
[4]. Once the free energy F is calculated and the most divergent part in h identified, one can find the entropy of the
black hole by simply using

S = β2 dF

dβ
. (9)

Finally one gets rid of the brick-wall cutoff h by equating (9) to the Bekenstein-Hawking entropy [1, 2] and demanding
that β is the inverse Hawking temperature.

In the following subsection we will outline the brick-wall method for the case of Schwarzschlid and RN black holes
in order to fix the notation before introducing the NC effects.

A. Entropy of the Schwarzschlid black hole

The entropy of the Schwarzschlid black hole in the brick-wall method is well known [4], but here we will repeat
the crucial steps in the calculation to emphasize the role of the near horizon region. We start with the metric for
Schwarzschild black hole

ds2 =

(

1− 2GM

r

)

dt2 −
(

1− 2GM

r

)−1

dr2 − r2dΩ2 (10)

and derive the radial part of the Klein-Gordon equation for a massless scalar as

(

1− 2GM

r

)

R′′
lm +

2

r

(

1− GM

r

)

R′
lm −

[

l(l + 1)

r2
− E2

1− 2GM
r

]

Rlm = 0. (11)
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Next we use the WKB approximation and get the radial wave number kS(r, l, E)

k2S =
1

1− 2GM
r

(

E2

1− 2GM
r

− l(l+ 1)

r2

)

(12)

and the number of radial modes n is given by the Bohr-Sommerfeld rule (5). We keep kS non-negative which fixes
the maximal value of the orbital quantum number as

lmax(lmax + 1) =
E2r2

1− 2GM
r

. (13)

We define a new coordinate as x = r − 2GM . The total number N of wave solutions (6) is given by

NS(E) =
1

π

∫ L−2GM

h

dx
x+ 2GM

x

∫ lmax

0

dl (2l+ 1)

√

E2 − x

x+ 2GM

l(l+ 1)

(x+ 2GM)2
. (14)

We now look for the main contributions and split the integral as in (8) to obtain

NS(E) =
32G4M4E3

3πh
+

E3L3

π
. (15)

Notice that when evaluating the first term in (8) the maximal value of l is calculated in the near horizon limit with

x ≈ h and gives lmax(lmax + 1) = (2GM)3E2

x . While evaluating the second term we are in the x ≫ 2GM limit which

gives lmax(lmax + 1) = E2L2. The free energy is given by

FS = −2π3

45h

(

2GM

β

)4

− 2L3π3

30β4
. (16)

The second term in (16) is the contribution from the vacuum surrounding the system at large distances and can be
omitted, while the first term is the intrinsic contribution from the horizon that diverges as h → 0. The contribution
of the horizon to the entropy is

SS =
8π3

45h
2GM

(

2GM

β

)3

(17)

which is in complete agreement with [4]. Now one can obtain the value for the cut-off h by imposing that the
temperature is the Hawking temperature TH = 1

β = 1
8πMG and entropy is the Bekenstein-Hawking entropy S = A

4G =

4πGM2

h =
1

720πM
(18)

which is in agreement with [4]. Notice that even though eq. (18) might suggest that the brick-wall cutoff depends on
M , it is actually a coordinate artifact since calculating the invariant distance shows that the brick-wall can be seen
as a property of the horizon that is independent of the particular size of the black hole in question.

B. Entropy of the Reissner-Nordström black hole

The RN black hole is a solution of the coupled Einstein-Maxwell system of equations for both the metric gµν and
vector potential Aµ. The RN metric is given by

ds2 = fdt2 − f−1dr2 − r2dΩ2, f = 1− 2GM

r
+

Q2G

r2
. (19)

The Klein-Gordon operator in the RN background is obtained by the minimal substitution

�g = gµν∇µ∇ν −→ gµνDµDν ,
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where Dµ = ∇µ − iqAµ and Aµ = −δtµ
Q
r is the fixed background electromagnetic potential of the RN black hole.

