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Abstract: In this paper, we use the methods of networks science to analyse the transaction networks of
tokens running on the Ethereum blockchain. We start with a deep dive on four of them: Ampleforth
(AMP), Basic Attention Token (BAT), Dai (DAI) and Uniswap (UNI). We study two types of blockchain
addresses, smart contracts (SC), which run code, and externally owned accounts (EOA), run by human
users, or off-chain code, with the corresponding private keys. We use preferential attachment and
network dismantling strategies to evaluate their importance for the network structure. Subsequently,
we expand our view to all ERC-20 tokens issued on the Ethereum network. We first study multilayered
networks composed of Ether (ETH) and individual tokens using a dismantling approach to assess
how the deconstruction starting from one network affects the other. Finally, we analyse the Ether
network and Ethereum-based token networks to find similarities between sets of high-degree nodes.
For this purpose, we use both the traditional Jaccard Index and a new metric that we introduce,
the Ordered Jaccard Index (OJI), which considers the order of the elements in the two sets that
are compared. Our findings suggest that smart contracts and exchange-related addresses play a
structural role in transaction networks both in DeFi and Ethereum. The presence in the network
of nodes associated to addresses of smart contracts and exchanges is positively correlated with the
success of the token network measured in terms of network size and market capitalisation. These
nodes play a fundamental role in the centralisation of the supposedly decentralised finance (DeFi)
ecosystem: without them, their networks would quickly collapse.

Keywords: blockchain; Ethereum; decentralised finance; network science; preferential attachment;
network dismantling

1. Introduction

Blockchain is a decentralised technology that stores a list of transactions in a distributed
way while keeping their integrity [1]. The pseudonym Satoshi Nakamoto in 2008 introduced
this new approach to solve the double spending problem in the paper: “Bitcoin, a peer-to-
peer electronic cash system” [2]. In 2013, Vitalik Buterin proposed [3], and soon developed,
together with Gavin Wood et al., Ethereum, a public blockchain that included a Turing-
complete computing platform using smart contracts: programs that are stored and executed
on the blockchain via decentralised applications (Dapps). Smart contracts gave birth to a
myriad of cryptoassets including tokens, both fungible (FTs) and non-fungible (NFTs). Many
of those FTs are instrumental for decentralised finance (DeFi) applications. Ethereum uses
an account-based model with balances associated to each blockchain address, while Bitcoin
uses the unspent transaction outputs (UTXO) model [3] and provides a limited extent of
“programmability” with the Bitcoin Script, a stack-based Turing-incomplete language.
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The Ethereum Request for Comments 20 (ERC-20) [4] is the Ethereum standard for
fungible (identical and interchangeable) non-native tokens. This specification defines an
interface, a set of methods such as transfer(), balanceOf() and approve() to be implemented
within the smart contract that defines the token. In addition to the native cryptocurrency
Ether, there were more than 500k tokens on Ethereum by June 2022 [5]. Cardano, Solana,
Dfinity and Moonbeam in the Polkadot [6] network are later examples of public blockchains
that support smart contracts. In this study, we analyse Ethereum-based tokens through the
network science lens. We focus on the transaction networks of a set of tokens and Ether
We compare them with each other to understand whether different cryptoassets present
different properties or growth patterns.

Transactions occur between addresses in the Ethereum network. Due to the use of
the account model, each address has an associated balance. In a transaction, the sender
address sends data, which can be a specific amount of value or raw data such as a function
call, to the destination address. Each address in Ethereum belongs to an externally owned
account (EOA) or to a smart contract (SC). An EOA has an address derived from a public
key, uniquely associated to a private key, which can be owned by a person or an off-chain
program. SCs also have an address, and they expose functions that can be invoked by
EOAs or other contracts. As SCs do not have their own key pair composed of a public
and a private key, they cannot initiate a chain of transactions themselves [3,7]. We create
networks whose nodes are the addresses, and the edges are the transactions between those
addresses. We use the term “node” here as a synonym for address; we will never refer to
the Ethereum clients running on the individual computers in this article.

The Ether transaction network in Ethereum has been studied extensively: Bai et al. [8]
in 2022 used a temporal network perspective. Kondor et al. [9] in 2021 performed a compar-
ative study between the Ethereum transaction network and other cryptocurrencies, with
a deep dive on the Matthew Effect of concentration (“the rich get richer”). More recently,
Campajola et al. [10] in 2022 analysed the centralisation of different cryptocurrencies. These
studies, however, do not focus on non-native tokens. Somin et al. [11] in 2020 studied Ether
and ERC-20 networks, finding scale-free properties, but the authors did not distinguish
between individual networks of different tokens. Focused on tokens, Victor and Lüders [12]
in 2019 analysed instead the transaction networks of many ERC-20 tokens. They found
that not all transaction networks are scale-free. However, they used transaction data from
2018, before the big wave of adoption and the crypto market exuberance of early 2021.
Chen et al. [13] in 2020 studied the relation between token creators and token holders
and how they interact with a popular exchange. They proposed an algorithm to identify
multiple addresses controlled by one entity.

ERC-20 tokens on top of the Ethereum blockchain constitute a unique object of study:
their transaction networks interact among themselves and with the Ether transaction
network. We started to study a limited set of ERC-20 tokens in 2021 [14]. In this article, we
study the most connected addresses in the Ether transaction network and in specific token
transaction networks. We first provide a deep dive on four DeFi-relevant (Decentralised
Finance) ERC-20 tokens (Ampleforth, Basic Attention Token, DAI and Uniswap), and,
second, a more general analysis across tokens. We analyse the structural properties of
the transaction networks of Ether and ERC-20 tokens to understand whether all nodes
(addresses) are equally relevant for the existence of the network. We complement previous
studies with our analysis of the complete Ethereum blockchain until block 12,500,000
(24 May 2021). We conclude that smart contracts and exchanges play a structural role
within the transaction networks in DeFi and Ether.

Cryptocurrency exchanges allow users to trade cryptocurrencies for other assets.
These assets can be fiat money or other cryptocurrencies, both native or non-native tokens.
Trades between cryptoassets are called swaps. Exchanges connect public blockchains
with traditional means of payments such as credit cards and bank wires when they trade a
cryptocurrency for fiat money. Custodial exchanges hold the private keys of their customers’
cryptoassets. In non-custodial exchanges, customers hold the private keys to their assets.
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From the blockchain perspective, the address of the custodial exchange is the owner of all
their customers’ cryptoassets: internal trading is in this case mostly executed off-chain on
the exchange’s balance sheets to save the cost of the transaction fee. Exchanges are also
centralised in one or a handful of addresses or decentralised through one or multiple smart
contracts. The presence of an exchange in a token transaction network signals interest from
the market to trade that token.

Decentralised finance (DeFi) moves typical financial activities, such as lending and
borrowing, from a traditionally centralised and intermediary-based scenario to a distributed
one enabled by a blockchain. In DeFi, smart contracts run the logic required by these
financial processes. At the time of writing, the Ethereum blockchain is the main DeFi
platform [15].

The rest of this paper is organised as follows: we describe the data that we use for our
analysis and the three elements of our methodology to study the role of specific participants
in Ether and ERC-20 token transaction networks. We provide the results of our analysis
and conclude with insights on how these networks display signs of centralisation.

