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Controlling systemic risk: Network structures that minimize it and node properties to calculate it
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Evaluation of systemic risk in networks of financial institutions in general requires information of interinsti-
tution financial exposures. In the framework of the DebtRank algorithm, we introduce an approximate method
of systemic risk evaluation which requires only node properties, such as total assets and liabilities, as inputs.
We demonstrate that this approximation captures a large portion of systemic risk measured by DebtRank.
Furthermore, using Monte Carlo simulations, we investigate network structures that can amplify systemic risk.
Indeed, while no topology in general sense is a priori more stable if the market is liquid (i.e., the price of
transaction creation is small) [T. Roukny et al., Sci. Rep. 3, 2759 (2013)], a larger complexity is detrimental for
the overall stability [M. Bardoscia et al., Nat. Commun. 8, 14416 (2017)]. Here we find that the measure of scalar
assortativity correlates well with level of systemic risk. In particular, network structures with high systemic risk
are scalar assortative, meaning that risky banks are mostly exposed to other risky banks. Network structures with
low systemic risk are scalar disassortative, with interactions of risky banks with stable banks.
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I. INTRODUCTION

In the past, the stability of the banking sector was mostly
analyzed considering measures of the individual banks. Only
recently, especially after the 2008 crisis, this approach has
changed. The negative consequences of an interconnected
economy and also of a interconnected financial sector be-
came more clear. For this reason, scientists and policy makers
concerned with systemic risk (a risk that a large number
of institutions will simultaneously get in serious financial
problems) started to recognize that there was a serious lack
of knowledge on the mechanisms through which the inter-
connectedness affects the financial stability. This triggered
a series of new analyses that included network effects and
propagation of unfavorable financial conditions (technically
known as financial distress). As a result, a series of new
models and approaches were proposed and incorporated into
systemic risk measures [1–5]. The most recent research of sys-
temic risk measures extend the definition of financial system
to multilayer networks, by the inclusion of different assets and
valuations, as well as types and maturities of loans, etc. [6–8].
Applications of these models include central bank regulation
[3], individual assessment of systemic risk [9], and simula-
tions of different policies, such as bank taxation [10,11].

However, in order to compute these network risk measures,
we need both a detailed knowledge of the interconnection
network of institutions (for example, the investments between
all pairs of banks [12]) and the knowledge of the dynamics

of the evolution of this system. Unfortunately, these pieces of
information about the network are known only by the regulat-
ing authorities (and just in a few cases); for that reason several
methods of reconstructing the graph from partial information
have been proposed [13–17], with methods and checks aimed
at determining the best possible reconstruction [18].

Here we present a complementary approach to that of a
reconstruction, by showing that a series of risk measures (in-
cluding network effects) can be understood to a great extent
by analyzing the properties of single banks. Indeed, here we
show that in the calculation of systemic risk measures the
presence of network can be taken into account by inspection
of local (single banks and pairs of banks) properties. First,
single bank measures as the interbank leverage (ratio of total
investments of a bank into other banks over this banks equity)
is enough to understand the first steps of stress propagation
(that account for a large part of total stress propagation). Sec-
ond, the investments between pairs of highly leveraged banks
are also increasing stress propagation. We find that investment
networks with high systemic risk are highly scalar assortative
with respect to single bank risk, while networks with lowest
systemic risk are scalar disassortative [19]. Scalar assortative
networks are networks in which every node has associated
scalar value and in which starting from the node with rela-
tively large scalar value and randomly choosing its neighbor, it
is more probable to observe large scalar value on its neighbor
than would be expected by chance. Thus, the correlations
among nodes with a scalar property can be described with the
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scalar assortativity measure r = [
∑

xy xy(exy − axby)]/σaσb

[19]. Here, x and y are some scalar measures associated with
vertices which are not necessarily network related but can
represent the total bank assets or the bank’s credit rating and
similar. Clearly, degree assortativity, which is more commonly
understood as assortativity, is just a special case of scalar
assortativity in which scalar variables are the degrees of the
network. Furthermore, exy is the fraction of links from a vertex
with scalar x to a vertex with scalar y, and ax = ∑

y exy and
by = ∑

x exy.
We use data taken from the Italian electronic broker market

e-MID (Market for Interbank Deposits) run by e-MID S.p.A.
“Società Interbancaria per l’Automazione” (SIA), Milan. The
Italian electronic broker Market for Interbank Deposit (e-
MID) covers the entire overnight deposit market in Italy. The
information about the parties involved in a transaction allows
us to perform risk propagation on real networks as well as
providing a basis from which we create artificial networks. As
mentioned before, there are a number of papers which study
the risk propagation with a network-based quantity, namely,
the DebtRank [3], both for direct application to stress tests
[20] and to realize a plausible scenario to understand systemic
risk [21]. Here we follow the Debtrank approach presented in
[12] since it simplifies the DebtRank method allowing to use
simple linear algebra, while still preserving the conclusions
obtained in other variants of DebtRank.

