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In this study, we analyse the aggregated transaction networks of Ether (the native
cryptocurrency in Ethereum) and the three most market-capitalised ERC-20 tokens in
this platform at the time of writing: Binance, USDT, and Chainlink. We analyse a
comprehensive dataset from 2015 to 2020 (encompassing 87,780,546 nodes and
856,207,725 transactions) to understand the mechanism that drives their growth. In a
seminal analysis, Kondor et al. (PLoS ONE, 2014, 9: e86197) showed that during its first
year, the aggregated Bitcoin transaction network grew following linear preferential
attachment. For the Ethereum-based cryptoassets, we find that they present in
general super-linear preferential attachment, i.e., the probability for a node to receive a
new incoming link is proportional to kα, where k is the node’s degree. Specifically, we find
an exponent α � 1.2 for Binance and Chainlink, for Ether α � 1.1, and for USDT α � 1.05.
These results reveal that few nodes become hubs rapidly. We then analyse wealth and
degree correlation between tokens since many nodes are active simultaneously in different
networks. We conclude that, similarly to what happens in Bitcoin, “the rich indeed get
richer” in Ethereum and related tokens as well, with wealth much more concentrated than
in-degree and out-degree.
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1 INTRODUCTION

Bitcoin and Ethereum are the two pioneering blockchain-based platforms. Nakamoto [1] created
Bitcoin: the first andmost popular cryptocurrency system since its launch in January 2009 and, so far,
the one with the highest market capitalisation according to coinmarketcap [2]. Launched in 2015,
Ethereum [3] is the second most popular public permissionless blockchain platform and the second
most capitalised according to coinmarketcap [2]. Ethereum is considered “the world’s distributed
computer”: the first platform to implement smart contracts, i.e., Turing-complete programs. This is
pivotal for many new decentralised applications such as decentralised finance (DeFi).

At the intersection among economics, technology, and social sciences, Popper [4] states that
blockchains constitute an inspiring and emerging research field since the original inception of
Bitcoin by Nakamoto [1]. The use of blockchain-based distributed ledgers in our society grows
steadily. On one side, Bitcoin is one of the fastest-growing assets in history, withmarket capitalisation
records broken successively in the past. On the other side, blockchain is being successfully introduced
in a wide array of use cases, ranging from secure voting to supply chain tracking. The vast majority of
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currently available crypto-currencies uses a public distributed
ledger based on a blockchain to transact and exchange value [5,6].
All transactions are registered in a readable distributed ledger, in
such a way that anyone connected to the peer-to-peer network
can verify independently the validity of the executed transactions.

Blockchains offer a new research opportunity to better analyse
and understand complex social and economic systems. Access to
transactions occurring in traditional payment systems is usually
restricted: traditional exchanges remain confidential, protected by
privacy laws, or trade secrets. Digital payments with credit cards
and wire transfers carry a similar limitation, while payments with
physical cash are de facto impossible to track on a massive scale.
In contrast, transactions in a public blockchain are visible by
definition, only limited by the pseudo-anonymity of the users as
described by Reid and Harrigan [7]. The additional research
boundary is the considerable amount of data that blockchain
implementations produce when they are massively adopted.
Extant research by [8–11] shows that market value growth has
accelerated in parallel to the number of users and transactions.
While in some cases, like in Bitcoin, the rate of data production
is currently bounded by the limits imposed by design choices
(block size, inter-block time), and in other systems, transaction
data increase massively throughout time (like in Ethereum). The
use of networks to describe interactions is a powerful resource:
in our case, we represent Ethereum transaction data using a
network of nodes (public addresses) interconnected by edges
(transactions).

Network science refers to an interdisciplinary approach that
helps to characterise complex systems composed of many
interacting constituents. This approach permitted to unveil
large-scale emergent properties in the most varied disciplines,
ranging from biology to social sciences, and specifically socio-
technical and economic and financial systems [12–17].

Growth in a wide range of networked systems presents a
network version of the “rich-get-richer” effect. In terms of degree,
this mechanism implies that nodes with a higher degree accrue
links at a higher rate than lower-degree nodes. Price [18] calls this
effect as “cumulative advantage”; Barabási and Albert [19]; Albert
and Barabási [20]; Barabási and Pósfai [12] refer to it as
“preferential attachment” (PA). This effect usually creates
power-law degree distributions, facilitating the mathematical
characterisation of a growth pattern in complex networks [21].
In practice, preferential attachment refers to the specific case in
which the probability of receiving a new link is directly
proportional to the node’s degree k, producing a scale-free
network characterised by a power-law degree distribution pk ∼
k−cwith exponent 2 ≤ c ≤ 3, as in Barabási and Pósfai [12]; Alstott
et al. [22]. However, extensions of the model such as Krapivsky
et al. [23] show that the emergent topology changes when the
probability of a node to receive new links is a nonlinear function
of the node’s degree: while highly connected nodes in networks
with sublinear PA do not play such a decisive role in network
growth, in the case of networks showing super-linear PA, few
nodes act like hubs and tend to connect to most network nodes
(i.e., the network topology concentrates around superhubs).

Public blockchains are current examples of complex systems
which are increasingly researched through complex network

approaches Vallarano et al. [11]. By analysing a complete and
unique dataset encompassing the first 5 years of Ethereum
platform, i.e., 856,207,725 transactions and 87,780,546
addresses, we show that the native cryptocurrency of the
Ethereum platform, Ether, and the most active tokens on it
show a form of preferential attachment, with signs of super-
linear PA.

This study is structured as follows. In Section 2, we review
related literature on complex network approaches to understand
cryptocurrencies and blockchain-based systems. Section 3
presents the analysed dataset. In Section 4, we introduce the
methodology while in Section 5, we display the results of
empirical distributions of wealth and in- and out-degrees. We
share the results for the nonlinear preferential attachment
analysis in Section 6. Finally, in Section 7, we present the
conclusions of this analysis.

2 RELATED LITERATURE

In [24,25], the authors analyse aggregated representations of
the Bitcoin transaction network. They observe that highly
connected nodes increase their connectivity with new edges
either by receiving new transactions (in-degree) or starting
new transactions (out-degree). Using a statistical approach
based on rank, they conclude that the growth of the degree
distribution in the Bitcoin transaction network displays linear
preferential attachment (PA). They also identify that addresses
with high balance increase their wealth more than addresses
with low balance displaying a sublinear preferential
attachment. In addition, they find that the in-degree of a
node, i.e., the number of transactions received by an

FIGURE 1 | PDF of wealth wS for wS > 0 in various tokens: ETH, BNB,
USDT, and LNK. The dashed line (w−1) is just added for visual reference.
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address, is positively correlated with the Bitcoin balance of that
address. Wealth distribution per address is highly
heterogeneous, but this distribution is stable at different

points of time. Instead of a power-law distribution, Kondor
et al. [24] find for the majority of the samples a better
approximation in the stretched exponential distribution.

