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Abstract: Density functional calculations SMD(chloroform)//B3LYP/6-311+G(2d,p) were employed
in the computational study of 1,3-dipolar cycloadditions of azides with guanidine. The formation of
two regioisomeric tetrazoles and their rearrangement to cyclic aziridines and open-chain guanidine
products were modeled. The results suggest the feasibility of an uncatalyzed reaction under very dras-
tic conditions since the thermodynamically preferred reaction path (a), which involves cycloaddition
by binding the carbon atom from guanidine to the terminal azide nitrogen atom, and the guanidine
imino nitrogen with the inner N atom from the azide, has an energy barrier higher than 50 kcal mol−1.
The formation of the other regioisomeric tetrazole (imino nitrogen interacts with terminal N atom
of azide) in direction (b) can be more favorable and proceed under milder conditions if alternative
activation of the nitrogen molecule releases (e.g., photochemical activation), or deamination could
be achieved because these processes have the highest barrier in the less favorable (b) branch of the
mechanism. The introduction of substituents should favorably affect the cycloaddition reactivity of
the azides, with the greatest effects expected for the benzyl and perfluorophenyl groups.
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1. Introduction

Guanidines are organic compounds that possess very interesting physico-chemical
properties, such as very high basicity [1,2] and biological activity [3]. Their chemical be-
havior is extensively studied and guanidines have found applications in various fields,
such as catalysis [4], coordination chemistry [5], supramolecular chemistry [6], medicinal
chemistry [7,8] and chemical sensoring [9,10]. Whereas this versatile functional group
undergoes numerous chemical reactions, guanidines are rarely involved in cycloaddition
reactions [11], either in Diels–Alder or dipolar cycloadditions. Moreover, there are scarce
reports on the cycloadditions where the imino bond of guanidines undertakes the role of
dipolarophile with the formation of a new heterocyclic ring. An example is the formal
1,3-dipolar cycloaddition to guanidine, where aryldiazonium salts reacted with guani-
dines [12], NIS/DBU catalyzed to obtain aminotetrazoles—a multistep process involving
nucleophilic addition/cyclization. The mechanistically similar formal 1,3-dipolar reaction
of aryldiazonium salts and amidines facilitated by K2CO3/I2 provided tetrazole [13]. Tetra-
zoles are of great interest due to their various biological activities [14], and are constituents
of many active pharmaceutical ingredients [15].

Different synthetic strategies are employed for the synthesis of tetrazoles [16]; however,
the direct addition of azide to guanidine was not utilized. Realizing that this type of
reaction has not been not theoretically studied to date, and in continuation of our interest
in cycloaddition reactions [17,18] and study of the effects of the substitution of dienes
with guanidines [19], we conducted this computational study to address several scientific
questions: What is the reactivity of guanidine in 1,3-dipolar cycloadditions, and what
is the regioselectivity of this reaction? This study aims to establish the cycloaddition
(dipolarophilic) properties of imine bond in guanidine and the regioselectivity of the
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formation of tetrazoles. In addition, the stability of the initially formed cycloadducts and
other conceivable reaction paths leading to other products needs to be considered.

2. Results and Discussion

A theoretical investigation of the 1,3-dipolar cycloaddition reactivity of guanidines
was carried out on the model reaction system depicted in Figure 1. Mechanistic paths for
the formation of two regioisomeric tetrazoles, cyclic aziridines, and open chain guanidines
were modeled for all intermediates and transition states (TSs).
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Figure 1. Model reaction system and possible products.

The theoretical study of the reaction mechanism of the 1,3-dipolar cycloaddition of azide
to the guanidine C=N double bond was initiated with the SMD(chloroform)//B3LYP/6-
311+G(2d,p) calculations of unsubstituted derivatives: azide AZ1 (hydrazoic acid) and guani-
dine GU (Figure 2). The B3LYP functional [20,21] was previously used for successful regios-
electivity investigations of similar thermal, uncatalyzed 1,3-dipolar cycloadditions [22–25],
including azide cycloaddition to acetylenes [26]; and azide cycloaddition to nitriles forming
tetrazoles [27], which are early applications of DFT methods to this kind of reaction.

