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11351 Belgrade, Serbia
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Abstract: The starch availability and nutritional value of corn (Zea mays L.) are affected by zein
proteins. The aim of the study was to see whether the proposed reduction of γ-zeins during the
fermentation of silages is a result of either the enzymatic proteolytic activity or of the acidic en-
vironment, and how this reduction affects starch availability and degradability in high-moisture
corn. A mass spectrometry (MS) technique was used to quantify the 16- and 27-kDa γ-zeins. Briefly,
two-dimensional gel electrophoresis (2-DE) was used for γ-zein separation, followed by densitometry
for protein quantification and matrix-assisted laser desorption ionization time-of-flight MS (MALDI-
TOF/TOF) for protein identification. The results show that the reduction in γ-zeins induced by the
ensiling led to a more pronounced starch availability and in vitro degradation, and this reduction
was dependent on the type of proteolysis. More specifically, the results indicate that the reduction
of γ-zeins in the ensiled corn was primarily driven by the enzymatic proteolysis. Furthermore, we
demonstrated that 2-DE followed by densitometric quantification and the mass spectrometry analysis
for protein identification can be used as a state-of-the-art method for γ-zein evaluation both in fresh
and fermented/ensiled corn samples.

Keywords: 16–27 kDa γ-zeins; in vitro starch degradability parameters; high-moisture corn; Lacti-
plantibacillus plantarum; lactic acid; MALDI mass spectrometry

1. Introduction

Corn (Zea mays L.), which is the leading cereal by world production [1], is an important
source of starch. Due to the fact that starch is the primary energy source in animal feeds,
corn is positioned as the most-used cereal in animal nutrition today. In corn grain, starch
is located in the corn endosperm, where starch granules are surrounded with zeins, the
most abundant corn proteins located in the protein bodies (PB) [2]. Zein proteins are an
important feature of the corn’s nutritional value and industrial potential [3–6]. They are
important because they act as a physical barrier to starch digestion both by the rumen
microbes [7] and in monogastric animals [8]. The more abundant zein proteins surrounding
starch granules are associated with lower starch digestibility, and conversely, the sparsest
zein proteins are associated with higher starch digestibility [7,8]. Furthermore, although
zeins are a source of protein in human diets and animal nutrition, they have a negative N
balance [5] deficient in the essential amino acids Lys and Trp [9].

For this reason, high-lysine corn mutants with a reduced zein content were developed.
However, this type of corn had impaired grain characteristics with an undesirable soft
and brittle endosperm, so its use was restricted due to poor agronomic performance [10].
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Later on, a quality protein maize (QPM) with regained vitreous endosperm and with the
agronomic performances of normal corn was developed. This new corn had a higher lysine
content and a lower total zein content, but interestingly, also a higher γ-zein content [11].
This suggests that γ-zeins are essential for the PB functionality and recovered hardness in
QPM [12].

Gamma zeins are the second most abundant group of zein proteins after α-zeins,
accounting for 20–25% of the total zein proteins [13]. They are located in the outer regions
of the PBs and are responsible for the number and characteristics of the PBs [2,14]. There are
three distinctive γ-zeins that have been defined: the 16-kDa, the 27-kDa, and the 50-kDa γ-
zeins, with 50-kDa γ-zeins occurring in a low abundance and have long been misidentified
as a dimer of the 27-kDa γ-zein [15]. Holding and Larkins proposed that the 50-kDa and
the 27-kDa γ-zeins, located at the periphery of the PBs, enable nucleation and growth of
the PBs, whereas the 16-kDa enables the retention of α/δ zein proteins in the inner region
of the PBs, by being physically linked to the 50-kDa and 27-kDa γ-zeins [2].

