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Serotonin system in the
human placenta – the
knowns and unknowns
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Gernot Desoye2 and Jasminka Štefulj 1*

1Laboratory of Neurochemistry and Molecular Neurobiology, Division of Molecular Biology, Ruđer
Bošković Institute, Zagreb, Croatia, 2Department of Obstetrics and Gynecology, Medical University
of Graz, Graz, Austria
The biogenic monoamine serotonin (5-hydroxytryptamine, 5-HT) is a chemical

messenger widely distributed in the brain and various other organs. Its

homeostasis is maintained by the coordinated activity of a variety of proteins,

including enzymes of serotonin metabolism, transmembrane transporters of

serotonin, and serotonin receptors. The serotonin system has been identified

also in the placenta in rodent models as a key component of placental

physiology. However, serotonin pathways in the human placenta are far from

well understood. Their alterations may have long-lasting consequences for the

fetus that can manifest later in life. In this review, we summarize information on

the location of the components of the serotonin system in the human placenta,

their regulation, function, and alterations in pathological pregnancies. We

highlight current controversies and discuss important topics for

future research.

KEYWORDS
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MAO, TPH, fetal sex
1 Introduction

The placenta is a temporary fetal organ that develops early in pregnancy. It acts as a

barrier/facilitator for transport of gases, nutrients, and waste between maternal and fetal

blood. In addition, the placenta produces and secretes a variety of hormones, cytokines, and

growth factors that are essential for proper placental and fetal development and for

facilitating maternal adaptation to and maintenance of pregnancy (1). Human placental

development begins shortly after the blastocyst implants into the uterine wall, when

cytotrophoblast cells begin to proliferate and fuse into a multinucleate syncytiotrophoblast.

During the first trimester of pregnancy, as the cytotrophoblasts continue to invade the

uterine wall, protrusions and fetal vessels form, eventually giving rise to chorionic villi. At

the end of the first trimester, flow of fully oxygenated maternal blood is established enabling
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Perić et al. 10.3389/fendo.2022.1061317
maternal blood to fill the lacunae formed within the

syncytiotrophoblast (2). At the sites where the chorionic villi

anchor into the maternal decidua (anchoring villi), a

subpopulation of trophoblasts, the extravillous cytotrophoblasts,

remodels the maternal spiral arteries by transiently partially

replacing the endothelial cells lining the arteries and colonizing

the inner layers of the myometrium (1, 3). Finally, the placental

barrier formed consists of feto-placental endothelial cells lining

the fetal capillaries, a mesenchymal core (Hofbauer cells,

fibroblasts, and collagenous stroma), and cytotrophoblast cells

overlaid by a continuous layer of syncytiotrophoblast (4).

Although essential to the life of the fetus, the placenta is in

many aspects still a rather mysterious organ.

Primary biogenic monoamines, such as dopamine,

epinephrine, norepinephrine and serotonin, are widely used

chemical messengers that act as neurotransmitters, hormones

and autacoids. As low weight molecules with an amino group

attached to an aromatic ring, all are synthesized from aromatic L-

amino acids and inactivated by removal of the amino group. They

play various regulatory roles in the nervous system and other

organ systems. Serotonin not only regulates functions in the

mature organism, but also acts as a significant growth factor

during development and regulates various developmental

processes, including nervous system development. Homeostasis

of serotonin signaling during both development and adulthood is

maintained by the coordinated activity of a variety of serotonin-

regulating proteins, including its metabolic enzymes, membrane

transporters and receptors. These proteins are widely distributed

in the brain and various other organs, including the placenta.

Available evidence from clinical and animal studies suggests

that placental serotonin system regulates placental development

and functions and plays a role in proper embryo/fetal

development. Its alterations may have long-lasting consequences

for the fetus, which may manifest later in life like reverberations of

the original effect. Despite the emerging evidence of the important

role of serotonin for the feto-placental unit, its pathways in the

human placenta are still far from being understood.

Here, we summarize the current data on the presence,

regulation and function of serotonin system components in

the human placenta, as well as on their putative role in normal

and pathological pregnancy. We also highlight gaps and

controversies in current knowledge and discuss directions for

future research.
Abbreviations: 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, 5-hydroxytryptamine;

5-HTP, 5-hydroxytryptophan; 5-HTR, 5-hydroxytryptamine receptor; BH4,

tetrahydrobiopterin; FGR, fetal growth restriction; GDM, gestational diabetes

mellitus; IHC, immunohistochemistry; L-trp, L-tryptophan; MAO A/B,

monoamine oxidase A/B; PE, pre-eclampsia; OCT 1/2/3, organic cation

transporter 1/2/3; PMAT, plasma membrane monoamine transporter; VMAT 1/

2, vesicular monoamine transporter 1/2; SERT, serotonin transporter; TPH1/2,

tryptophan hydroxylase 1/2.
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2 Serotonin system and its
components in general

Serotonin (5-hydroxytryptamine, 5-HT), originally called

enteramine, is a biogenic monoamine first isolated in 1937

from enterochromaffin cells of the intestine, and shown to

induce intestinal contractions (5). In the 1940s, the same

substance was identified as a “tone-modifier” present in serum

and therefore named serotonin (6). Soon thereafter, its synthesis

was discovered in the brain and more recently in several other

peripheral sites (cf. below).

Today, serotonin is best known for its neurotransmitter role

in the brain, but it acts also as a hormone and autocrine/

paracrine messenger in various other organs (7). Many of its

roles are highly conserved in a variety of animal species (8). In

vertebrates, it modulates brain functions such as mood, emotion,

cognition, sleep/wake rhythm, appetite, sexual behavior, pain

perception, and response to stress (9). In addition, it regulates

and fine tunes numerous other physiological processes,

including hemostasis and vascular tone, gastrointestinal

functions, immune response, reproductive functions, bone

remodeling, and energy balance (7, 10, 11). Moreover, it

contributes to regulating organ development and regeneration,

by controlling basic cellular processes such as proliferation,

differentiation, and migration (12, 13). In the developing fetal

brain, it acts as a neurotrophic factor for various neuronal

populations and also regulates the maturation of its own

neurons (14, 15). Less well known are the antioxidant effects

of serotonin in scavenging reactive oxygen species and inhibiting

lipid peroxidation (16).

The effects of serotonin are primarily mediated by its

interaction with plasma membrane receptors. In humans, 14

different serotonin receptor subtypes were identified and

classified into 7 families (HTR1 to HTR7) based on structural,

pharmacological, and signal transduction properties. With the

exception of HTR3, a ligand-gated cation channel, all other

subtypes are G protein-coupled receptors that activate various

intracellular signaling pathways (17, 18). Serotonin receptors are

widely distributed in the brain and various peripheral organs.

During development, several serotonin receptor subtypes

emerge in the developing brain prior to enzymes for serotonin

synthesis, suggesting an extra-embryonic source of serotonin in

the early stages of neurodevelopment (19).

Serotonin can also act in a receptor-independent manner by

covalently binding to glutamine residues of various extracellular,

cytoplasmic or nuclear proteins, in a process known as

serotonylation. Serotonylation has been implicated in the

regulation of platelet functions (20, 21), insulin secretion (22)

and gene expression regulation (23).

