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Abstract: Large specific surface area nanostructures are desirable in a wide range of sensing ap-
plications due to their longer light-trapping path and increased absorption. Engineering of the
specific nanotree structure which possesses a high branch density turned out to be challenging from
the experimental point of view, and certainly not adequately explored. This paper shows how to
design substrates with a silicon nanotree structure for surface-enhanced Raman spectroscopy (SERS)
applications. Silicon nanotrees were synthesized by a Ag-Au nanocluster-catalyzed low-pressure
chemical vapor deposition method (LPCVD). By the presented approaches, it is possible to manip-
ulate branches’ number, length and thickness. The synthesized nanostructures are flexible after
immersion in water which improves SERS performance. The amount of sputtered metal played a
key role in preserving the flexibility of the nanotree structure. The obtained substrates with highly
fractal nanostructure were tested on 4-mercaptophenylboronic acid (MPBA) to match the optimal
SERS parameters. The silicon nanotrees fabrication, and particularly obtained SERS substrates plated
with Ag and Au nanoparticles, demonstrated good features and a promising approach for further
sensor development.

Keywords: surface-enhanced Raman spectroscopy (SERS); Si nanotrees; vapor–liquid–solid (VLS)
method; low-pressure chemical vapor deposition (LPCVD); Ag and Au nanoparticles; 4-mercaptophen
ylboronic acid detection; SERS substrates optimization

1. Introduction

The nanotree (NTr), also known as branched nanowire, consist of a nanowire-trunk
as a backbone and radial, smaller-dimension branches [1]. As a result of large specific
surface area and direct electron transport pathways, NTrs have found numerous appli-
cations in fields such as energy materials (batteries, photovoltaics, photocatalysis, photo-
electrochemical water splitting, supercapacitors, etc.) [2–5], nanoelectronics devices [6],
gas sensors [7], and bioelectronics [8]. NTrs can be categorized depending on: (a) the
level of complexity (single [9] or hyper-branched [10–12]) and (b) the composition material
(homostructured [7,10,13] or heterostructured [14–16]).

The most common method for silicon nanotrees (SiNTr) growth is the vapor–liquid–
solid (VLS) method [17–21]. Generally, the NTr growth includes the main trunk growth
and, subsequently, the branches. The branches can be grown within the same experiment
or after the additional metal catalyst plating, followed by an additional VLS-deposition
experiment [3]. If the trunks and branches are grown within one experiment, the cata-
lyst diffusion is induced by an increase or decrease of either temperature [22] or partial
pressure [6]. To obtain NTrs, a key point is to control thermodynamics in the following syn-
thesis stages: (a) trunks growth, (b) catalyst diffusion and (c) branches’ growth. (a) Trunk
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thickness and height are mainly influenced by temperature, gas pressure and deposition
time. Their number per unit area can be increased by additional Ag coating before the
traditional Au seed layer [21]. (b) In ref. [23] authors introduced an annealing step before
branch growth. By holding the same temperature as for the trunks’ growth, the active SiCl4
gas was removed while the pressure of the carrier gas H2 was kept constant. After that,
the branches’ growth was activated by releasing the SiCl4 under the same pressure as the
trunks’ growth. The catalyst diffusion depends on the activation method and annealing
time, which consequently determines the branches’ position and number. (c) Branches can
be obtained by manipulating the gas pressure during the VLS process while keeping the
temperature constant [24]. After the trunk growth, the gas flow was gradually reduced, and
after a short period, increased to induce the branches’ growth. The critical, i.e., minimum
possible branch radius is dependent on partial gas pressure since it is correlated with the
supersaturation within the Au/Si droplet. Furthermore, the atomic percentage of silicon in
the droplet of ~23–24% for branches with 5–25 nm in radius synthesized at T = 500 ◦C is
indicated [6]. The branch density can be controlled by the catalyst–nanodroplets concentra-
tion [25] in the two-step approach, while the length and thickness by deposition duration.
However, the second metal catalyst plating has its disadvantages such as environmental
oxidation, and therefore oxygen removal by HF. This includes substrates pouring into a
liquid, and consequently, a subtle trunk morphology change.

