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Multivariate analysis of PIXE+XRF and PIXE spectral images  

Iva Božičević Mihalić,*a Stjepko Fazinić,*a , Marko Barac,a Andreas Germanos Karydas,b Alessandro 
Migliori,c Damir Doračić,d Vladan Desnica,e Domagoj Mudronjaf and Dragica Krstićg 

In this work we demonstrate the usefulness of multivariate techniques for analysis of two-dimensional (2D) spectral images 

obtained by proton beam ionization (PIXE mode) and combined proton beam and photoionization with X-ray tube (PIXE+XRF 

mode). Two different multivariate analysis approaches were used: (i) Principal Component Analysis (PCA) for dimensionality 

reduction followed by k-means clustering for the identification of different sample regions, (ii) t-Distributed Stochastic 

Neighbour Embedding technique (t-SNE). In PCA+k-means clustering similar pixels were grouped in different clusters where 

a direct connection between individual clusters and elements identified from cluster spectra resulted in the fast image 

segmentation and identification of different sample regions. t-SNE was used for dimensionality reduction and simple 2D 

visualization of high dimensional data. Three different cases were investigated: (i) qualitative analysis of 2D spectral maps 

having pixel spectra with high number of counts per pixel in the full range of measured X-ray energies collected in PIXE+XRF 

mode excitation, (ii) qualitative and semi-quantitative analysis of 2D spectral maps having pixel spectra with medium to low 

counts per pixel collected in PIXE mode, (iii) qualitative and quantitative analysis of 2D spectral maps having medium to low 

statistics per pixel obtained in PIXE mode. In the actual case studies, we identified all the pigments in artificial and real 

sample that was illumination from a historical book, and quantitatively characterized the identified gold layer and Niello 

decoration on the archaeological plate of Roman origin. In the last example, we were able to identify the sample regions 

with similar layer thicknesses, and obtain the layer thickness and elemental concentrations. We demonstrated that high 

statistics spectra that would contain enough information for qualitative and/or quantitative analysis of major, minor and 

even trace elements can be deduced using multivariate analysis methods even from low-statistics individual pixel spectra 

collected during 2D scanning of objects under investigation. This could be of particular importance for sensitive samples that 

could be damaged during long irradiation.

1 Introduction 

Energy dispersive X-ray Emission Spectrometry (ED-XES) 

techniques offer high analytical potential for non-destructive 

and non-invasive material characterization and imaging.1 They 

can be used for simultaneous detection of almost all the 

elements in the periodic table. In X-ray Fluorescence (XRF), 

photoionization is employed as the excitation mechanism with 

the use of radioisotopes, X-ray tubes or synchrotrons as sources 

of primary radiation. Electron (as in EPMA – Electron Probe 

Micro Analysis) or proton beams (PIXE – Particle Induced X-ray 

Emission) are also routinely used to ionize inner shell electrons 

and induce X-ray radiation from the sample. These methods, 

combined with the beam scanning optics or the use of 

translation stages for sample positioning during data 

acquisition, enable the collection of two-dimensional (2D) micro 

or macro elemental image maps based on the obtained X-ray 

spectra.  

Generally PIXE exhibits higher sensitivity for lighter elements, 

whereas the efficient excitation of elements heavier than iron 

requires more energetic beams not so often available. 

Therefore, in the case of typical scanning PIXE analysis with 

single detection systems, the set-up throughput is expected to 

be rather low for heavier elements. There are experimental 

setups were large throughput is obtained by increasing detector 

solid angles, either using simultaneously several X-ray 

detectors2,3 or using large area pixelated detectors.4 Still, the 

majority of PIXE mapping systems are based on the use of single 

standard detectors (such as SDDs or Si(Li) detectors). Sensitivity 

for heavier elements can alternatively be increased by adding 

additional X-ray source to the setup. With the availability of 

miniature, low power and lightweight X-ray tubes it is easy to 

incorporate X-ray source within the Ion Beam Analysis (IBA) 

setup. This would help since X-ray fluorescence is more 

sensitive to the elements whose characteristic radiation is 

closer to the energy of the primary X-ray beam. Both the IBA 

spectroscopy methods and XRF can use the same data 
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acquisition modules, and therefore can be easily incorporated 

in the same analytical setup even for simultaneous use. In 

particular, for low energy accelerators (2 MeV maximum proton 

energy), this dynamic integration of the XRF set-up with the 

external in-air IBA end-station expands significantly the X-ray 

analytical range and sensitivity in the detection of elements 

heavier than iron, as their excitation by PIXE would be 

hampered by the much lower than 2MeV in-air extracted 

proton beam. The combined PIXE+XRF setup can be configured 

to obtain similar sensitivity in the full dynamic range of 

measured X-ray energies ( 1-20 keV), that suits well for the 

measurement of 2D macro elemental image maps based on the 

simultaneously measured X-ray spectra even with the use of 

simple X-ray detectors.  

Simultaneous PIXE+XRF excitation can be very useful for many 

practical applications where qualitative screening in the sense 

of identification of elements' distributions along investigated 

areas is all what is needed. However, such simultaneous 

excitation  is not suitable for quantitative analysis due to quite 

different PIXE and XRF excitation mechanisms. When 

quantitative analysis is of importance, PIXE+XRF excitation can 

be used for initial screening of heterogeneuos objects and then 

single ion beam excitation can be peformed on selected areas 

or points for quantification using dedicated software like 

GUPIXWIN5 or GeoPIXE.6 Such analysis would in principle 

require longer measurements in order to acquire the spectra 

with high peak areas to reduce uncertainities in quantitiative 

analysis. GeoPIXE is a widely used program for obtaining 

quantitative elemental maps based on the dynamic analysis 

approach. Pichon et al. developed the mapping system 

employing multi-detector images in which each pixel of the 

image is quantified using GUPIXWIN, therefore providing 

elemental concentration maps.7,8 Recently GUMAP, a 

GUPIXWIN based code for extracting regional spectra from list 

mode files was developed, however, the ROI’s selection to 

obtain summed spectra for quantification purposes still relies 

on user’s input.9 

Alternativelly, higher statistics spectra that would contain 

enough information for qualitative and/or quantitative analysis 

of major, minor and trace elements can be deduced using 

multivariate analysis methods directly from (low-statistics) 

individual pixel spectra collected during 2D scanning of the 

object under investigation. This could be of particular 

importance for sensitive samples to reduce possible damage.  In 

general, multivariate analysis methods can be very useful as 

alternative option to traditional analysis of X-ray spectra from 

two-dimensional arrays, that assumes a comparison of 2D 

elemental maps based on the characteristic elemental X-ray 

lines. 