Most of serotonin in the human body is produced and stored

in the gastrointestinal tract. Some of the intestine-derived

serotonin is secreted into the blood, where it is rapidly

internalized in platelets and only a tiny fraction (< 1%) remains
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free in plasma (24). There are other niches of local serotonin

synthesis in the human body, including serotonergic neurons,

pinealocytes, pulmonary artery endothelial cells, mammary

epithelial cells, mast cells, pancreatic beta cells, adipocytes,

hepatocytes, osteoclasts, melanocytes, keratinocytes, and

fibroblasts (25–27).

Serotonin biosynthesis uses essential amino acid L-tryptophan

(L-trp) as precursor and involves two enzymatic steps (Figure 1).

The first step, conversion of L-trp to 5-hydroxytryptophan (5-

HTP), is catalyzed by rate-limiting tryptophan hydroxylase (TPH)

and subsequent decarboxylation of 5-hydroxytryptophan to

serotonin, is catalyzed by aromatic acid decarboxylase. There

are two TPH isoforms, TPH1 and TPH2, encoded by genes

located on human chromosome 11 and 12, respectively. The

two TPH isoforms have different tissue expression – TPH1

(peripheral) is abundant in enterochromaffin cells of the

intestine and in other peripheral tissues, whereas TPH2

(neuronal) is found mainly in serotonergic neurons of the

brain (28).
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Serotonin is catabolized mainly to the final metabolite 5-

hydroxyindoleacetic acid (5-HIAA), which can be excreted by

the kidneys. The first step in this catabolic pathway, oxidative

deamination, is catalyzed by the outer mitochondrial membrane

enzyme monoamine oxidase (MAO). Its two isoforms, MAOA

and MAOB, are encoded by distinct genes on the human X

chromosome (29). Both isoforms catalyze oxidative deamination

of serotonin and various other endogenous and dietary

monoamines, with MAOA having preferential affinity for 5-

HT over other substrates (30). Serotonin can also be converted

into melatonin via two enzymatic steps.

As a hydrophilic substance, serotonin cannot freely pass

through the phospholipid bilayer of the plasma membranes but

is transported by specialized transmembrane proteins. These

plasma membrane transporters mediate the uptake of

extracellular serotonin into cells, which is the key mechanism

responsible for terminating receptor-mediated serotonin

signaling. There are two plasma membrane transport systems

for serotonin, with fundamentally different kinetic properties:
FIGURE 1

Serotonin metabolism. The figure shows the serotonin pathways in the gastrointestinal tract and in the central nervous system, the main sites of
its synthesis in the human body. Serotonin synthesized in the enterochromaffin cells of the intestine is released into the portal circulation, taken
up into platelets, and distributed to various other organs. Created with BioRender.com.
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the high-affinity/low capacity (uptake-1) system and the low-

affinity/high capacity (uptake-2) system. The uptake-1 system is

represented by the serotonin transporter (SERT, also known as

5-HTT) (31), whereas the uptake-2 system includes the plasma

membrane monoamine transporter (PMAT) and organic cation

transporters (OCTs) 1, 2 and 3 (32). SERT is highly selective for

serotonin while PMAT and OCTs can transport both serotonin

and other monoamines.

Once inside the cell, another group of transmembrane

transporters, the vesicular monoamine transporters (VMATs),

mediate the transfer of cytosolic serotonin into secretory/storage

organelles such as dense granules in platelets, synaptic vesicles in

neurons, and secretory granules in enterochromaffin cells,

pancreatic beta cells, mastocytes, and adipocytes (33–35). The

storage of serotonin in intracellular organelles protects it from

degradation by MAO and enables its release via exocytosis.

There are two closely related VMATs, VMAT1 and VMAT2,

with different pharmacological properties and tissue

distribution (36).

Export of serotonin from cells storing the amine in

secretory/storage organelles occurs via calcium-stimulated

exocytosis (37–39). The export mechanism(s) from cells where

it is not stored in intracellular vesicles are much less well

understood. One possible efflux pathway could be via OCT2

(40) or OCT3 (41), which transport organic cations in both

directions across the plasma membrane. It has been observed

that SERT also reverses the direction of transport in the presence

of some exogenous substrates (42), but it is unknown whether

this phenomenon occurs under physiological conditions.

Serotonin “leakage” via passive diffusion is generally

considered insignificant because of its hydrophilic properties,

but ability of serotonin to bind to lipid membranes (43) suggests

that this may be more important than assumed. Nevertheless, a

thorough investigation of more efficient and regulated, carrier-

mediated efflux mechanisms for serotonin is warranted.

The activity of serotonin metabolizing enzymes, receptors,

and transmembrane transporters is regulated by multiple

mechanisms. In general, transcription of serotonin-related

genes is modulated by genetic (44, 45) and epigenetic factors

(45–47) and transcripts are further processed by prominent,

tissue-specific alternative splicing and RNA editing (48, 49). In

addition, the activity of serotonin-related proteins is controlled

by post-translational modifications such as palmitoylation,

phosphorylation, glycosylation, serotonylation, and disulfide

bond formation, as well as by membrane trafficking, cell-

surface localization and interactions with other proteins

(50–55).

An interesting feature of the serotonin system, observed in

both rodents and humans, is the presence of sex differences in

some of its components resulting in functional differences

between males and females. In humans, sex differences have

been found in the concentration of serotonin and its metabolite

5-HIAA (56, 57) and in the rate of serotonin synthesis (58) in the
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central nervous system. The function/density of SERT and

certain serotonin receptors in the human brain also differs

between men and women (59, 60). In rodent models,

pharmacological (61, 62) or genetic (63) manipulation of the

serotonergic system causes sex-dependent behavioral and

biochemical changes.

Sex differences in the serotonin system occur early in

development. Studies in animal models have shown that the

developing serotonergic system of males and females is

differentially affected by various prenatal and perinatal factors

including the microbiome (64), maternal overnutrition (65), and

traumatic experiences such as parental separation (66). In

humans, prenatal exposure to selective serotonin reuptake

inhibitor (SSRI) antidepressants had sex-dependent effects on

neonatal brain microstructure (67). Sexually dimorphic features

of the human serotonergic system during the prenatal period

were also evidenced by a positive correlation between placental

and brain serotonin levels found only in male but not female

human fetuses (65).
3 Serotonin system and its
components in the human placenta

3.1 Localization of serotonin system
components in the human placenta

The human placenta expresses many components of the

serotonin system, including multiple serotonin receptor

subtypes and several other proteins responsible for handling

serotonin (Figure 2). The results of studies that examined the

expression and/or localization of serotonin-related genes in

human placenta are shown in Table 1 (studies in placental

tissue homogenates), Table 2 (studies in placental tissue

sections) and Table 3 (studies in isolated placental cells).

Several studies have also compared the expression of

serotonin-related genes in the human placenta between

different stages of pregnancy (Table 4).

3.1.1 Serotonin
Evidence on the presence of serotonin itself in the human

placental cells is yet inconclusive. An early immunohistochemical

(IHC) study of the human term placenta reported the presence of

serotonin in syncytiotrophoblast, stromal cells, and capillary

endothelium (86). However, recent IHC study of the human

term placenta detected serotonin only in platelets in the

chorionic villus vessels and maternal intervillous space, but not

in untreated syncytiotrophoblast and cytotrophoblasts (82).