The paper is organized as follows. First, we reintroduce the
DebtRank algorithm as proposed in [12]. Second, we analyze
the amplification mechanism of the method and rewrite the
algorithm in such a way that (a) single node, (b) neighbor-
hood (local), and (c) global contributions to the DebtRank are
clearly separated. Third, we propose a Monte Carlo network
creation algorithm to test which network configurations are
extremal (maximal or minimal) with respect to the DebtRank.
Fourth, we present a simple illustrative example, which is
followed by empirical results computed from the real data
and analytically solvable examples. We finish with analysis
of finite size and varying distributions effects on our results
presented in previous sections.

II. BACKGROUND: PROPAGATING SHOCKS WITH
DEBTRANK

Assume N banks, each with equity Ei. For every bank i,
we additionally know how much it invested in total into other
banks. We call this the interbank assets Ai of bank i in the in-
terbank market. Additionally, we know the debts of each bank
i to all other banks, called liabilities Li. Initially (time t = 0)
we assume no distress, and

∑
i Ai(0) = ∑

i Li(0). We have to
stress that these are not the total assets and liabilities but only
the portion which is network exposed in interbank network.
For t = 1, we assume external distress on the banks h(1).
According to this distress, the assets Ai reduce their value, as
the distressed banks are more likely to bankrupt and therefore
not to pay back their debt. On the other hand, liabilities do not
get reduced. Here we want to understand network effects of
the positive feedback between reduced equity and asset value.
For this we follow the DebtRank scenario. More precisely, we
are interested in small everyday shocks, where no bank loses
all its equity.

To compute the equity losses, let us assume for the moment
we know not only the total amount Ai of assets of bank i, but
also in which banks j they invested, denoted with the asset
matrix Ai j (0). We have definition of single bank i assets Ai(0),

Ai(0) =
∑

j

Ai j (0), (1)

and single bank j liabilities Lj (0),

Lj (0) =
∑

i

Ai j (0). (2)

Further we define the matrix � with elements �i j =
Ai j (0)/Ei(0), and the distress parameter hi describing the
relative loss of equity of bank i, hi(t ) = 1 − Ei(t )/Ei(0). The
financial distress of a financial institution i, hi, measures the
reduction in its market value due to the reduction of the market
value of its assets such as loans or investments in equity of
other financial institutions. As a simple example, consider a
bank i lending to bank j at a given interest rate r. If the
financial situation of the bank j deteriorates, any other bank
would then give to the bank j a similar loan but with a larger
interest rate r′ > r. In this way the market value of the existing
loan (which is an asset of bank i) is reduced. According to [12]
we have

hi(t ) = hi(1) +
∑

j

�i jh j (1) +
∑

j

(�2)i jh j (1)

+ · · · +
∑

j

(�t−1)i jh j (1). (3)

We study a homogeneously distributed initial distress af-
fecting each institution in the same way by reducing its equity
before distress Ei(0) at the start by Ei(1) = (1 − ψ )Ei(0).
Here ψ gives the proportion of equity lost due to the initial
shock

hi(t )/ψ = 1 +
∑

j

�i j +
∑

j

(�2)i j + · · · +
∑

j

(�t−1)i j .

(4)

In the remainder of the text we are primarily interested in the
total relative systemic equity loss

H (t ) =
∑

i

hi(t )Ei(0)

/ ∑
j

E j (0) (5)

and especially in its asymptotic value limt→∞ H (t ) ≡ H∞.

III. AMPLIFICATION OF A SMALL SHOCK HITTING ALL
BANKS

For a general vector of initial distress hi(1), the total rela-
tive systemic equity loss can be expressed as

H∞ =
∑

i Ei(0)hi(1)∑
k Ek (0)

+
∑

i Li(0)hi(1)∑
k Ek (0)

+ 1∑
k Ek (0)

∑
jl

L j (0)Ajl (0)hl (1)

Ej (0)
+ O(A2) . (6)

As described above, we are interested in a small shock ψ

hitting all banks equally, which roughly corresponds to shocks
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at the macroeconomic level. Although this is necessarily an
approximation, it allows us to obtain even more detailed ana-
lytical insight into the total relative systemic equity loss using
the data on individual banks (node specific data). Here we
introduce a suitable variable: the macroeconomic multiplier
� = H∞/ψ . This variable is used to describe how external
shocks are amplified in the banking system by relating the
total (relative to systemic effects) equity loss to the portion
of equity lost initially. We can now divide Eq. (5) by external
shock parameter ψ and put in Eq. (4). After some rewriting
using the definitions of bank assets Ai in Eq. (1) and liabilities
Lj in Eq. (2), the following form is obtained:

� = 1 +
∑

i Ai(0)∑
k Ek (0)

+
∑

i Ai(0)Li(0)/Ei(0)∑
k Ek (0)

+
∑

i j Ai j (0)Li(0)Aj (0)/(Ei(0)Ej (0))∑
k Ek (0)

+ � (res) (7)

≡ 1 + � (1) + � (2) + � (3) + � (res). (8)

Notice that the terms up to � (2) only depend on the asset and
liability sums Ai and Li. The term � (3) is the lowest order term
including the investment matrix Ai j (0). Now we define a risk
matrix