The radial part of the Klein-Gordon equation for a massless minimally coupled scalar field of charge q in the RN
background can be written as

fR′′
lm +

2

r

(

1− GM

r

)

R′
lm −

[

l(l + 1)

r2
− 1

f

(

E − qQ

r

)2
]

Rlm = 0. (20)

We use the WKB approximation and get the radial wave number kRN (r, l, E)

k2RN =
1

f

[

1

f

(

E − qQ

r

)2

− l(l + 1)

r2

]

. (21)

The number of radial modes n is given by the Bohr-Sommerfeld rule (5) where we have to keep kRN non-negative, so
the maximal value of the orbital quantum number is

lmax(lmax + 1) =
r2

f

(

E − qQ

r

)2

. (22)

The total number NRN of wave solutions (6) after switching to near horizon coordinates x = r − r+ is given by

NRN (E) =
1

π

∫ L−r+

h

dx
x+ r+

√

x(x + r+ − r−)

∫ lmax

0

(2l + 1)dl







(

E − qQ
x+r+

)2

(x+ r+)
2

x(x+ r+ − r−)
− l(l + 1)

(x+ r+)2







1
2

(23)

where we used

r± = GM ±
√

G2M2 −GQ2. (24)

We can split the integral as in (8) and look for the intrinsic contribution from the near horizon region when h → 0
and omit the contribution for the surrounding vacuum. Since the integrals over l and x are of the same type as in the
Schwarzschild case it is easy to see that the near horizon contribution is given by

NRN (E) =
2

3π

r6+

(

E − qQ
r+

)3

(r+ − r−)2
1

h
(25)

where we also used

lmax(lmax + 1) =
r4+

x(r+ − r−)

(

E − qQ

r+

)2

. (26)

The free energy is given by

FRN = − 2

3π

r6+
(r+ − r−)2

1

h
K(β), K(β) =

∫ ∞

0

dE

(

E − qQ
r+

)3

eβE − 1
. (27)

Notice that K(β) has an infinite contribution coming from the electrostatic self-energy of charge q of the scalar
particle. This contribution vanishes when q → 0. Using the ζ-function regularization K(β) can be written as

K(β) =
Γ(4)ζ(4)

β4
− 3qQΓ(3)ζ(3)

r+β3
+

3q2Q2Γ(2)ζ(2)

r2+β
2

− q3Q3Γ(1)ζ(1)

r3+β
, (28)

where the infinite contribution appears in ζ(1). In subsequent analysis we shall ignore this infinite contribution from
the electrostatic self-energy, whereby the entropy is given by

SRN = − 2

3π

r6+
(r+ − r−)2

1

h

(

−4Γ(4)ζ(4)

β3
+

9qQΓ(3)ζ(3)

r+β2
− 6q2Q2Γ(2)ζ(2)

r2+β

)

, (29)
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The value for the cutoff h is obtained by imposing that the temperature is the Hawking temperature TH = 1
β = r+−r

−

4πr2
+

and entropy is the Bekenstein-Hawking entropy S = ARN

4G =
πr2+
G , which gives

h =
G

360π

r+ − r−

r2+

(

1− 270qQζ(3)

π3

r+

r+ − r−
+ 60q2Q2 r2+

(r+ − r−)2

)

. (30)

For Q → 0 this is in agreement with (18) and this recovers the entropy for the Schwarzschild black hole. We can
check that

lim
q−→0

SRN =
8π3

45

r6+
(r+ − r−)2

1

hβ3
(31)

which is in agreement with [59, 63].

III. NONCOMMUTATIVE CORRECTION TO THE ENTROPY OF THE REISSNER-NORDSTRÖM
BLACK HOLE

In this paper we shall consider a κ-deformed spacetime noncommutativity, whose commutation relations in the
Cartesian coordinates are given by

[t, x]⋆ = −iay, [t, y]⋆ = iax, [x, y]⋆ = 0, (32)

where a is the NC deformation parameter. The corresponding relations in the spherical coordinates can be written as

[r, t]⋆ = 0, [r, eiφ]⋆ = 0, [t, eiφ]⋆ = −aeiφ. (33)