Similarly, in the human first and second trimester placentas,

platelets were strongly stained for serotonin, while only traces of

serotonin were seen in untreated trophoblast cells (82). In the

presence of exogenously added serotonin, both cytoplasmic and

nuclear compartments of the cytotrophoblast stained for
frontiersin.org
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FIGURE 2

Localization of the serotonin system components in the human placenta according to gestational age. The figure shows the presence and
localization of the components of the serotonin system in the human first trimester and term placenta according to the available literature. For
details see main text. Components for which the results of different studies do not agree or which are reported only at the mRNA level are indicated
with a question mark (?). Cell types not studied to date, such as mast cells, Hofbauer cells and other stromal cells are not shown. Created with
BioRender.com.
TABLE 1 Presence of components of the serotonin system in homogenates of human placental tissue.

Gestational period mRNA Protein Activity Study

Enzymes

TPH1 First trimester + a n.a. + g (68)

Term + a n.a. + g (68)

First trimester + b (+) e + g (69)

Term (+) b + e + g (69)

Term (+)/− a n.a. n.a. (70)

TPH2 First trimester − a n.a. + g (68)

Term + a n.a. + g (68)

First trimester (+) b n.a. + g (69)

Term (+) b n.a. + g (69)

Term (+)/− a n.a. n.a. (70)

MAOA First trimester + b + e + (69)

Term + b + e + (69)

Term + b + f + (71)

Term + b n.a. n.a. (72)

Term n.a. + h + (73)

MAOB Term n.a. − h − (73)

Term + b n.a. n.a. (71)

(Continued)
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TABLE 1 Continued

Gestational period mRNA Protein Activity Study

Term + b n.a. n.a. (72)

Transporters

OCT1 First trimester + a n.a. n.a. (74)

(SLC22A1) Term + a n.a. n.a. (74)

Term (+) a n.a. n.a. (75)

Term − a n.a. n.a. (76)

Term − b n.a. n.a. (77)

OCT2 First trimester + a n.a. n.a. (74)

(SLC22A2) Term (+) a n.a. n.a. (74)

Term (+) a n.a. n.a. (75)

Term − a n.a. n.a. (76)

Term − b n.a. n.a. (77)

OCT3 First trimester + a n.a. n.a. (74)

(SLC22A3) First trimester (+) a (+) d n.a. (75)

Second trimester + a + d n.a. (75)

Term (+) a n.a. n.a. (74)

Term + a + d n.a. (75)

Term + a n.a. n.a. (76)

Term + b n.a. n.a. (77)

PMAT (SLC29A4) Term (+) a n.a. n.a. (75)

VMAT2 (SLC18A2) Term (+) b n.a. n.a. (78)

Receptors

HTR2A Term + b + e n.a (79)

Term + b + e n.a (80)

HTR2B Term + a n.a. n.a. (81)

HTR1D Term + a n.a. n.a. (68)

HTR1E Term + a n.a. n.a. (68)

HTR5A Term + a n.a. n.a. (68)

HTR5B Term + a n.a. n.a. (68)
Frontiers in Endocrinology
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aRT−qPCR (quantitative reverse transcriptase−polymerase chain reaction).
bRT−PCR (reverse transcription−end point PCR).
cddPCR (digital droplet PCR).
dLC−MS/MS (liquid chromatography coupled with tandem mass spectrometry).
eWestern blot.
fELISA (enzyme-linked immunosorbent assay).
gThe activity assay used does not distinguish between the activity of TPH1 and TPH2.
hBinding studies with isoform-specific inhibitors.
n.a.: not analysed; +: detected; −: not detected; (+): low levels detected; (+)/−: low levels detected or below detection limit.
TABLE 2 Results on the localization of mRNAs and proteins of serotonin-related genes in human placenta obtained by in situ hybridization (ISH)
and by immunohistochemical analysis (ISH), respectively.

Gestational period Location mRNA/protein Finding Study

Enzymes

TPH1 Weeks 7 to 39 All placental cells protein − (82)

First trimester Syncytiotrophoblast protein + (68, 83)

First trimester Cytotrophoblasts protein + (68, 83)

First trimester Extravillous cytotrophoblasts protein + (68, 83)

First trimester Villous stromal cells protein + (68, 83)

Term Syncytiotrophoblast protein + (68, 83)

(Continued)
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Perić et al. 10.3389/fendo.2022.1061317
serotonin, but only nuclei in the syncytiotrophoblast stained for

serotonin, whereas cytoplasmic serotonin staining in the

syncytiotrophoblast was observed only after pharmacological

blockade of serotonin catabolism (82). This suggests that

serotonin levels in the syncytiotrophoblast are tightly controlled

by rapid enzymatic degradation.
Frontiers in Endocrinology 07
3.1.2 Serotonin-synthesizing enzymes
Studies also disagree about the presence of serotonin

synthesis and expression of serotonin-synthesizing enzymes in

the placenta. It has long been assumed that all serotonin affecting

peripheral organ functions is synthesized in the intestine and

distributed throughout the body by circulating platelets
TABLE 2 Continued

Gestational period Location mRNA/protein Finding Study

Term Cytotrophoblasts protein + (68, 83)

TPH2 First trimester Syncytiotrophoblast protein + (68, 83)

First trimester Cytotrophoblasts protein + (68, 83)

First trimester Extravillous trophoblast protein + (68, 83)

First trimester Villous stromal cells protein + (68, 83)

Term Syncytiotrophoblast protein + (68, 83)

Term Cytotrophoblasts protein + (68, 83)

MAOA Weeks 8, 12, 40 Syncytiotrophoblast protein + (82)

Weeks 8, 12, 40 Cytotrophoblasts protein − (82)

Term Syncytiotrophoblast protein + (84)

Term Syncytiotrophoblast protein + (71)

Term Syncytiotrophoblast mRNA + (72)

Term Cytotrophoblasts mRNA (+) (72)

Term Vascular smooth muscle and endothelial cells mRNA (+) (72)

MAOB Term Syncytiotrophoblast protein − (71)

Term Syncytiotrophoblast mRNA + (72)

Term Cytotrophoblasts mRNA + (72)

Term Vascular smooth muscle and endothelial cells mRNA + (72)

Transporters

SERT (SLC6A4) Weeks 7 to 41 Syncytiotrophoblast protein + (82)

Weeks 7 to 41 Cytotrophoblasts protein + (82)

Term Syncytiotrophoblast protein + (80)

Term Cytotrophoblasts protein + (80)

Term Feto−placental endothelial cells protein + (80)

OCT1 (SLC22A1) Term Intima layer of some placental vessels mRNA −/+ (78)

OCT2 (SLC22A2) Term Intima layer of some placental vessels mRNA −/+ (78)

OCT3 (SLC22A3) Term Adventitial cells of placental vessels mRNA −/+ (78)

Term Syncytiotrophoblast protein + (85)

Term Feto-placental endothelial cells protein + (85)

Weeks 7 to 39 Syncytiotrophoblast protein − (82)

Weeks 7 to 39 Cytotrophoblasts protein + (82)

Weeks 7 to 39 Mesenchymal cells protein + (82)

VMAT2 (SLC18A2) Term Extravillous cytotrophoblasts mRNA −/+ (78)

Receptors

HTR2A Term Syncytiotrophoblast protein + (80)

Term Cytotrophoblasts protein + (80)

Term Feto−placental endothelial cells protein + (80)

HTR1A Term Syncytiotrophoblast mRNA + (86)

Term Cytotrophoblasts mRNA + (86)

Term Syncytiotrophoblast protein + (86)

Term Cytotrophoblasts protein + (86)
frontie
+: detected; −: not detected; −/+: sporadically detected weak signal.
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TABLE 3 Results on the presence of components of the serotonin system in human primary cell cultures (PCC) or single cells (SC).