2. Materials And Methods
2.1. Four Tokens Used as DeFi Collateral

This study is composed of a deep dive using four DeFi-relevant tokens and of a
multi-faceted analysis of ERC-20 tokens in general that uses, first, multilayer networks and,
second, broad similarity measures. Regarding the deep dive, the four tokens that we study
belong to four distinct categories in DeFi: a utility token (BAT), an algorithmic stablecoin
(AMP), a multi-currency pegged algorithmic stablecoin (DAI) and a governance token (UNI).
Table 1 presents the data sets used for this analysis.

Table 1. Summary of the data sets used in this analysis, including block range and time span for each
token. These cover the time span since the creation of each token, with the exception of DAI. The
launch of DAI took place in 2017, but we only use transactions since its transition to a multi-collateral
model in 2019.

Token Tx Nodes Edges Blocks Time Span

AMP 755,827 83,050 201,456 7,953,823–12,500,000 14 June 2019–25 May 2021
BAT 3,046,615 1,105,958 1,702,429 3,788,601–12,500,000 29 May 2017–25 May 2021
DAI 8,422,158 1,042,638 2,523,076 8,928,674–12,500,000 13 November 2019–25 May 2021
UNI 2,079,132 701,054 1,271,933 10,861,674–12,500,000 14 September 2020–25 May 2021

The following paragraphs describe the four tokens analysed in our deep dive:
Ampleforth (AMP) : An algorithmic stablecoin pegged to the US Dollar (USD). It

achieves its stability by adapting its supply to price changes without a centralised collateral.
The protocol receives exchange rate information from trusted oracles on USD prices and
changes the number of tokens that each user holds automatically [16]. AMP was launched
in June 2019 and had a market capitalisation close to USD 90M in May 2022 [17].

Basic Attention Token (BAT): A utility token designed to improve efficiency in digital
advertising via its integration with the Brave web browser. Users are awarded BAT tokens
for paying attention to online advertisements. BAT’s value proposition allows users
to maintain control over quantity and type of the advertisements they consume, while
advertisers benefit from better user targeting and reduced fraud rates [18]. BAT had an
initial coin offering (ICO) in May 2017, and as of May 2022 it had a market capitalisation
close to USD 600M which placed it among the top 100 cryptocurrencies [17].

Dai (DAI): A multi-currency pegged algorithmic stablecoin token [19] launched in
2017 which uses, as AMP, smart contracts on the Ethereum network to keep its value as
close as possible to the US dollar. Users can deposit ETH as a collateral and obtain a loan
in DAI. The stability of DAI is achieved by controlling the type of accepted collateral,
the collaterisation ratio and interest rates. In November 2019, DAI transitioned from a
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single-collateral model (ETH) to a multi-collateral model with many more tokens and
stablecoin, some of them, such as BAT and UNI, are analysed in this paper. As of May
2022 DAI had a market capitalisation close to USD 6B, which placed it within the top
20 cryptocurrencies [17].

Uniswap (UNI): A decentralised finance protocol [20] to exchange ERC-20 tokens on
the Ethereum network. Unlike traditional exchanges, it does not have a central, limited or-
der book but rather a liquidity pool: pairs of tokens provided by users (liquidity providers)
which other users can then buy and sell. This UNI governance token was launched on
September 2020 [20]. This token allows its holders to take part in important decisions
regarding Uniswap, and to own a share of the common UNI treasury. It is currently ranked
among the top 30 cryptocurrencies with a market capitalisation close to USD 4B in May
2022) [17].

2.2. Transaction Networks In Blockchain

Public blockchains allow the scrutiny of all their transactions recorded in their ledger.
Unlike in the traditional financial system, researchers have access to all transactions. Kon-
dor et al. [21] in 2014, Liang et al. [22] in 2018, Bovet et al. [23] in 2019, Vallarano et al. [24]
in 2020 and Somin et al. [11] also in 2020 applied networks science [25] to investigate the
properties of the transaction networks underpinning cryptocurrencies.

The nodes in these transaction networks correspond to addresses. The edges corre-
spond to the value transfers between them, each of which is stored as a distinct transaction
on the Ethereum blockchain. Our analysis is inspired by our previous work on the role
of smart contracts in transaction networks of DeFi-collateral Ethereum-based tokens [26].
We use network analysis considering the two types of nodes present in the transaction
networks of the ERC-20 tokens: externally owned accounts (EOA) and smart contracts (SC).
We study degree [27], density and largest strongly connected components. Along with
these properties, we investigate preferential attachment and network dismantling.

Preferential attachment helps us understand network growth as new nodes and edges
are added to the transaction network. It also explains wealth accumulation phenomena
when the rich get richer: this is generically known as the “Matthew effect”, Yule’s effect
or Gibrat’s Law. Linear preferential attachment is a model that assumes that new nodes
preferentially attach to pre-existing nodes with higher degree, producing a scale-free
network that displays a power-law degree distribution. Network dismantling, the opposite
to network percolation, provides insights on how the network endures the elimination of a
specific set of nodes [28–30].

2.3. Deep Dive: Network Construction

For each of the four Ethereum tokens, we construct an aggregated transaction network
GS(t) as a directed graph containing the complete history of transactions for that particular
token during the time span outlined in Table 1. The nodes in the network correspond to
addresses participating in transactions, while each edge corresponds to all transactions
between two addresses. In this network, all transactions occurring between two nodes are
collapsed into one directed edge.

GS(t) =
(
VS(t), ES(t)

)
for token S ∈ {AMP, BAT, DAI, UNI}

The set of nodes VS(t) corresponds to the addresses that have been included in at
least one transaction of token S since time t. The set of edges ES(t) consists of unweighted,
directed edges between all pairs of addresses. Each transaction or set of transactions
between two nodes is represented as an edge (j1, j2) where node j1 is the sender and node
j2 is the recipient.
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2.4. Preferential Attachment

In the preferential attachment model, the probability π that a new node forms a link
with an existing node j is directly proportional to the in-degree kin,j of the node j. This can
be expressed in the following way:

π(kin,j) =
(kin,j)

αin

∑j′(kin,j′)αin , (1)

The preferential attachment coefficient αin > 0 determines the linearity of the attach-
ment. A value of αin = 1 implies that the preferential attachment is linear, while a value of
αin < 1 or αin > 1 implies, respectively, a sub-linear or a super-linear attachment. A linear
probability to form a link leads to a scale-free network. On the other hand, super-linear
probability results in a network where very few nodes tend to connect to all other nodes
of the network, effectively acting as super-hubs in the network. This model was used
extensively for in-degree in an article on preferential attachment in key Ethereum-based
cryptoassets published in 2021 by the authors of this study [14]. In this case, we extend this
preferential attachment model to the out-degree kout,j of an existing node j to model the
dynamic process of out-degree consolidation.