FIGURE 2 |Weplot basic statistics of the data analysed. In the (A),we show, as a function of time the closing daily market price of ETH, BNB, USDT, and LNK in US
Dollars. For the tokens, the time series begins with the deployment of the smart contract into the blockchain. In the (B,C), we show the number of new nodes (resp.,
edges) every day for the aggregate network introduced in this study.
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With a focus on wealth, the Gini coefficient is computed over
time, and they find that G ≈ 0.9.

Bovet et al. [9] analyse more properties of the Bitcoin
transaction network. The study includes more than 283M
transactions between 304M addresses which can be reduced to
around 16M users. The technical process to analyse data of this
size is explained in Sommer [26]. They observe that when many
users behave similarly by creating the same connectivity pattern
(i.e., they display a sharper degree distribution with an increase in
both number of links and number of nodes), then there are price
surges. Once the price peak of a bubble is passed, the
heterogeneity of the degree distribution of different
participants widens. In their introduction, Bovet et al. [9]
present four graphs that show features of the Bitcoin network:
number of nodes, number of links, density, and price along a
temporal axis. We follow a similar approach to introduce the four
Ethereum-based transactions networks that we study in Figure 2
and Figure 3.

A basic although crucial lesson learned from the literature
review on Ethereum network analysis is indeed the very fast pace
of change in this platform. Liang et al. [27] present a dynamic
network analysis of three representative blockchain-based crypto-
currencies: Bitcoin, Ethereum, and Namecoin. The authors
construct separate networks on a monthly basis, and they
trace changes of typical network characteristics over time,
including degree distribution, degree assortativity, clustering
coefficient, and the largest connected component. They
compare the three networks and conclude that the degree
distribution of these monthly transaction networks cannot be
fitted well by a power-law distribution. In addition, they find that
both Bitcoin and Ether (ETH) networks are heavy-tailed with
disassortative mixing; however, only the former can be treated as
a “small world”, i.e., most vertices can be reached from the others
through a small number of edges. These network properties
reflect the evolutionary characteristics and competitive power
of these three cryptocurrencies. The dataset comprises of
approximately 80M transactions from 2015 to late 2017. They
identify a continuously increasing average degree except for a
decrease in October 2016, when the network showed instability
caused by several denial-of-service (DoS) attacks. They study the
transaction volume and state that most of the users have limited
incoming transactions while a small population receives a large
amount of ETH. Liang et al. [27] identify that these
cryptocurrency networks do not obey the densification law,
and they argue that a plausible explanation is the minimal
reuse of addresses (which is a standard practice in UTXO-
based systems). They find that almost all degree distributions
cannot be accepted as a power-law but still as a clear heavy-tailed
distribution, which means that the majority of addresses have low
degrees, while a small but not negligible number of addresses have
relatively high degrees. Guo et al. [28] use a more reduced ETH
datasets, one containing 100,000 blocks from 2015, and ca.
680,000 transactions and another containing 610,000
transactions from 2017. They find that the typical distance
between any pair of anonymous users is extremely small, and
the Ether paid by one node may return at a relatively high speed.
As a result, they claim that ETH enjoys a good level of liquidity.

Somin et al. [29] provide the first analysis of the network
properties of ERC-20 protocol-compliant tokens trading data.
They analyse the properties of the transaction network by
considering all trading wallets (i.e., addresses) as network
nodes and constructing its edges using buy–sell trades. They
examine several time periods and several data aggregation
variants to demonstrate that the transaction network displays
strong power-law properties. Both outgoing and incoming
degrees present a power-law distribution. This means that
most tokens are traded by an extremely small number of
users. Only a few popular tokens are traded by a very large
group of users during the examined time span. These results
coincide with current network theory expectations. Somin et al.
[29] provide the first scientific complex network validation for the
ERC-20 trading data. The data they examine are composed of
over 30 million ERC-20 tokens trades, performed by over 6.8
million unique wallets, encompassing a 2-year period between
February 2016 and February 2018. Even studies that use a very
limited ETH datasets such as Ferretti and D’Angelo [30], which in
some cases used just a 1-h slot to study transactions, i.e., only
around 240 blocks, conclude that the degree distribution is heavy-
tailed suggesting that those degrees follow a power-law function.
Somin et al. [31] analyse the dynamic properties of trading data
from ERC-20 protocol compliant tokens using network theory.
They examine the dynamics of ERC-20-based networks over time
by analysing a meta-parameter of the network, i.e., the power of
its degree distribution and their analysis demonstrates that this
parameter can be modelled as an under-damped harmonic
oscillator over time, enabling a year forward of network
parameters predictions. Lin et al. [32] model the ETH
transaction records as a complex network by incorporating
time and amount features of the transactions and then design
several flexible temporal walk strategies for random-walk-based
graph representation of this large-scale network. Their
experiments of temporal link prediction on real ETH data
demonstrate that temporal information and multiplicity
characteristic of edges are indispensable for accurate modelling
and understanding of ETH transaction networks.

TABLE 1 | Summary of the different datasets analysed by different authors.

References Token Transactions (M)

Bovet et al. [9] BTC 283
Liang et al. [27] ETH 80
Guo et al. [28] ETH 1.29
Kondor et al. [24] BTC 17
This study ETH 856

TABLE 2 | Summary of the datasets analysed in this study.

Token Nonzero Txs Addresses ETH blocks

ETH 414 M 87 M 0–11 M
BNB 934 K 481 K 0–11 M
USDT 60 M 9 M 0–11 M
LNK 5 M 784 K 0–11 M
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3 DATA DESCRIPTION

A blockchain is a time-ordered sequence of blocks, each of them
composed by a set of verified transactions. Transactions can
change permanently the state of the Ethereum blockchain by
transferring value through the native token (Ether) or by creating
and executing smart contracts. Tokens built on top of Ethereum
consist of a smart contract, i.e., a program run by the Ethereum
Virtual Machine (EVM). The EVM is the distributed run-time
environment of the Ethereum blockchain. Transactions are
inserted in blocks, which are then mined, i.e., verified, using a
proof of work-based consensus. For an overview of the different
approaches, see Tasca and Tessone [5].

In our study, we analyse the Ethereum blockchain since its
launch in 2015 until October 6, 2020 (block 11,000,000). In total,
it contains 87,780,546 addresses and 856,207,725 transactions.

