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Black hole thermodynamics in the presence of nonlinear electromagnetic fields
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As the interaction between the black holes and highly energetic infalling charged matter receives
quantum corrections, the basic laws of black hole mechanics have to be carefully rederived. Using
the covariant phase space formalism, we generalize the first law of black hole mechanics, both
“equilibrium state” and “physical process” versions, in the presence of nonlinear electrodynamics
fields, defined by Lagrangians depending on both quadratic electromagnetic invariants, FabF

ab and
Fab ⋆F

ab. Derivation of this law demands a specific treatment of the Lagrangian parameters, similar
to embedding of the cosmological constant into thermodynamic context. Furthermore, we discuss
the validity of energy conditions, several complementing proofs of the zeroth law of black hole
electrodynamics and some aspects of the recently generalized Smarr formula, its (non-)linearity and
relation to the first law.

I. INTRODUCTION

Thermodynamics has played a pivotal historical role
in our understanding of the internal structure of matter.
Establishment of the laws of black hole mechanics [1] and
their correspondence to the basic laws of thermodynam-
ics [2–4] provides us with a similar invaluable guiding
insight into the elusive microscopic nature of spacetime.
Stationary black holes have constant surface gravity and
gauge scalar potentials (zeroth law), obey energy con-
straints upon perturbations (first law), Hawking’s law
of nondecreasing horizon area (second law), and Smarr
formula (Gibbs–Duhem equation). Augmented by the
theoretical prediction of Hawking’s radiation, there is a
strong indication that the black hole surface gravity and
horizon area correspond, respectively, to the temperature
and entropy.

Over the course of five decades vast effort has been in-
vested into understanding of various aspects of black hole
thermodynamics beyond the original Einstein–Maxwell
context. Whereas far greater progress has been made
in gravitational sector [5], culminating in Wald’s en-
tropy formula [6] and its subsequent generalizations [7, 8],
the gauge sector still lacks a unifying picture, especially
with respect to nonlinear generalizations of the classical
Maxwell’s electrodynamics.

Nonlinear electrodynamics (NLE) is an umbrella term
for a broad class of theories, usually those defined by a
Lagrangian constructed from two quadratic electromag-
netic invariants, FabF

ab and Fab ⋆F
ab. In order to sim-

plify nomenclature, we may sort the NLE theories into
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the F-class, with Lagrangians depending only on invari-
ant FabF

ab, and the FG-class, with Lagrangians depend-
ing on both invariants. Earliest NLE theories appeared
in 1930s, at the dawn of the quantum field theory. In
order to cure the inconsistencies of the Maxwell’s elec-
trodynamics associated with the infinite self-energy of
the point charges, Max Born proposed an F-class NLE
theory [9], which was subsequently expanded in collab-
oration with Leopold Infeld to a FG-class NLE theory
[10]. Born–Infeld (BI) theory reappeared half a century
later, at the beginning of the first superstring revolution,
in low energy limits of the string theory [11], with the
string tension α′ and the BI parameter b being related
via 2πα′ = 1/b [12] (for analysis on lattice see [13]). On
the other hand, not long after the work of Born and In-
feld, Werner K. Heisenberg and Hans H. Euler [14] found
a one-loop QED correction to Maxwell’s Lagrangian.

Nonlinearities in the electromagnetic interaction are
revealed in the scattering of “light by light”, that is the
γγ → γγ process, and the first direct experimental ev-
idence was recently found by the ATLAS Collaboration
[15], leading to strengthening of the constraints on pa-
rameters of the NLE Lagrangians [16–18] (for an overview
of earlier experimental constraints on NLE theories see
[19, 20]). Also, complementary to the conclusions coming
from experiments performed in terrestrial particle collid-
ers, there are cosmological constraints [21], as well as
proposed neutrino astrophysics tests [22].