Although multivariate data analysis approach is already an 

established approach in different fields, it is not a common 

practice in XRF and is especially rarely reported in PIXE 2D 

analysis. In the case of μXRF imaging of geological and 

archaeological samples, Vekemans et al. has demonstrated the 

practical use of Principal Component Analysis (PCA)10–12 and k-

means clustering13 of XRF elemental images for automated 

segmentation.14 Vogt reported the use of PCA for improvement 

of μXRF analysis and demonstrated that fitted spectra from the 

PCA filtered data enabled extraction of the overlapping peaks 

with high accuracy.15 PCA has been used for historical paint 

layers identification by means of XRF analysis,16  but also 

combined with other techniques like Raman spectroscopy.17–19 

PCA has been applied also in the study of geological samples 

with XRF.14,20,21 PCA filtering was shown to be effective in 

obtaining a better quality of low-intensity trace element 

images.22 A multivariate curve resolution alternating least 

squares (MCR-ALS) approach faced the problem of resolving the 

overlapping emission peaks in wavelength dispersive XRF.23  

The t-Distributed Stochastic Neighbour Embedding (t-SNE)24 

technique aproved to be a very promising tool in pigment 

identification by near infra-red imaging spectroscopy.25 Pouyet 

et al. compared capabilities of multivariate methods like PCA, 

minimum noise function (MNF) and t-SNE in separating 

different pigments and their mixtures from the visible 

hyperspectral imaging (HIS) and XRF data.26 They showed that 

t-SNE is quite efficient in distinguishing both pure pigments and 

pigment mixtures even in cases when three different pigments 

were mixed. PCA and t-SNE proved to be very useful in 

identification of outlier compositions and for finding patterns in 

XRF data sets obtained in time-constrained experiments on 

robotic planetary surveys.27  

In the case of PIXE, only few studies on the use of multivariate 

analysis have been found. Swietlicki used PCA and partial least 

square regression (PLS) on the μPIXE elemental maps obtained 

together with the ion beam induced luminescence (IBIL) data.28 

Doyle et al. used multivariate curve resolution to reduce the 

spectral image data sets into a small number of interpretable 

components that describe the original system.29 The focus of 

their study was on low statistics imaging data from which 

integrated spectra are obtained that can be further quantified 

using routine analysis programs. This approach was found very 

useful in the characterization of particulate samples.30 Recently, 

2D PIXE spectral data obtained with a broad beam in-air 

irradiation of a decorative tile from a historical building were 

processed by means of non-negative matrix factorization (NMF) 

and k-means clustering to separate groups of similar pixel data 

to different clusters.31   

In this work, we highlight the advantages of using multivariate 

methods for processing 2D PIXE and combined PIXE + XRF 

spectral images. The goal of the study is to demonstrate the 

usefulness of the applied multivariate methods in comparison 

to traditional analysis of 2D elemental maps. For this purpose, 

we have acquired 2D elemental images of selected objects at 

the external ion beam setup of the Rudjer Boskovic Institute 

Tandem Accelerator Facility (RBI-AF) using a proton beam and 

miniature X-ray tube as excitation sources. We present three 

different examples: (i) one where simultaneous PIXE+XRF 

spectra were collected for qualitative 2D analysis; (ii) the other 

where PIXE spectra were collected for qualitative and 

semiquantitative 2D analysis; and (iii) one where PIXE espectra 

were collected for qualitative and quantitative 2D analysis.  
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2 Samples, measurements and data analysis 

2.1 Samples  

The above mentioned experiments were performed on three 

different samples. The first experiment was performed on 

sample 1 that was specifically created as a painted structure on 

a thick marble block, shown in Fig. 1 (a) and (b). The sample 

consists of a series of painted lines on a marble surface. The 

following pigments were used to draw the lines marked in the 

Fig. 1 and listed in Table 1: ultramarine (3Na2O . 3Al2O3 . 6SiO2 . 

Na2S), cinnabar (HgS), red ochre (Fe2O3 . nH2O), auripigment 

(As2S3), lithopone (BaSO4 + ZnS), lead white (2PbCO3 . Pb(OH)2), 

a mixture of ultramarine and malachite (CuCO3 . Cu(OH)2), 

titanium white (TiO2) and malachite. In-air PIXE+XRF irradiation 

was performed to acquire related X-ray spectra for qualitative 

2D analysis in order to assess the capabilities of multivariate 

analysis for pigment identification in comparison with the 

traditional approach of using 2D elemental maps. The sample 

was created by one of the authors and only after irradiation and 

analysis of the object, the results were compared with the 

actual structure that was unknown to analysts during the 

analysis.   

The second experiment was performed on sample 2, that was a 

selected area of illuminations from the 15th century book of 

poems by the Roman poet Publius Ovidius Naso published in the 

printing press of Jacobus Rubeus in Venice in 1474. The book is 

from the Manuscripts and Old Books Collection of the National 

and University Library in Zagreb. The book was subject of 

analysis by a number of non-destructive and non-invasive 

methods. It is modestly decorated with illuminations. In-air PIXE 

analysis was performed on some illuminations with the final 

goal to identify pigments for better understanding of materials 

and decorating techniques for conservation purposes, but also 

for a better insight into the development of book painting. For 

the present analysis, 2D PIXE map has been taken on the 

selected area (Fig. 1 (c-d)). In addition, X-ray spectra were taken 

from selected points (individual pixels) representing different 

pigments.  

The third experiment was performed using sample 3, an 

archaeological find, a silver tray (No. 5) from the late Roman 

period (Fig. 1 (e) and (f)) that belongs to the collection of luxury 

silver dishes found in the eastern Croatian town Vinkovci. In 

today's area of Vinkovci the town Colonia Aurelia Cibalae was 

located during the Roman period. That was the third-largest 

town in the province Pannonia Secunda and the birthplace of 

two Roman emperors. In 2012 altogether 50 silver objects were 

excavated, of which 21 complete, including trays, plates, bowls, 

jugs, cups, spoons, etc. The items are significantly fragmented 

and brittle. The original surface of most objects has been partly 

preserved but is covered with a thin or thick layer of corrosion 

products. The analysis of the central area of the decorative 

medallion has been a part of a series of preliminary 

investigations carried out before the conservation and 

restoration treatment on a limited number of findings. The goal 

is to collect basic data on the elemental composition of the 

material and corrosion products developed during the centuries 

to help determine further treatment procedures and also to 

gain insight into the original production and decoration 

techniques. 

2.2 Measurements  

The measurements were performed at the external ion beam 

end-station, one of the beamlines connected to the 1 MV 

Tandetron accelerator which can deliver protons with the 

energy of up to 2 MeV. The proton beam is extracted in air 

through 8 µm thin Al foil and directed to a sample positioned at 

the distance of about 8.5 mm from the exit foil. The resulting 

proton beam energy on the target is about 1580 keV with spot 

size of 1mm. 

Portable lightweight (500 g) Moxtek Magnum transmission 

anode X-ray tube has been incorporated at the external beam 

end-station. The tube is equipped with a grounded Rh anode 

and 0.25 mm thick Be exit window. High voltage between -10 to 

-50 kV with beam current between 0 to 200 µA can be applied. 

The tube has been positioned to irradiate the same spot on the 

sample as the ion beam used for PIXE measurements. When 

targets are properly positioned, the ion/X-ray beam directions 

to target normal are 16o and 50o, respectively, with the X-ray 

detector axis to form 55o with the target normal. A circular 

Table 1 Pigments used in the preparation of the sample shown in Fig. 1 (a) (the 

first column contains marks for identification of the painted lines). 