π(kout,j) =
(kout,j)

αout

∑j′(kout,j′)αout . (2)

When a new directed edge is added to the network from an existing node, we assume
that this source node j is selected with a probability π(k∗out), which is solely a function
of its out-degree k∗out. As the probability π

(
k∗in
)

(π(k∗out)) is time-dependent, we use the
rank function R(α; k∗in, t) (resp., R(α; k∗out, t)). We compute this rank function for each link
addition to a node with in-degree k∗in (resp., k∗out) at each time t. Specifically:

R(α; k∗, t) =
∑k∗−1

k=0 n(k, t) kα

∑k n(k, t) kα
. (3)

The sum in the denominator runs for all nodes whose in-degree is lower than k∗in
(resp., out-degree is lower than k∗out). When a new edge is created, the target (resp., the
source) node is drawn with a probability for a given αin

o (resp., αout
o ). We insert this α into

Equation (3).
We choose the value αo that minimizes the corresponding Kolmogorov–Smirnov (K-S)

distance between the empirical cumulative distribution function (ECDF) and the theoretical
linear CDF distribution. We sample 10% of all the edges in the transaction network and
calculate K–S distance between the empirical distribution and a theoretical one, in this case
a power law, for a range of α ∈ [0, 2.5].

2.5. Deep Dive Methodology

We devise the following methodology for our deep dive study:

• We extract from a fully synchronised archive Ethereum node all transactions from the
Ethereum blockchain involving transfers of tokens.

• We build the corresponding directed transaction networks for four DeFi-relevant
tokens: Ampleforth (AMP), Basic Attention Token (BAT), DAI and Uniswap.

• We calculate the correlation between in- and out-degree distributions both for all
nodes in the network and for high-degree nodes to see whether high-degree nodes are
more correlated.

• We compare in- and out-degree distributions with potential best fit functions for the
degree distributions.

• We study the centralisation of the network, analysing the preferential attachment
to identify the role of hubs. We use the K–S distance between the empirical degree
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distributions and a power law degree distribution in the range [0, 2.5] for all tokens
using the rank function to identify the K–S distance between the empirical cumulative
distribution function (ECDF) and the theoretical CDF function.

• We explore the evolution throughout time of the of the value of α in the rank function
to confirm the super-linear attachment in the transaction networks.

• We calculate how the density, i.e., the number of edges, grows with the growth in size
of the network to confirm our preferential attachment study.

• We study network dismantling by removing up to 200 addresses (represented as nodes
in the network) with the highest degree, and we observe how the network is impacted
via the Largest Strongly Connected Component (LSCC) over network size ratio. For
this, we use three strategies based on the type of node to remove.

• We study the evolution of the scalar assortativity of the transaction networks dur-
ing dismantling.

2.6. Multilayer Network-Based Methodology

Multilayer networks consist of networks where nodes share not only one type of edge
describing one relation type, but multiple types of edges describing different relations. The
multilayer network approach has been proficiently used in many different fields, from
transportation [31] to veterinary and livestock epidemics [32]. In this domain, we find
a set of concepts and methodologies such as multilayer networks, temporal networks,
multiplex networks, interdependent networks and networks of networks. The seminal
works of De Domenico et al. [33] in 2013 and Kivela et al. [34] in 2014 contributed to clarify
multilayer networks.

The Ethereum network is multilayered with respect to its ERC-20 tokens: addresses
sending or receiving native Ether may appear not only in the Ether transaction network
but also in one or multiple token transaction networks. We study a large number of
tokens through a multilayer network approach to assess structural similarities between
token networks.

For that, we build a multilayer network based on the overlap between addresses in
Ethereum and ERC-20 token networks. Only addresses that participate in both non-zero
Ether and token transfers are included. From the original Ether transaction network E
and the original token network T, we create two new networks E′ and T′ including only
addresses a where a ∈ E ∩ T, and the edges e that connect them, respectively, in E and T.
E′ and T′ are therefore two layers, also called two aspects, in a multilayer network. To
avoid too small or inconsistent networks, we limit our analysis to the transaction networks
sharing at least 10,000 addresses with the Ethereum network, up to the block 12,500,000
(24 May 2021). In this way, we obtain 1768 Ether-token multilayer networks.

To make our computations easier, we transform the directed networks into undirected
networks. The move from directed to undirected networks implies the move from the LSCC
parameter to the Largest Connected Component (LCC) parameter. We dismantle these
networks in an iterative way using the top 100 high-degree nodes: this threshold—that our
deep dive proves to be significant—was also used in Section 3.4.

After the creation of these multilayer networks, our methodology consists of the
following steps:

• We measure the initial size of the resulting networks in terms of number of nodes and
plot the histograms of its distribution.

• We calculate the distribution of the initial LCC over network size ratio for T′ and E′ to
characterize the different networks.

• We perform a similar exercise in each layer after 100 highest degree iterative node
removals in the other layer to observe how dismantling takes place in each network.

• We explore the relation between the LCC over network size ratio reached after dis-
mantling in the Ether and the token network.

• We study the relation between the degrees of a node in different layers.
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2.7. Bird’s Eye Methodology

We study full Ether and ERC-20 token networks up to block 12,500,000 (24 May 2021).
We focus on the top 100 highest degree addresses obtained through iterative dismantling
and analyse them to assess structural similarities. Although arbitrary, this threshold of
100 proved to be both significant and computationally feasible in Sections 2.6 and 3.4. As in
Section 2.6, we only compare token networks consisting of at least 10k nodes (addresses) to
skip too small networks which might lead us to inconclusive results. In this case, we obtain
2432 networks, in contrast with the 1768 analysed in Section 2.6. Our research objective is
to study the similarity of these top 100 nodes across different networks.

We use the Jaccard Index as a first measure of this similarity per set. However, the
Jaccard Index JA,B compares the similarities between two sets A and B regardless of the
ordering of its elements in the following way:

JA,B =
A ∩ B
A ∪ B

. (4)

Other existing similarity measures are also not well suited for comparing the rankings
of elements where absolute, as opposed to relative, ordering is relevant. In our case, this
is important because our aim is to weight similarity between hubs more strongly than
similarity between lower ranking nodes. We considered as potential alternatives several
string similarity metrics which can be adapted to compare similarity between two lists of
addresses. The Levenshtein distance is a string metric that measures the difference between
two sequences of characters. In our case, it can be used to compare two lists of addresses.
However, it takes into consideration relative instead of absolute distance, while in our
case, we give more weight to the comparison of highly ranked addresses. In a similar
fashion, the Hamming distance measures the minimum number of substitutions required
to change one sequence into a different one with the same length. Again, there is no weight
depending on the absolute position of edits, so similarity in the lower ranking addresses can
overpower similarity in higher ranking ones, which deviates from our objective. A similar
case happens with most of the other edit distance measures, such as the Jaro–Winckler
distance: they are only suitable to compare strings. Finally, we also considered the Kendall
Tau correlation rank, but it uses relative as opposed to absolute positions to evaluate
concordant and discordant rankings between elements. We need a measure that considers
the absolute ordering or unique elements in its definition to identify the likelihood of a
node to be a hub.

In Section 3.7 we provide a definition of the Ordered Jaccard Index which addresses
the requirements mentioned above. This new index weights a set of elements based on
their absolute order. This way, similarity between elements in higher ranking positions
outweighs similarity between elements in lower ranking positions. This proposed index
gives more relevance to the ranking of highly connected nodes (hubs).

These are the steps that we follow for our bird’s eye similarity methodology:

• We plot the Jaccard Index between every token network T and the one of Ether E. We
do this pairwise for every one of our tokens.