Silage production is an important feed fermentation and preservation process in which
epiphytic lactic acid bacteria produce organic acids, mainly lactic acid, which reduces the
pH and inhibits the activity of the spoilage microorganisms. The fermentation of green mass
for silage production is called ensiling. Inoculants and chemical agents are often added as
silage-making aids for fast pH decrease [16]. Lactic acid bacteria belonging to the genera of
Lactobacillus, Streptococcus, and Pediococcus are the most common types of inoculants used
for ensiling [17]. The ensiling of corn results in a higher starch degradability in the rumen,
which is mainly influenced by the fate of zein proteins during the ensiling [4,18]. Corn
silage production, more specifically high-moisture corn and whole-plant corn silage, results
in reduced zein amounts [19,20]. In addition, the use of inoculants in the whole-plant corn
silages increases zein reduction, and this reduction is primarily driven by the enzymatic
proteolysis rather than by the chemical action of lactic acid in the ensiled material [20].
Because of the fundamental influence of zeins on the starch in corn grain, it is important
to understand the fate of zeins during the ensiling. However, the present literature lacks
evidence on the effects of ensiling on γ-zein reduction, and even more on whether the
reduction is driven either by the enzymatic proteolytic activity or by the chemical action of
the acidic environment found in silages [19]. As in the case of QPM, where a lower total
zein content is associated with a higher γ-zein content, the fate of γ-zeins does not always
correspond to the fate of the total zein amount [11].

Zein protein analysis is complex and involves the application of various techniques
commonly used in protein investigation. For example, zein analysis methods include the
combination of electrophoresis methods, such as sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) or two-dimensional (2-D) gel electrophoresis (2-DE) [12,21–23].
These methods can also be combined with the use of mass spectrometry (MS) for protein
identification [23,24] or liquid chromatography-mass spectrometry (LC-MS), as applied in
2020 [25]. However, none of the above methods have been used for the study of γ-zeins
so far.

The objective of this study was to evaluate the extent of an individual γ-zein reduction
in the fermented/ensiled high-moisture corn using MS and densitometry. Since MS is an
elementary tool for protein primary structure analysis, the standard approach of coupling
MS with 2-DE was the chosen method used to reveal γ-zein changes both in the fresh
and the high-moisture corn samples. To assess whether the γ-zein reduction is driven
primarily either by the enzymatic proteolytic activity or by the chemical action of the acidic
environment, three types of the ensiled corn were studied and they included: corn ensiled
with the Lactiplantibacillus plantarum additive (mainly enzymatic proteolysis), corn ensiled
with the lactic acid additive (mainly chemical proteolysis), and corn ensiled without any
additives (standard ensiling conditions). In addition, the evaluation of the parameters
of in vitro dry matter and starch degradability was carried out, since zein proteins affect
starch availability.
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2. Materials and Methods
2.1. Fresh and High-Moisture Corn Samples

The corn used in the study (Bc 462, FAO 420; BC Institute d.o.o., Zagreb, Croatia) was
grown in five replicates (plots) under intensive conditions in the split-plot experimental
fields at the University of Zagreb, Faculty of Agriculture, Zagreb, Croatia. Each plot
measured 14 m2 and was fertilized with 400 kg/ha NPK 7-20-30 (N-P2O5-K2O). The
starting fertilizer was urea (100 kg/ha), and KAN N (MgO) was applied twice during
vegetation (175 kg/ha). At the time of physiological maturity (70% DM), the corn was
harvested and each of the replicates was ground in a hammer mill with an 8 mm sieve (Ino
Brežice d.o.o., Krška vas, Slovenia). The milled material from each of the five replicates was
divided into three parts for the ensiling. The first part was treated with the LAB additive
Bio-Sil (Dr. Pieper Technologie und Produktentwicklung GmbH, Wuthenow, Germany),
the second part with the lactic acid additive, and the third part was ensiled without any
additives. Before the ensiling, 500 g of each of the five replicates was stored at −20 ◦C to
determine the in vitro dry matter and starch degradability and the zein quantification in
the fresh corn sample.

The fermentation/ensiling was performed in airtight nylon bags measuring 280 × 360 mm
(Status d.o.o., Metlika, Slovenia), each containing approximately 1000 g of ground corn
ensiled with or without additives. The additive Bio-Sil LAB contains two strains of Lac-
tiplantibacillus plantarum and was used at a concentration of 300,000 CFU/g according to
the manufacturer’s instructions. The lactic acid additive was applied at a concentration
of 15 g/kg DM and based on an average lactic acid content in a high-moisture corn [4].
After application, the bags were vacuum sealed using a SmartVac vacuum sealer (Status
d.o.o., Metlika, Slovenia). The silages were maintained at 25 ± 2 ◦C and sampled after 364
days. After sampling, the high-moisture corn samples were stored at −20 ◦C until the zein,
in vitro dry matter and starch degradability were determined.