The star product of two functions f and g appearing in (32) and (33) is defined as

f ⋆ g = µ{F−1f ⊗ g}, (34)

where µ is the usual point-wise multiplication of functions, µ(f ⊗ g) = f · g and F is the twist operator given by
[35–37]

F ≡ e−
i
2
θαβ∂α⊗∂β = e−

ia
2
(∂t⊗∂φ−∂φ⊗∂t), (35)

where α, β = t, r, θ, φ and θtφ = −θφt = a are the only non-zero components of the deformation tensor θαβ . This twist
operator is formed from the Killing vector fields of the RN metric. In addition, X1 = ∂t, X2 = ∂φ are commuting
vector fields, [X1, X2] = 0, rendering (35) to be an Abelian twist. We call (35) an angular twist because the vector
field X2 = ∂ϕ = x∂y − y∂x is a generator of rotations around the z-axis. Since the twist (35) is defined in terms
of the Killing vector fields of the RN metric, it leaves the RN metric unchanged. An important aspect of the twist
(35) is that it is expressed entirely in terms of Poincaré generators, unlike some previous attempts to construct NC
gauge theory [51–53], where the twist involves the generators of igl (1, 3), The twisted deformation considered here is
a special case of deformations introduced in [60, 61]. Similar type of twist operators that lead to a Lie algebra-type
of deformation of Minkowski space-time were also considered in [62].
Following [36], we consider a NC charged scalar field in the background of a RN black hole, where the noncom-

mutativity is defined by star product (34) and the angular twist (35). We refer to this system as NCRN. Up to the
first order in the NC deformation parameter a, the radial part of the corresponding Klein-Gordon equation is given
by (See Appendix B for details)

fR′′
lm +

2

r

(

1− GM

r

)

R′
lm −

[

l(l + 1)

r2
− 1

f

(

E − qQ

r

)2
]

Rlm − ima
qQ

r3

[(

GM

r
− GQ2

r2

)

Rlm + rfR′
lm

]

= 0. (36)

Next we use the WKB approximation and get the radial wave number kNCRN (r, l,m,E) as

k2NCRN =
1

f

[

1

f

(

E − qQ

r

)2

− l(l + 1)

r2
− ima

qQ

r3

(

GM

r
− GQ2

r2

)

]

. (37)
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Note that unlike the commutative case, there is an explicit dependence of kNCRN on the magnetic quantum number
m and appearance of the imaginary factor in it. At a perturbative level, expanding (37) in the NC deformation
parameter a we have

kNCRN =
1√
f
(A+ aB)

1
2 =

√

A

f
+

a

2

1√
fA

B − a2

8

1
√

fA3
B2 +O(a3). (38)

The first term is exactly the radial wave number in the commutative case (21), while the second and third are NC
corrections. Notice that B is linear in the magnetic quantum number m. Hence there is no contribution to N(E)
from the term linear in a since

l
∑

m=−l

m = 0 =

∫ l

−l

mdm. (39)

Thus the leading NC correction is quadratic in a. Furthermore, all correction that are odd powers in a vanish
which means that imaginary part of k does not contribute to the number of solutions N . This result can be proven
nonperturbatively to all orders in the deformation parameter a. In the Appendix A we show that the imaginary part
of the wave number k is zero after we integrate over m so it does not contribute to the free energy and entropy in the
end. Therefore we can immediately go to the near horizon limit and omit the surrounding vacuum contributions and
we get

kNCRN = kRN + k̃, (40)

where

kRN =
r+

√

x(r+ − r−)







(

E − qQ
r+

)2

r2+

x(r+ − r−)
− l(l + 1)

r2+







1
2

, k̃ =
a2

8

x(r+ − r−)

r2+

(

E − qQ
r+

)3

q2Q2

r6+

(

GM

r+
− GQ2

r2+

)2

m2. (41)

This gives

NNCRN(E) = NRN (E) + Ñ(E), Ñ(E) =
a2q2Q2

48π

(

GM

r+
− GQ2

r2+

)2 E − qQ
r+

r+ − r−
ln

(

lp

h

)