The data required to build the networks were extracted from
the Ethereum blockhain using ethereum-etl tool from Medvedev
[33]. Ethereum-etl performs ETL operations (Extract, Transform
and Load) on raw Ethereum data. It enables the extraction of
transactions, mined blocks, and token transfers in csv format
from a fully synced Ethereum client with archive mode. Other
data pipeline options are available as well. For this analysis, we use
transactions with a nonzero value to reconstruct the Ether
network. Transactions with zero value are usually smart
contract calls. We use block extraction to assign timestamps to
both native Ether and token transactions. We then aggregate
transfers per token to conduct the analysis. There are thousands
of tokens, but only few of them have a worth-analysing number of
transactions. The vast majority of tokens have very few or no
transactions at all. For this analysis, we selected three tokens, the
most successful in market capitalisation at the time of writing.
The other tokens were extracted but not used for this specific
analysis. For further details, see the data availability statement
section (Section 7). For market capitalisation data, we use
quotations publicly available on coinmarketcap [2].

Table 1 compares the size of the datasets analysed by some of
the authors mentioned in the literature review with our dataset, to
underline the comprehensive scale of our analysis.

We study the dynamics of the aggregated transaction network
in Ether (ETH), the native token of Ethereum, and in three key
ERC-20 tokens built on top of Ethereum: Binance (BNB), Tether
(USDT), and Chainlink (LNK). In our representation, the
transaction network is composed of addresses (nodes) and
directed edges representing transactions. A directed edge
between two nodes means that there is at least one transaction

from the sender address to the destination address. We create the
networks and perform network calculations using the entire
timeline mentioned in this section. In our analysis, repeated
edges are disregarded. We additionally consider the timestamp
of the transactions to analyse the time-based evolution of the
network. We analyse as well balances of addresses at a certain
point in time to study wealth distribution. The summary of the
datasets used in this study is in Table 2.

As of this writing, according to coinmarketcap [2], ETH is the
second most capitalised cryptocurrency (over USD 170 B) behind
Bitcoin. We also analyse three ERC-20 tokens with the highest
market capitalisation according to etherscan.io [34] in early
March 2021: Binance (over USD 36 B), Tether (over USD
35 B), and Chainlink (over USD 11B).

ERC-20 Tokens: According to its specification [35], ERC-20 is the
Ethereum standard for fungible tokens, where fungible means that
every token of the same type behaves exactly the same and is
completely interchangeable (in contrast to non-fungible tokens
(NFT) where every token can be unique). ERC-20 is the interface
that a smart contract (i.e., a program deployed on the Ethereum
blockchain) can implement to exchange this kind of tokens. The
interface provides functionalities such as token transfer from one
account to another, current token balance of an account, total
supply of the token available on the network, or approval for a
specific token amount from an account to be spent by a third
party account. An ERC-20 token contract is a smart contract that
implements this interface. ERC-20 offers a viable and very successful
standard to interact with non-native tokens. Non-native means not
devised as part of the original protocol but implemented on top of it.

Ether (ETH): It is Ethereum’s native token. In its foundational
whitepaper Buterin [3], it is stated that Ethereum’s mission is “to
create an alternative protocol to build decentralised applications”.
Ethereum introduces a public blockchain with a built-in Turing-
complete scripting language. Anyone can write smart contracts and
decentralised applications to create their own arbitrary rules for
ownership and value transaction. Ethereum, launched in 2015,
constitutes an evolution from the pioneer Bitcoin blockchain.
Bitcoin is based on unspent transaction outputs while Ethereum
uses balance-based accounts, Turing-complete scripting, and smart
contracts with their own address. Ether (ETH) is the native token
that fuels the Ethereum network. With Ether, users buy “gas” that
enable transactions and smart contracts calls to run. Gas is used as
well to reward miners for incorporating transactions into the
blocks, in addition to the usual mining block reward.

Binance Coin (BNB): The currency unit issued by Binance
and—at the time of writing—the ERC-20 token based on

TABLE 3 | Basic Network properties for the different tokens. N is the number of nodes, 〈kin〉 is the average in-degree, 〈kout〉 is the average out-degree, GC is the Global
Clustering Coefficient while s.d. GC is the standard deviation for the Global Clustering coefficient. ND is the network diameter, LSCC Size is the Largest Strongly
Connected Component Size expressed in nodes while LSCC D is the Largest Strongly Connected Component Diameter.

Token N 〈kin〉 〈kout〉 GC s.d. GC ND LSCC size LSCC D

ETH 84 ,227 988 2.1884 2.1884 1.1726 (−5) 6.4207 (−6) 10,004 52,093,628 10,004
BNB 4,81,138 1.4959 1.4959 4.0532 (−5) 4.4729 (−5) 37 171,291 37
USDT 9,3,02,425 3.0675 3.0675 3.3747 (−5) 1.0019 (−5) 52 8,290,551 52
LNK 784373 1.7724 1.7724 6.4256 (−5) 4.9740 (−5) 21 504,595 19
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Ethereum with the highest market capitalisation according to
etherscan. io [34]. Binance was founded in 2017 and is at the time
of writing the largest cryptocurrency exchange by trading volume.
“Binance” stems from “Binary Finance”, as a portmanteau word
of a whole new paradigm in finance. To sustain this vision,
Binance launched in 2017 the Binance Coin (BNB), an initial
coin offering (ICO) to fund the exchange activities, described in
Binance [36]. BNB can be used to pay any fees on the exchange
platform. Two important events affect BNB: First, the Binance
team destroys BNB coins (a coin burn) on a quarterly basis to
avoid coin value loss. Second, in April 2019, ERC-20 BNB coins
were swapped with BNB coins based on the Binance Chain
mainnet (BEP-2 BNB) to avoid ETH fees. BNB is currently no
longer solely hosted on Ethereum but as well on its proprietary
blockchain Binance Chain.

Tether (USDT): Originally proposed in 2012 as a “colored
coin” inside Bitcoin and effectively launched in that network
between 2014 and 2015, USDT since 2017 is traded as well as
an ERC-20 token inside Ethereum. More recently, USDT has
been made available even on further blockchains such as
EOS, Algorand, or Tron. The philosophy and the vision
behind this token are described in Tether [37]. It ranks
second in market capitalisation for tokens based—among
others—on Ethereum [34]. Tether is a stablecoin and can be
described as a digital version of the USD, originally designed
to be worth exactly $1.00, allegedly maintaining for this
purpose the exact amount of reserves as USDT that are in
circulation. This claim proved controversial in April 2019
when an official investigation was carried out. However, its
current capitalisation indicates that markets still accept its
role as digital USD, to whom it is “tethered” (hence its name
“Tether”).