2.2. Degradability Determination

The macro in vitro method using an Ankom DaisyII incubator (ANKOM Technology,
Macedon, NY, USA) was used to determine the in vitro dry matter and starch degradability
kinetics in the fresh and high-moisture corn [26]. The samples (0.7 g) were weighed in R510
bags (ANKOM Technology, Macedon, NY, USA), sealed, and placed in DaisyII incubator
jars (25 bags per jar) containing 2000 mL of the incubation solution prewarmed to 39
◦C. The incubation solution was prepared as described in Goering and van Soest [27] by
mixing buffer solution and rumen fluid; both were prepared under CO2 to obtain anaerobic
conditions. The rumen fluid was collected from three dry cows of similar constitution and
production level fed ad libitum with corn silage-based TMR. The animals were handled
in accordance with the University of Zagreb Faculty of Agriculture Bioethical Committee
Approval (KLASA: 114-04/22-03/06; URBROJ: 251-71-29-0111-22-4) for the protection of
animals used for scientific purposes. The rumen fluid was first sieved through four layers of
cheesecloth and then added (400 mL) to each jar containing 1600 mL of the buffer solution.

After 0, 7, 12, 24, 32, and 48 h of incubation, the bags were washed in ice-cold water
to remove bacterial debris and dried overnight at 60 ◦C. All repetitions of the ensiled and
fresh corn for each of the incubation periods were incubated in the same incubation jar. The
dry weight of each sample before and after incubation was used to determine the in vitro
dry matter degradability parameters. For the determination of the starch degradability
parameters, the dried samples after the incubation in vitro were ground through a 1 mm
sieve and analyzed enzymatically for starch content using the K-TSTA assay kit (Megazyme
International, Bray, Ireland). The amount of starch in each sample before and after the
incubation was used to determine the in vitro starch degradability parameters.
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2.3. Data Analysis

The in vitro dry matter and starch degradability parameters were fitted to an exper-
imental model according to the method described by Orskov and McDonald [28], later
implementing the lag phase described in Dhanoa [29]:

D(t) = a + b × (1 − e−c × (t − L))

In the formula, D(t) is the proportion (g/g) degraded in the time t (h), (a) is the
proportion of the rapidly degraded fraction (g/g), (b) is the proportion of the potentially
degraded fraction (g/g), (c) is the degradation rate constant (h−1), and L is the duration of
the lag phase (h).

The degradation parameters were provided using the non-linear least squares regres-
sion procedure NLIN in SAS 9.3 (SAS Institute, Cary, NC, USA) with the Marquardt method
to obtain the smallest residual sum of squared deviations from the model.

The effective degradability (ED) was determined according to Peyrat et al. [30], where
ruminal outflow (kp, h−1) is defined as 0.04 for dry matter degradation and 0.06 for starch:

ED = a + (b × ce(−kp × L))/(c + kp)

The effects of ensiling, the ensiling additive, and their interactions on the in vitro
degradability parameters were analyzed using the PROC MIXED procedure of SAS 9.3. The
degradability parameters were reported as a mean ± standard deviation of five repetitions.
The ensiling was treated as a repeated statement and the ensiling additive as a random
effect. The means were defined using least squares means statement and compared with
the PDIFF option. Letter groups were defined using the PDMIX macro in SAS [31]. The
differences and interactions were considered significant when p < 0.05.

2.4. Gamma Zein Evaluation
2.4.1. Zein Extract Preparation

Zein proteins from the fresh and high-moisture corn samples were extracted as de-
scribed in Wu et al. [12], with some modifications. Corn samples of 150 mg in 2 mL
Eppendorf Safe-Lock tubes (Eppendorf, Hamburg, Germany) were thoroughly mixed at
25 ◦C for 2 h with 1.2 mL of the extraction buffer (70% ethanol/2% 2-mercaptoethanol,
vol/vol) on a thermomixer (Thermomixer R, Eppendorf, Hamburg, Germany). After
mixing, the samples were centrifuged at 4 ◦C for 10 min at 12,000 rpm (Eppendorf 5415R
refrigerated centrifuge, Eppendorf, Hamburg, Germany) and 100 µL of the supernatant was
used for zein precipitation with acetone overnight at −20 ◦C. The precipitated zein protein
samples in acetone were centrifuged at 4 ◦C for 20 min at 12,000 rpm, and the zein residues
were resuspended in 100 µL of the rehydration solution for isoelectric focusing (IEF). The
protein concentration in the resuspended samples was determined by Bradford protein
assay [32] and the same amount of total proteins per sample was separated by 2-D gel
electrophoresis. Next, the separated proteins were determined by the negative chemically
activated fragmentation/positive chemically activated fragmentation (CAF−/CAF+) tech-
nique for protein identification as described in Butorac et al. [33], with some modifications.
The procedure is illustrated in Figure 1 and described below.
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Figure 1. Schematic representation of chemically activated fragmentation (CAF−/CAF+) mass
spectrometry (MS) technique for protein identification. From top left to bottom right: zein proteins
isolated from the fresh and the high-moisture corn samples were separated on 2-DE gels, visual-
ized with Coomassie brilliant blue, and analyzed with PDQuest 2-D image analysis software. All
visible spots were excised from the gels, processed by in-gel digestion and CAF−/CAF+ peptide
derivatization and analyzed using the MS technique for protein identification.

