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Abstract

Based on the construction of the 4-dim noncommutative gravity model described in our
previous work, first, a more extended description of the covariant noncommutative space
(fuzzy 4-dim de Sitter space), which accommodates the gravity model, is presented and
then the corresponding field equations, which are obtained after variation of the previously
proposed action, are extracted. Also, a spontaneous breaking of the initial symmetry is
performed, this time induced by the introduction of an auxiliary scalar field, and its
implications in the reduced theory, which is produced after considering the commutative
limit, are examined.

1 Introduction

Besides the traditional, geometrical description of various gravitational theories, there ex-
ists an alternative way of approaching them, that is via a gauge-theoretic formulation.
The pioneer work towards this direction was made by Utiyama [1] and then many others
picked up the torch developing around the original idea [2–12]. In particular, some indica-
tive results of this development are i) the equivalence of the 3-dim Einstein gravity to a
Chern-Simons gauge theory [2], ii) the description of the 4-dim Einstein gravity as a gauge
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theory which admits a spontaneous symmetry breaking with the involvement of an auxil-
iary scalar field [3,4] and iii) the description of the 4-dim Weyl gravity as a gauge theory of
the conformal group which is broken after the imposition of constraint equations [5–12]1.

The above, successful, alternative description of gravity theories as gauge theories can
be translated to the noncommutative framework (for details on noncommutative geome-
try see [15–18]). At a technical level, such a translation is suggested by the existence of a
well-defined formulation of noncommutative gauge theories [19–21]. However, from a more
physical point of view, the whole translation of the above programme to the noncommu-
tative regime is highly-motivated when it comes to the description of the gravitational
interaction in case that the notion of spacetime, as it is classically perceived, collapses to a
configuration in which the corresponding coordinates cease to commute and therefore the
notion of points becomes meaningless. An appropriate candidate for such a configuration
is the form of the spacetime considered at the Planck scale, in which a minimal (Planck)
length is involved and thus the spacetime loses its continuity and becomes discretized. In
this special case, noncommutative spaces could serve as background spaces on which the
description of gravity at Planck scale could be nicely realized and the formulation of such
noncommutative gravity theories could be addressed in a customized and well-established
gauge-theoretic way, as suggested by the existence of the corresponding approach of ordi-
nary gravity theories, as mentioned above.

Towards this direction, many remarkable contributions have been made following two
different approaches within the framework of noncommutativity, due to the fact that non-
commutativity can be manifested either by working with ordinary functions and concen-
trate the feature of noncommutativity into a variation of the multiplication operation that
is called star-product, or by considering that the elements of the theory are operators
and therefore potentially represented by matrices so that the noncommutative nature is
already inherited in the ordinary matrix product, which is inherently noncommutative. In
particular, some representative noncommutative field theories which are formulated em-
ploying the star-product and the Seiberg-Witten map [22] (see also [23]) can be found
in refs [24–36], while some indicative publications in which the matrix treatment of non-
commutativity (matrix geometries) is adopted leading to matrix models can be found in
refs [37–41]. For an alternative approach see also refs [42–44], in which it is described that
the degrees of freedom of the resulting gravitational theory are associated to those of the
noncommutative structure. Last, a very recent and systematic approach on constructing
noncommutative field theories using braided L∞-algebras can be found in refs [45, 46].

From our perspective, we are oriented towards the matrix-realized models focusing
on the specific class of covariant noncommutative spaces [47–53], which are suitable for
constructing noncommutative models [54–60], especially gravitational ones [61–67] since
they are equipped with the property of preserving Lorentz covariance. Along these lines,
our first work in the subject was realized in three dimensions [68] (see also [69]). In
particular, in order to translate the 3-dim gauge-theoretic description of gravity to the
noncommutative regime, we examined both the Euclidean and Lorentzian cases by con-
sidering the covariant noncommutative background spaces to be the R

3
λ [58–60,70], which

is a foliation of the 3-dim Euclidean space by multiple fuzzy spheres [49] of different radii
and R

1,2
λ which is the foliation of the 3-dim Minkowski spacetime by adjacent fuzzy hy-

1Also, in refs [13, 14], further breaking patterns of the Weyl conformal gravity are studied.
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perboloids [66], respectively. Starting with their isometry groups and working with the
well-defined noncommutative gauge-theoretic construction, we produced the two gravity
models, in which we calculated the transformations of the various gauge fields and the
expressions of their corresponding curvature tensors. Eventually, we proposed an action of
Chern-Simons type, found the equations of motion and examined the commutative limit,
in which the above results reduced to the expected ones for the 3-dim Einstein gravity.

Next, aiming at the construction of a 4-dim noncommutative gravity model, we first
got involved with the construction of a 4-dim covariant noncommutative space that would
serve as the background space on which the gauge theory would be constructed [71] (see
also [72]). Motivated by refs [51–53], we focused on the construction of a covariant fuzzy
version of the 4-dim de Sitter space and obtained the defining commutation relation of its
coordinates. Then, employing this construction, we moved on with determining the gauge
group, which was an extension of the isometry group of the background space, as expected,
and obtained the various associated resulting expressions of the necessary quantities. Then,
we wrote down a topological action, quadratic on the curvature 2-form and performed an
explicit symmetry breaking by imposing specific and motivated constraints.