, (42)

where NRN is given in (25), lp =
√
G is the Planck length and

lmax(lmax + 1) =
r4+

r+ − r−

(

E − qQ
r+

)2

x
,

which ensures that kRN is nonnegative. The free energy is given by

FNCRN = FRN + F̃ , F̃ = −a2q2Q2

48π

(

GM

r+
− GQ2

r2+

)2
1

r+ − r−
ln

(

lp

h

)(

π2

6β2
− qQ

r+β
ζ(1)

)

, (43)

where FRN is given in (27). The entropy can be expressed as

SNCRN = SRN +
a2q2Q2

48π

(

1− GM

r+

)2
1

r+ − r−
ln

(

lp

h

)

π2

3β
(44)

where SRN is given in (29) and we have removed the infinite contribution arising from the electrostatic self-energy
like before. The cutoff h is fixed by matching SRN with the Bekenstein-Hawking entropy, which is exactly (30) and
using this we obtain the final expression of the entropy as

SNCRN =
ARN

4G
+ a2W ln

(

ARN

lp

)

+ a2V (45)

where ARN = 4πr2+ is the area of the RN black hole, W and V are functions of r± and q and can be determined
from (30) and (44). It is important to note that the NC corrections to the entropy are similar to the usual subleading
quantum corrections (see [31]) indicating the nonlocal and quantum nature of the NC algebra all ready in the lowest
order in the WKB.
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IV. THE ALMOST SCHWARZSCHILD LIMIT

The Abelian Drinfeld twist used in this paper does not deform either the Schwarzschild metric or its coupling
to the scalar probe. Hence taking limits of Q, q −→ 0 in (45) simply reproduces the commutative results. The
noncommutative corrections only appear if we have a charged black hole (in our case RN) and a charged scalar probe.
However we can look at the RN black holes with very small charge Q in order to compare the NC corrections with
respect to the (almost) Schwarzschild black hole. Therefore, we will look at (45) in the limit Q −→ 0, that is we expand
everything to the lowest order in the black hole charge Q. Since the noncommutative correction is propositional to
Q2 it is enough to expand the SRN up to quadratic terms in Q and all the rest keep in the zeroth order. In doing
this we used

SRN = SS − 2π
Q2

M
+O(Q4), h =

1

720πM
+O(Q2),

1

β
=

r+ − r−

4πr2+
=

1

8πGM
+O(Q2) (46)

and therefore the entropy in the almost Schwarzschild limit has the following form

SNCRN = SS − 2πQ2

M
+

a2q2Q2

9216G2M2
ln (720πMlp) (47)

or if we exploit the formula for SS

M =

√

SS

4πG
(48)

for the Q ≈ 0 we can obtain

SNCRN =
A

4G
+ G(A) +H(A)ln

(

A

l2p

)

(49)

where

G(A) = −(4π)3/2
Q2l2p√

A
, H(A) = a2

π

1152

q2Q2

A
(50)

and A = 16πG2M2 is the area of the Schwarzschild black hole. Note that this result is in a form compatible with the
generic form of WKB expansion of the entropy of black holes [31], but the main difference is that in the commutative
case the logarithmic corrections appear as subleading corrections, while in the NC framework they come in the lowest
WKB order.

V. FINAL REMARKS

In this paper we have shown that a NC framework can give rise to a logarithmic correction to the black hole
entropy, which is a purely quantum effect. Our model consists of a κ-deformed NC scalar field on a classical RN
black hole background, coupled to a NC U(1) gauge field. The NC algebra considered here arises from an Abelian
Drinfeld twist, known as the angular twist. It is adapted to the isometries of the background RN geometry, with the
associated stationary Killing vector field ∂t and the axial Killing vector field ∂φ. The analysis was performed using
the brick-wall method in the lowest order of the semiclassical WKB approximation.

It is well known that in the commutative setup, the lowest order in WKB does not lead to logarithmic correction
to the black hole entropy. There one has to go beyond the semi-classical limit in order to obtain such logarithmic
corrections. However, the results obtained here indicate that the NC framework is capable of revealing the quantum
effects in the black hole entropy even at the lowest order in the WKB. This is consistent with and provides further
evidence towards the hypothesis that the NC framework is capable of encoding quantum effects of curved spacetime
[25, 26].