2.4.2. Two-Dimensional (2-D) Gel Electrophoresis with Zein Quantification

Linear immobilized pH gradient strips (17 cm, pH 3–10) on a Protean IEF cell (Bio-
Rad, Hertfordshire, UK) were used for protein separation by IEF in the first dimension.
The second dimension, SDS-PAGE electrophoresis, was performed on 1 mm thick 12%
polyacrylamide gels with protein visualization using Coomassie brilliant blue.

Protein quantification based on the intensity of visible protein spots stained with
Coomassie brilliant blue was performed using image analysis software (Discovery Series
PDQuest 2-DE analysis software package, version 7.4.0) integrated with a VersaDoc 4000
Imaging System (Bio-Rad, Hertfordshire, UK). The expression difference evaluated with
the image analysis software was statistically significant at p < 0.05 [34].

2.4.3. Sample Preparation for Mass Spectrometry

The labeled and quantified spots obtained after Coomassie brilliant blue staining were
excised and subjected to tryptic in-gel digestion. After protein digestion, the peptides
were resuspended in 10 µL of 0.1% TFA solution, purified on C4 ZipTip columns, and
evaporated to dryness in a vacuum centrifuge at 30 ◦C (Concentrator Plus complete system,
Eppendorf, Hamburg, Germany). The dried samples were dissolved in the derivatization
solution CAF−/CAF+ and the derivatization was performed in three cycles for 4 min at
90 W in a microwave oven. Thereafter, C4 ZipTip purification and vacuum centrifuge
drying were performed again. The dried peptide samples were dissolved in 5 µL of a
5 mg/mL CHCA matrix prepared in a water/acetonitrile mixture (1:1, v/v) and spotted
onto a metal matrix-assisted laser desorption/ionization (MALDI) plate.

2.4.4. Mass Spectrometry and Protein Identification

Mass spectrometric analysis was performed using a 4800 Plus MALDI TOF/TOF
analyzer (Applied Biosystems Inc., Foster City, CA, USA) equipped with a 200 Hz, 355 nm
Nd/YAG laser. The mass spectra were obtained by averaging 1800 laser shots covering a
mass range from m/z 800 to 5000. Acquisitions of derivatized peptides were performed
in the negative ion mode; the internal calibration of the mass range was performed using
derivatized tryptic autolysis fragments. Gamma zein proteins were digested in silico to
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generate a list of potential peptide ions derived from γ-zein proteins. The generated list
was used for γ-zein detection by the MS/MS analysis. In parallel, the 10 most intense
precursor signals from the MS negative spectra were selected for further MS/MS analysis
to detect other proteins present in the samples. The MS/MS analysis was performed in
negative and positive ion modes at 1 kV collision energy with air as a collision gas. Protein
identification and database searches of derivatized peptides were performed using Protein
Reader (SemGen Ltd., Zagreb, Croatia) against the NCBInr database.

2.5. Scanning Electron Microscopy Imaging of Ground Corn Samples

The ensiling and ensiling additive application impact on starch and protein interactions
(starch–protein matrix) in the high-moisture corn grains were evaluated visually on 1 mm
ground samples using a scanning electron microscope (SEM) (FE-SEM, Mira II LMU, Tescan,
Brno, Czech Republic). For this purpose, all repetitions from each treatment were pooled.
The SEM operated at 5 kV under magnifications of 2000×, 5000×, or 10,000×. Prior to the
SEM analysis, the samples were sputter coated with Cr alloy (Q150T ES Plus, Quorum
Technologies, Lewes, UK).