In the current work we complete the picture of the above, 4-dim construction. First, we
give some more information about the construction of the covariant noncommutative space
and show that the given form of 4-dim description is derived from a 2-step decomposition
of the initial (enlarged) isometry group. We emphasize in the intermediate first step
which manifests the relation of this space to its commutative origin being described in the
familiar picture, that is as embedded in the 5-dim Minkowski spacetime. Then, revisiting
the action defined in our previous work, we argue on a more motivated way of deriving it,
we explicitly show that the background space is indeed a solution of the theory and then
we extract the dynamical field equations of the theory by considering fluctuations around
the vacuum solution. Next, regarding the symmetry breaking that was realized by the
imposition of constraints in our previous work, it is now performed in such a way that is
spontaneously induced by the presence of an auxiliary scalar field. Finally, we project our
results to the commutative limit, which is actually the low-energy (large-scale) regime, and
examine and comment on the picture of the gravitational theory with which we eventually
result.

2 A noncommutative version of the 4-dim de Sitter

space

Our aim is to revisit the formulation of the 4-dim covariant spacetime we introduced in
our previous work [71], which is a fuzzy version of the 4-dim de Sitter space2. We present
a 2-step procedure, in which in the first step the space is manifested as an embedding in
the 5-dim Minkowski spacetime (with similar arguments to those of the formulation of the
fuzzy 2-sphere [49]), while in the second step we recover the pure 4-dim configuration we
presented in our previous work, that is the one we employed for the construction of our
gravity model.

2Our construction was motivated by the different approaches of [51, 52] and [53] on the formulation of this
space.
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Let us first recall some basic information about the ordinary (commutative) dS4 space-
time. In general, it consists a maximally symmetric Lorentzian (non-compact) manifold
with constant positive curvature and can be considered as the 4-dim Lorentzian analogue
of the 4-dim sphere. According to this analogy, in the same manner that the 4-sphere is
embedded into the 5-dim Euclidean space, the dS4 admits a description as an embedding
into the 5-dim Minkowski spacetime with metric ηMN = diag(−1, 1, 1, 1, 1), namely:

ηMNxMxN = r2 , (1)

where r is the radius of the space and M,N = 0, . . . , 4. Last, the isometry group of this
spacetime is the SO(1, 4) (the Lorentz group of the 5-dim Minkowski spacetime).

Now, we want to translate the above space to the noncommutative regime. In order to
achieve this, according to the fuzzy sphere case, we consider the isometry group of the de
Sitter space, SO(1, 4) and intend to identify the coordinates and the tensor of noncommu-
tativity with generators of the group. However, in this dS4 case, the above scheme cannot
be realized because the covariance of the space is not preserved, that is, if we correspond
five of the generators to the coordinates of the spacetime, then the rest of the generators
do not suffice to form a Lorentz subgroup, under which the coordinates should transform
as vectors. Having already pointed out the importance of covariance, in order to preserve
it, we need to minimally extend the considered group to the SO(1, 5), in which the coor-
dinates, Lorentz transformations and other operators can be nicely included. Therefore,
starting with SO(1, 5), we perform a 2-step decomposition, SO(1, 5) ⊃ SO(1, 4) ⊃ SO(1, 3)
(maximal subgroups) in order, in the first step, to obtain an explicit configuration of the
space which will be easily recognized as the fuzzy version of the dS4 (see [61] and [62–65])
and, in the second step, to result with a 4-dim formulation of the space according to [47,48].

First step: SO(1, 5) ⊃ SO(1, 4)

We start with the SO(1, 5) group which comprises of fifteen (antisymmetric) generators
JMN , where M,N = 0, . . . , 5, which are considered to be hermitian. The commutation
relation of the generators of the group is:

[JMN , JPΣ] = i(ηMPJNΣ + ηNΣJMP − ηNPJMΣ − ηMΣJNP ) , (2)

where ηMN = diag(−1, 1, 1, 1, 1, 1) is the corresponding 6-dim Minkowski metric. The first
part of the decomposition, SO(1, 5) ⊃ SO(1, 4), turns the above commutation relation to
the following three:

- For M = m,N = m,P = r,Σ = s:
[Jmn, Jrs] = i(ηmrJns + ηnsJmr − ηnrJms − ηmsJnr) .

- For M = m,N = 5, P = r,Σ = 5: [Jm5, Jn5] = iJmn .

- For M = m,N = n, P = r,Σ = 5: [Jmn, Jr5] = i(ηmrJn5 − ηnrJm5) ,
where m,n, r, s = 0, . . . , 4

In all above three relations, ηmn = diag(−1, 1, 1, 1, 1), that is the 5-dim Minkowski metric.
In order to convert the generators to physical quantities, we set Θmn ≡ h̄Jmn ,Xm ≡ λJm5,
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where λ is a parameter of dimension of length. According to these definitions, the above
commutation relations become:

[Θmn,Θrs] = ih̄(ηmrΘns + ηnsΘmr − ηnrΘms − ηmsΘnr) , (3)

[Θmn,Xr] = ih̄(ηmrXn − ηnrXm) , (4)

[Xm,Xn] = i
λ2

h̄
Θmn . (5)

Assuming that the SO(1, 5) generators live in an arbitrary N -dim irreducible representa-
tion, then the corresponding three independent Casimir invariants [73, 74], (equal to the
rank of the group) are considered as follows:

- The quadratic Casimir:

C
SO(1,5)
2 = −1

2
TrJ2 =

1

2
JMNJMN =

1

2
JmnJ

mn + Jm5J
m5 ⇒

XmXm = λ2(C
SO(1,5)
2 − C

SO(1,4)
2 ) ≡ r2 . (6)