Gestational period Cell type PCC/SC mRNA Protein Activity Study

Enzymes

TPH1 First trimester Syncytiotrophoblast PCC + a n.a. n.a. (83)

First trimester Cytotrophoblasts PCC + a n.a. n.a. (83)

First trimester Extravillous cytotrophoblasts PCC + a n.a. n.a. (83)

Term Syncytiotrophoblast PCC + a + e n.a. (83)

Term Cytotrophoblasts PCC + a + e n.a. (83)

Term Syncytiotrophoblast SC − b n.a. n.a. (87)

Term Cytotrophoblasts SC − b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC − b n.a. n.a. (87)

Term Trophoblasts PCC n.a. n.a. + g (68)

TPH2 First trimester Syncytiotrophoblast PCC + a n.a. n.a. (83)

First trimester Cytotrophoblasts PCC + a n.a. n.a. (83)

First trimester Extravillous cytotrophoblasts PCC + a n.a. n.a. (83)

Term Syncytiotrophoblast PCC + a + e n.a. (83)

Term Cytotrophoblasts PCC + a + e n.a. (83)

Term Syncytiotrophoblast SC − b n.a. n.a. (87)

Term Cytotrophoblasts SC (+) b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC − b n.a. n.a. (87)

MAOA First trimester Syncytiotrophoblast SC + b n.a. n.a. (88)

First trimester Cytotrophoblasts SC + b n.a. n.a. (88)

First trimester Extravillous cytotrophoblasts SC + b n.a. n.a. (88)

Term Syncytiotrophoblast SC + b n.a. n.a. (87)

Term Cytotrophoblasts SC + b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC + b n.a. n.a. (87)

Term Trophoblasts PCC + a n.a. n.a. (89)

Term Feto-placental endothelial cells PCC + a n.a. n.a. (89)

MAOB First trimester Syncytiotrophoblast SC − b n.a. n.a. (88)

First trimester Cytotrophoblasts SC − b n.a. n.a. (88)

First trimester Extravillous cytotrophoblasts SC − b n.a. n.a. (88)

Term Syncytiotrophoblast SC − b n.a. n.a. (87)

Term Cytotrophoblasts SC − b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC − b n.a. n.a. (87)

Transporters

SERT First trimester Syncytiotrophoblast SC + b n.a. n.a. (88)

(SLC6A4) First trimester Cytotrophoblasts SC + b n.a. n.a. (88)

First trimester Extravillous cytotrophoblasts SC (+) b n.a. n.a. (88)

Term Syncytiotrophoblast SC + b n.a. n.a. (87)

Term Cytotrophoblasts SC + b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC + b n.a. n.a. (87)

Term Syncytiotrophoblast PCC + c + e n.a. (80)

Term Cytotrophoblasts PCC + c + e n.a. (80)

Term Feto-placental endothelial cells PCC (+) a n.a. − (89)

OCT1 Term Trophoblasts PCC (+) a n.a. n.a. (89)

(SLC22A1) Term Feto-placental endothelial cells PCC (+)/− a n.a. n.a. (89)

OCT2 Term Trophoblasts PCC − a n.a. n.a. (89)

(SLC22A2) Term Feto-placental endothelial cells PCC − a n.a. n.a. (89)

OCT3 First trimester Syncytiotrophoblast SC + b n.a. n.a. (88)

(SLC22A3) First trimester Cytotrophoblasts SC + b n.a. n.a. (88)

(Continued)
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TABLE 3 Continued

Gestational period Cell type PCC/SC mRNA Protein Activity Study

First trimester Extravillous cytotrophoblasts SC + b n.a. n.a. (88)

Term Syncytiotrophoblast SC + b n.a. n.a. (87)

Term Cytotrophoblasts SC − b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC − b n.a. n.a. (87)

Term Trophoblasts PCC (+)/− a n.a. n.a. (89)

Term Feto-placental endothelial cells PCC (+)/− a n.a. n.a. (89)

PMAT First trimester Syncytiotrophoblast SC − b n.a. n.a. (88)

(SLC29A4) First trimester Cytotrophoblasts SC − b n.a. n.a. (88)

First trimester Extravillous cytotrophoblasts SC − b n.a. n.a. (88)

Term Syncytiotrophoblast SC − b n.a. n.a. (87)

Term Cytotrophoblasts SC − b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC − b n.a. n.a. (87)

Term Trophoblasts PCC − a n.a. − (89)

Term Feto-placental endothelial cells PCC + a n.a. + (89)

VMAT1 First trimester Syncytiotrophoblast SC − b n.a. n.a. (88)

(SLC18A1) First trimester Cytotrophoblasts SC − b n.a. n.a. (88)

First trimester Extravillous cytotrophoblasts SC − b n.a. n.a. (88)

Term Syncytiotrophoblast SC − b n.a. n.a. (87)

Term Cytotrophoblasts SC − b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC − b n.a. n.a. (87)

VMAT2 Term Trophoblasts PCC − d n.a. − (90)

(SLC18A2) Term Syncytiotrophoblast SC (+) b n.a. n.a. (87)

Term Cytotrophoblasts SC (+) b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC + b n.a. n.a. (87)

Receptors

HTR2A Term Cytrophoblasts PCC + c + e n.a. (80)

Term Syncytiotrophoblast PCC + c + e n.a. (80)

Term Cytotrophoblasts SC (+) b n.a. n.a. (87)

Term Syncytiotrophoblast SC − b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC − b n.a. n.a. (87)

Term Trophoblasts PCC n.a. + f n.a. (91)

HTR2B First trimester Cytotrophoblasts SC + b n.a. n.a. (88)

First trimester Syncytiotrophoblast SC − b n.a. n.a. (88)

First trimester Extravillous cytotrophoblasts SC − b n.a. n.a. (88)

Term Cytotrophoblasts SC + b n.a. n.a. (87)

Term Syncytiotrophoblast SC + b n.a. n.a. (87)

Term Extravillous cytotrophoblasts SC − b n.a. n.a. (87)

HTR1D Term Syncytotrophoblast SC (+) b n.a. n.a. (87)

HTR1F Term Syncytotrophoblast SC (+) b n.a. n.a. (87)

HTR3 (A) Term Cytotrophoblasts SC (+) b n.a. n.a. (87)

HTR4 Term Cytotrophoblasts SC (+) b n.a. n.a. (87)

HTR7 First trimester Cytotrophoblasts SC + b n.a. n.a. (88)
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aRT−qPCR (quantitative reverse transcriptase−polymerase chain reaction.
bRNA-sequencing.
cRT−PCR (reverse transcription−end point PCR).
dNorthern blot.
eWestern blot.
fReceptor binding studies.
gThe activity assay used does not distinguish between the activity of TPH1 and TPH2.
n.a.: not analysed; +: detected; −: not detected; (+): low levels detected; (+)/−: low levels detected or below detection limit.
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(Figure 1). This classical view of serotonin as a gut-derived

hormone has been extended by the discovery of local sources of

serotonin in various organs expressing TPH1, a peripheral

isoform of the rate-limiting enzyme in serotonin synthesis

(26). As for the placenta, an initial study demonstrated a lack

of serotonin synthesis in the mouse placenta (92). However,

Bonnin et al. (93) found evidence for serotonin synthesis in both

mouse and human placenta. They demonstrated that levels of

both serotonin and its immediate precursor (5-HTP) increase in

homogenates of human first trimester placenta incubated with

L-tryptophan (L-trp) and tetrahydrobiopterin (BH4, cofactor for

TPH1 and TPH2 activity) (93). Conversion of L-trp to 5-HTP or

serotonin in homogenates of human first trimester placenta has

been replicated in independent studies and has also been
Frontiers in Endocrinology 10
demonstrated in homogenates of human term placenta (68,

69) and in cultured human term syncytiotrophoblast (83).