3. Results
3.1. In Vitro Degradability Results

The ensiling increased the dry matter and starch degradation rates compared to the
fresh corn sample (for DM p = 0.002, for starch p < 0.001; Table 1). However, the results
varied depending on the ensiling additive. A significant increase in the dry matter and
starch degradation rate of the high-moisture corn ensiled with the lactic acid additive was
not observed compared to the fresh corn sample (p > 0.05), although the starch degradation
rate value in the ensiled corn was 21% higher than that of the fresh corn sample. Silages
ensiled with Lactiplantibacillus plantarum inoculant had a 59% higher dry matter degradation
rate and a 160% higher starch degradation rate compared to the fresh corn sample (p < 0.05).

Table 1. Effects of ensiling and ensiling additives on in vitro dry matter (DM) and starch degradability
parameters.

High-Moisture Corn p

Kinetics
Parameters

Fresh
Corn

Inoculant
L. plantarum

Lactic
Acid Control Ensiling

(E)
Additive

(A) E×A

DM 6 degradability parameters
ED 1 0.59 b 0.83 a 0.76 a 0.80 a <0.001 0.302 0.302
a 2 0.28 b 0.58 a 0.52 a 0.58 a <0.001 0.579 0.579
b 3 0.69 a 0.47 b 0.47 b 0.46 b <0.001 0.995 0.995

c (h−1) 4 0.0561 b 0.0892 a 0.0453 b 0.0782 a 0.002 0.003 0.001
lag (h) 5 7.28 a 4.01 b 3.33 b 6.02 a <0.001 0.142 0.142

Starch degradability parameters
ED 1 0.56 b 0.83 a 0.78 a 0.79 a <0.001 0.529 0.530
a 2 0.36 c 0.64 ab 0.60 b 0.68 a <0.001 0.214 0.214
b 3 0.63 a 0.37 b 0.41 b 0.33 b <0.001 0.693 0.693

c (h−1) 4 0.0527 b 0.1368 a 0.0638 b 0.0835 b <0.001 0.035 0.024
lag (h) 5 6.54 a 3.03 b 2.34 b 5.44 a 0.003 0.002 0.002

1 ED: effective degradability. 2 a: rapidly degradable fraction. 3 b: potentially degradable fraction. 4 c: rate of
degradation (h−1). 5 lag: lag phase (h). 6 DM: dry matter. alues with different superscript letters in the same row
represent differences (p < 0.05) between samples [31].

The dry matter and starch effective degradability were higher (both p < 0.001) in the
high-moisture corn than in the fresh corn (Table 1). This was mainly related to the DM and
starch degradation rate as well as to the DM and starch rapidly degradable fraction, which
were higher in the silages than in the fresh corn (p < 0.001). In contrast to the DM and starch
degradation rate, the ensiling additive showed no significant effect on the DM and starch
rapidly degradable fraction (for DM p = 0.579, for starch p = 0.214; Table 1). Consistent
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with the increase in the DM and starch rapidly degradable fractions, the DM and starch
potentially degradable fractions decreased with the ensiling (p < 0.001, Table 1).

Similar to all of the degradability parameters evaluated, the lag phase showed an
improvement with the ensiling (p < 0.001 for DM, p = 0.003 for starch); both the DM and
starch lag phases were shorter in the high-moisture corn, with the lag phase being the
shortest in the high-moisture corn ensiled with the additives (p < 0.05; Table 1). The high-
moisture corn ensiled without the additives also showed a shorter lag phase, but with no
significant improvement compared to the fresh corn (p > 0.05).

At all of the time points examined, the disappearance of DM and starch were more
intense in the high-moisture corn than in the fresh corn (p < 0.05), with the highest values
observed in the high-moisture corn ensiled with Lactiplantibacillus plantarum (Figure 2).
The highest peak values for both the DM and starch disappearances in the high-moisture
corn samples were at 7 h of incubation, whereas fresh corn had the highest DM and starch
disappearance peak values at 12 h of incubation. As shown in Figure 2, the high-moisture
corn silages had values twice as high for the disappearance of DM (average from 33.40% to
67.99%) and 66% higher values for the disappearance of starch (average from 46.15% to
76.57%) from the beginning to 7 h of incubation, while they had a similar disappearance
of DM and starch at 12 h compared to 7 h of incubation (Figure 2). However, in the fresh
corn samples, the disappearance of DM was 48% and the disappearance of starch was 40%
higher from 7 h to 12 h compared to the disappearance from the beginning of incubation to
the 7 h time point (Figure 2).
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Figure 2. In vitro disappearances of DM (a) and starch (b) in the fresh corn and high-moisture
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3.2. Zein Protein Pattern