• We analyse the in-degrees of the 2432 token networks using the model selection for
power law fits proposed by Alstott et al. [35]) in 2014.

• We propose a novel similarity measure that is order-sensitive and potentially useful
for our case of networks with very different sizes, and we test its meaningfulness
using a set of randomized null models.

• We draw a heat map with this new similarity measure between all analysed tokens.
• We plot the histograms of the distributions of both the Jaccard Index and our new

similarity metric, called Ordered Jaccard, measured between every individual token
and Ether, and we calculate their correlation.

• We research potential similarity drivers: network size and market capitalisation. We
calculate their correlation.



Entropy 2022, 24, 1048 8 of 28

• We plot network size and the Jaccard and Ordered Jaccard Indexes between the Ether
and token networks to identify any potential correlation. Here we start to detect
a pattern.

• We perform a similar exercise with the maximum market capitalisation reached by
every token network.

• We study the relation between Ether and a specific token and that token with all other
Ethereum-based tokens via the Ordered Jaccard Index.

• We explain the methods that we follow to identify addresses belonging to exchanges
and smart contracts.

• We plot the percentage of exchanges and smart contracts in the top 100 high-degree nodes.
• Finally, we plot a histogram with the reappearance frequency of dismantled nodes

across networks.

3. Results
3.1. In- And Out-Degree Correlation

For our deep dive on four tokens, AMP, BAT, DAI and UNI, we first calculate in
Table 2 the correlations between in- and out-degrees for all nodes and for nodes specifically
with degrees over 100. We observe that correlation is usually stronger for these higher
degree nodes. Above a certain threshold, we are more likely to have many in-going and
out-going transactions.

Table 2. Spearman correlation ρs between in-degree kin and out-degree kout for the four tokens. The
relation is stronger for AMP and DAI than for BAT and UNI. However, we observe an irregular
pattern for all nodes. We suspected that the correlation for nodes with degrees over 100 could even
be stronger. Computing the Spearman correlation for kin > 100 confirmed this point.

Token ρs(kin, kout) p-Value ρs(kin, kout) Where
kin > 100 p-Value

AMP 0.5201 0 0.6772 1.2470 ×10−7

BAT 0.1523 0 0.4119 2.6450 ×10−13

DAI 0.4842 0 0.4874 5.112 ×10−48

UNI 0.2710 0 0.5094 1.3512 ×10−15

3.2. Power Law Fit

Second, we obtain the potential best fits for the in- and out-degree distributions for the
four tokens AMP, BAT, DAI and UNI. Table 3 shows the potential power law fits obtained.
Figure 1 shows the CCDF’s of the four tokens [36].

Table 3. Power law fit for the in- and out-degree distributions of the four tokens. The exponent
γ of the power law degree distribution pk ∼ k−γ typically fulfils 2 ≤ γ ≤ 3 for the network to
be characterized as scale-free [35,37]. This condition occurs only for the in-degree kin of AMP and
out-degree kout of DAI, which suggests that for most of our cases the conditions for a scale-free
network are weak [38]; xmin is the minimum x value where the fit starts. The table also includes the
standard error σ for all coefficients to facilitate the assessment of the fit.

Token k xmin γ σ d Best Fit

AMP kin 3.0 2.9254 0.0169 0.0362 Power Law
AMP kout 13.0 1.6150 0.0409 0.0395 Power Law
BAT kin 44.0 1.7677 0.0330 0.0292 Power Law
BAT kout 58.0 1.6580 0.0326 0.0304 Truncated Power Law
DAI kin 57.0 1.8552 0.0240 0.0115 Power Law
DAI kout 4.0 2.5021 0.0055 0.0121 Lognormal
UNI kin 51.0 1.7812 0.0409 0.0271 Power Law
UNI kout 29.0 1.6591 0.0299 0.0300 Power Law
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Figure 1. Empirical node in-degree and out-degree PDF (Probability Density Function) and CCDF
(Complementary Cumulative Distribution Function) for each token plotted, together with the fitted
values. To provide a better comparison, we always use fitted power laws as reference, even when
they are not the best model as in Table 3. We notice the outliers in DAI out-degree distribution that
make the best fit deviate from the power law and the distance between fitted CCDF and empirical
CCDF for in-degrees of AMP, which might be caused by the smaller size of this network compared to
the others. These are the cases where we encounter the smallest xmin for our fits as well.

3.3. Preferential Attachment

In the four tokens analysed, we consistently observe that the minimum value of α (see
Equation (3)) is achieved around 1.0 for the out-degree and around 1.1 for the in-degree.
A value of α > 1 for the in-degree indicates a super-linear preferential attachment, with
the consequence that a small number of nodes attracts most of the connections in the
network and will eventually form super-hubs. This is another indication of the rising
centralisation in the network, possibly caused by the presence of key smart contract and
exchange addresses. Figure 2 shows the K-S distance values for the whole range of αin

and αout for all four tokens. The minimum values of K-S distance indicate evidence of
super-linear preferential attachment in all four tokens as Table 4 shows. This preferential
attachment is an indication of an increasing centralisation in the transaction networks.
Our hypothesis is that smart contract nodes and exchanges effectively act as hubs in the
transaction network.
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Table 4. The αin and αout for each of the four analysed tokens and their errors. All values of α are
higher than 1, indicating a super-linear preferential attachment.

Token αin Error αout Error

AMP 1.05 0.143 1.02 0.174
BAT 1.15 0.198 1.1 0.226
DAI 1.1 0.099 1.05 0.126
UNI 1.05 0.227 1.02 0.257
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Figure 2. K-S distance between the empirical degree distribution and a power law degree distribution
for the preferential attachment coefficients αin and αout in the range [0, 2.5] for all four tokens.
Minimum values for all four tokens are achieved around 1.0 for the out-degree and around 1.1
for the in-degree which indicates super-linear preferential attachment.

We also explore the evolution of α through time with disjoint and non-cumulative time
windows. The size of the transaction networks makes this task computationally demanding,
so we only analyse a random 10% sample of the new edges [14]. We repeat this process
multiple times and calculate the average value of α for each window. Figure 3 shows the
final results.

Additionally, Figure 4 plots network density as a function of network size for the
four tokens. We observe that network density is inversely proportional to network size
d ∝ N−1. This means that the number of edges grows linearly with the size of the network:
transactions mostly reuse already existing edges. New nodes joining the network only
add a limited number of new edges. This is consistent with our observation regarding
preferential attachment.



Entropy 2022, 24, 1048 11 of 28

Figure 3. Evolution of the best fit for the in-degree αin (top panel) and out-degree αout (bottom panel)
preferential attachment coefficients for all four tokens. We used disjoint and non-cumulative time
windows to define sub-networks on which we calculate the preferential attachment. Both αin and
αout are almost always above 1.0 throughout the time period studied, which indicates the persistence
of the super-linear preferential attachment.

Figure 4. Network density as a function of network size N. The addition of new nodes to the network
does not densify the network. The number of edges scales as d ∝ N−1. Each new node adds only a
limited number of new edges. This is in line with the observed preferential attachment.