R(3)
i j = Li(0)Aj (0)/(Ei(0)Ej (0)) × (1 − δi j ), (9)

whose meaning is to relate the relative exposure of bank i
liabilities-equity ratio given by Li/Ei to the relative assets-
equity ratio Aj/Ej of the counterparty. � (3) can be written in a
more compact way by introducing the auxiliary dimensionless
quantities:

αi j = Ai j (0)

/ ∑
k

Ek (0), ai = Ai(0)

/ ∑
k

Ek (0),

li = Li(0)

/ ∑
k

Ek (0), ei = Ei(0)

/ ∑
k

Ek (0). (10)

Now the simplified equation for contribution of counterparty
banks to the systemic risk of the bank i is

� (3) =
∑

i j

αi jR
(3)
i j . (11)

In the end, the rest of the financial network contributes to
distress through � (res) which can be written as

� (res) =
∞∑

t=4

∑
i j Ei(0)(�t )i j∑

k Ek (0)
=

∞∑
t=4

∑
i j

ei(�
t )i j, (12)

where again �i j = Ai j (0)/Ei(0) = αi j/ei. If the eigenvalue of
the matrix �i j with the largest absolute value (in the following
called λ) has the absolute value considerably smaller than one,
we can expect the residual term to be a minor correction in
�. If, on the other hand, λ � 1, the equity loss accelerates
infinitely and at least one bank bankrupts.

Finally, for t → ∞ the relation (3) can be written at the
matrix level as

h(1) = (I − �)h∞ . (13)

From the condition that all elements of h∞ are below 1,
corresponding to no bankruptcies in the system, it is possible
to obtain conditions on initial distress. This result directly

reflects the fact that, owing to the network structure encoded
in �, the stability of the entire financial network has different
sensitivity on the same level of initial distress at various nodes.
This information may be of practical importance to financial
regulators. In particular, if some hi(1) is outside allowed range
obtained by (13), i.e., some element of h∞ raises above 1 with
change in hi(1), regulators should consider intervention, pos-
sibly in the form of restructuring the financial network. The
practical calculation of h(1) using analytical methods might
be prohibitively complicated even for networks of moderate
size. A more convenient approach is based on simulations.
One can randomly select each component of h∞ in the interval
of values corresponding to no bankruptcy (0 � h∞

i < 1) and
calculate h(1) using (13). With a sufficiently large number of
such calculations one can obtain estimates of no-bankruptcy
intervals for all components of h(1). This analysis is left
for future work. For the effect of relative shock on overall
DebtRank one can consult Ref. [12].

IV. MINIMAL AND MAXIMAL SHOCK
AMPLIFICATION �

For understanding the bounds of systemic risk in measures
of the shock multiplier �, let us minimize or maximize �(αi j )
by varying αi j , given single bank properties Ai(0), Li(0),
and Ei(0). For this purpose, we use a stochastic optimization
process. For variables αi j we have the following constraints,
which can in practice be obtained from the bank financial
reports:∑

j

αi j = ai,
∑

i

αi j = l j, αi j � 0, αii = 0. (14)

To find network configurations with extremal values of risk,
we first need to define an optimization process which in partic-
ular does not depend on the choice of the risk or on some other
property of financial network. In particular, we want to study
a more general nonlinear function F (αi j ), which we want to
maximize. In our case, this function is the macroeconomic
multiplier � computed in Eq. (7). In other settings it is pos-
sible to use the same method for different ways of valuation
of economic multiplier or some other risk related function. In
any case, to the matrix αi j fulfilling all constraints given in
Eq. (14), we can add to it a matrix D, defined in the following
way:

D(i1, j1, i2, j2)i j = dδi,i1δ j, j1 + dδi,i2δ j, j2

− dδi,i1δ j, j2 − dδi,i2δ j, j1 , (15)

which clearly preserves the sums in rows and columns of the
matrix α and in which d is a parameter, chosen to be the
smallest value of α in the given realization of the network.
Therefore, d is a parameter that changes with every given
network we study. Take, for example, a system with five
banks and an initial valid matrix with elements αi j . Then, one
possible update D to this matrix is

D =

⎡
⎢⎢⎢⎣

0 d 0 −d 0
0 0 0 0 0
0 −d 0 d 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦. (16)
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We could start the process with αi j taken from the data but
in principle we start with α̃i j = ail j/

∑
k ak , as a guess for

α̃i j , but which by construction is a complete, and we find that
the rate of convergence to extremal solution is better. We suc-
cessively subtract matrices of the form D(i1, i1, i2, i2), until
only one diagonal element is left, and further D(i1, i1, i2, j2 �=
i2) to eliminate the last diagonal element as well. For find-
ing matrices αi j with extremal F (αi j ), we propose updates
α → α + D(i1, j1, i2, j2), with D involving only off-diagonal
elements. These matrices are drawn with uniform probability,
i.e., every choice of indices i1, i2, j1, j2 is equally likely. If for
the updated matrix it would hold αi j � 0, we accept updates
with standard simulated annealing probability

min {1, exp{β[F (α + D) − F (α)]}}. (17)