On each of the 2-DE gels of zein extracts from the fresh and high-moisture corn, more
than 50 protein spots were visualized with Coomassie brilliant blue (Figures 3 and 4). All
detected protein spots were excised from the gels, analyzed by mass spectrometry, and later
identified using the bioinformatics software Protein Reader. A total of six zein proteins
were identified in 13 spots (Figure 3) and their positions on each of the 2-DE gels were
indicated (Figure 4). Of the 13 identified zein spots, four were identified as γ- zeins. Three
of them contained the 16-kDa γ-zeins, while the remaining one contained the 27-kDa γ-zein.
(Figures 3 and 4).

When comparing the 2-DE gels of fresh corn with the high-moisture corn samples,
protein degradation in the ensiled corn samples was visible as protein smears on the 2-DE
gels (Figure 4b–d gels). The exact degree of γ-zein reduction (degradation) in the high-
moisture corn samples was determined using the image analysis software. The difference
in the expression evaluated with the image analysis software was statistically significant
(p < 0.05, Figure 5).
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Figure 4. Detection of zein proteins. The proteins from fresh corn (a), high-moisture corn ensiled with
inoculant Lactiplantibacillus plantarum (b), lactic acid (c), and without additives (d) were separated on 2-
DE using linear immobilized pH gradient strips (17 cm, pH 3–10) in the first and 12% polyacrylamide
gels in the second dimension. All visible spots were excised from the gels and analyzed by mass
spectrometry. Identified γ-zein protein spots are indicated by red numbers and other zein protein
spots by blue numbers. The numbers correspond to zein proteins defined as in Figure 3b.
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Figure 5. Evaluation of differences in detected γ-zein proteins. The proteins were analyzed with
image analysis PDQuest 2-D software depending on the ensiling treatment: 27 kDa γ-zein spot 1
(a), 16 kDa γ-zein spot 2 (b), 16 kDa γ-zein spot 3 (c), and 16 kDa γ-zein spot 4 (d). The expression
difference is statistically significant at p < 0.05 [34].

3.3. γ-Zein Reduction

The results of the γ-zein changes in the fresh and high-moisture corn samples (Figure 5)
showed a reduction in γ-zein proteins in the high-moisture corn. The ensiling of high-
moisture corn with Lactiplantibacillus plantarum inoculant did not result in detectable γ-zein
proteins (Figures 4 and 5). In contrast, the ensiling of high-moisture corn with the lactic
acid and without the addition of the additives resulted in no detectable 27-kDa γ-zein and
detectable levels of the 16-kDa γ-zein. The reduction in the 16-kDa γ-zein was, on average,
45% greater in the high-moisture corn ensiled with lactic acid than in the high-moisture
corn ensiled without the additives (Figure 4; p < 0.05, Figure 5).

4. Discussion

The main objective of the study was to evaluate γ-zein proteins in fresh and high-
moisture corn samples by adapting the 2-DE separation method coupled with MALDI
peptide mass fingerprinting, which Postu et al. [23] used to evaluate α-zeins extracted
from fresh corn. In the present study, for the first time, γ-zein proteins in fresh and ensiled
corn were evaluated using 2-DE followed by densitometry quantification and MALDI-
TOF/TOF for protein identification. Gamma zeins, the second most abundant group of zein
proteins, are essential for the PB functionality and abundance [14]. Since starch granules are
surrounded by the PBs in the starch–protein matrix [2], the starch availability and nutritional
value of corn are strongly associated with their number and properties [4,35,36]. Therefore,
in addition to γ-zein evaluation, in vitro starch degradability was another important subject
of this study.