MARK PIGMENT FORMULA 

B-J Ultramarine 3Na2O . 3Al2O3 . 6SiO2 . Na2S 

CI Cinnabar HgS 

DH Red ochre Fe2O3 . nH2O 

L-Centre Auripigment As2S3 

Centre-F Lithopone BaSO4 + ZnS 

A-Centre Lead white 2PbCO3 . Pb(OH)2 

Centre-G Ultramarine + Malachite  

E-Centre Titanium white TiO2 

Centre-K Malachite CuCO3 . Cu(OH)2 

 

 

 

Fig. 1 Sample 1: (a)  series of painted lines on marble surface and (b)  schematic 

drawing of the sample. Sample 2: (c) part of the page from the book under 

analysis showing illumination on top and (d) part of the illumination with the 

analysed region. Sample 3: (e) decorative medallion of the silver tray (No. 5) from 

the late Roman period and  (f) analysed region of the medallion. 
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collimator of 0.8 mm in diameter is placed in between the tube 

anode and sample, at 18 mm and 15 mm, respectively. 

Two X-ray detectors have been tested and used: (i) Si(Li) with 3 

mm thick crystal and 25 µm Be window; (ii) SDD with 0.45 mm 

thick crystal and very thin polymer window with thin Al/Mylar 

absorber to prevent light entering into the detector. The Si(Li) 

detector was positioned at 24 mm from the target, while SDD 

at 18 mm from the target.  

Our homemade data acquisition system SPECTOR has been 

used to acquire the X-ray spectra. In the case of the present 

application, the software has been adapted to collect measured 

spectra while moving a target to create two-dimensional (2D) 

maps over the sample surface. The sample holder can accept 

relatively large objects and lateral scans of up to about 40 cm 

by 40 cm are possible. The sample can also be moved along the 

ion beam axis for proper sample alignment. In creating 2D 

elemental images, SPECTOR uses transient spectra collected at 

each pixel and through ROI’s definition, elemental images are 

displayed during measurement. All the data can be also 

collected in list mode and saved to files for later off-line 

preprocessing, including multivariate analysis.  

The XRF excitation channel has been configured to take the 

advantage of the fact that PIXE exhibits higher sensitivity for 

lighter elements. Thus, the optimization of the XRF set-up 

aimed to excite and analyse efficiently trace elements heavier 

than iron (Z=26) with same spatial resolution to PIXE mode of 

analysis. For this purpose, the operation of the X-ray tube was 

tested at a relative high voltage value (35 - 40kV), whereas 

proper diaphragms were inserted within a specifically designed 

holder to match the size of the two exciting beams.  Further on, 

the primary X-ray beam from the tube Rh anode was filtered out 

to improve peak to background ratio for the analysis of those 

trace elements having characteristic X-ray energies more than 

about 7 keV. The selection of filters was optimized by means of 

PyMca calculations32,33 and through several measurements of 

scattered radiation from a thick Teflon target. Finally, and in 

accordance with previous experience in pXRF and handheld XRF 

analysis34 a combined filter composed by 50 µm Cu foil and 50 

µm Ti foil was inserted in the excitation path. In this way, the 

combined excitation with protons and X-rays allowed us to 

obtain optimized and almost equivalent elemental sensitivities 

for all characteristic X-ray energies up to 15 keV. However, 

when performing combined excitation, one needs to have in 

mind the different ionization mechanisms and depth 

sensitivities, since 1.58 MeV proton beam in the case of a 

painted structure on marble can penetrate up to a depth of 

about 25 µm, while the primary X-ray beam can penetrate 

generally much deeper (for example 850 µm CaCO3 absorbs 

50% the Rh-Kα X-ray line). 

The first experiment was performed using the painted structure 

on a thick marble block (Fig. 1 (a), (b)). X-ray spectra were 

obtained from an area of 25x25 mm2 with the combined proton 

beam and X-ray tube excitation and using the SD detector. 

Irradiation time was 1 s/pixel with 25 x 25 pixels. In this way, for 

each pixel, spectra with good statistics were collected for the 

selected range of X-ray energies up to 15 keV and above. 

Although Ca K X-rays dominate in all the spectra (proton beam 

penetrates through thin pigment layers), X-rays of minor 

elements are also present with high intensities (Fig. 4).  

The second experiment was performed on the illumination from 

the medieval book (Fig. 1 (c), (d)). An area of about 35x35 mm2 

was selected that contain all the visible pigments. Proton beam 

was scanned over the sampled area with a scan resolution of 

40x40 pixels and with irradiation time of 5 s/pixel to obtain good 

statistics even in higher energy channels.  In all the pixels X-ray 

spectra contain some contribution from the paper substrate 

(dominating Ca peak and lower peaks of Si, S, Cl, K, Fe and Cu), 

as a result of the proton beam penetrating through relatively 

thin pigment layers. Although absolute quantitative analysis is 

not possible, relative elemental concentrations can be 

estimated for mixed painting layers helping to identify the 

combination of pigments used. 

The third experiment was performed on a decorative medallion 

of the silver tray (Fig. 1 (e), (f)). A selected area of about 30x30 

mm2 was scanned by the low intensity proton beam with a scan 

resolution of 64x64 pixels, and with the irradiation time of 3 

s/pixel. In this case silver L lines dominate in the single pixel 

spectra while the other channels have low statistics (Fig. 14). 

 

2.3. Data analysis 

As a first step, we created 2D elemental maps directly from the 

measured spectra, which is a common approach usually 

performed at most laboratories. In case of high statistics single 

pixel spectra, 2D elemental maps were ploted using net peak 

intensities, obtained by fitting the measured pixel spectra with 

the hypermet function, whereas SNIP algorithm was applied for 

a non-analytical background estimation.35 In case of low 

statistics single pixel spectra, 2D elemental maps were created 

from predefined regions of interests (ROIs) around 

characteristic X-ray peaks in measured spectra. ROIs were 

defined using cumulative measured spectra.  

Multivariate data analysis was performed by two independent 

ways: (i) using combined principal component analysis (PCA) for 

dimensionality reduction and k-means clustering in order to 

group the data in multidimensional space, (ii) applying 

independently the t-Distributed Stochastic Neighbour 

Embedding (t-SNE), as a low dimensional mapping technique. 

Before multivariate data analysis preprocessing of experimental 

data was performed. For semiquantitative and quantitative 

analysis we used raw, unprocessed spectra. 

2.3.1. Preprocessing before multivariate analysis. 

Preprocessing of data includes all the operations on the raw 

data before multivariate analysis. In this work, raw data are 

measured X-ray spectra from each pixel belonging to the 

scanned area of a sample. Since preprocessing can influence the 

analysis outcome, it should be done with care and taking into 

account the type of multivariate method, the goal of the 

analysis and data itself.  

In this work, preprocessing includes dead pixel removal, 

normalization, mean centring and scaling. Dead pixel removal 

will be addressed in Section 3.1. In our case normalization of the 

pixel spectra was necessary to account for possible variation of 

ion doses collected between different pixels. We performed 
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simple normalization by dividing channel intensities with total 

X-ray counts for each pixel spectra.  