The addition of an azide functional group to a C=N double bond can proceed in two
ways, leading to two different regioisomers: (a) the carbon atom from guanidine binds
to the terminal azide N3 atom, and the guanidine imino nitrogen interacts with the N1
atom from the azide; in the second reaction mode (b), interacting atoms are reversed.
Imino nitrogen (N4) forms a bond to the N3 end of the azide group while the carbon atom
interacts with the N1 azide nitrogen. In both regioisomeric approaches, the formation
of new C-N and N-N bonds is a concerted process, but due to the asymmetry of the
reagents, the transition structures are partly asymmetric (Figure 2). The bond lengths of
new forming bonds are in good accordance with the reactions of azides to enamines [28],
alkenes (distances 2.02–2.27 Å) [29], or to nitriles (distances 1.92–2.07 Å; regioisomers’
energy difference is smaller—∆∆Hact is about 5–6 kcal mol−1) [27].
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Figure 2. Transition state structures (bond lengths are given in Å) for two different modes of azide
addition to the guanidine C=N bond. (a) addition mode (a); (b) addition mode (b).

The direction (b) is energetically significantly more favorable, by 18.3 kcal mol−1

(Erel (1TS1b) = 35.9 kcal mol−1 vs. Erel (1TS1a) = 54.2 kcal mol−1) (Figure 3). Both processes
are endothermic and the 5,5-diamino-1,4(or 2)-dihydro-1,2,3,4-tetrazole products are less
stable than the reactant by 26.2 and 17.2 kcal mol−1 for (a) and (b) directions of the reaction,
respectively. It is known that the triazolines formed by the analogous cycloaddition of
azides to alkenes are unstable and convert to aziridines, amines, or pyrazolines [15,30,31].
Hence, we assumed that in the case of additions to guanidine, the resulting tetrazole
products would also be thermodynamically unstable and subject to similar rearrangements.
Two transition state structures for the release of N2 and two TS structures for the release
of NH3 molecules were found on the potential energy surface. In the (a) direction, the
release of N2 is far more probable than the release of ammonia because the energy barrier
is extremely small, only 4.7 kcal mol−1. The resulting diradical intermediate is even
more easily rearranged to form thermodynamically stable amino-guanidine end-products
(Figure 3). In the (b) reaction direction, the release of ammonia is a more favorable process
than the release of N2, but it should be borne in mind that both processes are significantly
more energy-demanding than identical processes for direction (a).

The effect on the reactivity of azide substitution obtained by different functional
groups was examined by the introduction of methyl (AZ2), phenyl (AZ3), benzyl (AZ4),
and perfluorophenyl (AZ5) groups to the azide functionality. The energy profiles of these
reactions are given in Figures 4–7.

The replacement of the azide hydrogen atom with different functional groups did not
lead to a significant change in the geometry of the TS structures for cycloaddition when the
carbon atom approached the azide terminal N3 atom (a reaction direction) (Figure 8). The
synchronous cycloaddition process is energetically more favorable for 2.5–4.2 kcal mol−1

compared to hydrazoic acid AZ1. The lowest energy barrier was computed for the reaction
of guanidine with AZ5 (introduction of the perfluorophenyl group). Additionally, the
benzoyl group is preferable when compared to phenyl, which is in good accordance with
the larger cycloaddition reactivity of benzyl compared to phenyl azide [32].
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Figure 3. Energy profile for the addition of azide AZ1 with guanidine GU. Energies relative to
reactants are given in kcal mol−1. (a) and (b) denote two modes of azide addition to GU.
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Figure 5. Energy profile for the addition of azide AZ3 with guanidine GU. Energies relative to
reactants are given in kcal mol−1. (a) and (b) denote two modes of azide addition to GU.
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Figure 6. Energy profile for the addition of azide AZ4 with guanidine GU. Energies relative to
reactants are given in kcal mol−1. (a) and (b) denote two modes of azide addition to GU.
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Figure 7. Energy profile for the addition of azide AZ5 with guanidine GU. Energies relative to
reactants are given in kcal mol−1. (a) and (b) denote two modes of azide addition to GU.
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Figure 8. Relative energies (Erel/kcal mol−1) of transition state structures for cycloaddition of
different azides AZ1–AZ5 to guanidine GU in direction (a).