Apart from that, transitions between these three synthesis stages can be delicate as
well. The duration of each stage determines whether the branches will grow as well
as their morphological characteristics. For example, very short trunk growth at a low
temperature (~500 ◦C) leads to thin wires growth which makes the branches’ growth
difficult. Furthermore, a short catalyst diffusion time does not allow an adequate diffusion
along the trunk length, i.e., it determines the branches’ number, position and mutual
separation. A decrease in the growth temperature with enhanced Silane flux is reported as
the best way to produce NTrs [26]. On the contrary, it is reported that instead of a decrease,
a sharp increase in temperature and gas flow velocity, may cause a breakdown of the liquid
droplet on the nanowire tip, accompanied by further branching [27].

Another important parameter for SiNTr growth is oxygen content [23]. They observed
branches’ growth in the case of annealing in Ar + H2 gas flow whereas annealing in only
Ar flow was not successful. Utilization of H2 and SiCl4 indicated that an oxygen-free
atmosphere is a prerequisite for NTr growth. On the other hand, they claim that there is
no need to synthesize NTr in an ultra-pure oxygen atmosphere since a small amount of
residual surface or atmosphere oxygen (order of ppm) inhibits the eutectic alloy migration.

This paper shows a SiNTr synthesis process targeting sensor development. The first
goal is to describe how to synthesize SiNTrs without additional metal plating, i.e., single-
step synthesis. The two-step synthesis includes a catalyst and surface oxygen removal [3]
before the second metal plating. Those processes include immersion in solution (I2 and
KI), HF acid and purified water. However, immersion in liquids and drying would induce
SiNW bundling via capillary forces and one would lose the ‘tweezers effect’, one of the
crucial factors for high SERS enhancement [20]. The second target is to synthesize a high
surface area nanostructure. This goal is characteristic of numerous sensors since the high
surface area leads to an increased number of available sites for a specific reaction (in
the field of SERS called ‘hot spots’), thereby increasing the sensor’s efficiency. Although
SiNTr nanostructure can be applied to a wide range of sensors, this paper is more oriented
toward the development of substrates for SERS. Apart from targeting a high surface area,
a particularity of SERS sensors is that they can be flexible in nanostructure, which is our
third goal. The flexible nanostructure additionally benefits SERS efficiency through the
‘tweezers’ mechanism as described in [20,28].

Although the literature has reported the synthesis of SiNTrs [23,24,26,29,30], there is a
lack in some of the following points: a high SiNTr number per unit area, a high-density
branch growth along the trunks’ facets, reduction of trunk regrowth, flexible nanostructure
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and SERS enhancement demonstration. This work overcomes the present issues and shows
a novel SiNTr synthesis approach.

2. Experimental
2.1. Substrate Preparation

Silicon nanotrees were synthesized in a one-step process by the VLS method inside
the low-pressure chemical vapor deposition (LPCVD) reactor. The LPCVD reactor was a
quartz tube of 180 cm in length and 14 cm in diameter. Prior to VLS synthesis, silicon test
grade wafers (p-type, (0–10) Ωcm, with <100> orientation) were cleaned in an ultrasound
bath, first in acetone and then in ethanol at 40 ◦C for 20 min. The following step includes
the standard RCA (Radio Corporation of America) cleaning processes [31]. Cleaned wafers
were metal plated by sputtering in Polaron E5000 coater with ~2 nm thick layers of Ag
and Au.

2.2. Characterization Techniques

The morphology of the synthesized samples was monitored with a Jeol JSM 7000 F
scanning electron microscope under 10 kV discharge and a HitachiS4300-CFE instrument
with 5 kV acceleration voltage. Raman spectroscopy measurements on Ag-plated samples
were performed utilizing a Jobin Yvon T64000 Raman spectrometer with 532 nm laser
wavelength. The microscope objective of 50×magnification, 0.75 numerical aperture and
532 nm pump power of 1–2 mW on the sample were used. The signal accumulation time
during the Raman measurement was 10 s per scan. Several spectra were obtained in
different sample points and averaged. Au-plated samples were measured by a Renishaw
1000B Raman spectrometer utilizing 633 nm laser, 50× (0.5 numerical aperture) objective,
5 accumulations and 30 s acquisition time. SERS substrates’ quality was tested utilizing
Mercaptophenylboronic acid (MPBA) with concentrations of 10−4, 10−5 and 10−6 M in
ethanol. Prepared samples were immersed in MPBA solution and left overnight.