Scaling is important to avoid the loss of useful information 

contained in the spectral channels with low intensities 

belonging to the presence of minor and trace elements. 

Centring is performed to take into account the data offset. We 

have used the mean centring method:  from each channel in a 

pixel spectrum we subtracted the mean intensity of that 

channel over all pixels.  In this way, the variations of the channel 

intensities are observed relative to their mean value. 

In the analysis we have used three different scaling/centring  

procedures: (i) auto-scale (Z-normalization or unit variance 

scaling) of the data, where each channel intensity is first mean 

centred and then divided (scaled) by standard deviation of the 

channel; (ii) mean centring without scaling, (iii) square root 

transform followed by mean centring.36–38 The last procedure 

has been used for the spectra with low channel intensities. 

2.3.2 Multivariate analysis. Multivariate analysis was 

performed on the preprocessed pixel spectra by three 

techniques: Principal Component Analysis (PCA), k-means 

clustering and t-SNE. PCA is the most widely used multivariate 

analysis technique for data dimensionality reduction and 

finding linear relationships in data.10–12 PCA enables better 

visualization of the correlation between pixel data and identifies 

the variables (in this case channel intensities) that describe the 

grouped pixel data.  

K-means clustering is one of the most common and simple 

algorithms that groups data (individual pixel spectra) in high 

dimensional space based on their similarity.13 In this work we 

used silhouette coefficient as an indicator of the optimal 

number of clusters. It is calculated with the formula:  
 

𝑺𝒊 =
(𝒃𝒊 − 𝒂𝒊)

𝐦𝐚𝐱(𝒂𝒊, 𝒃𝒊)
 (1) 

 

where bi is the mean intra-cluster distance while ai is the mean 

distance to the instances of the next closest cluster. The optimal 

number of clusters is selected for the maximal averaged 

silhouette score.39  

t-SNE is a t-Distributed Stochastic Neighbour Embedding 

technique for dimensionality reduction.24 Local relationships 

between points in high dimensions are used to create a low-

dimensional mapping represented by t-SNE x and t-SNE y 

coordinates. Distances between data points (spectra) in high 

dimensions are used to calculate conditional probabilities with 

Gaussian distribution representing the similarity between data 

points. A similar approach is used to construct the probability 

distribution in low dimensional space using student t-

distribution reflecting the similarity in the low dimensional 

space. The result is that the objects that are not similar in high-

dimensional space will be far apart in the low-dimension, while 

similar objects will be very close. Perplexity is a t-SNE parameter 

related to the number of effective nearest neighbors. Typical 

values are in the range between 5 and 50 but for denser data, 

higher perplexity values are recommended. 

3 Results and discussion 

3.1 Simultaneous PIXE and XRF excitation: pigments identification 

from high intensity pixel spectra  

Simultaneous excitation by protons and X-rays from the tube 

was used to collect characteristic X-ray   spectra from sample 1. 

High intensity spectra per pixel were collected in the full range 

of measured X-ray energies. 

As a first step, traditional analysis has been done by creating 2D 

elemental maps by fitting measured normalized pixel spectra 

using PyMca software.32 The result is presented at Fig. 2. It 

shows 2D spatial distribution of Kα and Kβ X-ray peak areas of 

Mg, Al and Si, Kα X-rays of S, K, Ca, Ti, Mn, Fe, Cu, Zn and As, as 

well as L3 X-ray peak areas of Ba, Hg and Pb. Fig. 2 could be used 

to identify pigments with the aid of one of the available pigment 

databases (in this case Table 1 can be used). For example, the 

position of the white painted line (E-Centre) corresponds to the 

2D map of Ti, identifying titanium white. Red ochre (D-H) could 

be associated with the Fe 2D map. Lead white (A-Centre) is 

associated to Pb 2D map. Cinnabar (C-I) is associated with S and 

Hg 2D maps. Hg 2D map confirms that the line C-I is painted 

using cinnabar. Auripigment can be associated to S and As 2D 

maps. As 2D map confirms its correspondence with the L-centre 

line. Lithopone pigment (Centre-F) is connected with 2D maps 

of Ba, S and Zn and can be easily identified from Ba and Zn 2D 

maps. Ultramarine (B-J) is associated with Al and Si 2D maps (Na 

K X-ray peaks are not visible in the spectra) and malachite 

(Centre-K) with Cu 2D map. The line Centre-G is visible in 2D 

maps of Al, Si and Cu that correlates with the mixture of 

ultramarine and malachite. Therefore, in principle all the 

pigments have been identified. However, for unknown samples, 

this way of pigment identification can be much more 

complicated and time consuming. Identification may fail in 

difficult situations, for example in situations when pigments 

overlap, when 2D elemental maps contain contributions of 

 

Fig. 2 Sample with the marked exposed area (red square) and preprocessed 2D 

elemental maps.   
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different elements, when related spectra contain overlapping 

peaks, etc. Also, in this kind of analysis the user input and 

influence could significantly affect the results since improper 

selection of characteristic X-rays in the spectra for transfer to 

2D elemental maps may lead to incomplete or wrong pigment 

identification.  

As a second step we performed off-line multivariate analysis on 

the measured individual pixel spectra. In this case the goal was 

to identify 2D patterns or regions with similar spectra instead of 

the regions with the same elements. Before multivariate 

analysis, we performed preprocessing of data. During this 

phase, one single dead pixel was found, and its value was 

manually corrected. Correction was done by interpolation of 

spectra from eight neighbouring pixels. Median value of these 

eight spectra was calculated and transformed into the dead 

pixel spectrum. In the case of multiple dead pixels in an image, 

certain algorithms for locating dead pixels can be applied40 and 

then corrected in a similar way. In general, variation of Ca 

intensities in the spectra was within 5%. However, in several 

individual pixels very high Ca values were recorded, implying 

the need for data normalization before multivariate analysis. 

Normalization to the total X-ray counts was performed. Dead 

pixel correction and normalization to the total X-ray intensity 

and data transformation to the input matrix for multivariate 

analysis was done with in-house Matlab routines (The 

Mathworks Inc., Natick, USA). Preprocesed data were saved in 

a hierarchical data format (HDF). PCA combined with k-means 

clustering and t-SNE analysis was performed on the whole set 

of X-ray spectra with Orange.41–43 

Multivariate analysis was performed on the full spectrum data 

to minimize user input and influence. Such approach enables 

extraction of additional features from the images that could 

otherwise be overlooked by a selection of only specific 

characteristic X-rays in the spectra. The best PCA model was 

obtained with mean centring of pixel spectra and without 

scaling the variables. Fig. 3 (a-h) shows the principal component 

score images for the first 8 components, corresponding to the 

regions of different pigments on top of the marble plate. These 

8 components together explain 99.8 % of the total variance of 

the sample.  

k-means clustering with random initialization and 300 iterations 

was performed on auto-scaled PC score values. The optimal 

cluster number of 9 was obtained by the analysis of silhouette 

coefficient eqn (1). The result of the clustering is shown in Fig. 3 

(i). The figure shows the clusters correlated with the actual 

position of the pigments on the sample. Cluster identification 

(association with pigments) can be done by observing the result 

of clustering (Fig. 3 (i)) and average cluster spectra, plotted in 

 

Fig. 3 (a-h) Score images of first 8 principal components obtained by the PCA 

method. (i) The result of the combined PCA + k-means clustering analysis.   