Interest in NLE theories within gravitational physics
was ignited by realization that some modifications of the
Maxwell’s electrodynamics may resolve the black hole
singularities, up to constraints given by [23, 24] (see
also [25, 26]). Unfortunately, neither electrically charged
Einstein–Born–Infeld black holes [27–30] nor electrically
charged Einstein–Euler–Heisenberg black holes [31, 32]
are regular. Early analyses of static spherically symmet-
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ric solutions of gravitational-NLE Maxwell’s equations
appeared back in 1960s [33, 34], with further develop-
ments in [35, 36]. A prominent example of a regular black
hole spacetime, proposed by Bardeen [37], was much later
interpreted by Ayón-Beato and Garćıa [38, 39] as a solu-
tion of Einstein-NLE Maxwell field equations for a par-
ticular NLE theory (and generalized to a rotating solu-
tion in [40, 41]). Over the years the quest for a regular
black hole solution became intertwined with proliferation
of new NLE theories based on various Lagrangian func-
tions, such as logarithmic [42], hyperbolic tangent [43],
power [44, 45], exponential [46], and so on (some more
recent attempts [47, 48] are based on the so-called qua-
sitopological electromagnetism). We note in passing that
Wald’s solution [49], describing a black hole immersed in
a homogeneous magnetic field, has been recently pertur-
batively generalized to NLE theories [50].

The first systematic approach to thermodynamics of
black holes with NLE fields by Rasheed [51] contains a
proof of the zeroth law of black hole electrodynamics
(via Einstein’s gravitational field equation), an incom-
plete attempt to prove the first law of black hole ther-
modynamics (missing the crucial NLE terms), and an
ambiguous conclusion that the Smarr formula does not
hold. Two subsequent decades of research in this sub-
field brought a series of papers that mostly focused on
the simplest, static spherically symmetric black hole so-
lutions. Here we have analyses of the black hole thermo-
dynamics for some specific theories (e.g. power-Maxwell
in arbitrary number of dimensions [52], Born–Infeld [53–
55], and Euler–Heisenberg [56]) or more general discus-
sions (Smarr formula via assumed first law and scaling
arguments [57]; electrically charged black holes [58] but
with highly implicit form of the first law and Smarr for-
mula; Smarr formula for the F-class NLE Lagrangian,
using assumed first law and scaling argument [59]; var-
ious analyses of phase transitions in the presence of a
cosmological constant and NLE fields [55, 56, 60, 61];
thermodynamical stability [62]). Early attempt [63, 64]
to generalize the first law using more rigorous, covariant
phase formalism, for static black holes with constant-
curvature transversal (D− 2)-dimensional section within
the F-class NLE theories, suggested the absence of NLE
corrections. However, the first complete generalization
of the Smarr formula for a rotating black hole with NLE
fields [65] has revealed presence of additional NLE terms,
inconsistent with the unaltered form of the first law (see
also remarks in [66]). Derivation of the first law for the
F-class NLE theories [67], obtained by variation of the
Bardeen–Carter–Hawking mass formula, offers an impor-
tant step toward the resolution of this problem.

The scope of this paper is broad, motivated by the fact
that a proper understanding of the black hole thermody-
namics in the presence of NLE fields is still quite incom-
plete, with numerous assumptions and technical details
being usually swept under the rug. Most importantly, we
shall offer complete, rigorous derivation of the first law
for the rotating black holes with electromagnetic fields

defined by the Lagrangian which is a member of the FG-
class NLE theories. Necessity of such generalizations is
emphasized by the fact that QED corrections to classical
Maxwell’s electrodynamics, defined by Euler–Heisenberg
Lagrangian, is an FG-class NLE theory. Only when a con-
sistent framework of black hole mechanics is reached, we
can hope to distillate clear physical points and speculate
about the implications of these generalizations.

The paper is organized as follows. In Sec. 2, we briefly
review the basic elements of NLE theories, while in Sec. 3
we analyse the conditions leading to energy conditions
and comment on their consequences. In Sec. 4, we re-
visit and complete several different, complementing ap-
proaches to the proof of the zeroth law of black hole
nonlinear electrodynamics. Section 5 is the central part
of the paper, where we put covariant phase space un-
der scrutiny in order to prepare it for NLE theories,
then derive the first law of black hole thermodynamics
in the presence of NLE fields, both “equilibrium state”
and “physical process” versions. In Sec. 6, we discuss
several aspects of the NLE Smarr formula, its consis-
tency with the first law and conditions under which it
can take a linear form. In Appendices, we collect im-
portant identities, discuss Stokes’ theorem on Lorentzian
manifolds, and present a brief list of most important NLE
Lagrangians.