2.3. Silicon Nanotree Synthesis

(a) High-density trunk nanostructure growth

High-density trunk nanostructure growth is obtained by Ag-Au plating before VLS.
This topic is already described in our previous work [21] in more detail. In short, wafer
plating with Ag before Au increases the number of metal droplets more than 2 times which
consequently gives a higher number of SiNWs, i.e., trunks for SiNTrs. In this work, we
utilized 300 sccm of 15% forming gas for annealing at 500 ◦C for one hour. The growth
of SiNW trunks is performed at various temperatures from 520–555 ◦C, while deposition
time was 17 or 20 min. In all experiments, 26% SiH4 diluted in Ar with 420 sccm flow and a
partial pressure of 0.07 mbar was utilized.

(b) Branch synthesis

Branches’ growth was activated by a simultaneous temperature and gas pressure drop
as shown in Figure 1. In this work, we showed two different approaches for branches’
growth named (a) ‘shots’, and (b) ‘cycles’. The first approach includes a variation of SiH4
gas shots number (Figure 1a). This approach was tested for different initial temperatures,
i.e., the trunk growth temperatures were 555, 545, 535, and 520 ◦C. The second, the ‘cycles’
approach, is based on repeating the heating–cooling cycles with only one gas shot per cycle
(Figure 1b). After the trunk synthesis, it is necessary to trigger the catalyst droplet diffusion
along their facets. For that reason, the LPCVD tube was vacuumed to the minimum value,
in our case to 0.001 mbar, and as the pressure minimum is reached, the heating was turned
off. After the temperature decreased for 10 ◦C (shots approach) or 5 ◦C (cycles approach),
the SiH4 gas shot of 0.25 mbar was introduced. Hence, we used a simultaneous decrease
of temperature and SiH4 pressure within the reaction chamber for branches’ growth. The
temperature decrease rate was (3.4± 0.1) ◦C/min in all cases. For example, in Figure 1a, the
trunks were grown at 555 ◦C for 17 min. After closing all gasses, the system was vacuumed
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and the heating was switched off. Once the temperature dropped to 545 ◦C the first gas
shot was introduced for 30 s followed by a pause for 60 s while only the temperature was
decreasing. The number of shots varied from 1 to 4. In Figure 1b, the trunks’ growth was at
520 ◦C while only one gas shot was introduced for 4–5 min. starting at 515 ◦C. Afterwards,
the temperature was increased to 520 ◦C and the whole process was repeated 1–4 times.
Forming gas with the partial pressure of 0.2 mbar was included in each fabrication step
apart from the SiH4 shots periods.
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per cycle.

3. Results
3.1. Morphology of SiNTR
3.1.1. Synthesis Method A—Temperature Dependence on SiNTr Growth

Utilizing the synthesis method–(a)–, we selected two shots as the fixed-parameter
while the trunk synthesis temperature was 555 ◦C, 545 ◦C, 535 ◦C and 520 ◦C. The trunks’
synthesis temperatures are correlated with the branches’ growth temperatures in a way
that the first shot started 10 ◦C below the trunks’ synthesis temperature. As shown in
Figure 2, the branch’ density decreases with the temperature if, for example, Figure 2a,d
are compared. The difference in branch density for the growth at 545 ◦C and 535 ◦C
(Figure 2b,c) cannot be estimated straightforwardly. The trunks’ and branches’ thicknesses
increase with the temperature increase (Figure S1) as expected.

Figure 3 shows samples synthesized at 535 ◦C with an increasing number of SiH4
shots during the cooling process. What is observed is a significant increase in branches’
density especially when 1–2 and 3–4 shots are compared. To support this result, the analog
SEM figures for trunk growth at 545 ◦C are provided in Figure S2.