In addition, the presence of TPH1 and TPH2 mRNAs

(encoding the peripheral and neuronal isoforms, respectively,

of the rate-limiting enzyme of serotonin synthesis) and the

presence of TPH1 and TPH2 proteins was demonstrated in

primary syncytiotrophoblast and cytotrophoblasts isolated from

human first trimester and term placentas (83). Studies in human

placental homogenates reported that TPH1 mRNA was the

predominant isoform throughout pregnancy (69) or the only

one detected in the first trimester (68). In IHC analysis, TPH1

and TPH2 proteins were localized in syncytiotrophoblast,

cytotrophoblasts, and some stromal cells of human first

trimester and term placentas (68, 83).
TABLE 4 Changes in the expression of serotonin components in human placenta in the third trimester compared with the first trimester of
pregnancy.

Gene Location mRNA/protein First trimester Term Change* Study

Enzymes

TPH1 Tissue homogenate mRNA y y ↓ (69)

Tissue homogenate protein y y = (69)

Tissue homogenate activity y y = (69)

TPH2 Tissue homogenate mRNA y y = (69)

Tissue homogenate mRNA n y ↑ (68)

MAOA Tissue homogenate mRNA y y ↓ (69)

Tissue homogenate protein y y = (69)

Tissue homogenate activity y y ↑ (69)

Syncytiotrophoblast protein y y = (82)

MAOB Cytotrophoblasts mRNA n y ↑ (87, 88)

Transporters

SERT Tissue homogenate mRNA y y ↓ (69)

(SLC6A4) protein y y ↑ (69)

OCT1 Tissue homogenate mRNA y y = (74)

(SLC22A1)

OCT2 Tissue homogenate mRNA y y ↓ (74)

(SLC22A2)

OCT3 Tissue homogenate mRNA y y = (69, 75)

(SLC22A3) Tissue homogenate protein y y ↑ (69, 75)

Tissue homogenate mRNA y y ↓ (74)

Cytotrophoblasts mRNA y n ↓ (87, 88)

Extravillous cytotrophoblasts mRNA y n ↓ (87, 88)

PMAT Cytotrophoblasts mRNA y n ↓ (87, 88)

(SLC29A4)

Receptors

HTR1D Cytotrophoblasts mRNA y n ↓ (87, 88)

Syncytiotrophoblast mRNA n y ↑ (87, 88)

Extravillous cytotrophoblasts mRNA y n ↓ (87, 88)

HTR2A Cytotrophoblasts mRNA n y ↑ (87, 88)

HTR2B Syncytiotrophoblast mRNA n y ↑ (87, 88)

HTR7 Cytotrophoblasts mRNA y n ↓ (87, 88)
frontie
y: detected, n: not detected.
* ↑, up-regulated; ↓, down-regulated; =, no change at term of pregnancy compared to first trimester.
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In contrast to the above results, another IHC study failed to

find TPH1 protein in human placentas from the first and second

trimesters of pregnancy, while rare TPH1 signals were observed

in human term placentas, differing from strong signals in human

appendix (82). In addition, single-cell transcriptome analysis by

RNA-sequencing (RNA-seq) did not detect TPH1 mRNAs in

human term syncytiotrophoblast and cytotrophoblasts, whereas

TPH2 mRNAs were detected only in term cytotrophoblasts, but

at very low levels (87).

3.1.3 Serotonin-catabolizing enzymes
Serotonin catabolizing isoenzyme MAOA is abundant in the

human placenta throughout pregnancy, as demonstrated by IHC

(82) and enzyme activity studies (69). Known sites of MAOA

expression in human placenta appear to be syncytiotrophoblast

(29, 72, 82, 84), cytotrophoblasts (72, 87, 88) and feto-placental

endothelial cells (89). Single cell transcriptomic data show that

syncytiotrophoblast as compared with cytotrophoblasts contain

much higher levels of MAOA mRNA (about 10-fold higher in

the first trimester, and about 2-fold higher at term) (87, 88).

mRNA encoding MAOB, MAO isoform with a lower affinity for

serotonin, was detected at very low levels in term placenta (70,

87) and was absent in first trimester placenta (88).

3.1.4 Serotonin receptors
Ten serotonin receptor subtypes (HTR1A, HTR1D, HTR1E,

HTR1F, HTR2A, HTR2B, HTR3 (subunit HTR3A), HTR4,

HTR5A and HTR5B) have been reported to be expressed in the

human term placenta (68, 79–81, 86, 87, 91). HTR2A has been

localized in syncytiotrophoblast, cytotrophoblasts and fetal capillary

endothelium of human term placentas (80). HTR2B, the most

abundant subtype according to single cell transcriptomic analyses, is

also expressed in both syncytiotrophoblast and cytotrophoblasts

(81, 87). In contrast, HTR1D and HTR1F mRNAs were detected

only in syncytiotrophoblast, whereas HTR3A and HTR4 mRNAs

were found at low levels only in cytotrophoblasts (87) of human

term placentas. So far, only HTR1D, HTR2B and HTR7 mRNAs

have been detected in human first trimester placentas (specifically in

cytotrophoblasts) (88).

However, it should be emphasized that the expression of

most serotonin receptor subtypes in human placenta (with the

exception of HTR2A (79, 80, 91) and HTR1A (86)) has been

detected only at the mRNA level, so the presence and location of

their proteins and their functions in human placenta require

further investigation.
3.1.5 Vesicular transporters
Transcripts encoding VMAT2 were not detected in cultured

human term trophoblasts by Northern blot analysis, and

functional analysis demonstrated the absence of VMAT activity

in the human trophoblast cell line JAR (90). Furthermore, in situ

hybridization (ISH) did not detect VMAT2 mRNA in human
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villous trophoblasts, while only a weak signal was occasionally

seen in extravillous trophoblasts within the uterine wall; very low

levels were detected in placental homogenates by the more

sensitive RT-PCR analysis (78), which may also have targeted

platelet mRNA content. Single-cell transcriptome (RNA-seq)

analyses reported that VMAT1 mRNA was not found in

trophoblasts throughout pregnancy, while only very low levels

of VMAT2 mRNA were detected in term trophoblasts (87, 88).

Taken together, these results indicate that serotonin in

trophoblasts is not stored in intracellular vesicles.