Notation and conventions. Throughout the paper, we
use the “mostly plus” metric signature and the natural
system of units, such that G = c = 4πǫ0 = 1. Space-
time (M , gab) is a four-dimensional, connected, smooth
manifold M with a smooth Lorentzian metric gab. We
denote differential forms either by “indexless” boldface
letters or with abstract index notation, whenever the for-
mer becomes cumbersome. Volume 4-form is denoted by
ǫ = ⋆1. Contraction of a symmetric tensor Sab with a
vector Xa produces a 1-form SabX

b, which we briefly de-
note by S(X). Commutator between two vector fields,
Xa and Y a is denoted by [X,Y ]a := Xb∇bY

a−Y b∇bX
a.

On-shell equalities are denoted by ≈.

II. NLE IN A NUTSHELL

Let us briefly review basic elements of the Einstein-
NLE field equations. The NLE Lagrangian density
L (F,G) considered here is a smooth function of two elec-
tromagnetic invariants

F := FabF
ab and G := Fab ⋆F

ab . (1)

For example, classical Maxwell’s Lagrangian density is
L (Max) = −F/4, while an overview of commonly used
NLE Lagrangians is presented in Appendix C. It may
seem that one could construct even more general NLE
Lagrangians by inclusion of invariants such as F a

bF
b
cF

c
a

and F a
b ⋆F

b
cF

c
a . However, it is not too difficult to

see, using identities (A5) and (A6), that any scalar con-
structed from F and ⋆F without any additional deriva-
tives, may be reduced to a function of two basic quadratic
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invariants F and G [68]. This does not hold any more once
we include, for example, covariant derivatives of electro-
magnetic 2-form F or nonminimal coupling to gravita-
tion, which we will not pursue here. In order to simplify
expressions, partial derivatives of the Lagrangian density
L are denoted with abbreviations such as LF := ∂FL ,
LG := ∂GL , LFG := ∂G∂FL , and so on.

We assume that the gravitational part of the action
is the standard, Einstein–Hilbert one, so that the total
Lagrangian 4-form is

L =
1

16π

(
R+ 4L (F,G)

)
ǫ . (2)

The corresponding Einstein’s gravitational field equation
is

Gab = 8πTab (3)

with the NLE energy-momentum tensor1

Tab = − 1

4π

(
(LGG− L ) gab + 4LFFacF

c
b

)
. (4)

The NLE Maxwell’s equations are

dF = 0 and d⋆Z = 0 , (5)

where we have introduced auxiliary 2-form

Z := −4 (LFF+ LG ⋆F) . (6)

We shall refer to the system of equations (3)-(5) as the
gravitational-NLE (gNLE) field equations. An alterna-
tive, convenient way to write the NLE energy-momentum
tensor is to separate it into “Maxwell part” and the “trace
part”,

Tab = −4LFT
(Max)

ab +
1

4
Tgab (7)

with

T (Max)

ab :=
1

4π

(
FacF

c
b − 1

4
gabF

)
(8)

and

T := gabTab =
1

π
(L − LFF − LGG) . (9)

1 For a Lagrangian 4-form L = ς
(

R+ 4L (em)
)

ǫ with normal-
ization ς > 0, the electromagnetic energy-momentum tensor is
defined as

T
(em)

ab
:= −

1

8πς

1
√
−g

δS(em)

δgab
, with S(em) = 4ς

∫

L
(em)

ǫ .

Our choice ς = 1/(16π) is consistent with, for example, [69, 70],
whereas ς = 1 normalization is used in [71].

Note that the Maxwell’s energy-momentum tensor T (Max)

ab
is traceless. Yet another way to write the NLE energy-
momentum tensor, using identity (A6), is

Tab =
1

4π

(
ZacF

c
b + L gab

)
. (10)

Throughout the discussion some special spacetime points
will recurringly appear as a technical obstacle. We
say that an electromagnetic field is degenerate at point
x ∈ M if LF(x) = 0. Whereas the Born–Infeld theory
is devoid of degenerate points (L (BI)

F
does not have any

real zeros), the Euler–Heisenberg theory formally has a
degenerate point whenever F = 45m4

e/4α
2, but this is

inconsistent with the assumption of a weak field limit,
with which this form of the Lagrangian has been writ-
ten. Moreover, one might argue that at least in a weak
field limit, that is near the origin of the F-G plane, the
derivative LF should take values in a neighbourhood of
Maxwellian −1/4, without any zeros.