For F = �, � is maximized, while for F = −� it is mini-
mized. The positive parameter β regulates how likely updates
away from the optimization goal are accepted. For large β,
such updates are accepted very unlikely. Small β can be used
to escape local extrema (often combined with an increasing
parameter β over time, to approach the global extreme in the
end of the optimization procedure). In order to force addi-
tional constraints for the investment matrix αi j , we add further
terms

F = ±� − βk k̄(αi j ) − βasym

∑
i j αi jα ji∑

i j α
2
i j

. (18)

For βk > 0, αi j is more sparse after optimization. The average
degree is calculated as k̄ = k̄in = k̄out = ∑

i j 
(αi j )/N , with
theta function 
(x > 0) = 1 and 
(0) = 0. With βasym > 0,
the investment matrix is forced to be asymmetric. This has
the following meaning: If for a pair of banks i, j it holds
αi jα ji > 0, bank i invests into bank j, while at the same time
bank j invests into bank i. In the e-MID data there are a
number of closed loops of length 2, but for the purposes of this
paper we chose to suppress them. The reason for this choice is
that in overnight markets one can easily clear the debt between
two parties, and we choose the DebtRank version presented in
[12] which does not provide stop in iterations of the DebtRank
algorithm. Short loops therefore iterate shock propagation be-
tween two banks ad infinitum and the correct way to alleviate
this problem is to “clear” them into a one directional edge
whose weight is the difference between the values of two
reciprocal edges. The optimal choices of optimization param-
eters depend on the properties of networks we are studying
and are given for each of the studied networks in the following
sections. When this netting procedure is performed, it should
be kept in mind that it is only a simplifying approximation
since liability of bank i to bank j may have a different duration
from the liability of bank j to bank i.

A. Illustrative example

For illustration, let us first discuss an artificial example of
a network of interbank liabilities. We use a small network
with N = 30 banks, equities from a Pareto distribution with
exponent three, and interbank leverages 0.32 < Ai/Ei < 0.96
from a uniform distribution. As it is easiest to illustrate and
understand the case with Ai = Li, we start with this case.
For optimization, we use parameters β = 106, βk = 0.1, and

βasym = 2.0. We sum up the first 50 terms of � for assessing
update trials, and once a sweep we calculate � using the
first 200 terms, with results plotted on the upper panel of
Fig. 1(a). The final optimized networks have average degree
k̄ = 2.0 (minimization) and k̄ = 2.6 (maximization). Largest
eigenvalues are λ = 0.67 (minimization) and λ = 0.83 (max-
imization). Both connection matrices are strictly asymmetric
at the end of optimization. On the lower panel of Fig. 1(a), we
see a scalar assortativity measure with respect to interbank
leverage Ai/Ei. Therefore, in this case, interbank leverage
Ai/Ei is a scalar property Ai/Ei = x = y in the equation for
scalar assortativity introduced before. To compute scalar as-
sortativity, we used an implementation provided with graph
tool [22], where the variance is obtained with the jackknife
method. For small systemic risk, highly leveraged banks
should both lend from and borrow to banks with small lever-
age. This is the case for the network with minimized � shown
in Fig. 1(b). If highly leveraged banks lend among each other,
systemic risk is high, as can be seen in Fig. 1(c).

We find that the scalar assortativity r of interbank leverage
Ai/Ei is closely connected to the risk of an interbank network.
In the following, we will see that simpler, purely topologi-
cal network properties are less indicative for the interbank
network risk. The global clustering coefficient is defined as
the fraction of closed triplets among all triplets in a network,
where the link direction is ignored. An opened triplet happens
when three nodes are connected by only two links leaving the
third possible connection open, while in a closed triplet all
links between the three nodes are present. The global cluster-
ing coefficient for the interbank network with minimized risk
of 0.023 is in the range 0.065 ± 0.053 expected for random
networks with 30 nodes and average degree of k̄ = 2.0. We
created 1000 random networks and calculated the global clus-
tering coefficients of each, defining the range as two standard
deviations around the mean value. For the interbank network
with maximized risk, the global clustering coefficient of 0.213
is larger than for random networks with a range 0.085 ± 0.048
for average degree of k̄ = 2.6. We understand that this could
be a consequence of the scalar assortativity of interbank lever-
age. In Fig. 1(c), it can be seen that the interactions of similar
banks with respect to their individual leverage increase the
number of triangles. However, triangles between banks with
heterogeneous interbank leverage Ai/Ei would also increase
the global clustering coefficient, but the shock amplification
would stay at smaller values. Therefore, the global clustering
coefficient alone is not a good indicator for interbank network
risk. The degree assortativity is calculated as the scalar assor-
tativity r used so far, but in this case by using the degree ki