Chainlink (LNK): It is the third most capitalised ERC-20
Ethereum-based token according to coinmarketcap.com [39] as
of the time of writing. It has a high potential given its bridging
nature between APIs, off-chain events, and smart contracts. Since
2020, as in coinmarketcap.com [38], LNK lists as the most
capitalised decentralised finance (DeFi) token. The whitepaper
by Ellis et al. [39] assigns to Chainlink the mission of building
a decentralised oracle network connecting smart contracts with
real-world data. Chainlink held an ICO in September 2017, raising
32million USD, with a total supply of one billion LNK tokens. The
ChainLink network utilises the LNK token to pay ChainLink node
operators for the retrieval of data from off-chain data feeds
(oracles), the formatting of data into blockchain readable
formats, the off-chain computations, and the uptime guarantee
they provide as operators. In order for a smart contract to use a
ChainLink node, it needs to pay the chosen ChainLink node
operator using LNK tokens, with prices usually being set by the
node operator based on the demand for the off-chain resource their
ChainLink node provides and the availability of other similar
resources. The LNK token is an ERC-20 token, with the
additional ERC-223 “transfer and call” functionality, allowing
tokens to be received and processed by contracts within a single
transaction.

4 METHODOLOGY

4.1 The Ethereum Network
As explained in Section 1, the core of our study is the
characterisation of the network growth in the four transaction
networks that we analyse: Ether (ETH), Binance (BNB), Tether
(USDT), and Chainlink (LNK).

In the Ethereum network, we distinguish two kinds of
accounts: externally owned accounts (EOA) and smart
contracts. The former ones are controlled through their
public/private key pairs and the latter ones via the logic of the
code stored together with their account. We consider EOAs as
human-controlled accounts while smart contracts are programs
executed inside the blockchain. Smart contracts publish functions
that can be invoked by EOAs or by other contracts. Smart
contracts are created by EOAs by sending a contract creation
transaction to the special 0x0 address.

EOAs have one or more private/public key pairs that allow
them to control (receive, send, etc.) the native cryptocurrency or
tokens by signing transactions with their private key. Smart
contracts do not initiate transactions: they are executed when
they are invoked. In their execution, smart contracts can call
other contracts (they often need to for complex cases). There is
always a transaction initiated by an EOA at the beginning of an
smart contract execution chain.

Addresses (accounts) are the way agents are uniquely
identified inside the blockchain. EOAs obtain their address
from their public key. Smart contracts obtain their address as
a function of the public key of their creator EOA and their specific
“nonce”. For further details about the functioning of Ethereum,
see Antonopoulos and Wood [40].

All the interactions we see in the Ethereum blockchain occur
between addresses (accounts): in our specific area of interest,
tokens and cryptocurrencies are exchanged from one address to
another. Both EOAs and smart contracts have addresses and
balances: regardless of whether or not the account stores code, the
two types are treated equally inside the Ethereum network;
therefore, we do not distinguish between them in our network
analysis. Native ETH tokens can be exchanged directly inside
transactions. As ERC-20 tokens are built as smart contracts, any
exchange of value has to pass by the smart contract address by
invoking the dedicated ERC-20 transfer function.

In this study, we construct an aggregated transaction network
GS(t) � (VS(t), ES(t)) for symbol S ∈ ETH,BNB,USDT, LNK{ }
at time t. In this network, the vertices VS(t) are the set of
addresses that have been used at least once since the first
transaction of symbol S and time t. Conversely, the set of
unweighted, directed edges ES(t) consists of all the pairs of
vertices among which there has been at least one transaction.
In the directed edge (j1, j2), node j1 is the sender of a transaction
and j2 is the recipient. We denote the in-degree kSin,j(t), of address
j in symbol S the number of incoming edges received by the node
before time t. Similarly, the out-degree denoted by kSout,j(t)
represents the number of edges outgoing from the node
representing the address in token S.
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We also define the wealth wS
j(t) of address j at time t as the

total amount of S directly controlled by this address at time t,
which is obtained by issuing the getBalance and balanceOf
functions for the specific token, i.e., its smart contract address
in a given time and block. The output of these functions provides
the unit of account for a token held by a certain address. This unit
of account is defined per token, and it is arbitrarily assigned at the
token definition. Preferential attachment is the network growth
mechanism that happens when the probability of forming a new
link is proportional to the degree of the target node, as in Barabási
and Albert [19]. Preferential attachment can be linear or
nonlinear, as in Dorogovtsev and Mendes [41]. In
mathematical terms, we describe the probability π of forming
a new link to an existing node j with in-degree kin,j as a

π(kin,j) � (kin,j)α
∑
j′
(kin,j′ )α (1)

where α > 0. If α � 1, then it is said that preferential attachment is
linear. If α < 1 (α > 1), then it is sublinear (resp., super-linear).
Preferential attachment is linked to the growth mechanism of the
network. We focus on the evolution of the network (and degree
accruing process) where any existing network node can create
links to others (regardless of their arrival or not).

When the probability of forming the new link is linear, i.e., α �
1, then preferential attachment leads to a scale-free network. A
scale-free network is a network whose degree distribution follows
a power-law function p(kin) ∼ (kin)−c.

In a sublinear preferential attachment, the effect of nodes
connecting with high-degree nodes is less patent. The degree
distribution is a stretched exponential and not a power-law:
fβ(t) � e−tβ or, using the same nomenclature as in Eq. 1, πβ(t) �
e−πβ with a stretching exponent β ∈ [0, 1]. In the case of super-
linear attachment, very few nodes (hubs) tend to connect to all
nodes of the network, a situation termed “the winner takes it all”.
This is the reason why networks showing super-linear attachment
are more vulnerable to attacks targeted at the hubs. Kunegis et al.
[42] identify nonlinear preferential attachment in temporal
networks with different values of α transcending the
traditional linear relationship in the classical (linear)
preferential attachment model studied by Barabási and
Albert [19].

4.2 Identification of the Preferential
Attachment Type
When a new, directed edge is added to the network (from an
unspecified node), we assume that the destination node j is
selected with a probability which is a function (solely) of its in-
degree k*in, i.e., π(k*in). For the rest of our proposal, we assume
that Eq. (1) holds. We further denote Π(kin) the probability
that a new link is created to any node with in-degree k*.
Trivially,

Π(k*, t) � π(k*) · ∑
N(t)

j�1
δ k*, kin,j(t)( ) � π(k*) · nin(k*, t) (2)

where δ(·, ·) represents the Kronecker delta, and—therefore—its
sum yields the total number of nodes with in-degree k at time t,
denoted by nin (k, t). Given that Π(k*, t) is a time-dependent
function, following Kondor et al. [24], we use the rank function
R(α; k*in, t), computed for each link addition to a node with in-
degree k* at each time t. Specifically,

R(α; k*, t) �
∑N(t)

j�1 Θ(k* − kin,j + 1)(kin,j)α

∑N(t)
j�1 (kin,j)α

(3)

� ∑k*−1
k�0 nin(k, t) kα
∑
k

nin(k, t) kα (4)

In the first expression, the function Θ (·) is the Heaviside
function, equal to one if the argument is positive, and zero
otherwise. Thus, the sum in the denominator runs for all
nodes whose degree is lower than k*in. The sum in the
numerator runs over all degrees where nin (k, t) > 0. When a
new edge is created, if the target node is drawn with a probability
following Eq. (3) for a given αo, then we can replace Eq. (2) into
Eq. (4)

R(αo; k
*, t) � ∑

k*−1

k�0
Π(k*, t)

Thus, if αo is the exponent of the non-preferential attachment,
adding new edges is equivalent to a process of inverse transform
sampling Devroye [43] on R (αo; k*, t).