III. ENERGY CONDITIONS

Measurements of macroscopic physical fields support
local positivity of the energy density and its dominance
over the pressure. These observations are captured by
various (pointwise) energy conditions [72], among which
the four most known are as follows:

• dominant energy condition (DEC):

Tabu
avb ≥ 0 for all future directed timelike vec-

tors ua and va or, equivalently, −T a
b v

b is future
directed causal vector for any future directed time-
like vector va;

• weak energy condition (WEC):

Tabv
avb ≥ 0 for any future directed timelike vector

va;

• null energy condition (NEC):

Tabℓ
aℓb ≥ 0 for any future directed null vector ℓa;

• strong energy condition (SEC):

Tabv
avb ≥ 1

2 Tgabv
avb for any future directed time-

like vector va.

Energy conditions listed above are not independent, but
are related by implications

DEC ⇒ WEC ⇒ NEC ⇐ SEC.

Foundational results in general relativity, for example,
singularity theorems [69], are universal on the account of
relying on very few details about physical fields, the most
prominent being some of the energy conditions [72]. As
one of the versions of the zeroth law of black hole mechan-
ics assumes that the energy-momentum tensor satisfies
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DEC [71] and Hawking’s black hole area law [69, 71] as-
sumes that the energy-momentum tensor satisfies NEC,
we shall look more closely into these conditions for NLE
theories.

Analysis of the energy conditions for the electromag-
netic energy-momentum tensor is easiest to perform in
spinorial formalism [73, 74]. The electromagnetic 2-form
F and its Hodge dual ⋆F correspond, respectfully, to
spinors FABA′B′ and ⋆FABA′B′ , which may be decom-
posed as

FABA′B′ = ǫABφA′B′ + φABǫA′B′ , (11)

⋆FABA′B′ = i
(
ǫABφA′B′ − φABǫA′B′

)
, (12)

with symmetric (electromagnetic) spinor φAB and anti-
symmetric nondegenerate spinor ǫAB (symplectic struc-
ture on spinor space)2. Furthermore, contraction of elec-
tromagnetic spinors admits decomposition

φAC φ C
B =

1

2
ǫAB φDCφ

DC . (13)

One must be cautious about conventions, as spinor for-
malism is usually done in the “mostly minus” metric sig-
nature. Suppose that η := sgn(η00). Then the spacetime
metric gab corresponds to spinor gABA′B′ = ηǫABǫA′B′

and

ηFACA′C′F C C′

B B′ = −2φAB φA′B′+

+
1

2
ǫAB ǫA′B′

(
φCD φCD + φC′D′ φ

C′D′
)

. (14)

Electromagnetic invariants are

F = 2
(
φABφAB + φ

A′B′

φA′B′

)
(15)

and

G = −2i
(
φABφAB − φ

A′B′

φA′B′

)
. (16)

Given that we normalize Maxwell’s energy-momentum
tensor as

T (Max)

ab := −η
1

4π

(
FacF

c
b − 1

4
gabFcdF

cd

)
, (17)

the corresponding spinor representation reduces to

T (Max)

ABA′B′ =
1

2π
φABφA′B′ (18)

independently of the metric signature sign η. Finally,
electromagnetic spinor may be decomposed [73, 74] as
φAB = α(AβB). If αA and βA are not proportional, then

2 Here we assume “left to lower, right to rise” convention of lower-
ing and raising of spinor indices, ǫABαA = αB = −ǫBAαA and
ǫABαB = αA = −ǫBAαB .

we say that φAB is algebraically general (type I in Petrov
classification), whereas in case when αA and βA are pro-
portional, we say that φAB is algebraically special (type
N). Spinor φAB is algebraically special if and only if the
electromagnetic fields are null, that is, F = 0 = G.

It is well known that Maxwell’s electromagnetic
energy-momentum tensor (18) satisfies both DEC and,
since it is traceless, SEC. Namely, for any pair of spinors
κA, λA and the corresponding pair of future directed null

vectors, kAA′

= κAκA′

and ℓAA′

= λAλ
A′

, we have

T (Max)

ABA′B′k
AA′

ℓBB′

=
1

2π
φABφA′B′κAκA′

λBλ
B′

=

=
1

2π

∣∣φABκ
AλB

∣∣2 ≥ 0 . (19)

Since any future directed causal vector is a sum of
a pair of future directed null vectors, it follows that
T (Max)

ab uavb ≥ 0 for any pair of future directed causal vec-
tors ua and va.

Let us now present a simple way to translate energy
conditions for NLE theories, which complements some
earlier attempts [75, 76].

Theorem III.1. The NLE energy-momentum tensor, in

η = −1 signature, satisfies

• NEC if and only if LF ≤ 0;

• DEC if and only if LF ≤ 0 and T ≤ 0;

• SEC if LF ≤ 0 and T ≥ 0.