 

Fig. 4 Averaged spectra obtained by combined PCA and k-means clustering pigments compared with the related spectra obtained by the t-SNE analysis and with the single pixel 

spectra measured at specific sample positions. 
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Fig. 4. In such a way, direct association between the cluster and 

the pigment can be obtained: C1 as malachite due to a presence 

of Cu, C2 as lead white, C3 with As and S marking the 

auripigment, C4 with Hg and S as cinnabar, C5 as lithopone 

containing Ba, S and Zn, C7 as ultramarine, C8 with Fe as red 

ochre and C9 as titanium white. Cluster 6 belongs to marble 

support. The only shortcoming observed is that both pure 

malachite and the mixture of malachite and ultramarine were 

clustered to a single cluster. In addition to combined PCA and k-

means clustering, we analysed the preprocessed spectral data 

with t-SNE setting the perplexity factor to 26 (Fig. 5). PCA is 

usually used in combination with clustering (like k-means) to 

group similar data after dimensionality reduction. Although the 

grouping of similar data points can be seen in the t-SNE plot and 

some form of clustering like DBSAN44 can be performed on the 

t-SNE output,25 it should be done with special care. Distances 

and density in high dimensions are not preserved in low 

dimensional t-SNE representation so they cannot be used as a 

measure of similarity in the low dimensional graph.26  We used 

t-SNE for simple visualization of similar pixel spectral data. Data 

segmentation can be performed by manual selection of data 

points with the simultaneous observation of the average raw 

spectra and the position of selected pixels in the image. For 

comparison, the colours in the t-SNE graph (Fig. 5) correspond 

to the colours obtained with PCA and k-means clustering (Fig. 3 

(g)).  

The central part of the plot in Fig. 5 corresponds to the marble 

(purple circle) and the branches spreading from the centre to 

the individual pigments describe boundary regions between the 

marble support and specific pigment. Encircled areas at the end 

of branches are used for identification of pure pigments. The 

majority of pigments (lead white, auripigment, titanium white 

and lithopone) are very well separated from each other, 

matching the results of the PCA and k-means grouping. In some 

cases, differences are in few pixels, usually from the regions 

where two pigments overlap, like 2 ultramarine pixels 

associated with the lead white group. Exceptions are red ochre, 

cinnabar and ultramarine which are partly overlapped on the 

sample. This is reflected in the t-SNE space. In the region of the 

C1 cluster, two branches can be observed: lower one belonging 

to the malachite and upper one to the mixture of malachite and 

ultramarine. Related average spectra obtained from encircled 

regions in the t-SNE plot are compared with the PCA + k-means 

spectra and single pixel pigment spectra at Fig. 4. Single pixel 

spectra are measured spectra from specific sample positions 

located at the edges of the measured regions in order to avoid 

interference with other pigments (these data points can be 

easily identified in the t-SNE plot as the points in the outside 

regions of the pigment groups – i.e., at the ends of respective 

branches). 

In pure pigments, the average spectra obtained by t-SNE and by 

combined PCA + k-means approach are essentially the same. 

Small differences are seen in small peak intensities related to 

the pixels where two or more pigments intercept. The only 

discrepancy is seen in case of PCA + k-means C1 spectra and the 

corresponding t-SNE malachite region spectra. PCA + k-means 

grouped both malachite and its mixture with ultramarine to the 

same cluster.  

In some cases, the average cluster spectra obtained by 

combined PCA + k-means method have additional peaks not 

present in the single pixel spectra (representing specific 

pigments). The single pixel spectrum of auripigment has a large 

As peak. PCA + k-means average cluster spectrum shows 

additionally Cu and Pb peaks. The origin of Cu and Pb 

contributions is from the regions where auripigment overlaps 

with malachite and lead white. In a similar way, PCA + k-means 

average cluster spectrum of lithopone shows some Fe, Cu, Hg 

and Pb peaks, while the corresponding titanium white shows Fe 

and Hg. These are indications of the regions where lithopone 

and titanium white pigments are mixed with the other 

pigments.  

One group of data in the t-SNE map is situated in the region 

between ultramarine and mixture of malachite and ultramarine 

(marked with x sign in Fig. 5). In PCA + k-means analysis, that is 

a part of the ultramarine cluster. The x data points belong to the 

edge region between ultramarine and marble support with 

lower Hg intensities. In the region of lithopone, two separated 

groups can be seen in t-SNE plot: the upper group represents 

the central part of the pigment with higher levels of Ba and S 

while the lower group is from the boundary region of lithopone 

and marble with lower intensities of Ba and S. Although red 

ochre was painted as a continuous vertical line, it was localized 

in the centre of the image where other pigments intercept or 

even overlap. As a consequence, the elements from 

neighbouring pigments (Hg, Pb, S, Cu, Ti or Ba, As or Pb) are also 

present in related spectra.  

We have demonstrated that multivariate spectral analysis 

methods like combined PCA + k-means clustering or t-SNE can 

be useful for qualitative analysis of two-dimensional arrays of X-

ray spectra obtained by simultaneous PIXE – XRF setup. The 

obtained cluster spectra have higher statistics and enable 

detection of minor and trace elements without the need for 

longer measurements. Unfortunately, quantitative analysis in 

 

Fig. 5 t-SNE result on the pigment’s preprocessed spectra, encircled areas are 

manually selected points for obtaining t-SNE pigment’s spectra. 
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terms of elemental concentration determination is not possible. 

However, there is a hope to overcome this problem in future,  

as it has been reported for the APXS portable PIXE-XRF 

spectrometer attached to the Mars exploration Rovers for in-

situ mineral analyses on the planet Mars.45,46  

3.2 PIXE excitation: pigments identification from medium to low 

statistics single pixel spectra 

In this example we demonstrate the use of multivariate spectral 

analysis for pigment identification on a real (unknown) sample. 

Also, in this case we have used only PIXE excitation, resulting in 

the individual pixel spectra that in general have medium (low Z 

elements) to lower-statistics (elements heavier than Ti) peak 

intensities. Selected area from sample 2 (Fig. 1 (d)) was scanned 

by the low current proton beam (to avoid paper damage) with 

the scan resolution of 40x40 pixels and irradiation time of 5 s 

per pixel. Before multivariate analysis, recorded pixel spectra 

were normalized to the total spectrum counts using in-house 

Matlab routine and saved as HDF file.  

As in the previous example, 2D elemental maps have been 

created (Fig. 6) by fitting the normalized pixel spectra with the 

hypermet function and SNIP non-analytical background 

estimation using PyMca. Ca, Fe, Cu were obtained using both Kα 

and Kβ lines, Zn from Kα lines while Ba, Au, Hg and Pb maps 

were obtained by summation of L3, L2 and L1 X-ray lines. The 

last two images of Fig. 6 are RGB images with spatial 

distributions of Pb (red), Zn (green), Fe (blue) and Hg (red), Au 

(green) and Cu (blue) respectively. In the classical approach, 2D 

spatial distribution of elements is used for pigment 

identifications. For example, Au distribution clearly confirms the 

gold leaves presence on the illumination. Cu is related to blue 

and green pigments indicating their origin as copper based 

pigments like azurite or malachite. Red pigment is associated 

with Pb elemental map where two possibilities appear for the 

pigment origin: (i) minium or (ii) some organic red pigment 

mixed with lead white. 