3.4. Network Dismantling

Network dismantling studies how to find a minimal number of nodes whose removal
dismantles a network [30] into isolated sub-components. It belongs to a class of nonde-
terministic polynomial hard (NP-hard) problems. This means that there is no efficient
algorithm that can find the optimal set of nodes to remove for large-scale networks. How-
ever, there are approximate methods which work sufficiently well in practice even for
large networks [28,29]. This analysis focuses on estimating the influence that the different
types of nodes have on dismantling and not on finding the most efficient dismantling
strategy. We compare addresses of smart contracts, nodes controlled by code, and known
exchanges, with nodes corresponding to the addresses of the externally owned accounts
(EOA), controlled by the actual users possessing the corresponding cryptographic keys.
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We perform dismantling by repeatedly removing nodes of the appropriate type with
the highest in-degree kin one by one and recalculating the in-degree for all remaining nodes
after each removal. As a measure of dismantling, we use the ratio of the Largest Strongly
Connected Component (LSCC) to the total network size. LSCC is defined by the largest set
of graph nodes such that, for every pair of nodes a and b, there is a directed path both from
a to b and from b to a. In our analysis, we perform dismantling for up to 200 nodes of each
type and for the four tokens separately as shown in Figure 5. We observe that for all of
them the removal of nodes corresponding to the addresses of smart contracts and known
exchanges causes faster dismantling than the removal of nodes corresponding only to the
addresses of EOAs. By removing just a handful of nodes corresponding to the addresses of
smart contracts and known exchanges, the LSCC collapses, and a transition phase in the
network occurs. This indicates a large structural centralisation where those removed nodes
were effectively acting as hubs in the transaction network, involved in the majority of the
transactions. In the information security realm, intentional risk managers should protect
these nodes the most [14,15,39–41]. We also performed additional dismantling for up to
10k nodes for each of the tokens, but this did not show qualitatively different results. So
in Figure 5, we only show results for up to 200 nodes. We confirm that the dismantling
threshold of 200 nodes was even too large: the removal of first 100 nodes seems sufficient
for our analysis.

Figure 5. Dismantling of the Largest Strongly Connected Component (LSCC) in the transaction
networks of the four tokens based on removing the nodes with the highest in-degree. We follow three
strategies: first, we only remove nodes that correspond to smart contracts and known exchanges
addresses; second, we remove nodes corresponding to EOA addresses; and third, we iteratively
remove the highest degree nodes regardless of their address type (a “greedy” strategy, included here
as benchmark). The removal of the nodes corresponding to the smart contract and known exchange
addresses causes the fastest dismantling compared to EOA. This highlights the important structural
role played by these addresses in the network.
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3.5. Assortativity

The assortativity coefficient r measures whether nodes of a certain degree ki tend to
form a connection with other nodes with similar degree. Its range is−1 < r < 1. A positive
value indicates assortative mixing. This means a high correlation between the degrees of
neighboring nodes which usually indicates the presence of communities: nodes tend to link
with nodes with a similar degree. A value close to zero suggests non-assortative mixing.
This means that the degree correlation between nodes is very low: nodes tend to link with
other nodes regardless of their degree. Finally, a negative value reveals disassortative
mixing: nodes tend to link with nodes with a very different degree. Equation (5) presents
the standard definition of the assortativity coefficient r [42], where ai = ∑j eij, bj = ∑i eij
and eij is a fraction of edges from nodes of degree ki to nodes of degree k j.

r = ∑i eii −∑i aibi
σaσb

(5)

In Figure 6, we show the assortativity of the transaction networks during dismantling
for two types of nodes, nodes corresponding to the addresses of smart contracts and
known exchanges (blue line) and nodes corresponding to EOA addresses (orange line). As
reference, a green line for highest in-degree dismantling without considering the type of
address is provided. Since for this deep dive we are analyzing directed graphs, we will here
consider in-degree assortativity. The initial assortativity of networks is slightly negative
but close to 0 (from −0.09 for BAT and UNI to −0.21 for AMP).This is not surprising
considering the existence of centralisation in the network: most of the low nodes are
connected to the large central hubs with very few connections between them. Removal
of nodes corresponding to EOA addresses during dismantling has no discerning effect
on the assortativity, while for contracts and known exchanges, the assortativity tends to
increase towards zero, making the networks less centralised and almost non-assortative.
This is probably because the first nodes to be removed during dismantling are the highly
connected hubs. The removal of these nodes first raises the assortativity in the network.

3.6. Multilayer Network Dismantling

The results in the previous sections, inspired by our previous work on transaction
networks of DeFi-collateral Ethereum-Based tokens [26], reveal the structural role of smart
contracts and known exchanges in the transaction networks of these four tokens. The
rest of this article focuses on whether we can generalize these results for other tokens in
Ethereum. We study a larger number of tokens through a multilayer network approach
to assess structural similarities between token networks. For that, we expand our focus
of attention, and together with ERC-20 token transfers, we also consider the native token,
Ether, and its transaction network.

Our aim is to understand what happens to aspect E′ of Ether when we dismantle, i.e.,
remove nodes in aspect T′, the token network within the multilayer network, and vice
versa. We follow a “greedy” strategy to dismantle networks by removing high-degree
addresses from another layer of the multilayer network. Our hypothesis is that pairs of
tokens whose transaction networks are efficiently dismantled by this approach have a
similar structure.

We measure the initial size of the resulting network and plot the histograms of its
distribution in Figure 7. By construction, the two derived networks, E′ and T′, have the
same size, since the addresses need to appear in both E and T. The majority of the networks
have less than 100,000 nodes, with the vast majority having around 10,000 nodes.

This network size is much smaller than the original one of the complete E network,
with 125,472,929 nodes. Only non-zero Ether transactions appear in E′. Zero-value Ether
transactions, which might occur in tokens, are not included since to transfer value they
invoke methods of smart contracts, and they do not always have to pay transaction fees to
the miner for that. Consequently, the overlap between E′ and T′ edges is small: these two
transaction networks have identical nodes (addresses) but different edges as transactions
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between these addresses are not the same, i.e., one aspect or member network includes
only Ether transfers, and the other includes token transfers.
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Figure 6. Evolution of the assortativity for in-degree of the transaction networks during dismantling.
We follow the three strategies described in Figure 5. Initial assortativity in the four tokens is slightly
negative, probably because most of the low in-degree nodes connect to large hubs and have few
connections between themselves. This is why removing EOA nodes during the dismantling, which
tend to have lower degree than smart contracts and exchanges, does not affect assortativity at all.
However, the removal of smart contracts and known exchange nodes increases assortativity. It
makes the network almost non-assortative, as many connections to these high-degree central nodes
are removed.
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Figure 7. Size of the network layers E′ and T′ participating in the multilayer networks in terms of
number of nodes (addresses) and their number of occurrences for each of the tokens considered.
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Figure 8 shows the distribution of the initial LCC over network size ratio for T′ and E′.
The LCCs in T′ cover their network more densely (top left) than the aspect E′ (top right),
which is much smaller than the original network E. T′, however, is more similar to the
original token network T.