3.1.6 Plasma membrane transporters
Human placenta expresses several plasma membrane

transporters for serotonin. Activity of the high-affinity SERT

has been shown in plasma membrane vesicles (70, 94) and

primary trophoblasts (89) isolated from human term placenta.

SERT mRNA levels were lower in term compared to first

trimester placentas, while the opposite was found for SERT

protein levels (69). IHC analyses localized SERT protein to both

syncytiotrophoblast and cytotrophoblasts (80, 82). Single-cell

transcriptome analyses showed lower SERT mRNA levels in

syncytiotrophoblast and cytotrophoblasts, both in the first

trimester (88) and at term (87). On the other hand, recent

study found that SERT mRNA levels were upregulated during

spontaneous syncytialization of human primary trophoblasts,

but SERT protein and activity levels were downregulated by

syncytialization (95). Low levels of SERT mRNA and SERT

protein were also detected in feto-placental endothelial cells (80,

82, 89), but functional analysis did not support significant SERT

activity in these cells (89).

Low-affinity, polyspecific transporters OCT1 and OCT2

have been reported to be absent (77) or expressed at very low

levels (74–76, 78, 89) in human first trimester and term

placentas. This is consistent with the absence of their mRNAs

in single cell transcriptome analyses (87, 88).

OCT3 is the most prominent member of OCT family and

abundant in the human placenta throughout pregnancy (76,

77), with slightly lower mRNA and protein levels found in the

first trimester than at term (69, 75). OCT3 protein and activity

were detected in membrane vesicles isolated from the fetus-

facing (basal) side, but not from the maternal-facing

(microvillous) side of the human term placenta (70, 77).

However, the exact cell type(s) harboring this transporter are

not entirely clear. Thus, in one IHC study, prominent OCT3

staining was found on basolateral surface and in cytoplasm of

cytotrophoblasts, while it was absent in syncytiotrophoblast in

all three trimesters of pregnancy (82). This is consistent with

OCT3 protein levels being down-regulated during spontaneous

syncytialization of human term primary trophoblasts (95).

However, in another study, OCT3 was localized to the basal

(fetal-facing), but not the apical (maternal-facing) membrane

of term syncytiotrophoblast (85). Weak OCT3 staining was

occasionally observed in fetal capillaries (82, 85), but OCT3
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mRNA was not detected in primary feto-placental endothelial

cells (89). Single-cell transcriptome analysis by RNA-Seq

demonstrated weak OCT3 mRNA signal in all types of first

trimester trophoblasts (88), while at the end of pregnancy,

O C T 3 t r a n s c r i p t s w e r e d e t e c t e d o n l y i n

syncytiotrophoblast (87).

Low levels of PMAT mRNA, encoding another low-affinity

serotonin transporter, were detected in human term placental

tissue (75). PMAT mRNA was absent in human first trimester

(88) and term trophoblasts (87, 89), but was detected in human

term feto-placental endothelial cells (89). In addition, efficient

low-affinity serotonin uptake activity was detected in feto-

placental endothelial cells, most likely mediated by PMAT (89).
3.2 Functions of serotonin system
components in the human placenta

Serotonin is a potent vasoactive agent. Therefore, it was

recognized early on that the placental serotonin system may

contribute to the regulation of umbilico-placental blood flow.

Serotonin induced a strong contractile effect on human

umbilical and placental arteries and veins in tissue explants

(96–98). Ketanserin, a known antagonist of the HTR2A receptor,

significantly decreased the contractile response to serotonin in

chorionic artery and vein segments from human placentas,

suggesting that HTR2A is likely the receptor subtype

mediating the vasoconstrictive effects of serotonin (98). At the

cellular level, several studies have aimed to understanding the

function and regulation of the serotonin system in the human

placenta using cell culture models. Some of these studies have

been performed on the human trophoblast-like cell lines such as

BeWo, JEG-3 and JAR. These choriocarcinoma-derived cells are

commonly used in vitro models in human placenta research

(99). Recently, however, concerns have been raised about their

suitability for studying serotonin pathways (70, 89, 95). Suitable

in vitromodels for future studies would be primary trophoblasts,

placental explants, and organoid trophoblast cultures (100), as

well as primary feto-placental endothelial cells, Hofbauer cells,

and other cell types. Also, in vitro studies should preferably be

conducted at physiological oxygen tension as TPH1 and SERT

have been shown to be oxygen-regulated in pulmonary

endothelial and smooth muscle cells, respectively (101, 102).

Thus, serotonin has been shown to stimulate proliferation of

human placental trophoblast-like cell lines (BeWo, JEG-3)

through activation of the HTR2A receptor and subsequent

activation of a downstream signaling cascade involving both

the ERK1/2 and STAT3 signaling pathways (79, 103, 104). Based

on the known roles of the ERK1/2 and STAT3 signaling

pathways, it has been proposed that serotonin regulates

placental development and structure by controlling cell

viability, differentiation, migration and invasion (103, 104). In

vivo, the role of serotonin in regulating placental development is
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supported by a study in a knock-out mouse model showing that

altered serotonin levels in placental intervillous space impair

trophoblast survival and disrupt normal placental

structure (105).

One more role assigned to the HTR2A receptor in the

human placenta relates to the regulation of placental estrogen

production. Specifically, studies in human primary trophoblasts

(106) as well as trophoblast-like cell lines (BeWo, JEG-3) (107)

have shown that serotonin induces the expression and activity of

aromatase CYP19, a key enzyme in placental estrogen synthesis,

via activation of the HTR2A receptor. The observed increase in

aromatase activity was induced by HTR2A-mediated

stimulation of the protein kinase C pathway (107) and

possibly the JAK2/STAT3 pathway (104).

The expression of various serotonin receptor subtypes (cf.

3.1.4), coupled to different intracellular signaling pathways,

suggests diverse and as yet unknown roles for serotonin in the

human placenta. For example, some of the serotonin receptor

subtypes expressed in the human term placenta (i.e., HTR1F,

HTR3, and HTR4) have been shown to regulate mitochondrial

function and homeostasis in different mouse organs (108, 109).

It would be interesting to investigate whether serotonin plays a

similar role in the human placenta during late pregnancy.
3.3 Regulation of serotonin system
components in the human placenta

The mechanisms that regulate components of the serotonin

system in the human placenta are largely unexplored, with

studies to date focusing on SERT and MAOA.

Expression of the SERT is regulated by two distinct variable

number tandem repeat polymorphisms in the promoter and

intron 2 region (5HTTLPR and STin2, respectively), as well as by

several single nucleotide polymorphisms (SNPs) in the promoter

region, including rs25531 and rs25532 (110). In addition to

genetic variants, epigenetic mechanisms play an important role

in the regulation of SERT expression. SERT promoter contains a

region enriched in CpG dinucleotides (CpG island), a sequence

context in which cytosine is frequently methylated. Increased

methylation of this region correlates with decreased SERT

mRNA expression (111). We have found that SERT mRNA

levels in the human term placenta are predominantly

determined by SERT methylation in this region and not by

SERT genetic variants (45). Studies in the trophoblast-like cell

line JAR suggest that small noncoding RNAs, namely miR-15a

and miR-16, also play an important role in the epigenetic

regulation of SERT expression in the human placenta (46).