The measured pixel spectra were then analysed by combined 

PCA and k-means clustering in Orange. The square root 

transform of the normalized data, followed by mean centring, 

was performed to account for the measurement uncertainties 

of the low statistics components in the pixel spectra. From each 

channel intensity divided by its square root, the channel mean 

value was subtracted. The resulting preprocessed pixel spectra 

were then used as an input for the PCA, followed by k-means 

clustering on the auto-scaled PC scores. The first seven principal 

components and the resulting image of the k-means clustering 

are shown in Fig. 7. 

Easy pigment identification can be performed by direct 

comparison of the cluster spectra with the k-means clustering 

image (Fig. 7 (h)). With each cluster C1-C8, related cluster 

spectrum is associated (black spectra at Fig. 9), obtained by the 

summation of the raw pixel spectra belonging to the same 

cluster. Then C1 is associated with the blue pigment. Presence 

of Cu in C1 spectrum indicates that the blue pigment basis is 

most probably natural azurite. This is also supported with the 

observed minor contribution of Ba and Fe in the spectra, that 

seem to be usually present in natural azurite pigments.47 Cluster 

C2 relates to the regions of the ink drawings on the paper with 

typical presence of Fe, Cu and Zn related to the iron gall ink.48–

50 Cluster C3 belongs to the red pigment which shows Cu and Pb 

in the related spectrum. The presence of Pb could indicate that 

red pigment is minium, but we cannot exclude the possibility 

that the pigment itself is of the organic origin, not detectable 

 

Fig. 6 Scanned selected area of sample 2; 2D elemental maps for 9 elements; and 

RGB composite maps for 6 elements. 

 

Fig. 7 (a-g) Score images of first 7 principal components obtained by the PCA 

method. (h) The result of the combined PCA + k-means clustering analysis. 

 

Fig. 8 (a) t-SNE plot with perplexity set to 27, (b) areas on the sample 
corresponding to the encircled regions at the t-SNE plot. 
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with the X-ray spectroscopy techniques such as PIXE, and mixed 

with lead white. Also, higher Cu intensity is observed in the 

cluster spectrum, which will be explained latter. Cluster C4 is 

linked to the gold leaves with Au in the spectrum. Hg is also 

detected in coincidence with Au. It could be that the vermillion 

is painted below the gold leaves or Hg is a part of the adhesive 

ground under the leaves.49 Cluster C5 is associated with the 

boundary region between the blue pigment and the paper with 

the same elements seen as in the blue pigment but with lower 

X-ray intensities. Cluster C6 relates to the green pigment areas. 

Cu as a major element is detected, most probably originating 

from verdigris as commonly used green pigment in illuminated 

manuscripts, but additional analysis should be performed for 

final separation among different copper based green pigments. 

Fe, Zn and As are present as trace elements. Finally, clusters C7 

and C8 are associated with the paper regions, with C8 

corresponding to the edge of the scan. In the spectra related to 

clear paper, beside Ca as the major component, Si, S, Cl, K, Fe, 

Cu and Zn are present. 

Independently, t-SNE analysis was performed using the Orange 

code. The corresponding results with perplexity set to 27 are 

shown in Fig. 8 (a). Data points in the t-SNE plot (Fig. 8 (a)) are 

set to the same colour as clusters in Fig. 7 (h). Areas on the 

sample corresponding to the encircled regions at the t-SNE plot 

are shown in Fig. 8 (b). Fig. 9 shows summed raw spectra of the 

t-SNE encircled regions (red spectra), compared with the 

PCA+k-means cluster spectra (black spectra) and single pixel 

spectra (blue spectra). Substantial difference between t-SNE 

encircled regions and PCA+k-means spectra is observed only 

between the C3 and the corresponding t-SNE R1+R2 spectra. 

The C3 spectrum has visible Ba X-ray lines and higher Cu/Pb 

intensity ratio, compared to t-SNE R1+R2 spectrum. From the 

comparisons of the sample image (Fig. 1 (d)), the image of the 

k-means clustering (Fig. 7 (h)), and the t-SNE result shown at the 

Fig. 8 (b), one can conclude that C3 cluster spectrum relates to 

the red pigment (t-SNE R1 and R2 regions) but also includes 

contribution from the white areas on the blue flower (t-SNE W1 

and W2 regions). This is clearly seen from the comparison of 

average pixel spectra obtained from the individual t-SNE 

selected regions in Fig. 10 (b) and (e): R1, R2 spectra related to 

the red pigment without Ba vs W1 and W2 spectra from white 

pigment on the flower with Ba and higher Cu contribution. Also 

Ca intensities in the average pixel spectra from the R1 and R2 

regions are higher compared to the values found in the paper 

P1 average spectra (Fig. 10 (b)), probably due to the mixture of 

chalk (CaCO3) with red pigment.   

Y1, Y2 and Y3 t-SNE regions situated within the PCA+k-means C4 

(gold leaves) have similar spectra (Fig. 10 (c)) with small 

variation in Au/Hg intensity ratio, while Y4 is identified as the 

edge region of the gold leaves. Hg originates from the layer 

below the gold leaves either as a part of the vermilion pigment 

or as a component of the gold ground preparation layer. It is 

observed that the intensity ratio Hg-L/Au-L increases from its 

minimum value in Y1 to its maximum value in Y3 region, 

probably due to a smaller thickness of gold leaves, which is 

reflected in lower absorption of Hg lines and higher Hg/Au 

intensity ratio. Also, it is observed that Ca intensities in the 

average pixel spectra (Fig 10 (c)) are higher compared to the Ca 

intensity in t-SNE P1 average paper spectrum due to its 

presence in the gold ground preparation layer.49 Since Ca 

originates in the layer below the gold leaves, Ca Kα and Kβ X-ray 

lines are differently absorbed for different thicknesses of the 

gold leaves. Ca Kα/Ca Kβ intensity ratio increases 14 % from Y1 

to Y3 region, supporting the fact of thinner gold layer in Y3 

region, as it is also seen from Hg L/Au L intensity ratios.  

For the green pigment, two regions on the t-SNE plot were 

selected (Fig. 8 (a)): G1 related to the darker green areas on the 

sample and G2 associated with the regions of white lines on the 

green pigment. Higher Pb/Cu intensity ratio in G2 regions is a 

consequence of lead white lines painted on top of the green 

pigment. Beside Cu and Pb, additionally Si, K, Fe, Zn and As are 

seen in the spectrum. Trace element concentration ratios were 

roughly estimated using thick target approximation in 

GUPIXWIN. The following estimates for the trace element 

concentrations relative to copper were obtained: Fe to Cu 

 

Fig. 9 PIXE spectra obtained after the summation on the PCA+k-means cluster 

spectra (black) and compared to summed spectra from selected regions of the t-

SNE map (red) and single pixel spectra (blue). 