Since the irreducible representation of the JMN generators of SO(1, 5) is a (high)
N -dim, this means that they can be written down as N × N matrices. Thus, in
order that we legitimately write the trace 1

2JmnJ
mn, which lives in the same vec-

tor space, as the SO(1, 4) quadratic Casimir, namely C
SO(1,4)
2 , we have implicitly

assumed that the decomposition SO(1, 5) ⊃ SO(1, 4) leads to SO(1, 4) irreducible
representations of the same dimension. Therefore, we conclude that only dimension-
preserving decompositions are allowed and, thus, the representation of the SO(1, 4)
group after the above decomposition will be also N -dim. Also, we have identified
r2 ≡ λ2(C

SO(1,5)
2 − C

SO(1,4)
2 ), which is a quantity proportional to the IN matrix, its

specific value is determined by the representations of the groups and takes over the
role of the constant (and positive) radius of the manifold3.

- The cubic P Casimir:

PSO(1,5) = ǫMNPΣKΛJ
MNJPΣJKΛ

=
2

h̄2λ
ǫmnrsq

(

Θmn{Θrs,Xq}+ 1

2
Xm{Θnr,Θsq}

)

(7)

3In case we were aiming at the fuzzy 4-sphere through our 2-step decomposition, the first maximal decom-
position would be that of the corresponding compact groups, i.e. SO(6) ⊃ SO(5). In that case, we would have
given the explicit expression of the radius in terms of the representations:

XmXm = λ2(C
SO(6)
2 − C

SO(5)
2 ) = λ2(L(L+ 4)IL − ℓ(ℓ+ 3)Iℓ)

L=ℓ
= λ2LIL ≡ r2IL ,

where the identification r2 ≡ λ2L has been made. The r2 would be interpreted as the radius of the 4-sphere in
which L would be the initial representation of the SO(6) generators and ℓ would be the representation of the
SO(5) ones, assuming again that L = ℓ. The above expression of the radius was captured by the general relation

for an SO(d) group of the quadratic Casimir, that is C
SO(d)
2 = L(L+ d− 2), where L is the spin representation

of the corresponding generators. Also, in the commutative limit, that is L → ∞ and λ → 0, the ordinary S4

is recovered. For more details on the construction of fuzzy 4-sphere see [62–64]. The whole discussion for the
non-compact groups we are using is more subtle and that is why we postpone it for future work.
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- The quartic Casimir:

C
SO(1,5)
4 = −1

4
TrJ4 = −1

4
JMNJNPJ

PΣJΣM ⇒

C
SO(1,5)
4 +

r4

2λ4
= − 1

4h̄4
ΘmnΘnrΘ

rsΘsm +
1

4h̄2λ2
({ΘmnΘnr,X

rXm}+ {ΘmnXn,X
rΘrm}) .

(8)

Thus, the above cubic and quartic Casimir operators produce relations involving
commutators and anticommutators of the operators of the algebra. These relations
do not provide any more constraint equations on the space coordinates, rather relate
the various operators of the theory in a non-trivial way.

- Therefore, we result with a covariant fuzzy version of the 4-dim de Sitter space,
which is formulated as an embedding in the 5-dim Minkowski space with embedding
equation XmXm = r2, where the radius r depends on the representation of the
operators and is a N ×N matrix. The feature of noncommutativity is expressed via

the relation [Xm,Xn] =
iλ2

h̄
Θmn, where m,n = 0, . . . , 4 and the isometry group is

the SO(1, 4), as expected since it consists a fuzzy version of the dS4 space.

Second step: SO(1, 4) ⊃ SO(1, 3)

In this second step we want to express the above 4-dim fuzzy de Sitter space in an SO(1, 3)
language. This way we expect that we will end up with the space as defined in our previous
paper [71]. In order to achieve this, we work as follows:

• From eq.(3), we have:

– For m = µ, n = ν, r = ρ, s = σ, where µ, ν, ρ, σ = 0, . . . , 3:

[Θµν ,Θρσ] = ih̄ (ηµρΘνσ + ηνσΘµρ − ηνρΘµσ − ηµσΘνρ) . (9)

– For m = µ, n = ν, r = ρ, s = 4:

[Θµν ,Θρ4] = ih̄(ηµρΘν4 − ηνρΘµ4) . (10)

– For m = µ, n = 4, r = ρ, s = 4:

[Θµ4,Θρ4] = ih̄Θµρ . (11)

• From eq.(4), we have:

– For m = µ, n = ν, r = ρ:

[Θµν ,Xρ] = ih̄(ηµρXν − ηνρXµ) . (12)

– For m = µ, n = ν, r = 4:
[Θµν ,X4] = 0 . (13)

– For m = µ, n = 4, r = 4:
[Θµ4,X4] = −ih̄Xµ . (14)
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– For m = µ, n = 4, r = ρ:
[Θµ4,Xρ] = ih̄ηµρX4 . (15)

• From eq.(5), we have:

– For m = µ, n = ν:

[Xµ,Xν ] = i
λ2

h̄
Θµν . (16)

– For m = µ, n = 4:

[Xµ,X4] = i
λ2

h̄
Θµ4 . (17)

• We set: Pµ ≡ 1
λ
Θµ4, h ≡ 1

λ
X4. Thus, the commutation relations regarding all the

operators Θµν ,Xµ, Pµ, h are:

[Θµν ,Θρσ] = ih̄(ηµρΘνσ + ηνσΘµρ − ηνρΘµσ − ηµσΘνρ) , (18)

[Pµ, Pν ] = i
h̄

λ2
Θµν , [Xµ,Xν ] = i

λ2

h̄
Θµν , (19)

[Pµ, h] = −i
h̄

λ2
Xµ , [Xµ, h] = i

λ2

h̄
Pµ , (20)

[Θµν , Pρ] = ih̄(ηµρPν − ηνρPµ) , [Θµν ,Xρ] = ih̄(ηµρXν − ηνρXµ) , (21)

[Pµ,Xν ] = ih̄ηµνh , [Θµν , h] = 0 . (22)

• The above algebra, in which we resulted, is identical to the one we used in our previous
work [71]. This time it has been derived in a 2-step decomposition procedure, with
the results of the first one emphasizing on its origin as an embedding in the 5-dim
Minkowski spacetime but also on its form, rendering more apparent that it is indeed
a fuzzy version of the 4-dim de Sitter space. After the second step we have expressed
the covariant 4-dim fuzzy de Sitter space in SO(1, 3) terms and also captured the
momentum space as a bonus. Last, the embedding relation written in eq.(6), is
written in the SO(1, 3) language as:

XmXm = r2 ⇒ XµXµ +X4X
4 = r2 ⇒ h = ±

√

1

λ2
(XµXµ − r2) , (23)

where as it turns out, h is an operator bearing the information of the radius con-
straint, namely the embedding equation obtained in (6), of the fuzzy space can be
interpreted as an expression of h in this SO(1, 3) picture.

3 Determining the action and the field equations

In the context of the noncommutative SO(2, 4) × U(1) gauge theory we wrote down in
our previous work [71], we mean to add some more information about the origins of the
considered action and the field equations that are produced. For reasons of self-consistency
of the current work, we recall that we started with a gauge theory of the isometry group
of our fuzzy space, namely SO(1, 5) and extended it to to the SO(2, 4) × U(1) in a fixed
representation due to the non-closure property of the anticommutators of the generators.

7



The sixteen generators of the algebra in the 4× 4 representation are the following:

a) Six Lorentz generators: Mab = − i

4
[Γa,Γb] = − i

2
ΓaΓb , a < b,

b) four generators for special conformal transformations: Ka =
1

2
Γa,

c) four generators for translations: Pa = − i

2
ΓaΓ5,

d) one generator for dilatations: D = −1

2
Γ5 and

e) one U(1) generator: I4,
where the well-known 4 × 4 gamma matrices have been used4. These generators satisfy
the following commutation and anticommutation relations:

[Ka,Kb] = iMab, [Pa, Pb] = iMab

[Pa,D] = iKa, [Ka, Pb] = iδabD, [Ka,D] = −iPa

[Ka,Mbc] = i(δacKb − δabKc)

[Pa,Mbc] = i(δacPb − δabPc)

[Mab,Mcd] = i(δacMbd + δbdMac − δbcMad − δadMbc)

[D,Mab] = 0 (24)

{Mab,Mcd} =
1

8
(δacδbd − δbcδad) I4 −

√
2

4
ǫabcdD

{Mab,Kc} =
√
2ǫabcdPd , {Mab, Pc} = −

√
2

4
ǫabcdKd

{Ka,Kb} =
1

2
δabI4 , {Pa, Pb} =

1

8
δabI4 , {Ka,D} = {Pa,D} = 0

{Pa,Kb} = {Mab,D} = −
√
2

2
ǫabcdMcd . (25)

Next, searching for the action of the noncommutative SO(2, 4) × U(1) gauge theory and
keeping in mind the defining relation of the noncommutativity of the coordinates of the
fuzzy space (19), let us consider first the following topological action5:

S = Tr
(

[Xµ,Xν ]− κ2Θµν

) (

[Xρ,Xσ ]− κ2Θρσ

)

ǫµνρσ . (26)

Variation of the above action will lead to the corresponding field equations. It is expected
that our background space should satisfy the derived equations. We consider that, in
principle, X and Θ are independent fields. Thus variation of the above action gives:

δS = 2Tr
(

δ[Xµ,Xν ][Xρ,Xσ ]− κ2δ[Xµ,Xν ]Θρσ − κ2δΘµν [Xρ,Xσ] + κ4δΘµνΘρσ

)

ǫµνρσ .

4For extended arguments on the fixing of the representation of the generators see [71]. Also, it is worth-
noting that the various generators are written already in an SO(1, 3) notation, a form that will be useful
regarding the symmetry breaking procedure that will follow.

5Along the lines of [68], where a topological action was the starting point in the corresponding 3-dim analysis.
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Specifying the variation procedure for each of the independent fields we have:

δXS = 4TrδXµ[Xν , [Xρ,Xσ]− κ2Θρσ]ǫ
µνρσ = 0 .

Therefore, the first field equation is:

ǫµνρσ[Xν , [Xρ,Xσ ]− κ2Θρσ] = 0 . (27)

Also, in turn:

δΘS = 2TrδΘµν

(

−κ2[Xρ,Xσ ] + κ4Θρσ

)

ǫµνρσ = 0 .

Therefore, the second field equation is:

ǫµνρσ([Xρ,Xσ]− κ2Θρσ) = 0 . (28)

The two field equations, eq. (27), (28), are satisfied by the fuzzy space we considered when

κ2 =
iλ2

h̄
, i.e. it is indeed a solution of the action considered in (26). It should be noted,

that the first field equation, (27), highlights the fact that the background space is not a
dynamical one, while the second one, (28), manifests the dependence between Θ and X.