3.1.2. Synthesis Method B—Branch Density in Correlation with Cycle Numbers

Figure 4 shows samples fabricated by a single Silane shot per cycle. SEM figures
with lower magnification are shown in Figure S3. The trunks’ synthesis temperature was
520 ◦C for 20 min., while the gas injection temperature was 515 ◦C. As the cycle number
increased, the density of the branches increased as well. The cross-section showed that the
NTr height was around 2.5 µm, while the trunks’ thickness increased from (67 ± 16) nm
to (110 ± 10) nm (Figure S4). With the cycle number increase, the branches’ thickness
increased from (17 ± 3) nm (Figure S4a) to (28 ± 5) nm (Figure S4b).
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3.2. The Flexibility of the Structure in Correlation with Metal Plating

In this section, it is shown that the substrate nanostructure is sensitive to liquid immer-
sion depending on the metal coating layer. Figure 5a shows a dry NTr substrate coated with
a ~10 nm Ag layer, while Figure 5b is the same nanostructure but after immersion in water.
Figure 5c shows the same pristine nanostructure as in Figure 5a, however, coated with a
~40 nm Ag layer and it is correlated with Figure 5d obtained after immersion in water. It is
observed that branches change their position in the case of thin layer coating (Figure 5b),
while preserving the same position for a thicker layer (Figure 5d). To additionally support
these results, see Figures S6 and S7. The flexibility of the nanostructure was monitored for
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8, 10, 14, 20, 30, and 40 nm Ag layer thicknesses (Figure S7). SEM figures have shown that
for coatings 8–20 nm there is a strong change in nanostructure after wetting, while it is not
the case for samples with coating layers from 30 to 40 nm.
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Figure 5. NTr nanostructure changes after immersion in water depending on Ag coating layer
thickness: (a) 10 nm Ag layer dry [32], (b) 10 nm Ag layer after wetting, (c) 40 nm Ag layer dry and
(d) 40 nm Ag layer after wetting.

3.3. SERS

Figure 6 shows an example of SERS spectra for two different laser excitations, 532 and
633 nm. In both cases, SiNTr nanostructure was obtained by changing the shots number.
The extracted values of the intensity at 1073 cm−1 are shown in Figures 7 and 8. Figure 7
shows the SERS intensities of 10−5 M MPBA at 1073 cm−1 monitored by 532 nm laser.
An example of the spectra is shown in Figure S8, and MPBA bands are explained in our
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previous work [20]. Temperature dependence (red line) on SERS features corresponds
to samples shown in Figure 2. The results showed maximum SERS intensities for trunk
synthesis between 535–555 ◦C. Samples synthesis at 535 ◦C with the increasing number of
shots in one cycle, corresponding to Figure 3, have shown an optimum range of 2–4 shots
(solid blue line). In the case of changing the number of cycles (which corresponds to
samples in Figure 4 labeled with a dotted blue line), the maximum SERS intensity was
obtained for two cycles. All samples were coated with a 10 nm Ag layer and therefore
subject to nanostructure change after immersion in MPBA.
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and temperatures.

Figure 8 shows the SERS intensities of 10−4, 10−5 and 10−6 M MPBA at 1073 cm−1

monitored by 633 nm laser. The samples synthesized at 545 ◦C were plated with Au
(Figure S9). The analytical enhancement factor (AEF) was calculated as described in [33,34],
and labeled with the red-dot line for each corresponding concentration (Figure 8). To
confirm a good homogeneity and repeatability of the SERS signal on this type of substrate,
mapping of one sample was performed (Figure S10 and additional example Figure S11)
and obtained the relative standard deviation (RSD) 5.3% at 1073 cm−1.
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4. Discussion
4.1. Discussion on NTr Nanostructure and SERS

In our previous works [20,21], we discussed the optimization of silicon nanowires
which play the role of nanotrees’ trunks in this work. One of the beneficial parameters
for high SERS enhancement is high trunk density and elasticity. In this work, we used
achievements from the previous research [21], i.e., the silicon wafers were plated with
Ag-Au to increase the number of trunks per unit area by over two times and reduce
their thickness.