To obtain the value of αo, we measure the corresponding K-S
(Kolmogorov-Smirnoff) goodness of fit, i.e., the difference
between the empirical distribution function (ECDF) calculated
with different exponents α and the theoretical linear CDF
distribution. The value αo that minimises the distance to the
uniform distribution is the best fit for the exponent. That specific
value will be informative of the type of PA present in each of the
transaction networks that we study.

As explained in Section 3, the size of the analysed data renders
this task computationally demanding. To make the calculation
more scalable, we only analyse each edge with a probability p(R)≪
1. We repeat the process multiple times to confirm results. The
exact parameters used are detailed in chapter 6.

5 EMERGENT DISTRIBUTIONS

5.1 Wealth Distribution
We start by analysing wealth distribution across addresses for the
four tokens considered. We compare native tokens (ETH) with
second-level tokens built on top of the Ethereum network (BNB,
USDT, LNK). For all the nodes that appear once in the evolution
of the network, we extract their final wealth, i.e., their balance at
block 11 M (October 6, 2020) and show the distribution in
Figure 1.
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We do this programmatically by extracting wealth data for
all the nodes involved in the transaction network. This way
we obtain the basic unit of account: for the Ether Network,
the output of getBalance is the unit of account known as “wei”
(equivalent to 10–18 Ether), while for BNB, USDT and
LNK are the unit returned from the ERC-20 method
balanceOf, which is custom-defined for every token. To
obtain the well-known and traded token value we are
commonly referring to, we have to divide the output of
balanceOf method by the value specified in the Decimal
field of the ERC-20 Contract. This value is 1018 for LNK
and BNB (the same as ETH) and 106 for USDT (see Figure 1).
All four tokens seem to follow a power-law distribution.
Ether (ETH), BNB, and LNK display a similar behaviour
while Tether (USDT) exhibits a cutoff at a lower value. The
very broad distributions with power-law compatible
behaviour (spanning 14 orders of magnitude) are by itself
quite remarkable, independent of the nature of the token
considered.

While in this study, we do not dig into the mechanism that
generates this emergence, it reflects a similar behaviour to the
wealth distribution in real-world economies as shown in Levy
and Solomon [44] and Brzezinski [45]. However, in this case,
the distribution is much broader. This implies the existence of
systemic agents in the system. When computing the Gini
indices at the end of the period analyses Bovet et al. [9], we
find out that the values for all distributions are often above
0.99. The reason for this excessive inequality is the underlying
wealth distribution. The results of model selection—as in
Clauset et al. [46]—for wealth distribution are pretty similar
for all of the tokens, with strong evidence in support of power-
law against exponential (p-values of 10–15, 10–4, 10–3, and 10–9

for ETH, BNB, USDT, and LINK tokens, respectively), and not

enough conclusive evidence against lognormal and truncated
power-law (p-values larger than 0.3 with very weak support for
lognormal and truncated power-law). The exponents cw of power-
law are 1.81, 1.70, 2.14, and 1.97 for ETH, BNB, USDT, and LINK,
respectively. Due to the high computational costs of fitting the
distributions and performing model selection, only a random
sample of around 1% of ETH and 8% of USDT nonzero
balance addresses was used in analysis for these tokens.

5.2 Evolution of Basic Statistics
As an introduction to the analysis of the four tokens that we
study, i.e., ETH, BNB, USDT, and LNK, in Figure 2 we display a
set of basic statistics: the market price of the tokens analysed,
number of new daily nodes, and number of new daily edges as a
function of time. We also list basic network properties fow the
four tokens in Table 3. In the upper panel of Figure 2, we show
the market price (in US Dollars), which is—arguably—a
reasonable proxy measure to show the success of these tokens.
Due to its stablecoin design, the daily market price for USDT
fluctuates only minimally (around 1 USD) in comparison with
other “traditional” cryptoassets, which show a high volatility.

We observe that the daily number of active nodes (i.e., the
number of addresses) and the daily number of active edges
(i.e., the number of transactions) in ETH have been steadily
growing until the end of the bullish market in 2018 (Figures
2B,C). We identify a peak in both nodes and edges coinciding
with the end of the 2018 bullish market for cryptocurrencies. A
similar gradually growing scenario, although not covered by our
graphs, has taken place during the first months of 2021. At the
end of our data collection period, i.e., October 6, 2020, there were
87,780,546 Ethereum addresses and 856,207,725 transactions, of
which 414,743,169 with a nonzero “value” field, i.e., with current
transfers of native Ether. The remaining transactions with a zero

FIGURE 3 |On the (A),we show the time evolution of network density, while on the (B),we have the density as a function of the network size. Both figures show the
results for all the cryptoassets considered.
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“ETH value” transfer value are smart contract transactions, which
could transfer ERC-20 tokens (when calling the right smart
contracts) but not directly native ETH. Regarding BNB, we
observe how the move of their servers out of China in March
2018 triggered a temporary traffic peak, and the launch of the
Binance Mainnet in April 2019 was decisive to bring the number
of BNB nodes and edges on top of ETH to a very low number,
almost constant as displayed in Figures 2B,C.

With regard to USDT and LNK, we observe as well an increase
in activity since early 2019, in spite of the investigation by New
York’s Attorney General in 2019. Considering Figure 2A, USDT
seems to have reached the status of a worth-investing stablecoin.
For LNK, its growth in activity corresponds to the fast growth of
DeFi in late 2020. On a qualitative basis, it is worth mentioning
that price and new daily nodes/edges seem to follow a correlated
dynamics (as apparent by the profile of local extremes).

We then compute the link density d � L/N(N − 1) where L is
the number of edges and N is the number of nodes. We compute

link density figures using the number of active nodes and edges
within daily timeframes.

Figure 3 shows the results for the network density in our data.
The left panel shows the evolution of network density as a
function of time. The overall trend is a steady decrease in
density during the initial phase of ETH until 2018. Since then,
its density has remained constant at very low values. BNB and
LNK, starting from their launch in 2017, show a similar behaviour
in Figure 3 but with a steeper fall. USDT density decreases rapidly
in early 2018 since its start as ERC-20 token on top of Ethereum
and, later on, in mid 2019, but this time at a slower pace,
coinciding seemingly with an external event: the investigation
in 2019 by New York’s Attorney General (NY Attorney General
Press Release [47]).