Also, retrospective approach of the background solution of the field equations suggests
that, since we already know the noncommutative relation-definition of our space, (19), Θ
and X are related and, therefore, we could use the same action, (26) with the difference
that Θ = Θ(X), that is to assume that Θ and X are not independent. Performing the
variation in this case, we end up only with the first field equation, (27) (since the (28)
gave us the information Θ = Θ(X) which now we have already taken for granted), which
is again satisfied by the fuzzy space.

Now, we would like to promote the above action, (26), to a dynamical one, that is to
write it in a form in which the gauge fields of the theory would be contained. There are
two ways to achieve that. The first one is the straightforward introduction of the gauge
fields as fluctuations of the coordinates in the above field equations, (27), (28), that is:

ǫµνρσ
(

[Xρ +Aρ,Xσ +Aσ]−
iλ2

h̄
(Θρσ + Bρσ)

)

= 0

ǫµνρσ
(

[Xρ,Xσ]−
iλ2

h̄
Θ̂ρσ

)

= 0

ǫµνρσRρσ = 0 , (29)

ǫµνρσ
[

Xν +Aν , [Xρ +Aρ,Xσ +Aσ]−
iλ2

h̄
(Θρσ + Bρσ)

]

= 0

ǫµνρσ
[

Xν , [Xρ,Xσ]−
iλ2

h̄
Θ̂ρσ

]

= 0

ǫµνρσ[Xν ,Rρσ] = 0 . (30)

The first field equation is the vanishing of the field strength tensor while the second one
can be interpreted as a noncommutative analogue of the second Bianchi identity6.

6Although they are evident, explicit definitions for the field strength tensor, the covariant coordinate and
the covariant noncommutative tensor are given below, after eq.(31).
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Nevertheless, for our purposes, in order to obtain the field equations, we need to follow
a different path (second way), that is expressing the action in terms of the (curvature) field
strength tensor, which will emerge in a rather spontaneous way since we follow a gauge-
theoretic approach, but also for two more reasons. The first is that we mean to employ the
curvature field strength tensor in order to find resemblances with the commutative case
and gain intuition by comparison. The second reason is related to the fact that, shortly, we
are performing a spontaneous symmetry breaking in order to reduce the gauge symmetry
and this happens in the early stage of the determination of the action. Therefore, the
initial action we considered, (26), can now be written in terms of the field strength tensor,
by introducing the fluctuations, i.e. the gauge fields, in it:

S = Trtrǫµνρσ
(

[Xµ +Aµ,Xν +Aν ]− κ2(Θµν + Bµν)
) (

[Xρ +Aρ,Xσ +Aσ]− κ2(Θρσ + Bρσ)
)

,

where a trace over the gauge algebra has been also included. The above action, for the
specific κ = iλ2/h̄, becomes:

S = Trtr

(

[Xµ,Xν ]−
iλ2

h̄
Θ̂µν

)(

[Xρ,Xσ]−
iλ2

h̄
Θ̂ρσ

)

ǫµνρσ := TrtrRµνRρσǫ
µνρσ , (31)

where we have defined:

- Xµ = Xµ + Aµ, the covariant coordinate of the noncommutative gauge theory with
the introduction of the gauge connection Aµ.

- Θ̂µν = Θµν + Bµν , the covariant noncommutative tensor, with the inclusion of the
2-form field Bµν .

- Rµν = [Xµ,Xν ]− iλ
2

h̄
Θ̂µν , the field strength tensor of the theory .

The action in its last form (31), is the one we had considered in the first place [71] (the
noncommutative analogue of the 4-dim Pontryagin density) and is the one in which we will
in turn introduce the scalar field to induce the spontaneous symmetry breaking. Variation
of this action with respect to X and B leads to the field equations obtained in (29), (30):

ǫµνρσRρσ = 0 , ǫµνρσ[Xν ,Rρσ ] = 0 . (32)

Therefore, in this section we extracted two important results:

- We defined an action and found that the fuzzy space we formulated is a non-
dynamical background solution of the theory.

- Adding fluctuations we obtained the corresponding, dynamical, field equations and
an action of Yang-Mills type and extracted the definitions of the covariant coordinate
and the field strength tensor of the noncommutative gauge theory in a natural and
unforced way.

For completeness and later use, we write down the expressions of the component curvature
tensors, which are obtained after considering the definition of the field strength tensor,
Rµν(X), and its decomposition on the various generators of the gauge algebra:

Rµν(X) = R̃ a
µν ⊗ Pa +R ab

µν ⊗Mab +R a
µν ⊗Ka + R̃µν ⊗D +Rµν ⊗ I4 .
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Therefore, the expressions of the component tensors are:

Rµν = [Xµ, aν ]− [Xν , aµ] + [aµ, aν ] +
1

4
[b a
µ , bνa] +

1

4
[ãµ, ãν ] +

1

8
[ω ab

µ , ωνab]

+
1

16
[eµa, e

a
ν ]− iλ2

h̄
Bµν (33)

R̃µν = [Xµ + aµ, ãν ]− [Xν + aν , ãµ] +
i

2
{bµa, e a

ν } − i

2
{bνa, e a

µ }

−
√
2

8
ǫabcd[ω

ab
µ , ω cd

ν ]− iλ2

h̄
B̃µν (34)