After cyclization, in all cases, the N2 release and formation of stable products are
expected. Activation energies for the elimination of N2 are smaller for phenyl and C6F5
substituents in comparison with an unsubstituted derivative (5.9 and 3.3 kcal mol−1,
respectively), whereas the substitution by methyl and benzyl raises the barrier (7.6 and
9.7 kcal mol−1). The activation energies for further diradical rearrangement are higher for
phenyl and C6F5 substituents (5.4 and 7.7 kcal mol−1) than for other substituents and could
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be associated with the better stabilization of aniline radicals [33]. Similar to unsubstituted
reactants, the alternative process of deamination and amino-tetrazole ring formation is less
favorable. For the deamination process, activation energies are in the range between 34.5
and 35.4 kcal mol−1 for all substituents, with the exception of phenyl, where Ea is smaller
than 33.1 kcal mol−1.

There are some mechanistic differences in direction (b) in comparison to AZ1. The
synchronous formation of N3-N4 and N1-C5 bonds occurs exclusively in the reaction
of guanidine with phenylazide AZ3 (this is similar to AZ1). The relative energy of the
transition structure is lower by 4.4 kcal mol−1 compared to the corresponding TS structure
in the reaction of unsubstituted azide. The resulting adduct 1M3b is less stable than the
unsubstituted adduct by 2.2 kcal mol−1.

For other azides, AZ2, AZ4, and AZ5, the formation of diaminotetrazoles is a two-step
process involving two TSs on the potential energy surface along the reaction pathway. The
first (TSNb, N = 2,4,5) is a TS structure of a nucleophilic attack that creates a bond between
the terminal azide nitrogen N3 and guanidine imino nitrogen N4 and the formation of
intermediate 1MNb, N = 2,4,5. The activation energies for initial nucleophilic attack are
significantly lower than for synchronous TS and the formation of diaminotetrazole, which
indicates that the nucleophilicity properties of azides are increased by methyl, benzyl, and
C6H5 groups [34]. In the second stage of the reaction, the five-membered ring is closed by
coupling the N1 azide nitrogen with a carbon atom from the guanidine group via a 1TSNb,
N = 2,4,5 structures. Examples of such structures are shown for AZ2 in Figure 9.
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Figure 9. Stationary points on the potential energy surface along the reaction pathway describing the
cycloaddition of methyl azide AZ2 to guanidine GU in direction (b).

The nitrogen released from the formed diaminotetrazole adducts during the reaction
path (b) goes through 3TS transition state structures with very high energies relative
to the reactant: 67.1 (methyl group, 3TS2b), 62.9 (phenyl group, 3TS3b), 69.6 (benzyl
group, 3TS4b), and 60.6 kcal mol−1 (perfluorophenyl group 3TS5b). IRC calculations
showed that in the case of an adduct with a methyl group at the N1 position at the
exit of N2, the amino group migrates from the C atom to the N1 position and a stable
N’,N’-aminomethylguanidine is formed (1P2b). In adducts with larger substituents (phenyl,
benzyl, and parafluorophenyl), migration of the amino group was not observed, but the
closure of the three-membered aziridine ring occurred (Figure 10).

The deamination of diaminotetrazole 2M structures goes through transition states
3TS before reaching the final product 2P (Figure 10). In the case of AZ1-AZ4, this process
is kinetically more favorable than nitrogen release. It should be emphasized, however,
that the energy barriers for this deamination (direction b) are also very high: 53.6 (-Me),
55.3 (-Ph), and 57.0 (-Bn). For AZ5, the energy of 3TS5b is 61.9 kcal mol−1 less favorable
than the nitrogen release by 1.3 kcal mol−1.
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Figure 10. Schematic representation of the rearrangement of adducts from the addition of azide to
guanidine in the direction (b).

The effect of substitution on the guanidine moiety was investigated by observing
the reaction of AZ4 with permethylated guanidine GU2. The energy profile is given in
Figure 11. In brief, the cycloaddition part of the energy profile is very similar to that of
unsubstituted guanidine (a comparison of energy profiles is provided in Figures 10 and 11),
which means that the direction (a) is less favorable and energetically more demanding than
direction (b). The energy barrier for cycloaddition in the (a) direction is almost identical
in the case of GU and GU2. In the (b) direction, all stationary points have a slightly lower
energy in the case of GU2. The N2 release, similar to that found for GU, is more favorable
in the (a) direction than the (b) direction. When the same behavior as before is observed in
the (a) direction, a stable diradical intermediate is formed, which is further rearranged or
cyclized into final products. The rearrangement is more energetically demanding in the
case of GU2, because the radical center needs to pick up Methyl instead of H, and more
energy is needed for this. Cyclization results in a less stable cyclic product, probably due
to steric hindrance. The IRC calculation shows that, in the (b) direction from the 2TS6b
structure, the expected cyclic product 3P6b is not formed (we expected this because, in the
case of GU, 3P5b was formed as a stable product). Instead, IRC leads to an intermediate
structure for IM6b. An attempt to optimize this structure without an energy barrier leads
to the final product, 1P6b (see Figure 12).