The following nanostructure optimization parameter is the synthesis temperature.
In our previous work [20] it is shown that the optimal synthesis temperature of silicon
nanowires for SERS applications is 500 ◦C. However, this temperature was not adequate
for branches’ growth. Since the branches’ growth requires a temperature drop, the trunk
synthesis at 500 ◦C would lead to the branches’ synthesis under 500 ◦C which in our
experiments did not provide adequate branch growth. Therefore, the first goal was to find
the optimal synthesis temperature. In order to explore the branches’ growth, we selected
‘two shots’ as the fixed parameter, and changed the synthesis temperature. Figure 2 shows
the increase in branch length and thickness as the temperature increases, which is in
agreement with wire growth dynamics described in [21]. Typical branch thickness ranges
from 9–15 nm and trunks’ from 50–60 nm.

Furthermore, we selected 535 ◦C as the fixed parameter and changed the number of
shots during a single cycle. SEM, as seen in Figure 3, showed an increase in branch length
and thickness as the number of shots increased. Since it is challenging to calculate the
branches’ length distribution and density, we can only estimate that these parameters are
significantly higher for three and four shots than for one and two. The fourth shot gives a
slight contribution to branches’ growth since it is performed at lower temperatures, which
causes a low growth rate. The minimum and maximal measured branch thicknesses were
7 nm and 20 nm, respectively.

To preserve the elasticity of trunks and the ‘tweezers effect’ [20], the idea was to
synthesize trunks at as low of a temperature as possible. A detailed explanation of axial
trunk growth rate in its dependence on temperature, partial gas pressure and deposition
time is given in [21]. The lowest trunk synthesis temperature at which we could obtain
branches was 520 ◦C, i.e., the branches were synthesized between 515–500 ◦C. Since we
wanted to increase the number of branches and their thickness the cycle was repeated
up to four times as described in the second synthesis approach. SEM images in Figure 4.
shows very weak branch density after one shot and high branch density after four cycles.
Obtained trunk thickness was ranging from 66 to 110 nm while branches ranged from 11to
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28 nm. Although trunk thickness is low after one cycle, it increases with the number of
cycles and the main idea of preserving the trunks’ thickness was not completely successful.
However, this is an adequate way for NTr fabrication, since one can control the trunks’ and
branches’ growth by increasing or decreasing the number of cycles.

SERS measurements (Figure 7) show the highest intensity for NTrs whose trunks
have grown between 535–555 ◦C and utilize 2–4 shots in a single temperature drop (the
first synthesis approach). In the case of the second synthesis approach, the SERS intensity
of the substrate with two cycles was the highest. It is important to underline that the
shot duration in the cycle approach was 4–5 min, i.e., significantly longer than when the
synthesis temperature was higher than 520 ◦C. Short shots such as 30 s at low temperatures
(500–515 ◦C) would not enable adequate branch growth. For the highest SERS performances,
it is recommended to synthesize a large number of branches in order to increase the number
of hot-spots. However, the best SERS performances and corresponding maximum branch
density will be limited by the lacunarity and fractal dimension parameters.

Further confirmation of the branches’ influence on SERS intensity and enhancement
factor can be seen in Figure 8. The laser excitation at 633 nm shows the optimal region for
the samples obtained with three and four shots. These results are in the agreement with
the measurements with 532 nm excitation, where the sample with four shots showed the
best intensity values. The branches’ impacts are more obvious at 10−4 and 10−5 M than at
10−6 M MPBA concentrations.

The highest AEF demonstrated on the Au-plated SiNTR sample was 3.5 × 104 which
puts them in a category of good, but not excellent, substrates. The literature [35–37]
reports on hierarchical structures with advanced enhancement factors. In all examples,
the large surface area of Si-ZnO nanoflower [35], Ag-nanotrees [36], and, Ag-nanostars on
Au-nanowires [37] was an important factor. In the present work, the fabrication process
was examined over a wide range, and the nanostructure has a large specific surface area,
further progress could be looked for in metal plating optimization.