R a
µν = [Xµ + aµ, b

a
ν ]− [Xν + aν , b

a
µ ] + i{bµb, ω ab

µ } − i{bνb, ω ab
µ }

− i

2
{ãµ, e a

ν }+ i

2
{ãν , e a

µ }+
√
2

8
ǫabcd([e

b
µ , ω

cd
ν ]− [e b

ν , ω
cd

µ ])− iλ2

h̄
B a

µν (35)

R̃ a
µν = [Xµ + aµ, e

a
ν ]− [Xν + aν , e

a
µ ]− i

2
{b a

µ , ãν}+
i

2
{b a

ν , ãµ}

−
√
2

2
([b b

µ , ω
cd
ν ]− [b b

ν , ω
cd
µ ])ǫabcd − i{ω ab

µ , eνb}+ i{ω ab
ν , eµb} −

iλ2

h̄
B̃ a

µν (36)

R ab
µν = [Xµ + aµ, ω

ab
ν ]− [Xν + aν , ω

ab
µ ] +

i

2
{b a

µ , b b
ν }+

√
2

4
([b c

µ , e
d
ν ]− [b c

ν , e
d
µ ])ǫabcd

−
√
2

4
([ãµ, ω

cd
ν ]− [ãν , ω

cd
µ ])ǫabcd + 2i{ω ac

µ , ω b
ν c}+

i

2
{e a

µ , e b
ν } −

iλ2

h̄
B ab

µν .

(37)

4 Spontaneous symmetry breaking of the noncom-

mutative action

According to our previous work [71], in which we constructed a 4-dim noncommutative
gravity model as a gauge theory of the G = SO(2, 4) × U(1), we considered the following
action7:

S = TrtrG Γ5RµνRρσε
µνρσ , (38)

which is actually the action we formed in (31), after the introduction of fluctuations in the
non-dynamical starting action (26), accompanied by the matrix Γ5. The latter was used in
order that we could deliver the symmetry breaking, which was realized by the imposition
of certain constraints, to the action and result with an action that would include an R(M)2

term, where R(M) is the component curvature 2-form of the total field strength R and is
associated to the Lorentz generators, see eq.(37).

This time we intend to perform a spontaneous symmetry breaking with the inclusion of
a scalar field, Φ, which belongs to the adjoint representation of SO(2, 4)×U(1). Therefore,

7To be precise, in our previous work [71], the action we considered was an extension of this one, namely:

S = TrtrG Γ5(RµνRρσε
µνρσ + ĤµνρĤ

µνρ) ,

where the second term is the kinetic term of the B field that had been introduced. In the present study, we
omit this term as we regard the B field to be non-propagating.
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our starting point is exactly the action we obtained in the previous section, namely eq.
(31), that is the above one dropping the Γ5 matrix:

S0 = TrtrGRµνRρσε
µνρσ . (39)

The above action can be written in the following equivalent form, that is a modification
induced by the introduction of the scalar field along with the dimensionful parameter, λ,
which is the length scale of our theory8:

S = TrtrG λΦ(X)RµνRρσε
µνρσ + η(Φ(X)2 − λ−2

IN ⊗ I4) , (40)

where η is a Lagrange multiplier. The initial form of the action, (39), is recovered if the
following constraint equation of η is taken into account (on-shell):

Φ2(X) = λ−2
IN ⊗ I4 . (41)

The Lagrange multiplier, η is of dimension [M ]2 and variation of the above action with
respect to it, produces the above constraint of the auxiliary field as equation of motion.
Also, since the field Φ belongs to the gauge algebra, in principle, it can be written as a
decomposition on the sixteen generators:

Φ(X) = φ̃a(X)⊗ Pa + φab(X) ⊗Mab + φa(X) ⊗Ka + φ(X)⊗ I4 + φ̃(X) ⊗D . (42)

We return to the action of eq.(40) in which we have to calculate the product of the first
term. Due to the insight given to us by our previous work and since we desire to result
with an R(M)2 term, we begin with the Φ field and gauge fix it in the direction of the
generator D, which will play the role of the Γ5 of the action of eq.(38) introduced in a more
natural way this time (reminding that D = −1/2Γ5), at the specific value of φ̃ = −2λ−1.
Therefore, making use of the decomposition of Φ, (42), we write down the gauge fixed
expression9:

Φ(X) = φ̃(X)⊗D|φ̃=−2λ−1 = −2λ−1
IN ⊗D . (43)

Taking into consideration the anticommutation relations of the various generators of the
group, (25), the various traces over the algebra are calculated. The surviving contribu-
tions of the action in (40), after the gauge fixing, constitute the following form of the
spontaneously broken action:

Sbr = Tr

(√
2

4
εabcdR

ab
mn R cd

rs − 4RmnR̃rs

)

εmnrs , (44)

where it is clear that the Lagrange multiplier term of (40) totally vanishes in this gauge.
It should be noted that the action we ended up coincides with the one we presented in our
previous work obtained through different arguments [71].

8The parameter λ is the length dimension ([λ] = L1 = M−1) we introduced during the procedure of the
construction of the covariant fuzzy space.