Expression and activity of the SERT in JAR cells is modulated

by cytokines. Interleukin-1 upregulated SERT expression in JAR

cells via cyclic adenosine monophosphate-independent signaling

pathways (112), whereas interleukin-6 downregulated its expression

and activity via a STAT3-dependent signaling pathway (113).
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Perić et al. 10.3389/fendo.2022.1061317
SERT activity in placental cells is regulated also by hormones

such as insulin and estrogen. Insulin upregulates SERT activity

in primary human trophoblast by enhancing dissociation of

SERT protein from the endoplasmic reticulum chaperone

ERp44, thereby enabling its maturation and translocation to

the cell surface (55). Estrogen (17b-estradiol) decreased the

activity of SERT in trophoblast-like BeWo cells, but increased

the level of SERT protein and had no effect on the level of SERT

mRNA (114). A discrepancy between the levels of SERT mRNA

and SERT protein in human placenta was also observed in

relation to the effects of gestational age (69) and trophoblast

differentiation (95), indicating the presence of important

regulatory mechanisms acting at the translational level.

The increasing use of SERT-targeting antidepressants (115–

117) and psychostimulants (118) during pregnancy has led to

investigations into the potential of these drugs to alter SERT

activity in the placenta. We have shown that many common

antidepressants at therapeutic plasma concentrations effectively

inhibit the activity of SERT in primary trophoblasts isolated

from human term placentas (89). This finding and studies in

other placental models (82, 94, 119–121) highlight that

antidepressant therapy in pregnancy may affect serotonin

homeostasis in the placenta.

Expression of the MAOA gene is regulated by a variable

number tandem repeat polymorphism located upstream of the

MAOA coding region (MAOA-uVNTR), consisting of a 30-bp

sequence present in 2, 3, 3.5, 4 or 5 copies (122). In trophoblast-

like JAR cells, alleles with 3.5 and 4 repeats were transcribed

more efficiently than those with 3 or 5 repeats (122), suggesting

that alleles with 3.5 and 4 repeats correspond to the optimal

length of this regulatory region. Consistent with this, the 4-

repeat allele was associated with higher levels of MAOA mRNA

in human term placenta than the 3-repeat allele (123). The

MAOA promoter also contains two CpG islands (124), but their

role in regulating MAOA transcription in the placenta has not

yet been studied.
3.4 Changes of placental serotonin
system components in pregnancy
pathologies

It has long been known that serotonin signaling plays a role

in the pathogenesis of pre-eclampsia (PE), a hypertensive

pregnancy disorder characterized by multiple organ

dysfunction. As suggested recently (125), dysregulation of

serotonin signaling may underlie several features of PE,

inc luding excess ive pla te le t aggregat ion , vascu lar

hyporeactivity, and pro-inflammation. The placentas of

pregnancies complicated with PE show decreased MAOA

activity (71, 126), which may lead to decreased serotonin

catabolism and contribute to the elevated circulating serotonin

levels observed in women with PE. On the other hand, placental
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SERT activity is unchanged in PE (126). Decreased vascular

reactivity of placental and umbilical vessels to serotonin has also

been noted in PE (96, 98), possibly contributing to decreased

umbilico-placental blood flow (127).

Changes in placental serotonin system have been found also

in gestational diabetes mellitus (GDM), with most studies

focusing on SERT. An initial study in a small cohort found

decreased SERT mRNA and protein levels in placentas from

GDM pregnancies (80). However, later studies with larger and

better defined samples reported increased SERT mRNA levels in

GDM placentas (45, 128). In contrast, primary trophoblasts

isolated from GDM placentas showed decreased activity of

SERT, which was attributed to decreased localization of the

SERT protein to the plasma membrane (55). Interestingly,

trophoblasts isolated from GDM placentas also showed an

attenuated response to in vitro insulin treatment in terms of

dissociation of SERT from the endoplasmic reticulum chaperone

ERp44, suggesting that defects in insulin signaling are

responsible for the impaired functional expression of SERT on

the cell surface in GDM trophoblasts (55). In addition to

increased expression of SERT, GDM placentas exhibited

decreased methylation of the SERT promoter region (45). It

may be speculated that epigenetic mechanisms increase SERT

transcription to counteract the impact of defective insulin

signaling on the activity of SERT in GDM placentas. It has

also been reported that expression of serotonin receptor HTR2A

is decreased in GDM placentas (80). Interestingly, DNA

methylation of the placental HTR2A gene was associated with

maternal overweight/obesity and GDM only in female, but not

in male placentas (129).

Maternal mental health in pregnancy was also associated

with alterations in placental serotonin homeostasis. As with PE,

downregulation of MAOA expression in the placenta has been

associated with increased symptoms of maternal depression

during pregnancy (130). Maternal alcohol consumption during

pregnancy was associated with decreased SERT mRNA levels

and increased TPH1 mRNA levels in the placenta (131).

Recent evidence links alterations in the placental serotonin

system to fetal growth restriction (FGR) (68) and preterm birth

(132), serious pregnancy conditions accounting for significant

perinatal morbidity and mortality. Thus, increased TPH activity

and altered expression of SERT, TPH2, HTR1D, and HTR5A

genes were found in third-trimester placentas from FGR

pregnancies compared with gestational age-matched control

pregnancies (68). In placentas from spontaneous preterm

births, expression of both SERT and OCT3 transporters was

upregulated compared with placentas from term births (132).

In summary, changes of serotonin system in the human

placenta have been associated with several pregnancy-related

medical conditions, including PE, GDM, maternal overweight/

obesity, maternal mental health in pregnancy, FGR, and preterm

birth. Whether the observed changes are causally involved in the

pathogenesis of the above pathologies or are their consequence,
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or both, requires further investigation. Further studies are also

needed to validate these findings in independent samples and to

investigate the mechanisms underlying the observed changes.
4 Outlook - future perspectives

4.1 Does the human placenta provide
serotonin to the fetus?

An important role attributed to the placental serotonin

system in animal studies is to provide the embryo/fetus with

an exogenous source of serotonin needed for proper brain and

other organ development (93, 133, 134). However, studies

disagree on the exact source of serotonin delivered to the fetus

via the placenta, supporting either its maternal origin (133) or its

synthesis in the placenta (93). In humans, it is generally believed

that the placenta supplies maternal and/or placental serotonin to

the developing fetal brain until the late first/early second

trimester of pregnancy, when serotonergic neurons organize in

the raphe nuclei and synthesis begins in situ (19, 135). This is

supported by a recent discovery of a (male-specific) correlation

between serotonin levels in the human fetal brain and the

placenta (65).

As mentioned earlier (cf. 3.1.2), most studies to date support

the ability of the human placenta to synthesize serotonin during

both early and late pregnancy (68, 69, 83, 93). However, it should

be noted that none of these studies examined the time and

substrate concentration dependence of 5-HTP or serotonin

production, or applied pharmacological approaches to

demonstrate the involvement of TPH1/2 enzyme(s) (68, 69,

83, 93). In addition, the TPH activity assays used relatively

high concentrations of L-trp (200 or 250 µM) compared with the

Michaelis-Menten constant of human TPH for L-trp (7.5 µM)

(136). Thus, convincing evidence for serotonin synthesis in the

human placenta is still lacking. This is also supported by

contrasting results obtained with a combination of

immunohistochemical and pharmacological experiments on

human placental tissue sections and placental explants (82).