of the nodes instead of the interbank leverage Ai/Ei. We find
the degree assortativity to be −0.49 for the interbank network
with minimized risk and −0.23 for maximization. Both cases
are in the disassortative regime, meaning that banks with large
degree tend to interact with small degree banks. We see that
degree assortativity does not give a clear hint on the inter-
bank network risk. The in- and out-degree distributions of the
networks with minimized as well as with maximized risk are
compatible with the binomial distribution (or limiting case of
Poisson distribution) of simple random networks. As a simple
test we generate 1000 random networks and calculate the de-
gree distribution for each of them. This allows us to calculate
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FIG. 1. (a) In the upper panel, the shock multiplier � is shown during maximization (red line) and minimization (green line), where n
denotes sweeps (with N2 update trials). This is for an artificial example with N = 30 banks, equities from a Pareto distribution with exponent
three, and interbank leverages 0.32 < Ai/Ei = Li/Ei < 0.96 from a uniform distribution. In the lower panel, a scalar assortativity measure
with respect to interbank leverage is shown for the same optimization runs. Minimal systemic risk is connected to disassortative networks [see
also (b)], while maximal systemic risk is connected to assortative networks [see also (c)]. The networks in (b) and (c) encode the total assets
Ai of a bank i as node size, and the interbank leverage Ai/Ei as node color from pink (light shade - low values) to cyan (darker shade - high
values).

regimes of two standard deviations for the probability of each
degree, and the degree distributions of optimized interbank
networks are compatible with these regimes for all degrees.
We find that the interbank network risk has no effect on the
degree distribution. Finally, the density of the network can
be chosen from a wide range by varying the parameter βk

in the optimization, both for minimized and maximized risk.
Therefore, the average degree alone is a poor indicator for the
network risk. We repeat the optimization with βk = 0 which
means that the density of the optimized networks is not forced
to be small. The shock amplification is similar as before with
� = 2.97 for minimization and � = 3.86 for maximization.
The average degree is k̄ = 12.4 for the minimized risk and
k̄ = 12.7 for the maximized risk. However, most of the links
have small weights below 10−3 with 78% in the network with
minimized risk and 81% for the maximized risk. Such small
weights have a minor share below 10% in the sparse optimized
networks discussed before.

B. Empirical results

We use an interbank liability data set for the European
market involving Italian banks in the year 1999. For a shock
in the night before the last trading day in July, Friday July 30.
1999, we consider all outstanding liabilities with lifetime at
least the next five trading days. These contracts, thus, have
to be repaid earliest the upcoming Friday after one week.
This choice is to guarantee that shock propagation due to

devaluation of contracts has time to take place, a point that
is in question for overnight obligations. Credits with shorter
duration bring with them a different kind of risk into the
interbank market: In times of crisis, banks which are no longer
trustworthy for the others will have problems to renew short-
lasting contracts and to borrow money. However, this different
source of risk is not well represented with DebtRank modeling
because it is not related to the devaluation of existing contracts
for lenders, but rather to the worsened market conditions for
borrowers who are trying to arrange new contracts. As short-
lasting contracts contribute a large part to all obligations, in
this case about 61% of all obligations are held in contracts
lasting up to one week, it would be very interesting to address
this additional aspect in future studies. This goes beyond the
scope of this study and we ignore contracts with a duration
shorter than two weeks. Possible contract durations are thus
starting from two weeks, up to one year. We construct the
network of all 218 banks involved, and reduce it to the largest
strongly connected component, including N = 53 banks. As
the data set is anonymized, we have to reconstruct the eq-
uity of the banks. We choose Ei = max(Ai, Li ) × 1.25 × ξi

with ξi from a normal distribution with mean one and stan-
dard deviation 0.2. The resulting network can be seen in
Fig. 2(a). Total assets Ai of a bank i shown as node size,
and the interbank Li/Ei as edge color at the edge source,
Aj/Ej at edge target, node color from pink (light shade -
low values) to cyan (darker shade - high values). We found
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FIG. 2. (a) Liability network with N = 53 banks in the Italian market in 1999. (d) For this network, source and target properties are
uncorrelated. (e) After minimizing systemic risk, the network becomes disassortative, with anticorrelations among different scalar properties
for source and target node. For Ai = Li, these correlations can be described with the simpler measure of scalar disassortativity as shown
in Fig. 1(a) on the bottom. The gray band indicates the area between first and third quartiles for Ai/Ei, so half of the values Ai/Ei around
the median lie within the gray area. We see that for small systemic risk, a bank i with high Li/Ei should lend to a bank j with low Aj/Ej .
Interpretation: A bank i with high Li/Ei has high impact on its lenders, while a bank j with low Aj/Ej has only small exposure to its borrowers,
thus shocks are dampened. (b) The network with minimal risk. Total assets Ai of a bank i shown as node size, and the interbank Li/Ei as edge
color at the edge source, Aj/Ej at edge target, node color from pink (light shade - low values) to cyan (darker shade - high values). (c) Network
with maximal risk. (f) Maximal systemic risk is connected to assortativity.

a shock amplifier � = 1.90 for this network. In Fig. 2(d)
we analyze for this network correlations between lenders
liabilities divided by equity (source Li/Ei) and borrowers
leverage (target Ai/Ei). The average Ai/Ei of all target nodes
is plotted which are reached from source nodes with val-
ues Li/Ei from a certain interval. We see that there are
no significant correlations between lenders’ liabilities di-
vided by equities and borrowers’ leverage. For Ai = Li, these
correlations simplify and can be described with the scalar
assortativity as shown in Fig. 1(a) on the bottom.