9We are motivated to concentrate on gauge fixing in the D direction of the field since the breaking the scale
invariance suffices to break the special conformal symmetry as well.
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Now, motivated by A. Chamseddine’s work [28], we set ãm = 0 and b a
m = αe a

m (along
with B a

mn = αB̃ a
mn), where α is a proportionality constant. We also assume the torsionless

condition, since the corresponding (translational) part of the symmetry has been broken,
as the corresponding tensor has been dropped out of the action. The latter gives a relation
of ω with respect to the independent fields. Letting ãm = 0 and b, e to be proportional to
each other, it is straightforward to observe, through their corresponding expressions (35),
(36), that if the constant of proportionality is α = i

2 , then the K-tensor, R a
mn, is equal to

the torsion tensor, R̃ a
mn, up to the same constant of proportionality:

R a
mn = [Xm + am, b a

m ]− [Xn + an, b
a
m ] + i{bmb, ω

ab
n } − i{bnb, ω ab

m }

+

√
2

8
ǫabcd([e

b
m, ω cd

n ]− [e b
n , ω cd

m ])− i
λ2

h̄
B a

mn

=
i

2

(

[Xm + am, e a
n ]− [Xn + an, e

a
m ] + i{emb, ω

ab
n } − i{enb, ω ab

m }

−
√
2

2
ǫabcd([b

b
m, ω cd

n ]− [b b
n , ω

cd
m ])− i

λ2

h̄
B̃ a

mn

)

=
i

2
R̃ a

mn .

Therefore, we conclude that the K−related field strength tensor is also vanishing, namely
R a

mn = 0, which means that the corresponding generators have been broken, too (for the
specific gauge ãm = 0, b a

m = i
2e

a
m and B a

mn = i
2B̃

a
mn).

Before we move on, this is a nice point to examine the torsionless condition which leads
to the relation between the ω field with respect to the independent field e (since ã has
been set equal to zero):

R̃ a
mn = [Xm + am, e a

n ]− [Xn + an, e
a
m ]−

√
2i

4
([e b

m, ω cd
n ]− [e b

n , ω
cd

m ])ǫabcd

− i{ω ab
m , enb}+ i{ω ab

n , emb} − i
λ2

h̄
B̃ a

mn = 0 . (45)

We will see that the above relation (torsionless condition) will reduce to that of the
Einstein-Hilbert case when the commutative limit will be applied.

Moreover, we find the explicit expression of the R ab
mn component of the field strength

tensor which is present in the above action, (44), and will do survive in the commutative
regime. Applying the gauge fixing conditions on the fields, ãm = 0, b a

m = i
2e

a
m , we get:

R ab
mn = [Xm + am, ω ab

n ]− [Xn + an, ω
ab
m ] + i{ω ac

m , ω b
n c} − i{ω bc

m , ω a
n c}

+
3i

8
{e a

m , e b
n } − iλ2

h̄
B ab

mn . (46)

In the consideration of the commutative limit, it will be clear that the first line of the
above equation will be identical to the R

(0)ab
mn , that is the curvature 2-form in the Palatini

formulation of General Relativity.
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5 The commutative limit after the symmetry break-

ing

In order to examine the implications of our noncommutative gravity model in the energy
regime below the Planck scale, we need to consider the commutative limit. In this limit,
the fuzzy space reduces to the ordinary 4-dim de Sitter space and, in order to obtain the
corresponding gauge theory, we make the following considerations:

• The 2-form field, Bµν , that is related to the preservation of the covariance of the field
strength tensor in the noncommutative regime, decouples as the noncommutativity
of the space ceases to exist. The same applies for the aµ field10.

• The commutators of functions vanish: [f(x), g(x)] → 0

• The anticommutators of functions reduce to product: {f(x), g(x)} → 2f(x)g(x)

• The inner derivation becomes: [Xµ, f ] → ∂µf

• Trace reduces to integration:

√
2

4
Tr →

∫

d4x

• From (34), it is easy to see that, in the specific gauge, in which the symmetry breaking
occurs, the R̃mn tensor takes the following form:

R̃µν = −
√
2

8
ǫabcd[ω

ab
µ , ω cd

ν ]− iλ2

h̄
B̃µν . (47)

Therefore, consideration of the commutative limit will lead to the vanishing of the
second term of the corresponding action, (44), which involves the above R̃µν tensor,
as B̃µν decouples and the commutator of the spin connection functions is zero. Also,
in this limit, the first term of the action (44), which contains the tensor R ab

µν , ceases
to include the aµ field, since it also decouples11.

• We also regard the following reparametrizations:

- e a
µ → ime a

µ , Pa → − i

m
Pa , R̃ a

µν → imT a
µν

- ω ab
µ → − i

2
ω ab
µ , Mab → 2iMab , R ab

µν → − i

2
R ab

µν ,

in order to exactly match the results of the commutative case. The m is an arbi-
trary (complex) constant of dimension [L]−1 which is imported in order that the
e a
µ in the commutative limit to be dimensionless, as it must, in order to admit the

interpretation of the actual vielbein.

First of all, let us deal with the torsion given in (45). Taking the above limits and
reparametrizations into consideration we get:

imT a
µν = im∂µe

a
ν − im∂νe

a
µ − 2i

(

− i

2
ω ab
µ

)

imeνb + 2i

(

− i

2
ω ab
ν

)

imeµb ⇒

T a
µν = ∂µe

a
ν − ∂νe

a
µ − ω ab

µ eνb + ω ab
ν eµb = 0 . (48)

10A possible mechanism for these two fields, which are strongly related to the noncommutative nature of the
spacetime in the high-energy regime, to decouple may be related to a mass-gaining mechanism which is yet to
be examined.