These argue that serotonin synthesis does not occur in the

human placenta at any stage of pregnancy. Rather, the results

suggest that serotonin released from maternal platelets into the

intervillous space may be taken up into the syncytiotrophoblast

via SERT and subsequently transferred to the fetal blood via a

putative pathway involving several other proteins such as gap

junction connexin-43 and OCT3 (82).

Placental perfusion is a method allowing studies into

potential transfer of substances from the maternal to the fetal

side of the placenta or in the opposite direction. The possible

release of substances synthesized in the placenta into the

maternal or fetal circulation can also be studied by this

method. The only perfusion study performed to date on the

human placenta suggests that serotonin is not transferred in
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appreciable amounts from the maternal to the fetal side at term

pregnancy (137). This is consistent with results showing that

serotonin taken up in the human term syncytiotrophoblast is

rapidly catabolized by MAOA (70). Perfusion studies

investigating the transfer of maternal/placental serotonin into

fetal blood during early human pregnancy have not yet

been performed.

In conclusion, current evidence does not support

transplacental transfer of maternal serotonin into the fetal

circulation at the end of human pregnancy. Further studies are

needed to determine whether this might be different at earlier

stages of pregnancy and to clarify whether the human placenta is

capable of synthesizing serotonin under physiological conditions.
4.2 Epigenetic regulation of serotonin
system components and epigenetic
effects of serotonin

Epigenetic mechanisms are central to gene regulation and

gene-environment interactions and are therefore of particular

importance to the biology of the placenta as an organ that

responds to changes in the intrauterine environment (138). The

regulation of placental serotonin homeostasis by epigenetic

mechanisms remains largely unexplored – so far, only two

studies have addressed the role of DNA methylation (45) and

noncoding RNAs (46) in the regulation of serotonin-related

genes in the human placenta. Further studies on the role of DNA

methylation, histone modifications, and noncoding RNAs and

how they are modulated by various factors are warranted. In

addition, further important studies should encompass the

interaction of epigenetic mechanisms with functionally

relevant genetic polymorphisms and post-translational

regulatory mechanisms.

In addition to investigating the epigenetic regulation of

genes involved in serotonin signaling, also the possible role of

serotonin as a regulator of placental gene expression warrants

studies. Recently, serotonylation of glutamine 5 on histone H3

(H3Q5ser) was identified as an epigenetic mechanism involved

in the regulation of genes important for neuronal cell

differentiation (23). The H3Q5ser modification was found in

both neuronal and non-neuronal brain cells as well as in heart,

colon, and blood samples. Its presence in the placenta has not

been examined. However, findings on the presence of serotonin

in the nuclei of various human placental cells (82) encourage

future research on its presence and role in the human placenta.
4.3 Role of placental serotonin system in the
developmental origins of health and disease

Animal studies show that changes in maternal and placental

serotonin homeostasis not only impact the developing fetal brain
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but also have lasting neurochemical and neurobehavioral

consequences (113, 114, 116, 117). In humans, changes in

serotonin levels in maternal blood have been linked to an

increased risk of neurodevelopmental disorders in the

offspring, such as attention deficit/hyperactivity disorder (139)

and autism (140). As for the human placenta, methylation of the

placental HTR2A gene has been linked to key behavioral

measures of neurodevelopment (quality of movement and

attention) in human newborns (141), and placental expression

of the SERT gene has been linked to regulatory behaviors in

infants at two weeks of age (142). Furthermore, placental

expression of the SERT and HTR2B genes has been associated

with the incidence of febrile seizure in children (81), while

placental expression of the MAOA gene has been identified as

a biological mediator of the association between prenatal stress

and child temperament at 12 months of age (143). Further

longitudinal studies in human cohorts are needed to better

understand the consequences of altered placental serotonin

homeostasis in the developmental origins of health and

disease. As mentioned earlier, changes in placental serotonin

homeostasis have been associated with various pregnancy

disorders (cf. 3.4). It is, therefore, of utmost importance to

clarify whether they are innocent bystanders or play a role in

the development of the disorder or in mediating the

consequences for fetal health outcomes. This could easily open

up new therapeutic opportunities, as there are already many

approved drugs available that modulate the activity of various

serotonin system components (144–146).
4.4 The importance of fetal sex

A well-established feature of the serotonin system in the

brain of both humans and rodents is sexual dimorphism (cf. 2).

Studies in rodents showing that serotonin uptake into placental

membrane vesicles differs between female and male fetuses (70)

suggest a sexual dimorphism also in placental handling of

serotonin. The sexually dimorphic nature of the serotonin

system in the human placenta is supported by the male-

specific correlation of serotonin levels in placenta and fetal

brain (65). In addition, methylation of the HTR2A gene in

human placenta has been shown to be associated with

maternal overweight/obesity only in female placentas (129),

suggesting that fetal sex modulates the sensitivity of the

placental serotonin system to the intrauterine environment.

Furthermore, studies in animals and humans suggest an

interaction between sex hormones and the serotonin system.

For example, estrogens modulate the synthesis, uptake and

catabolism of serotonin (147), while changes in serotonin

signaling have been reported to affect estrogen production

(106, 148). Overall, the influence of fetal sex needs to be
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considered in future studies of the function, regulation, and

pathology-related changes of the serotonin system in the

human placenta.
5 Final comments

Phylogenetically, serotonin is an ancient molecule.

However, it has taken a long while until the components of

the complex system regulating activity of serotonin have been

identified in general. Only in the past decade, the serotonin

system has received attention for its potential role in

reproduction and development. Studies into serotonin’s

involvement in the maternal-fetal interplay to ultimately

contribute to fetal development through its actions on and

within the placenta have been hampered for a variety of

reasons. These include, but are not limited to, availability of

proper experimental systems that fully capture the complexity of

cellular interplay in the placenta, the difficulty in separating

potential effects of maternal from those of fetal serotonin and by

the temporal changes of placental cellular composition and

function throughout pregnancy.

In this review we have not only summarized the current

knowledge in this emerging field, but also provided suggestions

for further studies. We hope that new molecular and cellular

data can be integrated into a larger framework to better

understand the role of serotonin system for placental and fetal

development and its potential dysregulation in pathological

pregnancy conditions.
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Perić et al. 10.3389/fendo.2022.1061317
122. Sabol SZ, Hu S, Hamer D. A functional polymorphism in the monoamine
oxidase a gene promoter. Hum Genet (1998) 103:273–9. doi: 10.1007/
s004390050816

123. Zhang H, Smith GN, Liu X, Holden JJA. Association of MAOA, 5-HTT,
and NET promoter polymorphisms with gene expression and protein activity in
human placentas. Physiol Genomics (2010) 42:85–92. doi: 10.1152/
physiolgenomics.00220.2009

124. Shumay E, Fowler JS. Identification and characterization of putative
methylation targets in the MAOA locus using bioinformatic approaches.
Epigenetics (2010) 5:325–42. doi: 10.4161/epi.5.4.11719

125. Gumusoglu S, Scroggins S, Vignato J, Santillan D, Santillan M. The
serotonin-immune axis in preeclampsia. Curr Hypertens Rep (2021) 23:37.
doi: 10.1007/s11906-021-01155-4

126. Carrasco G, Cruz MA, Dominguez A, Gallardo V, Miguel P, González C.
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