Proof. One direction of the claims, the “if” direction,
follows immediately from the (7) form of the NLE energy-
momentum tensor and the fact that Maxwell’s electro-
magnetic energy-momentum tensor T (Max)

ab satisfies DEC.
For the converse in the NEC case, we need to find

a future directed null vector ℓa, such that T (Max)

ab ℓaℓb >
0. Using decomposition φAB = α(AβB), for the alge-
braically general case we may choose auxiliary spinor
λA = αA + βA, so that λAαA 6= 0 6= λAβA, while
in the algebraically special case λA may be any spinor

such that λAαA 6= 0. Furthermore, let ℓAA′

= ±λAλ
A′

,
with sign choice such that ℓa is future directed. Then,
in both algebraically general and special cases, we have

2πT (Max)

ab ℓaℓb =
∣∣φABλ

AλB
∣∣2 > 0. Finally, assuming that

NEC holds, we have 0 ≤ Tabℓ
aℓb = −4LFT

(Max)

ab ℓaℓb, so
that LF ≤ 0.
Since either DEC or SEC implies NEC, given that NLE

energy-momentum tensor satisfies any of these two en-
ergy conditions, it follows that LF ≤ 0. Proof of the
remaining claim, that DEC implies T ≤ 0, has already
appeared in [75], which we briefly sketch here. If LF = 0,
DEC immediately implies T ≤ 0, so let us assume that
LF < 0. Using the Newman–Penrose null tetrad [74],

(ℓa = oAoA
′

, nA = ιAιA
′

,ma = oAιA
′

,ma = ιAoA
′

), we
may decompose a timelike vector va appearing in DEC as
va = aℓa+ bna+ cma+ cma with some complex numbers
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(a, b, c), normalized for convenience with ab = 1 + |c|2.
One of the forms of DEC, (T a

b v
b)(Tacv

c) ≤ 0, after a
straightforward but tedious calculation, is reduced to an
inequality S + (1 + 2|c|2)LFT ≥ 0, with some quantity
S independent of the parameters (a, b, c). Thus, the con-
dition T > 0 would lead to a contradiction as we may
choose arbitrarily large |c|.
As we may always choose a NLE Lagrangian such that

L (0, 0) = 0, then, given that L is differentiable at the
origin of the F-G plane, it follows that T = 0 for null
electromagnetic fields. In other words, at least for null
electromagnetic fields, LF ≤ 0 is sufficient condition for
both DEC and SEC.

Application of Theorem III.1 may be illustrated with
the following two most prominent NLE theories:

(a) Born–Infeld:

L
(BI)

F
= − 1

4W
, πT (BI) =

4b2(W− 1)− F

4W
(20)

with

W :=

√
1 +

F

2b2
− G2

16b4
. (21)

We immediately see that L
(BI)

F
≤ 0 and, as

2
√
x− y ≤ 2

√
x ≤ x + 1 for nonnegative x and

y ≤ x, we have 2W ≤ 2+(F/2b2), so that T (BI) ≤ 0.
In other words, Born–Infeld theory obeys DEC and
NEC.

(b) Euler–Heisenberg:

L
(EH)

F
= −1

4
+

8α2

360m4
e

F

and

πT (EH) = − α2

360m4
e

(
4F2 + 7G2

)
. (22)

We see that Euler–Heisenberg theory satisfies DEC
and NEC for electromagnetic fields with F ≤
45m4

e/4α
2 (e.g. weak field, null electromagnetic

field).

In both of these theories, SEC is satisfied for null electro-
magnetic fields, but this condition has to be carefully ex-
amined for non-null electromagnetic fields (see e.g. [77]).

IV. ZEROTH LAW(S)

Constancy of intensive variables over stationary black
hole horizons is one of the cornerstones of the black hole
thermodynamics. Just as with many other black hole
theorems, the choice of the assumptions required to es-
tablish this result depends on the type of generality we
strive for, whether we want it to hold for solutions with

particular geometric properties of the black hole (inde-
pendent of the field equations) or for solutions of some
particular class of field equations (independent of partic-
ular geometric details of the spacetime).