4.2. Additional Optimization Parameters

Previous works show the advantage of a flexible nanostructure for SERS applica-
tions [20,28]. A flexible and random-oriented silicon wires nanostructure is reported as the
advanced structure for SERS applications due to the ‘tweezers effect’ and enhanced SERS
amplification. Randomly oriented nanowires are shown as a better candidate for SERS
substrates in comparison with aligned ones due to the larger number of crossings [38]. One
of the main tasks of this paper is to explore the influence of flexible branches on SERS en-
hancement. Dry and randomly oriented silicon NTrs are schematically shown in Figure 9a.
After wetting, trunks lean towards each other and metal-plated branches bend towards
the related trunk, creating additional hot spots by the ‘tweezers effect’ (Figure 9b). In this
paper, we demonstrated that branches with 10–20 nm thickness and an 8–20 nm Ag plating
layer are adequate to perform the ‘tweezers effect’, i.e., the silicon NTr nanostructure is
flexible after water immersion (Figure 5 and Figure S7). g plating layers thicker than 20 nm
fix the nanostructure, and no additional nanowire bending is possible. For that reason, in
this paper, we fabricated a 10 nm plating layer which is not the real layer, but the droplets’
thickness, since SiNTr facets were plated in an island-like pattern (Figure S12). To prove
the flexibility contribution, we performed another experiment utilizing red laser excitation
in the following way. One SERS substrate was immersed into 10−5 M MPBA, while the
second substrate was first immersed in mQ water, dried, and then immersed in MPBA. As
we can see, the intensity drops in the case when the substrate was immersed in water and
dried to about 40% at 1073 cm−1 (Figure S13).
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Apart from metal plating, another parameter that influences SERS performances
is fractal dimension and lacunarity. Our experimental observation shows that it is not
satisfactory to increase only the fractal dimension, i.e., branches’ density. Samples with
high trunk and branch density appeared almost black due to the trapping of visible light.
However, their SERS performances were not advanced. A similar observation was reported
by Yang et al. [39]. Although the highly fractal nanostructure enables multiple light
reflections, and intense light–metal and light–molecule interactions, the light trapping
prevents the collection of the SERS signals. Our previous paper [18] showed that apart from
the fractal dimension, lacunarity should be taken into account as well. Here, we focused on
the synthesis approaches and preliminary results so the exact values of fractal dimension
and lacunarity are the subject of further research.

4.3. Issues and Limitations

Both synthesis approaches have some issues and limitations. The most important is
the branches’ regrowth. When the gas shots are applied, branches grow not only from
the metal droplets on the trunks’ facets, but also from the metal seed on top of the trunk.
That creates an additional nanowires layer which does not have as a high density as the
primary growth layer (Figure S12), and consequently a drop in SERS intensity occurs. This
issue is particularly challenging to avoid since each shot or cycle increases the chance for
regrowth as well. One possibility to diminish this issue is to adjust the shot duration. We
tried three different shot durations for the trunks’ growth at 535 ◦C. The shot deposition
was 90 s in total and in each case. For example, the first sample had six shots with 15 s, the
second sample had three shots with 30 s, and the third sample had one shot with 90 s of
deposition. SEM in Figure S15 shows weaker branch growth in the case of 15 s shots, while
30 s and 90 s showed a similar structure. The MPBA SERS intensity at 1073 cm−1 shows
better performances of the sample with 30 s shots (Figure S16). Shots of 15 s are too short,
since the gas was pumped out quickly and the branches’ growth rate was low. The short
duration of 30 s has an advantage over 90 s, i.e., it is easier to design desirable NTr density,
length and thickness with several shorter shots than with one long. Therefore, for optimal
SERS features and to diminish regrowth, a minimum number of short shots is required.

The idea behind performing several shots and varying their length was to obtain
hyper-branched architecture. However, it was not occurring. The branches’ thicknesses
of 10–20 nm were too thin to allow the growth of even thinner branches on their facets.
Similarly, we speculate that it would be challenging to synthesize 10–20 nm thick branches
on trunks under 40 nm in diameter. In our experiments, trunk thicknesses were in the
range of 50 nm to 110 nm depending on synthesis temperature and shots/cycles number.
Therefore, we assume to be close to the experimental edge, considering the features of our
laboratory equipment.