In the present study, extraction with a reducing agent in aqueous alcohol [12] was used,
differing from the extraction method of Postu et al., who extracted zeins in 65% and 95%
ethanol [23]. Gamma zeins are Cys-rich proteins that exhibit strong disulfide bonds, which
affect the stability and extractability of γ-zeins [13]. Therefore, the extractability of γ-zeins
is low without the use of a strong reducing agent [37], whereas aqueous alcohol is sufficient
for the extraction of α-zeins [3,23]. In addition, all four types of zeins are extractable in
aqueous alcohol solution with a reducing agent [3]. Here, the observed simultaneous
extraction of γ-zeins and α-zeins was not a surprise due to the strong protein–protein
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interactions between the γ- and α-zeins, with the former located at the periphery of the PB
and the latter in the center of the PB under the γ-zein layer [2,38].

Zein extracts from the fresh and high-moisture corn samples separated on 2-DE had
four γ-zein spots and nine α-zein spots, whilst the other detected proteins were of non-zein
origin. Some of the non-zein protein spots were detected at the same molecular weight as
the zeins, which implies that some zein proteins might actually not be zein proteins when
zein detection is based merely on the molecular weight markers usually implemented with
SDS-PAGE zein detection [12,21–23].

Proteolytic enzymes and an acidic environment are responsible for protein degrada-
tion in silages [16], which is also clearly seen here. The results show a reduced protein
layer/coating around the starch granules in the fermented/ensiled high-moisture corn
compared to the fresh corn samples when the samples were visualized with SEM (Figure 6).
The fermentation end-products during ensiling, namely, lactic and acetic acids, are good
zein solubilizers [3], but in the ensiled whole-plant corn, zein degradation is mainly driven
by the enzymatic proteolysis rather than by the chemical action of lactic acid [20]. Junges
et al. further confirmed the enzymatic nature of protein breakdown in reconstituted corn
grain silages [39]. The authors compared the contribution of the corn kernel, bacteria, fungi,
and fermentation end-products to protein breakdown and concluded that fermentation
end-products only made a minor contribution, while bacterial enzymes (60%) and corn ker-
nel enzymes (30%) had the greatest impact on protein breakdown [39]. Similarly, Hoffman
et al. showed that ensiling leads to the degradation of γ-zein in high-moisture corn, but, in
contrast to the results presented here, with no difference in the extent of reduction when
the inoculant was used [19]. The results of this study supported the enzymatic proteolysis
reported by Duvnjak et al. [20] and Junges et al. [39] and showed that zein reduction,
more specifically the 16-kDa γ-zein reduction, was strong in the bacteria-inoculated silages,
moderate in the silages with the application of the lactic acid additive, and the lowest when
there were no additives applied. The changes in the 27-kDa γ-zein during the ensiling
showed a complete reduction of this γ-zein protein type. The observed differential inten-
sity of the reduction of the 27-kDa γ-zein and the 16-kDa γ-zein was consistent with the
proposed locations of both types of γ-zeins; the 27-kDa are localized at the periphery of the
PB and the 16-kDa are directed towards the inner regions of the PB, and are responsible for
the retention of α/δ zein proteins in the inner region of the PB [2].
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using a scanning electron microscope operating at 5 kV under 2000×, 5000×, or 10,000× magnifica-
tions. Scanning electron micrographs are as follows: fresh corn 2000× (a), fresh corn 5000× (b), fresh
corn 10,000× (c), ensiled high-moisture corn 2000× (d), ensiled high-moisture corn 5000× (e) and
ensiled high-moisture corn 10,000× (f). Starch granules in the ensiled samples (d–f) were more acces-
sible due to the reduction of the zein protein layer surrounding the starch granules compared to the
fresh corn samples (a–c). On scanning electron micrographs, examples of starch granules are marked
with orange arrows and examples of zein protein coating/layer are marked with green arrows.