11It is also easy to see that it is involved only in commutators with other fields which eventually all vanish.
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Therefore, in the commutative limit, the torsionless condition is the same as that of the
first-order formulation of General Relativity. Thus, we understand that the expression
which relates the ω to the e is exactly the same.

Let us now examine the expression of the curvature 2-form. Starting with (46) and
taking the limits we have:

− i

2
R ab

µν = − i

2
∂µω

ab
ν +

i

2
∂νω

ab
µ + 2i

(

− i

2
ω ac
µ

)(

− i

2
ω b
ν c

)

− 2i

(

− i

2
ω bc
µ

)(

− i

2
ω a
ν c

)

+
3i

4
(ime a

µ ime b
ν ) ⇒

R ab
µν = ∂µω

ab
ν − ∂νω

ab
µ + ω ac

µ ω b
ν c − ω bc

µ ω a
ν c +

3

2
m2e a

µ e b
ν ⇒

R ab
µν = R(0)ab

µν +
3

2
m2e a

µ e b
ν . (49)

In the last relation it is emphasized that the curvature 2-form in our case is the one of
the General Relativity case in its first order formulation, along with an extra term which
will contribute in getting the Einstein-Hilbert action besides the Gauss-Bonnet topological
term.

Last, as we remarked above, applying the limits leads to the vanishing of the second
term of the action (44). Therefore, the action consists only of the first R(M)2 term
and, given that the scale invariance has been broken spontaneously, the introduction of
a dimensionful parameter, m, into the theory causes no problems. Therefore, the only
invariance the action enjoys in the commutative limit is the Lorentz. Let us move on with
the calculations and examine what is produced:

Scomm
br =

∫

ǫabcdR
ab

µν R cd
ρσ ǫµνρσd4x

=

∫

ǫabcd

(

R(0)ab
µν +

3

2
m2e a

µ e b
ν

)(

R(0)cd
ρσ +

3

2
m2e c

ρ e
d
σ

)

ǫµνρσd4x

=

∫

ǫabcdR
(0)ab
µν R(0)cd

ρσ ǫµνρσd4x+ 3m2

∫

ǫabcde
a
µ e b

ν R
(0)cd
ρσ ǫµνρσd4x

+
9

4
m4

∫

ǫabcde
a
µ e b

ν e
c
ρ e

d
σ ǫµνρσd4x .

The first term is exactly the topological Gauss-Bonnet term, therefore we drop it since it
does not contribute to the equations of motion. The second term is the Palatini action,
which is an alternative to the Einstein-Hilbert action, and the last one is a cosmological
constant term. After some calculations we have:

Scomm
br = 12m2

(
∫

√

detgR d4x+
9m2

2

∫

√

detg d4x

)

. (50)

Redefining: Λ = −9
4m

2 the above action becomes:

Scomm
br = 12m2S(Λ)

EH ,

where S(Λ)
EH is the 4-dim Einstein-Hilbert action with cosmological constant and without

matter. Variation of the above action, leads to the expected Einstein’s field equations:

Rµν −
1

2
Rgµν + Λgµν = 0 .
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Assuming that Λ is positive, the solution of the above equation is the maximally symmetric
space with positive curvature, that is the 4-dim de Sitter space we had already considered
as the background space, confirming the validity of the consideration. This does not
come as a surprise, since in the gauge-theoretic approaches of gravitational theories, the
background space is already determined from the start in order to accommodate the gauge
theory. The space is a solution of the Einstein equation.

6 Outlook and Conclusions

In this work we presented an extension of our previous work [71], in which we started a
programme of the description of a gravitational theory as a gauge theory on a covariant
noncommutative space. In particular, we formulated a fuzzy version of the 4-dim de
Sitter space and then we constructed an SO(2, 4) × U(1) gauge theory on it, finding the
transformations of the various fields introduced and the expressions of their corresponding
component field strength tensors. Eventually, we proposed an action and went on with a
symmetry breaking with the imposition of certain constraints.

In the present work, we have elaborated the construction of our fuzzy space in more
detail, formulating it in a 2-step procedure which gives rise to more properties, but also
its correlation with its non-fuzzy analogue gets highlighted. In turn, we started with an
action confirming that the background space we defined is actually a vacuum solution and
then we produced its dynamical form by introducing fluctuations on the coordinates. The
produced action is the one we had considered in our previous work, namely SO(2, 4)×U(1)
invariant. Also, the form of the field strength tensor emerged in a natural way. Finally,
we introduced an auxiliary scalar field in the action and proceeded with a spontaneous
symmetry breaking due to the scalar field acquiring a vacuum expectation value. The
resulting action is invariant under the subgroup SO(1, 3)×U(1) symmetry. With respect
to the commutative limit, we ended up with the Einstein’s field equations in the case that
there is no matter and with the presence of the cosmological constant.

It is rather interesting that we started with a gravitational model in a regime where the
noncommutative geometry is the appropriate framework to describe the background space-
time (Planck scale) and resulted with the well-defined Einstein’s gravitational theory in
the commutative limit. It should be remarked that although the cosmological constant had
not been considered in the initial theory, it emerged at low energies (commutative limit).
Also, it should be noted that the spontaneous symmetry breaking in the noncommutative
theory broke a large part of the initial symmetry, leading to an SO(1, 3) × U(1) gauge
symmetry. In the commutative limit the theory is only Lorentz invariant, as expected.

From now on, having established a well-described gravitational model in the noncom-
mutative framework and having connected it to a solid ordinary gravitational theory, we
may proceed with studying its cosmological consequences.
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