 

Fig. 10 Average spectra obtained from the selected (encircled) t-SNE regions (see 

Fig. 8 (a)). Pigment spectra are compared with the paper spectrum (t-SNE P1 

region at Fig. 8 (a)). 
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concentrations at the level of 1 %, Zn to Cu at the level of 5 % 

and As at the level of 4 % of Cu concentrations.   

Four different regions within C1 cluster were selected on the t-

SNE plot (Fig 8 (a) and (b)) corresponding to the four shades of 

the blue pigment: B1 and B2 regions related to the left part of 

the flower and the blue stripe below the flower (see Fig. 1). B3 

and B4 regions are from the right part of the flower and blue 

stripe above. It is clearly seen that the darker shades contain 

less Pb as an indication that shades of blue are the result of 

mixing with the lead white. This conclusion is in the line with the 

average spectra with lower Pb/Cu intensity ratio for B3 and B4 

regions (Fig. 10 (a)). As in the case of green pigment, thick target 

approximation in GUPIXWIN was used for rough quantitative 

analysis to address the trace elements concentrations relative 

to Cu. Ba is at the level of 6 % of Cu concentration, which is 

about one order magnitude higher than the values found in 

selected natural azurite pigments in illuminated manuscripts of 

Spanish, Italian, French and Dutch origin dated from 13th to 16th 

century.47 Fe concentrations are 2 % of Cu concentrations, 

values similar to concentrations found in the above mentioned 

natural azurite pigments.47 Mn concentrations found are at the 

level of 3 % of Cu concentrations. 

Illuminators usually drew their preliminary designs with ink or 

charcoal. In this case sketches were done in ink. These sketches 

were often reworked in ink that had been diluted so that it could 

be more easily concealed beneath the pigments. The observed 

presence of Fe and some other elements (Ca, K, Cu, Zn, ...)  

almost everywhere suggests that iron gall ink was used to draw 

the sketches.  

Compared to the classical approach in the pigment 

identification, multivariate analysis enables fast separation of 

different pigment areas on the sample. In parallel, total or 

average pigment spectra can be used for fast identification of 

all major and trace elements present in the pigment. 

Application of t-SNE analysis on the PIXE spectral images 

additional information can be gathered, otherwise impossible 

to obtain by pure comparison of elemental maps. In the above 

case, t-SNE enabled localization of the regions with different 

thicknesses of gold leaves and separating different shades of 

blue pigments. 

3.3 PIXE excitation: analysis of metallic object, low statistics 

single pixel spectra 

Fig. 11 (a) shows the area of about 3x3 cm that was scanned by 

low intensity proton beam with a scan resolution of 64x64 

pixels, and with irradiation time of 3 seconds per pixel. 

Excitation by protons was useful to limit the spectral response 

as much as possible only to the surface layer.  

As a first step, the pixel spectra were saved in HDF file and 

imported into PyMca to obtain 2D elemental maps from related 

X-ray peak areas. The pixel spectra were in general of low 

intensity, especially for higher energy X-rays. Therefore 2D 

elemental maps are based on the measured intensities (i.e. the 

spectra were not fitted). Fig. 11 (b-k) shows the obtained 2D 

elemental maps of the elements identified in the cumulative 

(total) spectrum- (Si, S, Cl, Ca, Fe, Cu, Ag, Au, Hg) on top of the 

decorative medallion. Ca, Fe and Cu maps have a contribution 

from both Kα and Kβ lines. For Au L and Hg L maps summation 

of Lα, Lβ and Lγ lines was performed, while the Au M-Hg M map 

contains overlapping signals from Au M and Hg M X-rays. The 

Fig. 11 (l) shows an RGB image of S (red), Au (green) and Ag 

(blue) spatial distribution. 

For quantitative analysis, longer irradiation on selected pixels 

can be performed to obtain higher statistics in related spectra 

used for analysis. Alternative approach is to apply some kind of 

pattern recognition algorithm (like multivariate analysis) to the 

already measured low statistics pixel spectra and sum the 

spectra from similar areas to obtain good statistics spectra. 

Advantages of this approach are: avoiding the need for long 

measurements and minimizing user influence on the analysis 

procedure. 

Before the multivariate analysis, pixel spectra were normalized 

to the total spectrum counts to compensate for possible beam 

fluctuation during the measurements. Spectra were normalized 

with the in-house Matlab routine. PCA + k-means clustering and 

independently t-SNE on spectral data was performed in Orange. 

A combination of PCA and k-means clustering was applied in the 

analysis. To account for the measurement uncertainties of the 

low statistics components in the pixel spectra, we applied the 

combination of square root transform and mean centring. The 

resulting preprocessed (normalized, scaled and mean centred) 

 

Fig. 11 (a) Image of the analyzed surface area; (b-k) areal 2D elemental maps; and 

(l) RGB composite map marks for 3 main elements. 

 

Fig. 12 (a-e) Score images of first 5 principal components obtained by the PCA 

method. (f) The result of the combined PCA + k-means clustering analysis. 
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pixel spectra were then used as input for the PCA, k-means 

clustering and t-SNE analysis.  

Fig. 12 (a-e) shows the first 5 principal components obtained by 

the PCA method. The result of the combined PCA + k-means 

clustering analysis is shown at Fig. 12 (f).  With each cluster C1-

C4, related cluster spectrum is associated (black spectra at Fig. 

14), obtained by the summation of the raw pixel spectra 

belonging to the same cluster. From the summed spectra, 

clusters can be easily identified: C1 relates to the gilding on the 

rider’s head and horse with Au and Hg; C2 relates to the silver 

plate; C3 corresponds to the compound of Ag and S while C4 is 

associated with engraved areas having Ca, Cl and Si as 

impurities (originating from the ground where the plate was 

found). 

t-SNE analysis was performed with perplexity parameter 22. 

The results are shown at Fig. 13. For better comparison with the 

result of the combined PCA and k-means clustering, data points 

are in the same colours as the clusters from Fig. 12 (f). Several 

(encircled) regions in the t-SNE plot were selected and summed 

spectra from these regions were compared with the PCA+k-

means cluster spectra and with the single pixel spectra.  

Although low statistics one-pixel spectra present an important 

drawback for this experiment, PCA+k-means or t-SNE analysis 

overcome this limitation. The resulting red spectra shown at Fig. 

14 show that t-SNE regions 1 and 2 relate with the C1 cluster 

(these are very similar spectra); region 8 with C2; regions 5 and 

6 with C3; and region 7 with C4. 

t-SNE can be used for fast and easy selection of different sample 

regions with similar spectra. To demonstrate this, the most 

characteristic parts of the C1 and C3 clusters are divided into 

three regions each. Selection of the region 1 in Fig. 13 as a part 

of the C1 cluster shows that it relates to the central part of the 

horse and rider’s head (Fig. 15 (a)) having the highest 

contribution of the Au and Hg (Fig. 15 (b)), while regions 2 and 

3 correspond to boundaries between the gilding and engraved 

areas, having smaller Au and Hg contributions. Similar approach 

is used in investigating the area of rider’s shield, with average 

spectra obtained from three regions within C3 with different S 

contributions (Fig. 15 (c)). 