In addition, to the best of our knowledge, this work provides the first derivation of the logarithmic correction
to the Bekenstein-Hawking using a Drinfeld twist arising from a κ-deformed Hopf algebra. The choice of the twist
operator is certainly not unique, but the angular twist used here captures a lot of features present in other Abelian
twists. It is important to note that the angular twist (35) used in the paper is made of vector fields ∂t and ∂φ. As
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a result, the deformations of any metric that has these vectors as Killing vector fields are exactly zero. We have
considered RN metric in this paper, which has ∂t and ∂φ as Killing vector fields. Consequently, as has been shown
in [36, 37], the only NC correction that shows up is the correction between the coupling between the U(1) potential
and the charged scalar, leading to (36). In order to investigate the possibility of NC corrections to the metric we
either have to consider a more general twist [64, 65] (not made entirely of Killing vector fields) or different metrics
(with less symmetries). In such cases it is expected in general that there might be additional corrections to the BH
entropy, which is a matter of further analysis.

Black hole entropy can be described in the brick-wall model [4, 5] as well as using entanglement of the degrees
of freedom between the two sides of the horizon [21, 22]. It is a remarkable fact that both these approaches lead
to an almost identical UV divergence in the black hole entropy, and it has been argued that the black hole entropy
obtained from these seemingly different approaches are indeed related [18, 24]. The universal nature of such an UV
divergence in the black hole entanglement entropy is related to the Type-III nature of the associated von Neumann
algebra of observables appearing in these quantum field theories [66–68].

It is natural to inquire if such an universal divergence in the black hole entropy continues to persist within the NC
framework. The analysis here indicates that at least in the perturbative limit of a small NC deformation parameter the
UV divergence of the black hole entropy persists within the NC framework. This is further supported by similar results
for the case of NC BTZ coming from κ-Minkowski spacetime algebra and from the evaluation of the renormalized
entanglement entropy [70] using the heat kernel and effective action method [71, 72]. The universal appearance of
the UV divergence in these systems suggests that the typology of the associated von Neumann algebra of observables
remains unchanged at least when the NC effects are treated perturbatively. Whether there is any change in the
typology of the von Neumann algebras when the NC effects are considered nonperturbatively is a much deeper
question, which is beyond the scope of the present analysis.
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Appendix A: Nonperturbative integration over m

Let us examine the wave number (37) and rewrite it as (up to a sign)

k = (α− iaβm)1/2 (A1)

where

α =
1√
f

[

1

f

(

E − qQ

r

)2

− l(l+ 1)

r2

]

, β =
qQ√
fr3

(

GM

r
− GQ2

r2

)

. (A2)

A potential problem with this is that k in principle has real and imaginary parts. We shall show below that the
imaginary part does not cause problems since it does not contribute to the free energy and entropy. In order to see
that one needs to calculate the number of wave solutions (6). In doing so, one needs to perform the integration over
the magnetic quantum number m first. Let us therefore consider the quantity

I =

∫ l

−l

kdm =

∫ l

−l

dm (α− iaβm)
1/2

(A3)

where l ∈ N is the orbital angular momentum. After performing this integral and using the abbreviation R =
√

α2 + a2β2l2 and tanχ = −aβl
α we get

I = −4R3/2

3aβ
sin

3χ

2
(A4)

which is manifestly real in all orders in a. Furthermore we can expand I in the deformation parameter a

I =
4l
√
α

3
− a2

β2l3

α3/2
+O(a4) (A5)

showing the absence of the linear term in a which is in agreement with the perturbative analysis in Sec.III.
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Appendix B: Some elements of the twist deformation and derivation of the equation of motion (36)

In this paper we work with κ-deformed spacetime noncommutativity for which the defining relations, the star
product and the angular twist were given at the beginning of Section III. The twist (35) may also be written in a
Sweedler notation as