We also depict two similar graphs after 100 removals using the ∆ between LCC0/N at
the initial stage and LCC100/N. A value closer to zero shows negligible dismantling effects,
while a value close to one indicates a complete dismantling. As we deal with multilayer
networks, we identify the high-degree nodes to remove in one layer (aspect), and we
remove them in the other layer (aspect). Identifying the high-degree nodes and removing
them in the same layer would have unsurprisingly “demolished” the LCCs, as Section 3.4
showed. In this case, dismantling in the Ethereum layer first (bottom left) has a weaker
effect that dismantling in the token layer first (bottom right) on these multilayer networks.
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Figure 8. Histograms of the initial LCC over network size ratio for T′ and E′. In the panels below,
we analyse the difference ∆, LCC0/N − LCC100/N to identify how much this ratio changes after
dismantling one hundred nodes (of T′ and E′) with Ether-first (bottom left) and token-first (bottom
right) strategies, respectively.

We explore whether there is a relation between the LCC over network size ratio in
the Ether network and the LCC over network size ratio in the token network and between
their respective ∆s. We plot these two values together in Figure 9. We obtain a Pearson ρ
correlation of −0.17 between the initial LCC over network size ratio for token and Ether
networks and a correlation between the ∆ of the LCC over network size ratio for token and
Ether networks using the Ether-first and token-first dismantling of 0.32. This path leads to
no results.
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Figure 9. Left: LCC over initial network size ratio plotted for E′ and T′ computed for multilayer
networks built with shared addresses between E′ and T′. We calculate a Pearson correlation of −0.17.
Right: Plot of the ∆s of LCC over network size for token and Ether networks reached after using the
Ether-first and token-first dismantling. We obtain a correlation of 0.32.

We then plot the histogram of the distribution of degree correlation across the same
nodes in networks E′ and T′ to understand how the degree of the same node correlates
with its degree in the other network. The histogram of inter-network degree correlation, as
in Figure 10 even though skewed to zero, is fairly stretched up to one, which is compatible
with our hypothesis mentioned in Section 3.6.
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Figure 10. The degree correlation between the two multilayer networks E′ for Ether and T′ for token
consisting only of addresses a ∈ E ∩ T.

We find a significant relation between degrees of nodes present in the two layers
(aspects) of the multilayer network. This finding helps identify target nodes to dismantle.
Figure 11 supports this point. We calculate a Pearson correlation between degrees in
correlation in T′ and E′ of 0.53 and 0.51, respectively.
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Figure 11. Degree correlation ρ between the two multilayer networks E′ and T′ plotted against the
∆ of the LCC over network size ratio. This ∆ refers to the portion of the LCC over network size
ratio dismantled in E′ and T′. The Pearson correlation between ρ(E′, T′) is, respectively, 0.532750
and 0.505823.

Unfortunately, the size of token networks is usually too small to be compared to the
Ether network. With this approach, we sample a significant portion of the token network
but not enough of the much larger Ether network. This size gap complicates the possibility
to infer properties for a token layer based on the Ether layer and vice versa. We have to
study network similarities in a different way to obtain meaningful results.

3.7. Bird’s Eye View Of Ethereum-based Tokens

As explained in the methodological section, we now consider the complete Ether
network and the full token transaction networks. We investigates the 2432 tokens that
have more than 10,000 transactions overall. We build an undirected cumulative transaction
network, and through the approach of iterative network dismantling, we obtain a set of
their most significant nodes. What can we say about these sets of nodes? Do they look
similar between Ether and the individual tokens?

As the top plot in Figure 12 shows, the maximum Jaccard Index between them is about
0.08. In our scenario, this means that 8 addresses of the top 100 high-degree addresses
are shared between the Ether and the token networks. The Jaccard Index presents a major
drawback for our study: it does not consider the position in the degree distribution of the
addresses used for its calculation. However, ordering of nodes and their degrees matter in
our analysis. An example of this importance is the result that we obtain in Section 3.3 when
we study preferential attachment in AMP, DAI, BAT and UNI. Other studies [14,15,40]
mention as well a heavy tail in the degree distribution for other tokens.

Victor et al. [12] in 2019 indicated that only a small fraction of the degree distributions
of the transaction networks in ERC-20 tokens follow a power law: in many of them, very
few nodes have a very high degree. Our analysis of the in-degree distribution of 2432 token
networks, following the method of Alstott et al. [35], shows that 1693 networks are better
approximated by a power law, 610 by a truncated power law, 88 by a lognormal, 20 by
a lognormal positive , 18 by an exponential and just 3 by a stretched exponential. We
considered a better fit only when their p-value of distribution comparison was acceptable
(lower than 0.05). Fitted xmin show a mean of 20.2 and a standard deviation of 95.2, mostly
driven by very few outliers. The median is four and the 95% percentile is still at nine.
However, just a high p-value is not sufficient to state that a token follows a power-law
or truncated power-law degree distribution. The γ exponent shows a mean of 2.4 and
a standard deviation of 0.87: here the median is 2.14, and the 75% percentile is 2.84.
Clauset et al. [43] confirm how rare power law functions in reality are. In any case, the
position of the node representing an address in the ordered degree distribution is valuable
information that the pure Jaccard Index does not consider.
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Figure 12. Histograms of the distribution of Jaccard Index J between the top 100 high-degree nodes
(“greedy” dismantling order) for Ether and analysed tokens (top plot); plot of the Ordered Jaccard
Index Oj (mid plot); plot of Oj and J (bottom plot); the correlation between Oj and J is, as expected,
high, 0.912, but not fully coinciding. This seems to justify the new measure.

Our interest transcends the number of nodes that overlaps between two networks. The
absolute ordering of those nodes in each of the networks is also important. If a particular
address appears in two different networks with the same ranking, for example within the
top 10 high-degree nodes, this indicates that this node, as a hub, probably plays a similar
structural role in both networks.

As the Jaccard Index J returns a value regardless of the node degree rank, we re-define
a Jaccard-like measure as an order-sensitive measure that might provide information even
for networks with very different sizes. The order we introduce in the set is based on
the degree.

We define an Ordered Jaccard Index Oj
P,Q between two ordered sets P and Q in the

following way:

Oj
P,Q =


0 P ∩Q = ∅

∑
∀a∈(P∩Q)

2
PosP(a)+PosQ(a)

∑
∀b∈P

1
PosP(b)

P ∩Q 6= ∅, |P| = |Q|
(6)

where PosP(a) is a position of element a from ordered set P ranging from 1 to |P|.
With this proposed measure, we weigh a set of elements based on their order and

independently of the size of the respective original network. This way, having the same
element in first position is more important than having the same element in second or n
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position, by a contribution weighted as the inverse of the position the elements occupy.
If they are in a different position, an average of the two positions is taken, regardless of
whether the resulting weight exists as a real position in the discrete ordering set. If the
elements are not present in both sets, they contribute 0 to the similarity of the ordered set.
We normalize the sum of the individual contributions by the sum of the harmonic series
1/n for all the positions overall present in the set. In the formula, we take one of the sets in
the denominator, given that the sets have the same size. For ordered sets of different sizes,
they can easily be capped to their minimal common size.

The distribution of the values that we obtain, as mid and bottom plots show in
Figure 12, is more spread than the one of the conventional Jaccard Index J.