The PBs are not randomly, but rather uniformly distributed around the starch gran-
ules embodied in the protein matrix. In general, their interaction with the surrounding
cytoskeletal network is influenced by the appropriate location and proportions of the zeins,
especially the γ-zein proportions, as they are located at the periphery of the PBs [12]. The
in vitro degradability data from this study support Hoffman et al. [19], who showed that
the reduction of γ-zeins during the ensiling leads to a disassociation of starch granules
and thus allows greater access to starch granules by the rumen microorganisms. In the
present study, the intensity of γ-zein reduction (Figures 4 and 5) and the in vitro degrad-
ability results (Table 1), as well as the visual representation of the morphological changes
of the starch–protein matrix (Figure 7), were in agreement with each other. The in vitro
starch and dry matter degradability were higher in the high-moisture corn than in the
fresh corn. These results are in agreement with the in situ ruminal degradability parame-
ters in ensiled corn grain [18], ensiled whole-plant corn [30], ensiled steam-flanked corn
TMR [40], and the in vitro ruminal degradability in ensiled whole-plant corn [41]. For the
ensiled whole-plant corn, the authors reported a higher degradation rate and effective
degradability, and a higher content of rapidly degradable fraction in the ensiled compared
to the fresh material. The increase in the in vitro degradability of the DM and starch in
the high-moisture corn samples was mainly due to the increase in the rapidly degradable
fraction [18]. The data indicate that the high-moisture corn ensiled with Lactiplantibacillus
plantarum showed the highest degradability rate of both DM and starch, which corresponds
to γ-zein reduction and thereby with the microenvironment that allows the more intense
activity of amylolytic microorganisms [42,43]. The visual representation of the changes
in the starch–protein matrix using SEM is consistent with the above. As seen from the
scanning electron micrographs, the protein layer was reduced and the starch granules
were dissociated in the ensiled high-moisture corn (Figure 6), with the greatest reduction
observed in the high-moisture corn ensiled with Lactiplantibacillus plantarum (Figure 7).

Ruminal degradability is defined by the first-order kinetics equation, the so-called
McDonald model [28], which usually neglects the influence of the lag phase by assum-
ing immediate substrate hydration and colonization by microorganisms [44]. However,
Dhanoa [29] showed that the simultaneous estimation of the lag phase parameter within
the McDonald model is beneficial for the adequate evaluation of the kinetic parameters.
In this study, the ensiling affected the lag phase of both starch and DM degradability; the
reduction in their duration was consistent with the proposed influence of zein on starch
availability. The high-moisture corn silages ensiled with Lactiplantibacillus plantarum and
lactic acid that exhibited a more intense γ-zein reduction also had shorter lag phases. The
control silages with less intensive γ-zein reduction had longer lag phases with no significant
differences compared to the fresh corn.

When comparing the disappearance of starch and DM at different incubation times,
the high-moisture corn silages showed different disappearance patterns than the fresh corn.
The silages had a significantly higher and earlier disappearance of both DM and starch
compared to the fresh corn, which supports the proposed greater access to starch granules
by the rumen microorganisms in ensiled corn [19]. As the zein proteins are degraded, the
starch granules become more accessible, consequently leading to an earlier disappearance
of starch, an effect seen in the SEM analysis performed here (Figures 6 and 7). The scanning
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electron micrographs showed that the starch granules in the ensiled samples were more
accessible due to the reduction of the zein protein layer surrounding the starch granules.
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Figure 7. Scanning electron micrographs of zein protein degradation in the three types of ensiled high-
moisture corn. Degradation of zein proteins in the ensiled high-moisture corn samples compared to
the fresh corn samples was examined on 1 mm ground samples using a scanning electron microscope
operating at 5 kV under 5000×, or 10,000× magnifications. Scanning electron micrographs of ground
corn samples are as follows: fresh corn 5000× (a), fresh corn 10,000× (b), high-moisture corn ensiled
with inoculant Lactiplantibacillus plantarum 5000× (c), high-moisture corn ensiled with inoculant
Lactiplantibacillus plantarum 10,000× (d), high-moisture corn ensiled with lactic acid 5000× (e), high-
moisture corn ensiled with lactic acid 10,000× (f), high-moisture corn ensiled without additives
5000× (g), and high-moisture corn ensiled without additives 10,000× (h). The zein protein layer in
the ensiled high-moisture corn was reduced compared to the fresh corn; the highest reduction was in
the Lactiplantibacillus plantarum-ensiled high-moisture corn.

5. Conclusions

This study clearly shows that the extent of γ-zein reduction in high-moisture corn
depends on the type of additive, and that the reduction was primarily caused by the enzy-
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matic proteolysis. The more intense γ-zein reduction resulted in higher starch availability
and degradability, demonstrating the importance of γ-zein to the nutritional value of corn.

Furthermore, the results of this study demonstrated that the combination of 2-D gel
electrophoresis followed by the densitometry quantification and MALDI-TOF/TOF for
protein identification, which was applied here, can be used as a state-of-the-art method for
γ-zein evaluation in fresh and ensiled corn samples.
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