F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α, (B1)

where for each value of α, fα, fα, f̄
α and f̄α are generally all different elements of the universal enveloping algebra

of the symmetry algebra in question (in the current context the Poincaré algebra). In view of this, the star product
between two functions may be written as f ⋆ g = µ ◦ F−1(f ⊗ g) = f̄α(f) · f̄α(g).
The twist (35) satisfies the cocycle and counital conditions:

(F ⊗ 1) · (△⊗ id)F = (1⊗F)) · (id⊗△)F ,

µ ◦ (ǫ⊗ id)F = 1 = µ ◦ (id⊗ ǫ)F , (B2)

together with the requirement F = 1⊗ 1+O(a), which ensures that in the limit of vanishing deformation, a −→ 0,
an undeformed symmetry algebra is restored. Therefore, it is a Drinfeld twist, ensuring that a twist deformation of
the initial symmetry algebra, which is a Hopf algebra, gives rise to a deformed algebraic structure which is again a
Hopf algebra. The deformation itself is carried out by the following set of similarity transformations:

∆F (X) = F∆(X)F−1, (B3)

SF(X) = χS(X)χ−1, ǫF(X) = 0, (B4)

applied to the generators of the initial Hopf algebra and its structural maps, the coproduct ∆, the counit ǫ and the
antipode S. In the above relations χ = fαS(fα), and χ−1 = S(f̄α)f̄α. Note that the ⋆-product (34) is noncommu-
tative and in the limit a → 0 of vanishing deformation it reduces to the usual point-wise multiplication. However,
it is also associative and this property is guaranteed by the first relation in (B2). In this way the noncommutative
algebra of functions, i.e. the noncommutative spacetime comes to light.
The twisted symmetry of the NC Minkowski spacetime (32) ensuing from the twist (35) is the twisted Poincaré

symmetry. The latter is described by the twisted Poincaré Hopf algebra whose algebraic and coalgebraic sector were
presented in [36]. The differential calculus appropriate for the above context has been developed from an ordinary
differential calculus through a deformation by means of the angular twist operator. The details of this can also be
found in [36–39].
In order to obtain the equation of motion (36) that is a central point of our study, we start with the (RN) metric

representing a charged non-rotating black hole with mass M and charge Q. We take this solution to represent our
nondynamical gravitational background characteristic of the noncommutative semiclassical hybrid model studied in
[36]. Being static and spherically symmetric, the spacetime of RN black hole has four Killing vectors, among which ∂t
and ∂φ are included, and t and φ are the time and polar variables of the spherical coordinate system xµ = (t, r, θ, φ).
Note that these are exactly the vector fields utilized to build the Abelian Drinfeld twist operator (35).

This setting was further used in [36] to construct a semiclassical model describing a charged NC scalar field Φ̂

and NC U(1) gauge field Â, both being in a mutual interaction and in an interaction with a classical gravitational
background of RN type. The model was built by using deformation quantization techniques as applied to the Drinfeld
twist operator (35) [36, 37]. As already pointed out, semiclassical here means that the gravitational field is undeformed
by noncommutativity, and the only degrees of freedom that are actually deformed are the scalar and gauge field that
propagate in that classical gravitational background. In a sense, we are thus dealing with a situation where the scalar
and gauge field get quantized, while the gravitational field does not. It is however important to stress that the gauge
and scalar field are not quantized in a sense of quantum field theory quantization.
The action is given by

S[Φ̂, Â] = SΦ + SA,

SΦ =

∫

d4x
√−g ⋆

(

gµν ⋆ DµΦ̂
+ ⋆ DνΦ̂− µ2Φ̂+ ⋆ Φ̂

)

, (B5)

SA = − 1

4q2

∫

d4x
√−g ⋆ gαβ ⋆ gµν ⋆ F̂αµ ⋆ F̂βν . (B6)

where

F̂µν = ∂µÂν − ∂νÂµ − i
(

Âµ ⋆ Âν − Âν ⋆ Âµ

)

. (B7)
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The operator Dµ appearing in (B5) is the covariant derivative of the scalar field Φ̂ and it is defined as

DµΦ̂ = ∂µΦ̂− iÂµ ⋆ Φ̂.