We test the meaningfulness of this, compared to the Jaccard Index it has a more
stretched distribution against a randomized null model. From the 161,000 nodes effectively
appearing in the top 100 degree distributions, we extract the frequency for each of the
nodes, i.e., their probability to occur. From this distribution, we take 2432 random buckets
of 100 samples plus another one simulating the Ether sample. We repeat this experiment 10
times. Then, we plot this null model against the real data with a Cumulative Distribution
Function (CDF) plot in Figure 13.
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Figure 13. To verify the validity of our proposed similarity metric, we test it against a null model
where addresses are randomly drawn with the same frequency that we observe in the real data
of 161,000 addresses. We then take every time 2432 buckets of addresses for the tokens plus one
additional for the native cryptocurrency Ether. We repeat this random draw 10 times and then
compare the resulting null model with the real one in a Cumulative Distribution Function (CDF) plot.
We do this for the normal Jaccard Index J, and for the Ordered Jaccard Index Oj. The real data we
have are well discernible from purely random curves for both metrics: random data is much more
concentrated, while real data follows a much softer slope, with values arriving up to 0.08 for the
Jaccard Index J and 0.25 for the Ordered Jaccard Oj, while all simulated attempts displayed are much
more skewed towards 0 and stop earlier in the metric. The difference, not present in other tested
metrics, strongly suggests that we are measuring with both the Jaccard and the Ordered Jaccard
Indexes a fundamental property of our data set and not just a random number. Additionally, the
Ordered Jaccard Index seems to distinguish clearer between real data and null models.

Our proposed Ordered Jaccard Index brings an advantage: if we plot the matrix of
the Jaccard Index between all 2432 tokens with more than 10,000 nodes at the time of data
extraction, we do not see any visible correlation pattern. We know that we have addresses
in common but not how important they are. However, if we draw the matrix of the Ordered
Jaccard Index Oj, we start detecting some interesting patterns as the lower right corner of
Figure 14 displays.
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Figure 14. Heat map with the Ordered Jaccard Index Oj between all 2432 tokens. Tokens have been
ordered according to their average 〈Oj〉 with all the other tokens.

The token networks that we observe differ not only in their size, but in their construct,
scope and purpose. For example, in our deep dive presented in Section 2.1, we studied an
algorithmic stablecoin, a utility token, a multi-currency pegged stablecoin and a governance
token. There are even more, in a way that makes finding the similarities between them
not trivial.

Figure 12 plots the histograms of the distributions of the Jaccard and the Ordered
Jaccard Indexes measured between every individual token (we count 2432 of them) and
Ether. We find an expected high correlation, around 0.91 between the Ordered Jaccard
Index and the normal Jaccard Index. About 1000 of the investigated samples do not share
any addresses, while the remaining display a different level of similarity, up to 0.08 (J) and
0.25 (Oj). The introduction of ordering in the proposed Ordered Jaccard Index makes this
metric more sensitive to our study of the structural relevance of nodes when dismantling
a network.

The next step is to research what could drive this similarity. First, we analyse the size
N of the transaction networks that we have built. The bigger the size of the network is, the
greater the “success” for a specific cryptoasset. Second, we collected market capitalisations
from online cryptoasset market information aggregators such as CoinMarketCap [17] and
CoinGecko [44]. These aggregators collect market data from a variety of popular exchanges
covering a large collection of cryptocurrencies and tokens. We took the Ethereum network
snapshot in May 2021, and we analysed market capitalisation data up to the same time
span. If we consider a success in capitalisation as reaching (or having reached in the past)
high market prices, Figure 15 reflects the correlation between the most successful tokens
and those with the highest number of transactions and token transfers. We obtain a Pearson
correlation ρ of 0.3318.
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Figure 15. Network size as number of addresses N and maximum market capitalisation reached
in USD. Since we are dealing with cumulative networks, the maximum market capitalisation ever
reached compounds for all the previous network growth. We obtain a Pearson correlation ρ of 0.3318.

Figure 16 plots the network size N, i.e., the number of addresses taking part in the trans-
action network, and the Jaccard J (top left) and the Ordered Jaccard Oj (top right) Indexes
between the Ether and token networks (top plots). We start to see a correlation between
network size and these two indexes. The two bottom plots show the maximum market cap-
italisation reached in aggregators such as CoinMarketCap [17] and CoinGecko [44], where
we observe a stronger correlation. Our hypothesis is that market capitalisation, driven
by interest from the investors, causes transfers and transactions, which increase network
size, causing the most important exchanges to take an active part in the token transaction
network thereby driving the similarity recorded by the Jaccard and the Ordered Jaccard
Indexes between the hubs in different token networks against the native token Ether.

We reach the core of our study: the Ether network and the Ether-based token networks
share addresses in the top degree list of nodes. They play an important role in holding up
the network. This implies a structural similarity between tokens and Ether. We prove that
the Ordered Jaccard Index between Ether and Ether-based tokens is correlated with the
average of the Ordered Jaccard Index between the token and all other tokens with more
than 10,000 addresses in their transaction network. Specifically, we measure the Ordered
Jaccard Index with Ether and the average of the Ordered Jaccard Index with all the other
tokens, and we find a strong correlation 0.674613, as Figure 17 depicts. Therefore, this
measure can be deemed significant for similarities between tokens.
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Figure 16. We plot the Jaccard Index J and the Ordered Jaccard Index Oj between the 100 highest-
degree nodes in “greedy” dismantling order between the individual token and Ether against the
network size N (top plots) and the maximum market capitalisation ever recorded in the token history
(bottom plots).
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Figure 17. We plot the Ordered Jaccard Index Oj between Ether and a specific token with the
average 〈Oj〉 for that token with all other Ethereum-based tokens. The measured correlation Pearson
correlation ρ reaches 0.674613. It confirms the relevance of this metric as a general measure of
similarity between tokens.
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Market success and interest from investors seem to drive higher prices (market capi-
talisation). Higher prices drive activity in terms of transactions, i.e., token transfers; hence
there are more addresses participating in the transaction networks, which raises the cu-
mulative network size. Interest from investors causes tokens to be traded from addresses
that are exchanges and/or smart contracts, i.e., the automatic engine of Decentralised
Finance, DeFi.

There is no algorithmic way to know in advance which addresses are associated to
exchanges. We resort to reports by Chainanalysis [45] and to the list of addresses provided
by etherscan.io [46] listing exchanges. We combine the lists of addresses EOA (External
Owned Account) and SC (smart contracts) related to exchanges, as both can be used for
this purpose, the former mostly by centralised exchanges and the latter by decentralised
exchanges. We use these lists to identify those addresses in the 100 high-degree addresses
list for every token that is linked to exchanges, as Figure 18 shows.
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Figure 18. Number of first 100 higher degree nodes in greedy dismantling order that can be labelled
as exchange according to information from etherscan.io.

We observe that exchanges are present in over 50% of the networks analysed, and they
constitute up to 40% of the 100 top high-degree addresses in the network. For more than
50% of our analysed sample, they play a very important role. We assume that their real
role might be even more relevant. While the information from etherscan is the best that we
can obtain, it is not complete. Individual tokens might have very specific exchanges which
are not yet listed or tagged.