Figure 3A shows a parametric plot of the network density as a
function of network size. Here, a common scaling d ∝ N−1 is
apparent, showing that the number of edges grows linearly with
network size which shows that each new node produces a limited

FIGURE 4 | PDF and CCDF for in-degree and out-degree in ETH, BNB, USDT, and LNK at the end of the observation period.
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amount of new connections in the aggregate network. Given that
the transactions keep growing, this implies—from the aggregated
network representation we consider—that transactions take place
mostly across already existing links. This result is important for
the modelling approach we consider: in preferential attachment
models, the network density shows the same scaling as the one we
observe in our data.

5.3 Degree Distributions
The simplest measure to characterise complex networks is its
first-order node statistics, i.e., its degree distribution. The results
are shown in Figure 4. First, in the left panels, we show the PDF
and the CCDF of the in-degree of the network nodes, which is the
focus of our extensive analysis in the next section. We observe
that the distributions for in-degree and out-degree of the network
nodes are heavy-tailedmeaning that the network contains nodes
with degrees spanning several orders of magnitude, the largest of

which is commonly referred to as hubs. Specifically, for the largest
networks ETH and USDT, the results are largely compatible with
a power-law distribution. This result is remarkable, considering
the long evolution of the networks (for a period of six and 3 years,
respectively) and the changing environment for its evolution
(price, number of users, usage, etc.). In these plots, we see that
LNK departs the most from this behaviour. In the right panels, it
is possible to observe that the out-degree distribution exhibits a
similar pattern. Common to all distributions is the existence of
deviations from the power-law behaviour for very large values of
in- and out-degrees kin and kin, and this means that nodes with
large in- and out-degree are more common than those found in
networks with scale-free degree distribution. This is characteristic
of networks that have super-linear preferential attachment which
leads to the formation of super-hubs.

The model selection process, as in Clauset et al. [46], shows
that in ETH, both for in-degree and out-degree, the power-law is

FIGURE 5 | Plot of mean for ETH, BNB, USDT, and LNK. 〈kin〉 (in-degree), 〈kout〉 (out-degree), 〈wS〉 (wealth of the specific token).
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the best fit against exponential, lognormal, lognormal positive,
stretched exponential. Only with truncated power-law, the
advantage slightly diminishes (model selection: both for in-
degree and out-degree < 10–4, but with p-values (0.99 for in-
degree and 0.98 for out-degree)) so high that the results do not
bear significance. The fitted power-law exponents for ETH are cin
� 2.4 for the in-degree (xmin � 15) and cout � 2.29 for the out-
degree (xmin � 16). Value xmin designates a minimum degree
where the scaling relationship of the power-law begins, and it is
determined automatically by repeatedly performing a power-law
fit on all unique degrees in the data and then choosing the one
with the minimum Kolmogorov-Smirnov distance between the
data and the fit (Clauset et al. [46]; Alstott et al. [22]).

The same pattern for in-degree and out-degree applies as well
for USDT, where a similar pattern for truncated power-law applies.
Additionally, USDT seems to have a better fit for lognormal (1.74,

but with a p-value that is hardly meaningful 0.28). The fitted
power-law exponents for USDT are cin � 2.485 for the in-degree
(xmin � 11.0) and cout � 2.242 for the out-degree (xmin � 28.0).

Similar behaviour applies to BNB in-degree and out-degree.
Power-law seems to fit better than truncated power-law, but with
high p-values. Lognormal seems to fit better for in-degree, but
with an inconclusive p-value (0.278), while for out-degree, the
lognormal fit better (1.604) with a 0.102 p-value, almost
significant, but still a bit too high. The fitted power-law
exponents for BNB are cin � 1.927 for the in-degree (xmin �
8.0) and cout � 2.028 for the out-degree (xmin � 142.0).

LNK token in-degree behaves very similarly to ETH, with the
same inconclusive behaviour for truncated power-law. Given the fact
that all the better fits were inconclusive for too high p-values, we took
as reference for in-degree and out-degree always power-law fits. The

FIGURE 6 | ETH. Rank function for different α. KS distance. α value minimising error.

TABLE 4 | Spearman correlation between kin (in-degree), kout (out-degree), w
S

(wealth) for each cryptoasset. All p-values are lower that 10–10, implying that
we can reject the null hypothesis that the variables are not correlated.

Spearman correlation

Token Property kin kout wS

ETH kin 1 0.574 −0.157
— kout 0.574 1 −0.508
— wS −0.157 −0.508 1

BNB kin 1 0.195 −0.085
— kout 0.195 1 0.169
— wS −0.085 0.169 1

USDT kin 1 0.397 0.099
— kout 0.397 1 0.364
— wS 0.099 0.364 1

LNK kin 1 0.107 0.229
— kout 0.107 1 0.428
— wS 0.229 0.428 1

TABLE 5 | Spearman ρ correlation measures between cryptoassets for the
measures of kin (in-degree), kout (out-degree), and wS (wealth). All p-values are
lower that 10–10, implying that we can reject the null hypothesis that the variables
are not correlated.

Spearman correlation

Property token ETH BNB USDT LNK

ETH wS 1 0.3288 0.2656 0.3187
BNB — 0.3288 1 0.1637 0.1289
USDT — 0.2656 0.1637 1 0.3065
LNK — 0.1289 0.1637 0.3065 1

ETH kin 1 0.1634 0.2891 0.4330
BNB — 0.1634 1 0.1634 0.2120
USDT — 0.2891 0.1634 1 0.2489
LNK — 0.4330 0.2120 0.2489 1

ETH kout 1 0.1956 0.1612 0.2193
BNB — 0.1956 1 0.3790 0.3398
USDT — 0.1612 0.3790 1 0.5060
LNK — 0.2193 0.3398 0.5060 1
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fitted power-law exponents for LNK are cin � 2.955 for the in-degree
(xmin � 6.0) and cout � 3.352 for the out-degree (xmin � 6.0).

Kondor et al. [24] find that the in-degree of a node, i.e., the
number of transactions received by an address is positively
correlated with the BTC balance of that address. In our
analysis, for the largest Ethereum-based cryptoassets, we
obtain wealth in-degree and wealth out-degree correlation
plots with wealth. The results are depicted in Figure 5. In the
panels, we have first binned (logarithmically) the wealth and then
computed the mean value of the in- and out-degree of the nodes
within each range of wealth.