The network consists of 763 edges among the 53 banks,
therefore, the average degree is 14.4. Assets Ai and liabilities
Li are mildly correlated with a Pearson correlation of 0.11.
In total, 36 of the directed edges have a counterpart in the
opposite direction, so some loops of length two are present.
The largest Ai is 875 million euros, the largest Li is 1 132

million euros. All assets sum up to 7.04 billion euros, so do
the liabilities. Using 100 different samples of equities Ei we
found 〈�〉 = 1.87 with standard deviation 0.06.

As for the illustrative example, we minimize and maximize
the shock amplifier � with final sweep n = 104, β = 106,
βk = 0.1, and βasym = 2.0. We sum up the first 50 terms of �

for assessing update trials. After the final sweep we calculate
� using the first 200 terms, with results � = 1.80 (mini-
mization) and � = 2.25 (maximization). The final optimized
networks both have average degree k̄ = 2.0. The connection
matrix minimizing shock amplification is strictly asymmetric
at the end of optimization, while for maximization we see
a small number of loops of length two. Results are shown
in Fig. 2. With Figs. 2(b) and 2(e) we see that an invest-
ment matrix with minimized � has a more subtle kind of
scalar disassortativity, as compared to the illustrative example
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with Ai/Ei = Li/Ei. Here, systemic risk is minimized, when
banks with high Li/Ei lend to banks with low Ai/Ei. With
Figs. 2(c) and 2(f), we see that the network of the maximized
systemic risk is assortative. It is important to stress that this
structure is very different from the typical core-periphery
structure usually observed in financial networks [23–26]. It
is also important to stress that risk minimization in principle
reduces the number of edges in the network, therefore reduc-
ing the risk diversification of single financial institution. The
apparent paradox was previously addressed in [27]. We also
have to stress that scalar assortativity is very different from
network assortativity. Previous analysis of cascades in com-
plex networks [28,29] showed that cascades are (analogous
to systemic risk spreading) inhibited by network assortative
structures, while this analysis shows that systemic risk is am-
plified with scalar assortativity. These results are not opposed
to each other but are complementary to each other.

C. Analytically solvable examples

There is another strong indicator why correlations be-
tween source Li/Ei and target Aj/Ej are dominating in the
optimization: For constant C = Li/Ei or constant C = Ai/Ei

(e.g., no positive or negative correlations possible), � is con-
stant, independent of the investment matrix Ai j . Let us first
show this for C = Ai/Ei. The terms up to � (2) are anyhow
independent of Ai j . For higher terms we can write � (3) +
� (res) = ∑∞

t=3

∑
i j ei(�t )i j . We can define a stochastic ma-

trix with elements Si j = Ai j/EiC, as Ai/Ei = ∑
j Ai j/Ei = C.

With
∑

j Si j = 1 and �i j = Si jC, we have

� (3) + � (res) =
∞∑

t=3

∑
i j

eiC
t (St )i j =

∞∑
t=3

Ct
∑

i

ei =
∞∑

t=3

Ct .

(19)

Here we use properties of stochastic matrices
∑

j (S
2)i j =∑

jk SikSk j = 1, etc. For liability sums being constant C =
Li/Ei, we can define a stochastic matrix Si j = Ai j/EjC,
here with

∑
i Si j = 1. We have �i j = Si jCEj/Ei, and∑

i jkl Ei�i j� jk�kl = C3 ∑
i jkl Si jS jkSkl El = C3 ∑

l El , with
the same result � (3) = C3 as for constant leverage. The same
holds for higher terms. With this finding, other more sub-
tle properties of the investment matrix, as second neighbor
correlations, can only play a limited role. Further, we found
an approximation for banks with interbank leverage from
a sharply peaked distribution (maxi|Ai/Ei − 〈Aj/Ej〉 j | 	
〈Ai/Ei〉i). In this case, the macroscopic shock amplification
is mostly independent of the investment network and a sim-
ple function of the average leverage � ≈ ∑∞

t=0(〈Ai/Ei〉i )
t =

1/(1 − 〈Ai/Ei〉i ), with geometric sum only for 〈Ai/Ei〉i < 1.
Let us now discuss a case, where the optimization of �

can be performed explicitly. We have N = n1 + n2 banks
with identical equity Ei = E , ei = 1/N . With this choice, we
have �i j = Ai j/E . The first n1 banks have Ai/E = Li/E = c1,
while the last n2 banks are less leveraged with Ai/E = Li/E =
c2 < c1. Illustrated for n1 = 2 and n2 = 3, let us introduce the

following parametrized matrix:

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1
n1

c1
n1

0 0 0
c1
n1

c1
n1

0 0 0

0 0 c2
n2

c2
n2

c2
n2

0 0 c2
n2

c2
n2

c2
n2

0 0 c2
n2

c2
n2

c2
n2

⎤
⎥⎥⎥⎥⎥⎥⎦

+ κ

⎡
⎢⎢⎢⎢⎢⎢⎣

− n2
n1

− n2
n1

1 1 1

− n2
n1

− n2
n1

1 1 1

1 1 − n1
n2

− n1
n2

− n1
n2

1 1 − n1
n2

− n1
n2

− n1
n2

1 1 − n1
n2

− n1
n2

− n1
n2

⎤
⎥⎥⎥⎥⎥⎥⎦

= �a + κ
. (20)