A favorable feature is that due to the twist operator (35) not acting on the metric tensor gµν , ⋆-products in
√−g ⋆

gαβ ⋆ gµν can all be removed.
As pointed out in [36], the functionals (B5) and (B6) are invariant under the following infinitesimal U(1)⋆ gauge

transformations:

δ⋆Φ̂ = iΛ̂ ⋆ Φ̂,

δ⋆Âµ = ∂µΛ̂ + i
(

Λ̂ ⋆ Âµ − Âµ ⋆ Λ̂
)

, (B8)

δ⋆F̂µν = i
(

Λ̂ ⋆ F̂µν − F̂µν ⋆ Λ̂
)

,

δ⋆gµν = 0.

where Λ̂ is the NC gauge parameter .
Indeed, the functionals (B5) and (B6) are also invariant under the finite NC U(1)⋆ transformations defined as:

Φ̂′ = U⋆ ⋆ Φ̂,

Â′
µ = −U⋆ ⋆ ∂µU

−1
⋆ + U⋆ ⋆ Âµ ⋆ U−1

⋆ ,

(B9)

with U⋆ = eiΛ̂⋆ = 1 + iΛ̂ + 1
2 iΛ̂ ⋆ iΛ̂+...

From now on, we include the coupling constant q between fields Φ and Aµ, i.e. the charge of Φ, into Aµ, so that
the redefinition Aµ −→ qAµ is implicitly understood. Then we use the Seiberg-Witten (SW)-map [56, 57] in order to

express NC fields Φ̂, Âµ and F̂µν as functions of corresponding commutative fields and the deformation parameter a.
SW-map assumes an expansion in orders of the deformation parameter and this expansion is known to all orders for
an arbitrary Abelian twist deformation [58], of which the twist (35) is only one example. For the twist operator (35),
SW-map gives rise to the following expansions for the fields:

Φ̂ = Φ− 1

4
θρσAρ(∂σΦ+ (∂σ − iAσ)Φ), (B10)

Âµ = Aµ − 1

2
θρσAρ(∂σAµ + Fσµ), (B11)

F̂µν = Fµν − θρσAρ∂σFµν + θρσFρµFσν . (B12)

Using the SW-map solutions and expanding the ⋆-products in (B5) and (B6) we find the action up to first order in
the deformation parameter a,

S =

∫

d4x
√−g

(

− 1

4q2
gµρgνσFµνFρσ + gµν

[

(∂µ − iAµ)Φ
+
]

(∂ν − iAν)Φ− µ2Φ+Φ

+
1

8q2
gµρgνσθαβ(FαβFµνFρσ − 4FµαFνβFρσ) +

µ2

2
θαβFαβΦ

+Φ (B13)

+
θαβ

2
gµν
(

− 1

2

[

(∂µ − iAµ)Φ
+
]

Fαβ(∂ν − iAν)Φ +
[

(∂µ − iAµ)Φ
+
]

Fαν(∂β − iAβ)Φ

+
[

(∂β − iAβ)Φ
+
]

Fαµ(∂ν − iAν)Φ
)

)

.

Since the gauge field is the electromagnetic field generated by the RN black hole charge and RN black hole is
non-rotating, only the time component At of the gauge field is nonvanishing. The corresponding field strength will
consequently have Frt = −Ftr as the only components different from zero,

At = −qQ

r
, Frt =

qQ

r2
. (B14)

We also note that the only components of θαβ that are different from zero are θtϕ = −θϕt = a. Using these and
varying the action (B13) with respect to the field Φ+ and using the above, we can write the equation of motion as

( 1

f
∂2
t −∆+ (1− f)∂2

r +
2MG

r2
∂r + 2iqQ

1

rf
∂t −

q2Q2

r2f
− µ2

)

Φ+
aqQ

r3

(

(
MG

r
− GQ2

r2
)∂φ + rf∂r∂φ

)

Φ = 0 (B15)
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which after the separation of variables gives the radial equation (36).
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