To summarize, the reaction energy profiles from this computational study indicate that
the product of cycloaddition formed through direction (b) should be kinetically favored;
however, further rearrangements (elimination) of initial cycloadducts can more easily
energetically proceed through direction (a). Hence, the formation of aminoguanidine from
direction (a) is a favorable process.
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Figure 11. Energy profile for the addition of perfluorophenyl azide AZ5 with permethylated guani-
dine GU2. Energies relative to reactants are given in kcal mol−1. (a) and (b) denote two modes of
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3. Materials and Methods

The B3LYP/6-311+G(2d,p) method [18,19] was used to study the mechanism of azide
addition to guanidine. Structures of reactants, transition states, and products were op-
timized without any symmetry constraints in the gas phase. Vibrational analysis was
performed, and all structures were characterized either as minima without imaginary fre-
quencies or as transition state structures with one imaginary frequency. The total energy of
each stationary point on the surface of the potential energy was corrected by unscaled ZPV
energy. The association of products with reactants via transition structures was confirmed
by IRC calculations. All energy profiles are given in Figures S1–S6 in Supplementary
Materials. To better mimic the usual experimental conditions, solvent effects were in-
cluded as single-point calculations on optimized PES stationary points using the SMD
method [35] and chloroform as solvent. Full population analysis with Hirshfeld [36,37] and
the NBO [38] option was performed on reactants and selected TS structures. Partial atomic
charges (Hirshfeld, NBO and Mulliken) of selected atoms are collected in Table S2. The
Gaussian09 [39] software package was used to perform quantum-mechanical calculations,
and the initial structures were generated using the Molden package [40].

Chloroform molecule is a very weak H-bonding acceptor and donor; therefore, strong
explicit interactions with solute are not expected. Nevertheless, the calculations with one
explicitly added CHCl3 molecule were undertaken for the reaction of AZ3 with guanidine
GU in the (a) direction. The results are listed in Supplementary Materials (Tables S3 and S5,
Figure S7). It was shown that the energy profile was not altered when compared to previous
results. Relative energies of all stationary points, with respect to reactants (TS as well as
minima), were ca. 1.1–3.1 kcal mol−1 higher. It can be concluded that potential energy
barriers were not substantially changed upon complexation with CHCl3 molecule. There
is no reason to expect that the effect of CHCl3 complexation would be different for other
azides studied in this paper.

4. Conclusions

The results of modeling the reaction pathways of the 1,3-dipolar cycloaddition of
azides to guanidine suggest the feasibility of an uncatalyzed reaction, but under very
drastic conditions. Regardless of the substituent that is present on azide, the formation
of the aminoguanidine derivative by reaction path (a) is the thermodynamically most
preferred process and, subject to high-temperature conditions, the expected product.

The reaction between azide and guanidine involves several steps, including the for-
mation of different tetrazole intermediates and their rearrangements. It is interesting to
note that the more favorable formation of the tetrazole intermediate is in the kinetically
less favorable branch of the putative mechanism direction (b). This suggests the possibility
of obtaining less thermodynamically favorable products under milder conditions but with
alternative activation or release of the nitrogen molecule (e.g., photochemical activation) or
deamination, because these processes have the highest barrier in the less favorable branch
of the mechanism.

The introduction of azide substituents should favorably affect the cycloaddition re-
activity of the azides, with the greatest effects being expected for the benzyl and perfluo-
rophenyl groups.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052342/s1, Figures S1–S6: Potential energy profiles
for cycloadditions in the gas phase; Figure S7: Stationary points along the reaction path with solvent
explicitly included; Tables S1–S3: Energies, selected partial atomic charges, charge analysis and
coordinates of all structures associated with this article.
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17. Margetić, D.; Warrener, R.N.; Butler, D.N.; Jin, C.-M. A Cascade Thermal Isomerisation of Cyclobutane di-(carbomethoxy)

∆2-1,2,3-Triazolines with Intramolecular 1,3-Dipolar Cycloreversion as the Key Step. Tetrahedron 2012, 68, 3306–3318. [CrossRef]
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