The matrix �a is maximally assortative, as only banks of
the same type interact. For a simpler notation, we allow for
self-links. The diagonal elements can easily be emptied into
links among banks of the same type. This keeps � unchanged.
With �i j � 0, we have 0 � κ � min(c1/n2, c2/n1). For the
maximal value of κ , the two bank types interact as much as
the constraints allow. Therefore, this is the maximally disas-
sortative case. The change in � for an infinitesimal increase
of disassortativity, going from � to � + dκ
, is

d� =
∞∑

t=3

t−1∑
p=2

∑
i j

(�p
�t−p)i jdκ/N, (21)

∑
i j

(�p
�t−p)i j = − f (�p) f (�t−p) with

f (�p) = n1(�p)11 + (n2 − n1)(�p)1N

− n2(�p)NN . (22)

We neglect higher order terms in dκ and use the fact that∑
i 
i j = 0, such that this matrix only occurs in between

matrices �. With showing that
∑

i j (�
p
�t−p)i j � 0 for

all 0 < p < t , we show that the most assortative connec-
tion matrix implies largest shock propagation, while the
most disassortative matrix implies smallest shock propaga-
tion. We show that f (�p) = f (�)Cp with Cp positive. Using
(�p)1N = n1�11(�p−1)1N + n2�1N (�p−1)NN and analog ex-
pressions for (�p)11 and (�p)NN , we can write f (�p) =
n1(�p−1)11 f (�) + n2�NN f (�p−1). This is a positive multi-
ple of f (�), if this holds for f (�p−1). With the condition
being trivially fulfilled for f (�1), we can use induction to
prove it for any p.

For � = �ass, the simple closed form result � =∑∞
t=0 ct

1 + ct
2 holds. The dominating term ct

1 grows or
shrinks exponentially with t . The minimized � is a lengthy
polynomial in c1, c2, n1, and n2 which cannot be easily re-
duced into a closed form expression. With an ansatz v =
(1, 1, . . . , a, a, . . . ) for the eigenvector with largest eigen-
value λ, we find

λ = c1 − κn2 + c2 − κn1

2

+
{

[c1 − κn2 − (c2 − κn1)]2

4
+ κ2n1n2

}1/2

. (23)
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FIG. 3. Finite size effects for unrestricted optimization (circles) and restricted optimization, where small degree and asymmetric investment
matrix is forced (diamonds). (a) With finite size scaling we find that for large N , � after minimization approaches �∞

min ≈ 2.0947 ± 5 × 10−4,
with a finite size deviation about ∝N−1.15. Numerical results are shown with circles (unrestricted) and diamonds (restricted optimization). The
dashed line indicates a power law with exponent −1.15. (b) Results of (a) are repeated with linear scale (green symbols and lower dashed
line), and compared to results of maximization (red symbols and upper dashed line indicating results of a finite size scaling). The dotted lines
indicate �∞

min and �∞
max ≈ 2.315 ± 0.01. (c) Assortativity after restricted optimization for minimization (green diamonds) and maximization

(red diamonds). Results indicate that, independent of the network size, least risky networks are strongly disassortative, while most risky
networks are strongly assortative with respect to leverage.

Assume many healthy banks and a few highly leveraged
banks: n1 = 5, c1 = 2, n2 = 50, c2 = 0.5. For �a we have
λ = c1 = 2 with the first n1 banks going bankrupt. For largest
possible κ , we have λ = 0.8. Here all banks survive a small
macroeconomic shock. In this latter case, the first n1 banks do
not lend among each other, and the healthy banks dedicate a
share of 2

5 for interactions with the first n1 banks and remain
a share of 3

5 for interactions among each other.

D. Finite size effects and varying distributions
of single bank properties

To discuss the finite size effects with varying network
size N , we choose Ei = 1 for all banks, and Ai/Ei = Li/Ei =
0.2 + 0.6i/(N − 1). In this way, the single bank properties
for networks of different sizes are similar, and there is no
need to average over many realizations of them. We opti-
mize for nmax = 5 × 103 sweeps with increasing parameter
β = 10 × N2 × 100n/nmax . The algorithmic cost per optimiza-
tion sweep scales with N4, as for every microscopic update
trial, matrix multiplications have to be performed (scaling
with N2), and there are N2 microscopic update trials in
a sweep. With a choice of small values for leverage, we
can use only the first 13 terms in � for assessing update
trials. Final � is calculated with 103 terms. Unrestricted
optimization is performed with βk = βasym = 0, results with
restrictions are found using βk = 0.1 and βasym = 2.0. In
Fig. 3(a) we see a finite-size scaling for unrestricted (green
circles) and restricted (green diamonds) minimization. We
found an asymptotic result �∞

min ≈ 2.0947 ± 5 × 10−4, and
� − �∞

min ∝ N−1.15. We also performed a finite size scaling
for results of unrestricted maximization of � (not shown).
This has less convincing results, indicating that local maxima
are a problem. We found �∞

max ≈ 2.315 ± 0.01. In Fig. 3(b)
we see results for minimization (green) and maximization

(red). For small networks, restricted maximization results
(red diamonds) are far below the unrestricted case (red cir-
cles). However, deviations are small for larger networks. In
Fig. 3(c) we see that networks with maximized � are strongly
assortative, while networks with minimized � are strongly
disassortative.