We turn to a more “deterministic” view to identify addresses belonging to smart
contracts because we can confirm SC addresses algorithmically. Figure 19 shows the results.
They are comparable to exchanges: in about 50% of the analysed networks, we do not
encounter addresses of smart contracts; however, the figures for those where they are
present are much more skewed to the right. We have tokens in which smart contracts are up
to 90% of the analysed set, while addresses related to exchanges were never more than 40%.
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Figure 19. Number of the first 100 nodes of every token network are actually smart contracts.

The results are consistent, even considering that we might be counting the smart
contracts that are part of a known exchange in both histograms . In many token networks, a
large set of the most important nodes, i.e., highly connected, correspond to smart contracts.
Lastly, as we investigated similarities between high-degree nodes, Figure 20 plots a his-
togram of the number of token networks in which these nodes appear. The networks that
we analyse still correspond to the 2432 token networks with more than 10,000 addresses, as
described in Section 2.
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Figure 20. Reappearance frequency of dismantled nodes between different token networks (plus
Ether), i.e., in how many different networks the individual addresses are appearing.

Of the 243200 (2432× 100) possible different addresses that we could have had, our data
show just 160098: so roughly 2/3 of addresses are unique. The majority of them appear only
in one token network, but some others reappear in tens or hundreds of networks, such as
EtherDelta2 Smart Contract (address: t0x8d12a197cb00d4747a1fe03395095ce2a5cc681)
which occurs in more than 1000 networks, or IDEX 1 Exchange (address:
0x2a0c0dbecc7e4d658f48e01e3fa353f44050c208), a very popular decentralised exchange,
or an exchange Hotbit (address: 0x274f3c32c90517975e29dfc209a23f315c1e5fc7) with
402 presences across different tokens and addresses. On the other hand, some of the most
active addresses are hard to identify, with no official flags and labels. For example, we find
a smart contract (address: 0x74de5d4fcbf63e00296fd95d33236b9794016631) with just 19
transactions in Ether but with more than 11M ERC-20 transactions at the time of writing.
The very fact that such an important address could leave no recognizable trace of its identity,
purpose or origin is a good testimony of the current challenges to the scientific and forensic
analysis of public blockchains.
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4. Discussion

The aim of Decentralised Finance (DeFi) is to provide a permissionless and secure
alternative to the traditional financial system by using automated smart contracts that
run on a decentralised public blockchain. As of April 2022, the total value locked within
the DeFi ecosystem was well over USD 200B, although in May 2022 it decreased to USD
76B [47]. Although the blockchain protocol itself is decentralised, meaning that no sin-
gle actor can easily influence the execution of transactions on a protocol level, there are
indications of increased centralisation at the application level because of the reliance on
smart contracts, which provide programming logic for automated financial services, and
exchanges. To investigate whether and to what extent this centralisation happens, we
analysed the transaction networks of different DeFi-collateral tokens and assessed the
structural roles of two fundamentally different types of addresses: smart contracts (SC),
controlled by the logic of the code inside the blockchain, and externally owned accounts
(EOA), controlled by actual users or entities outside the blockchain. Exchanges can use
both type of addresses, depending on their design (decentralised or centralised, automated
or human-run).

Our analysis took three main research paths: the first one was inspired by our prior
work on DeFi-collateral Ethereum-based tokens [26], in which we performed a deep dive,
the second one experimented with multilayer networks, and the third one focused globally
on the similarity between different token networks and the Ether network. The data that
we analysed corresponds to the public blockchain of Ethereum from its creation up to block
12,500,000, created on 24 May 2021.

We observed an increasing centralisation in the transaction networks of all analysed
tokens, with nodes corresponding to addresses of smart contracts and known exchanges
acting as hubs.

We used several complementary methods to study Ethereum-based tokens. This was
investigated following several methods:

• First, in our deep dive, we observed a slightly super-linear preferential attachment
coefficient (αin > 1.0), that is persistent throughout time. This implies that few
nodes attract a majority of connections from new nodes. This resembles a form
of “winner takes all” effect, commonly observed in social systems as well [48]. We
identified the relevance of smart contracts and exchanges when we dismantled the
resulting transaction networks following selective strategies with a special focus on
SC and exchanges.

• Second, we studied a larger set of tokens and focused only on non-zero Ether and
token transactions in networks that share at least 10k addresses with the Ether network.
We used a multilayer network approach and tried to dismantle a specific layer (aspect)
based on selective node-related information coming from a different layer (aspect).
Although we confirmed again the relevance hubs when dismantling the layers, we
abandoned this research path due to the big size difference between token networks
and the Ether transaction network.

• Third, we broadened our lens and study similarities in all transaction networks with at
least 10k addresses. For this, we came up with a new index, the Ordered Jaccard Index,
that facilitated and confirmed our findings regarding the structural role of SC and
exchanges in these networks. We completed our analysis by identifying a degree of
correlation between this new index and network size and even market capitalisation.

The Jaccard Index has proven very useful in many problems ranging from information
theory to machine learning [49]. Our Ordered Jaccard Index can be interpreted as a specific
application of the weighted Jaccard Index [50] or generalized Jaccard Index where we have
an array of weights for the elements corresponding to their ordering. If we consider that
the weighted Jaccard Index satisfies triangle inequality [51], we can assume as well that our
Ordered Jaccard Index measure satisfies triangle inequality in which positions effectively
act as weights. We suggest to prove this in future analyses.
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The evidence for increased centralisation in the application layer of Ethereum, cur-
rently the most popular smart contract public blockchain platform, should not come as a
surprise. We argue that smart contracts effectively centralise the application logic within
the decentralised application (DApp) ecosystem, including the decentralised finance (DeFi)
ecosystem in particular.

This centralisation effect is compounded by the existence of exchanges, which act as
intermediaries for a majority of transactions, regardless of whether they are decentralised
(with services being totally or partially implemented through smart contracts) or centralised
(where most transactions are processed off-chain). Instead of a truly decentralised finance
(DeFi) ecosystem, we observe a very centralised system where end users lack interest
to interact with each other and rather rely on a limited number of smart contracts and
exchanges to participate in most transactions.

Despite the initial promises of democratization and decentralisation of the crypto
scene, its “automation infrastructure” of smart contracts and exchanges indeed plays a
crucial role in holding together the transaction networks. Without this component, the
networks would quickly collapse.

The current situation resembles the late 1990s and early 2000s when large Web service
providers, online retailers, social media, news and messaging intermediaries, effectively
centralised application logic and information flow within their respective service ecosys-
tems in the Internet, notwithstanding the underlying Web technology, implemented on a
completely decentralised Internet Protocol (IP). The results presented in this paper indicate
that the distributed applications (DApp) ecosystem is, for the time being, on a similar
centralisation trajectory, although the long-term consequences of this are yet to be fully
described and experienced.

Future research directions will encompass the study of tokens running on different
blockchains. Projects that have corresponding counterparts on different blockchains, such as
Polygon and second-layer solutions, such as USDC and USDT stablecoins, are an attractive
research area to analyse how their structures influence decentralisation at protocol and
application levels. Additionally, a similar analysis could be performed on recent Proof-of-
Stake blockchains that are increasingly popular, such as Polkadot, Solana and Cardano,
many of which are developing cross-chain compatibility layers with Ethereum as well.
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