Overall, the trend is that for increasing wealth, the in- and out-
degrees of the nodes are also larger. The sole exception seems to be
ETH, but the reason for this is the largemultitude of addresses with a

nonzero value of wealth, but nominally small in Wei (because of
leftovers of transactions execution). The bump in the relationship (at
around 10–3 ETH) is explained by the actual usage of ETH as a
medium of exchange, with the upwards, monotonic trend.We argue
that very small values of w in the plot correspond to automated
usage. A similar pattern is observed on all cryptoassets analysed.

Table 4 shows the comparison of the Spearman correlation
measures between kin (in-degree), kout (out-degree), and wS

(wealth) for each asset. The results show always a positive and
significant correlation in the wealth of all cryptoassets.

Also, Table 5 shows the correlation between cryptoassets for
each measurement considered so far. All tokens built on
Ethereum are smart contracts, differently from the Ether token
which is natively built inside the Ethereum network. Tokens built

FIGURE 7 | BNB. Rank function for different α. KS distance. α value minimising error.

FIGURE 8 | USDT. Rank function for different α. KS distance. α value minimising error.
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on top of Ethereum do not require nonzero-valued Ether
transactions, i.e., Ethereum transactions moving Ether tokens.
This means that addresses holding tokens built on Ethereum
(such as BNB, USDT and LNK) are not always present in Ether
network transactions (i.e., nonzero values transactions exchanged
in Ethereum for Ether token), even though they eventually need
some Ether to pay transaction fees. They might participate in just
zero-valued transactions (i.e., smart contract calls).
Consequently, the networks might overlap, but they do not
coincide, so we can calculate the correlation between two
studied tokens only based on the intersection subset of
addresses, which appears on both token networks.
Interestingly, as shown in Table 5, we find that in- and out-
degree and wealth across cryptoassets are always positively
correlated.

6 PREFERENTIAL ATTACHMENT

In this section, we complement our previous analysis on the in-
degree distributions with an estimation of the exponent α in Eq.
(1). We calculate value of α that brings the K-S distance (or error)
between the empirical distribution function and the theoretical
one, in this case, a pure power-law function, to the minimum
possible. If that error is minimum when α � 1, then we can
confirm that the preferential attachment we observe in the
corresponding blockchain transaction network is linear. If α >
1, then we identify to super-linear attachment, i.e., very few nodes
in the network (superhubs) tend to connect to most nodes of the
network. We perform a similar calculation for ETH, BNB, USDT,
and LNK.

For ETH, we sample the network by running various iterations
at p(R) � 10–3 or p(R) � 10–4, a value influenced by the network size,
to decrease the computational demand, and we repeated the

process at least 10 times to confirm the consistency of the results.
For all the other tokens except USDT, we considered the complete
dataset.

In Figure 6 we plot the rank function presented in
Section 4.2, and then, we calculate the value of α that
minimises the error between the fit and the empirical
function. The error to fit this function of probability is
minimum with the exponent α � 1.1. This means that we
identify a slightly super-linear preferential attachment for
ETH, which implies that very few nodes tend to connect to all
nodes of the network.

We perform an identical exercise with the entire BNB
transaction set, and without sampling, we took the whole
dataset, since the smaller size made the required
computations manageable. We reach a similar conclusion:
preferential attachment in BNB is super-linear as well, but
now with a larger value of α � 1.2 which minimises the error
in the rank function. As an additional methodological
verification, we repeated the calculation with a reduced
sample (pR � 0.05) and obtained the same results, as in
Figure 7. When we analyse the network dynamics for
LNK, we also obtain a super-linear as with a value
between 1.15 ≤ α ≤ 1.2 (because both minimise the error
in the rank function in the compatible manner). These results
are similar to those obtained for BNB. For LNK as well the full
network dynamic was used to compute the rank function. The
results are presented in Figure 8. Interestingly, when we
analyse the stablecoin Tether/USDT, the results of the
analysis change. Because of the size of the data, we sample
the USDT network by taking a pR � 0.1. We confirm a
preferential attachment, in this case closer to linear
preferential attachment than in any other studied case.
The value of α that minimises the error in the rank
function is α � 1.05. The results are shown in Figure 9.

FIGURE 9 | LNK. Rank function for different α. KS distance. α value minimising error.

Frontiers in Physics | www.frontiersin.org October 2021 | Volume 9 | Article 72070813

De Collibus et al. Preferential Attachment in Ethereum Cryptoassets

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


In all these cases, the relatively large values of the KS statistic
may be due to non-stationary nature of the preferential
attachment process.

We finally show the evolution over time of the best fit for α for
each token up to block 11 M. Figure 10 displays how α changes
throughout time. The top graph is a cumulative value up to the
last block for each time unit. We confirm a greater PA super-
linearity in the first months of BNB. This coincides with the early
stages of the BNB token and with its launch on the ETH
blockchain before its “commercial” release. Both Liang et al.
[27] and Kondor et al. [24] refer to an early or initial phase
for the tokens they study, in which network properties are
different from their next longer phase, i.e., the trading phase.
Changes in α throughout time for ETH, USDT, and LNK are,
however, as the top graph of Figure 10 displays, much less
pronounced, although ETH’s early phase shows a higher
super-linearity around α � 1.15 and only a phase of
sublinearity during early 2018. In the bottom part of
Figure 10, we take the best fit for α individually and not
merged with the full history of best fit, to best display the
variation in each individual timeframe.

A typical trait of preferential attachment is the fact that, if the
preferential attachment is nonlinear, the maximum degree of the
node in the network grows linearly with network size, while when
preferential attachment is linear, the maximum degree of the
node grows as a square root of the network size, as in Barabási and
Pósfai [12]. In Figure 11 we plot the evolution of max in-degree
and out-degree maxik

S
in,i maxik

S
out,i during the evolution of

network size N.
We compute the Gini Index G for in-degree and out-degree

distribution as the network size N grows. Both are computed for
monthly snapshots in each network. As displayed in Figure 12,
the relation between network size and Gini Index G for in-degree
does not appear always conclusive for all the tokens. It is clear
enough for USDT, but more ambiguous and difficult to read for
the other tokens.

From the graph, it is easy to recognize a relationship between
network size and maximum in- and out-degree. This relationship
could be expressed with the following formulas:

ln(maxik
S
in,i) � βin0 + βin1 ln(N)

ln(maxik
S
out,i) � βout0 + βout1 ln(N)

We run a linear regression to compute the coefficients, and the
results of the slopes βin1 and βout1 are reported in Table 6. The
slopes remark indeed a strong relationship, which was already
evident from the plotted graphs.

As we see in Table 6, the exponents βin1 and βout1 are
significantly larger than 1/2. This is a remarkable indication
that some sort of nonlinear preferential attachment is taking
place, as in the case of linear attachment (nonlinear preferential
attachment), it should be βin1 and βout1 , (resp. 1). The non-
stationarity of the process may be the reason to find
intermediate values.