We already discussed how correlations among single bank
properties Ai/Ei and Li/Ei affect results. Let us now discuss
the outcome with rescaling Ai/Ei → c × Ai/Ei and Li/Ei →
c × Li/Ei. We choose Ei = 1 for all banks, and Ai/Ei =
Li/Ei = c × (0.2 + 0.6i/(N − 1)), with N = 30 banks. In
Fig. 4 we see results for c = 1 (solid lines) and c = 2 (dashed
lines). We optimize for nmax = 5 × 103 sweeps with increas-
ing parameter β = 10 × N2 × 100n/nmax . As the losses grow
exponentially for c = 2, we only use the first six terms in �

for assessing update trials. On the left of the figure, we see
the largest eigenvalue λ of the stress propagation matrix �

during optimization. λ is larger than one for c = 2 (dashed
lines). This means that even a very small initial shock causes
an exponentially growing stress propagation, finally causing at
least one bankrupt bank. On the right of the figure, we see that
monitoring assortativity while optimization indicates a similar
behavior, even if stress propagation changes from dampened
(solid lines) to exponentially growing (dashed lines).

V. SUMMARY AND OUTLOOK

We saw that in the framework of DebtRank, most risky
investment networks are highly assortative with respect to
lenders’ liabilities divided by equity (source Li/Ei) and
borrowers’ leverage (target Ai/Ei). We tested this for artificial
samples of single bank properties, finding that the effect is
robust regarding to correlations among single bank properties,
network size, and, finally, it is also a common feature of
dampened or exponentially growing stress propagation;
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FIG. 4. Rescaling single bank leverage Ai/Ei → c × Ai/Ei, stress propagation can switch from dampened to exponentially growing. We
see this for an example case with c = 2. While the largest eigenvalue λ of the stress propagation matrix � increases from below one (solid
lines, minimization green, maximization red) to above one (dashed lines), the optimization procedure has a similar outcome with respect to
assortativity in both cases.

we found this behavior also in empirical data. Finally, we
performed the optimization analytically for a network with
two types of banks.

The two main results of this paper are as follows: (i)
shock propagation in financial networks can be approximately
computed from single node properties only and (ii) this shock
propagation can be minimized by making financial networks
disassortative. Aside from an obvious advantage in (i) that the
computation using single node properties only is simpler and
faster, other advantages and potential applications of these
results are possible. For example, the possibility to (approx-
imately) estimate shock amplification in interbank networks
from single bank properties brings additional advantage for
financial regulators. Namely, single bank properties necessary
for such estimation, such as their total assets Ai and liabilities
Li are cumulative quantities and, as such, they change more
slowly than changes in the structure of the interbank networks.
In particular, on a daily basis, we do not expect total assets
or liabilities of the bank to change significantly. However, it
is reasonable to expect that at the same daily timescale any
bank in the network would engage in lending to or borrowing
from many new banks, or changing the amount of lending
or borrowing for other banks that the said bank is already
connected to. Thus, in the regime where the approximation of
shock propagation is reliable using only first terms that depend
on single bank properties, these estimates are also expected
to remain reliable for as long as these single bank properties
do not change significantly, and much longer than the typical
scale on which the interbank network changes.

The association of scalar disassortative network structures
with lower systemic risk gives to regulators more “degrees
of freedom” in resolving situations where vulnerability of a
small number of banks threatens the entire network. Namely,
there are many network structures with high disassortativity
and it is easier for regulators to find or realize one of them if
realistic legal, liquidity, or even political constraints exist.

An interesting parallel with physical systems also arises
from this analysis. Namely, if we classify leverage into

discrete categories, then we can possibly map them to spin
systems like the Potts model. If this analogy holds, one could
associate low risk structures with a variant of antiferro-Potts
model, while networks which exhibit more risk could possi-
bly be associated with the ferro variant of the Potts model.
Whether this analogy holds is beyond the scope of this paper,
but if the mapping of systemic risk model to such a well stud-
ied statistical physics model would be obtained, a community
of scientists that study systemic risk could greatly benefit from
the accumulated knowledge.

Finally, the approach of estimating shock propagation in
interbank networks from single bank properties only provides
a novel possibility for public oversight of financial system sta-
bility. As banks publish public financial statements in regular
intervals, and these statements contain data on total borrowing
from or lending to other banks in the financial system, it is
in principle possible for anyone to compute the lower bound
on the systemic risk for various scenarios of initial financial
distress. In this way, monitoring systemic risk in the financial
system would no longer be limited to regulatory authorities.
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