We used the summed spectra related to three encircled C1 

components to quantitatively determine elemental 

composition. The related spectra (Fig. 15 (b)) show large 

 

Fig. 13 t-SNE result with perplexity set to 22. 

 

Fig. 14 PIXE spectra obtained after the summation on the PCA+k-means cluster 

spectra (black) and compared to summed spectra from selected regions of the t-

SNE map (red) and single pixel spectra (blue) 

 

Fig. 15 (a) corresponding positions on the sample from the encircled regions of the t-SNE plot, average spectra obtained from the t-SNE (encircled) regions within (b) C1 and 

(c) C3 clusters. 
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contributions of Ag, Au and Hg L X-rays. Some contributions of 

Si, Cl and Ca are visible. We assume that Ag is from the plate 

body (bulk), Au and Hg are present as thin surface layer and that 

Si, Cl and Ca are parasitic elements. GUPIXWIN was used for 

analysis using layered sample (one thin layer + bulk) option with 

iterative procedure. The results of the analysis are given in Table 

2. They show that the Au/Hg layer (spectrum related to area 1) 

has the maximal thickness of about 670 µg/cm2 with Au 

concentration of about 87 w% and Hg concentration of about 

13 w%. Fig. 15 clearly shows the relationship between the three 

spectra and actual regions on the 2D image map. The analysis 

clearly demonstrates that the fire-gilding process was applied 

to create this decoration. Similar analysis was performed on 

three encircled C3 components with higher S contributions. 

Related spectra are shown in Fig. 15 (c). We can see from Fig. 

15 that these spectra relate to the shield and mantle areas of 

the 2D image map. Direct comparison with 2D elemental maps 

(Fig. 11 (b-k)) shows that the shield and mantle areas are dark 

in colour and are supposed to be made by the Niello technique. 

It has been reported in the literature that Niello was used to 

decorate metalwork throughout the Roman empire using silver 

sulphide (Ag2S).51 In this case, we performed quantitative 

analysis using GUPIXWIN, assuming thick target. The reason is 

the presence of Ag in the bulk and in the supposed surface layer 

of Ag2S. The results are also included in Table 2 and they show 

different concentrations of S and Ag. The highest concentration 

of S, related to encircled area 4, corresponds to the 

concentration of S in Ag2S. In the case of the other two spectra, 

S concentration is lower. We therefore assume that the 

spectrum from the area 4 is from the Niello layer, and that it 

should be quite thick for sulphur K X-rays to yield the expected 

concentration according to the layer stoichiometry. We have 

further calculated that 99% of the S yield from the Ag2S layer 

originates from the top 3.9 µm and therefore this should be the 

minimum thickness of the corresponding layer. The spectra 

from the other two encircled areas would correspond to thinner 

Niello layers as the Ag contributions in the related spectra 

increased. 

4. Conclusion 

Generally, PIXE exhibits higher sensitivity for lighter elements, 

whereas the efficient excitation of elements heavier than iron 

requires more energetic beams (more than 3 MeV) not so often 

available. Therefore, in the case of typical scanning PIXE analysis 

with single detection systems, the setup throughput is expected 

to be rather low for heavier elements. One way to increase 

sensitivity is the use of large area detectors (i.e. by the increase 

of the detector solid angle). Sensitivity for heavier elements 

imaging can alternatively be increased by adding low power and 

lightweight X-ray tube to Ion Beam Analysis setup. 

Simultaneous PIXE+XRF excitation mode can be very useful for 

many practical applications where elemental areal distributions 

along investigated areas are all what is needed. However, that 

excitation mode is not suitable for quantitative analysis due to 

quite different PIXE and XRF excitation mechanisms. In both 

PIXE+XRF or PIXE excitation modes, higher statistics spectra that 

would contain enough information for qualitative and/or 

quantitative analysis of major, minor and even trace elements 

can be deduced using multivariate analysis methods from 

individual pixel spectra collected during 2D scanning of objects 

under investigation. This kind of analysis can be performed on 

low statistics individual pixel spectra. This could be of particular 

importance for sensitive samples that could be damaged during 

long or intense ion beam irradiation.   

In this work we demonstrate the usefulness of multivariate 

spectral analysis to PIXE+XRF and PIXE 2D spectral images. 

Three cases were investigated: (i) qualitative analysis of spectra 

with high number of counts per pixel in the full range of 

measured X-ray energies collected in PIXE+XRF mode; (ii) 

qualitative and semi-quantitative analysis of spectra with 

medium to low counts per pixel collected in PIXE mode (i.e. on 

the spectra having high sensitivity in the low energy X-ray region 

and low count rates at the high energy part of the spectra), and 

(iii) qualitative and quantitative analysis of spectra with low 

counts per pixel measured in PIXE mode.  

In the first case, we analysed measured 2D spectral maps with 

high statistics individual pixel spectra of various pigments 

obtained by simulteneous PIXE + XRF mode. Multivariate 

analysis clearly separated characteristic spectra of different 

pigments. High statistics average spectra (Fig. 4) were obtained 

for each pigment, showing clearly major, minor and trace 

elements corresponding to particular pigments. t-SNE analysis 

clearly separated pigment mixtures from pure pigments.  

In the second case, we performed 2D analysis of illuminations 

from the 15th century book using ion beam excitation (PIXE 

mode). The goal was to identifiy the pigments used by the 

author and to demonstrate the power of multivariate analysis 

compared to traditional analysis. Multivariate analysis was 

applied to the measured 2D spectral maps with typical 

individual pixel PIXE spectra that show high sensitivity at  the 

low energy part of the spectra and modest to low sensitivity for 

the corresponding high energy part. t-SNE analysis clearly 

separated the spectra (Fig. 9, 10) from different sample regions 

(Fig. 8) and helped to identify the pigments used by the author. 

In the third case, where we analysed 2D spectral maps with low 

statistics pixel spectra (obtained in the PIXE mode) of a 

decorated archaeological silver plate, multivariate analysis 

enabled to identify pixels with similar spectra that can be 

summed and used for quantitative analysis. Using this 

approach, we were able to identify the sample regions with 

similar layer thicknesses, and obtain the layer thickness and 

Table 2 Quantitative analysis results of selected regions 1-6 from t-SNE plot. 

 Concentrations (weight %) and relative 
uncertainties 

Layer 
thickness 
(μg/cm2) 

Region Au  Hg   

1 86.9 (6 %) 13.1 (15 %)  670 

2 82.8 (6 %) 17.2 (15 %)  570 

3 84 (6 %) 16 (15 %)  450 

 Ag S Cu  

4 84.7 (6 %) 14.8 (14 %) - ≥ 3.9 μm 

5 89 (6 %) 10.7 (14 %) 0.3 (40 %) < 3.9 μm 

6 91.5 (6 %) 8 (15 %) 0.5 (40 %) < 3.9 μm 
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elemental concentrations. In the actual case study, we 

characterized the identified gold layer and Niello decoration on 

the archaeological plate of Roman origin. 
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