7 CONCLUSION

Blockchain-based systems are disrupting an increasing number of
areas, in many cases under the claim of an increasing
decentralisation in different facets. In this study, we focus on
Ethereum—a public blockchain created in 2015 with the second-
largest market capitalisation (as of this writing) after Bitcoin. It
offers the capability to write smart contracts that enable the
creation of arbitrary assets beyond the native cryptocurrency,
Ether (ETH). The tokens with the largest market capitalisation
are at the time of writing Binance (BNB), the currency token
linked to the largest cryptoexchange in the world since 2018;
Tether (USDT), the most capitalised USD-pegged stablecoin; and
Link (LNK), the most used token to pay for oracle services (off-
chain data providers) in the increasingly relevant decentralised
finance (DeFi) environment.

For these cryptoassets (which are of different nature), we
consolidate a large-scale dataset consisting of all the

FIGURE 10 | (A): evolution of best fit α (cumulative) for preferential attachment throughout time. (B): evolution of best fit α for preferential attachment computed
individually and in isolation for every time windows.
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transactions since system creation to late 2020. Then, we build
one directed aggregated network for each cryptoasset - Figure 13
shows an example visualization for BNB network. This
representation is useful to characterise the space of all
transactions that ever took place in these economies. They
allow us to further characterise and understand the economic
processes (e.g. value exchange and wealth concentration) that
take place in these systems.

We first analyse the distribution of wealth in the different
crypto. We find that all of them are well described by a power-law

distribution with an exponent close to or exceeding cw � 2 for
each of the tokens. This is interesting as the model of creation,
usage, or underlying concept they represent largely varies across
the assets analysed. However, the degree distributions of the
aggregate networks are different for each assets. All these two
results hint at the fact that the economic processes are (at least)
not entirely coupled to the network evolution. Further analyses
show that the in- and out-degrees of nodes are only lightly
correlated between network nodes present in the different
tokens. This serves as a justification to — in this first study —

FIGURE 11 | We plot the maximum in-degree maxi k
S
in,i (A) and maximum out-degree maxi k

S
out,i (B) as a function of the network size N. The measurements are

performed on a monthly basis.

FIGURE 12 |We plot the network size as a number of nodes N against the Gini indexG for the in-degree distribution and out-degree. We take monthly snapshots.
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analyse the network evolution of each token separately and
without including economic aspects on it. However, more
detailed approaches will require a multiplex network approach.

Our study hints that growth and concentration measures can
be characterised by complex network topology calculations. First,
we identify that the addition of new links to these networks
increases linearly with network size (as in other preferential
attachment growth processes) and that the degree distributions
are characterised by heavy-tailed distributions with over-
representation of hubs. In contrast to the previous analyses on
Bitcoin by Kondor et al. [24], we find that preferential attachment
(PA) in these public blockchain networks is slightly super-linear
in ETHwith an α � 1.1 and super-linear in BNB and LNKwith an
α � 1.2, and very close to linear in USDT with an α � 1.05. A
super-linear PA indicates a high degree of concentration of
transactions in a few hub nodes induced by the way the
network grows.

Kunegis et al. [42] measured preferential attachment
coefficients in many online networks and argue that online
interaction networks—those that consist of people interacting
directly or indirectly between each other, commonly exhibit
super-linear degree distributions. This includes online
networks where interaction is direct, for example, in an online
social network such as Twitter, as well as indirect where
interaction happens through an intermediary content, for
example in online forums. In such interaction networks, the
users or content with which users interacted in the past tends
to attract more interaction in the future in a super-linear fashion.
Considering that blockchain transaction networks are also a form

of an interaction network where users perform transactions
between addresses associated with them, it is not surprising
that they also exhibit a super-linear preferential attachment
where a small number of nodes asymptotically collect most of
the connections.

Given the hybrid nature of a socio-technical-economical
system such as the cryptocurrency market, where speculative
investments, software agents, and smart contracts play such a
defining role, the characterisation of its transaction network as an
interaction network leaves the door open for many interesting
considerations.

Surprisingly, different aspects of the evolution of these
economies show large-scale regularities that are unaffected by
the heterogeneous nature of the agents involved, considering that
data are composed of users, exchange markets, organisations,
automated accounts, etc.

We suggest continuing this study by expanding its realm in
two dimensions. First, by analysing all tokens in the Ethereum
ecosystem in order to identify common regularities across them,
we suggest to perform a similar study with other tokens and
blockchains to make an attempt to generalise conditions under
which PA turns super-linear in public blockchains and,
additionally, to endeavour the identification of any other token
with a different PA type than the underlying blockchain on top of
which it runs. Second, by extending the analyses to include the
more recent development because this period coincides with a
strong bullish crypto-market with high record-breaking trading
volumes and market prices. It is of interest to see whether the
identified PA features remain roughly the same over time or
whether they change fundamentally. Third, additional directions
for future work include the inference of statistical properties of
the entire history data and investigating the temporal properties
of the entire transaction network as proposed by Guo et al. [28].

The seed of this study was the comparison of “nested” tokens,
i.e., BNB, USDT, and LNK run on ETH. These tokens seem to
exhibit a slightly different behaviour depending on their design and
not on the infrastructure they share. We suggest to further research
on how the design of every token affects their network dynamics
and whether a more comprehensive taxonomy and clusterisation
of the token network according to their network dynamic is
possible. We propose as well to study the overlap of networks,
accounts, and addresses and how they influence each other across
tokens, a research direction that we hinted in this study.

Finally, we also suggest studying coupling patterns between
these interconnected networks and comparing them with the

FIGURE 13 | Visualization of the largest strongly connected component
in the BNB network, to help visualize the structure of the studied networks.

TABLE 6 | Gini Coefficients for wealth (wS), in-degree (kin), and out-degree (kout).
First,wS filters out nonzero value (since the graph is cumulative, old addresses
appearing in the network are accounted but might no longer hold tokens). For
comparison, the second wealth includes instead all the addresses in the network.

Token Gini wS > 0 Gini wS Gini kin Gini kout βin1 βout1

ETH 0.9975 0.9986 0.5177 0.7124 0.8168 0.7647
BNB 0.9976 0.9985 0.3200 0.9038 1.4803 0.6857
USDT 0.9861 0.9969 0.6216 0.7290 0.8004 0.8401
LNK 0.9908 0.9971 0.4118 0.5971 0.5839 0.5546
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study by Dong et al. [48] on the optimal resilience of modular
interacting networks.
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The data is available in the ETH blockchain (which is a public
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section, the dataset is publicly available on Google Cloud BigQuery
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the ones conducted in this paper) we anyway always suggest to
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