5. Conclusions

This paper showed how to synthesize silicon nanotrees using low-pressure chemical
vapor deposition utilizing SiH4. The nanotree structures were tested for SERS applications
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on MPBA molecules. The sensors’ properties were determined by the substrate morphology,
which include branch thickness, length, density, and metal plating. Two different synthesis
approaches were demonstrated based on changing shots or cycles number. By these
methods, it is possible to change branch density, length and thickness. To obtain an SERS
substrate based on silicon nanotrees, the following parameters should be considered:

• Branches can be successfully synthesized during simultaneous temperature and gas
pressure decrease

• The high number of trunks per unit area can be achieved using Ag-Au catalysts
• Forming gas improves branch synthesis
• The synthesis temperature for branch growth should be above 500 ◦C, while 0.25 mbar

SiH4 shots are used
• Metal plating should be below 20 nm to preserve branch elasticity
• Trunk regrowth can be diminished by minimizing shot/cycle duration and number
• Branches contribute to SERS, however, there is a certain density that should not

be traversed

This work determines the synthesis parameters for optimization of the SERS substrates
based on nanotree structure. Further optimization should be carried out for the following
parameters: trunk height, fractal and lacunarity ratio, SERS optimization at low test-
molecules concentrations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors10120534/s1, Figure S1: Trunks’ and branches’
thicknesses for different temperatures growth.; Figure S2: Si trunks’ of the SERS substrate synthesized
at 545c for 17 min. Branches were obtained by Silane shots: (a) 1 shot, (b) 2 shots, (c) 3 shots, and
(d) 4 shots.; Figure S3: SEM figures of samples synthesized at 520 ◦C utilizing method ‘b’: (a) 1 cycle,
(b) 2 cycles, (c) 3 cycles, (d) 4 cycles.; Figure S4: Cross-section of samples synthesized at 520 ◦C
utilizing method ‘b’: (a) 1 cycle, (b) 4 cycles.; Figure S5: Branches’ thickness for samples synthesized
at 520 ◦C utilizing method ‘b’: (a) 1 cycle, (b) 4 cycles.; Figure S6: NTrs nanostructure before and after
water immersion: (a) pristine SiNTrs nanostructure, (b) dry substrate with 14 nm Ag coating layer,
(c) wet dry substrate with 14 nm Ag coating layer.; Figure S7: NTrs nanostructures change for various
Ag coating thicknesses before and after water immersion: (a) 8 nm Ag layer, dry substrate, (b) 8 nm
Ag layer after wetting, (c) 10 nm Ag layer, dry substrate, (d) 10 nm Ag layer after wetting, (e) 14 nm
Ag layer, dry substrate, (f) 14 nm Ag layer after wetting, (g) 20 nm Ag layer, dry substrate, (h) 20 nm
Ag layer after wetting, (i) 30 nm Ag layer, dry substrate, (j) 30 nm Ag layer after wetting, (k) 40 nm
Ag layer, dry substrate, (l) 40 nm Ag layer after wetting.; Figure S8: SERS spectra of 10 nm Ag coated
NTrs substrates for various shots numbers. The substrates were synthesized at 535 ◦C for 17 min. 20
spectra of each sample were monitored and averaged.; Figure S9: SEM figures of Au plated silicon
nanotrees: (a) 1 shot, (b) 2 shots, (c) 3 shots, (d) 4 shots.; Figure S10: Standard deviation after mapping
of silicon nanotrees SERS substrate immersed into MPBA concentration of 10-5 M.; Figure S11: Map
of Au-plated nanotrees obtained by ‘3 shots’ and corresponding averaged spectra of 10-5 M MPBA.
Map parameters: step 10 µm, scan sized 50 × 50 µm, the number of points 121.; Figure S12: Example
of Ag-plated substrate with island-like structure. The sample’s trunks were synthesized at 545 ◦C
for 17 min and 3 shots were performed.; Figure S13: The contribution of a flexible nanostructure for
MPBA detection.; Figure S14: SEM, NTr cross-sections examples: (a) regrowth at 545 ◦C and 5 shots,
(b) regrowth at 535 ◦C and 3 shots, (c) no-regrowth sample, 3 shots at 535 ◦C, (d) no-regrowth sample,
2 shots at 545 ◦C.; Figure S15: Shot duration variation: (a) 15 s (6 shots), (b) 30 s (3 shots), (c) 90 s
(1 shot). Trunks were synthesized at 535 ◦C for the same time duration, 17 min.; Figure S16: SERS
intensities of 10-6 M MPBA for samples correlated with Figure S12.
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surface-enhanced Raman spectroscopy. Mater. Res. Express. 2018, 5, 015015. [CrossRef]
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