The zeroth law of black hole mechanics, constancy of
the surface gravity κ over the stationary black hole hori-
zon, can be proved as follows:

(a) using Einstein’s gravitational field equations, un-
der the assumption that matter satisfies dominant
energy condition [71],

(b) for bifurcate Killing horizons [78], and

(c) for horizons generated by Killing vector fields which
satisfy some additional geometric properties [79].

The zeroth law of black hole electrodynamics, constancy
of the electromagnetic scalar potentials over the station-
ary black hole horizon, can be established using similar
techniques [80, 81], at least for Maxwell’s electromagnetic
fields. Nonlinear electromagnetic fields, on the other
hand, demand more careful treatment. As the analyses
of the NLE zeroth law in the literature are incomplete,
we shall first review various approaches.

Suppose that spacetime (M , gab) admits a smooth
Killing vector field ξa and the electromagnetic field F

inherits the symmetry, £ξF = 0. One should bear in
mind that the latter assumption is rather nontrivial, as
there are known electrovac spacetimes with symmetry
noninheriting electromagnetic fields [82–84]. Symmetry
inheritance of the electromagnetic fields has been exten-
sively studied within the Maxwell’s theory [82, 85–92]
and recently analysed for NLE fields [83]. In general the
Lie derivative £ξF is a linear combination a⋆F+bF, with
b = 0 for Maxwell’s electrodynamics, and there are var-
ious sufficient conditions implying a = 0 = b, which we
tacitly take to be satisfied.

In this context, it is convenient to introduce decom-
position of F to electric and magnetic fields (differential
forms) with respect to the Killing vector field ξa. First
of all, we have 1-forms E = −iξF and H = iξ⋆Z which,
as a consequence of the symmetry inheritance and NLE
Maxwell equations (5), are closed,

dE = (−£ξ + iξd)F = 0 , (23)

dH = (−£ξ + iξd) ⋆Z = 0 . (24)

Thus, given that a domain is simply connected, we can
define on it associated scalar potentials, electric Φ and
magnetic Ψ, via

E = −dΦ and H = −dΨ . (25)

For completeness, we may introduce two additional 1-
forms, B = iξ⋆F and D = −iξZ, with the caveat that
in general B and D are not closed. These 1-forms are
related by

D = −4 (LF E− LG B) , (26)

H = −4 (LF B+ LG E) , (27)
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while electromagnetic invariants may be expressed as

(ξaξa)F = 2(EaE
a −BaB

a) , (28)

(ξaξa)G = −4EaB
a . (29)

By construction, we immediately know that scalar poten-
tials are constant along the orbits of the Killing vector
field ξa, namely, £ξΦ = −iξE = 0 and £ξΨ = −iξH = 0.
The question is what can be deduced about Φ and Ψ on
a Killing horizon H [ξ], that is a null hypersurface gener-
ated by ξa. Given that one can prove that

ξ ∧E
H
= 0 and ξ ∧H

H
= 0 , (30)

contraction with a tangent vector Xa ∈ TpH [ξ] implies
that (£XΦ) ξ = 0 and (£XΨ) ξ = 0. Thus, at each point
where ξ 6= 0, we know that £XΦ = 0 and £XΨ = 0,
whereas at point where ξa = 0 by definition we immedi-
ately have dΦ = 0 and dΨ = 0. In conclusion, (30) imply
that Φ and Ψ are constant over the Killing horizon H [ξ].
Let us review three approaches to (30) mentioned above.

(a) Gravitational field equation approach [51]. Us-

ing the identity Rabξ
aξb

H
= 0 and contraction

πTabξ
aξb

H
= −LFEaE

a, Einstein’s field equation
implies that the electric field Ea is null at each non-
degenerate point of the horizon H [ξ]. As ξaEa = 0,
it follows that ξ ∧ E = 0 at any of these points.
Furthermore, (28) implies that Ba is null as well

on H [ξ], so that ξ ∧ B
H
= 0 and, consequently,

ξ ∧ H
H
= 0. The main drawback here is that it

is not quite clear how to generalize the method be-
yond the Einstein’s gravitational field equation.

(b) Bifurcate horizon approach is, arguably, the sim-
plest method. We assume that the Killing horizon
H [ξ] is of bifurcate type, with vanishing ξa on bifur-
cation surface B ⊆ H [ξ]. The potentials Φ and Ψ
are immediately constant over the bifurcation sur-
face B and, as they are constant along the orbits of
ξa, they are constant over each component of H [ξ]
connected to B. The drawback of this approach
is that a horizon does not have to be of bifurcate
type, most notable counterexample being extremal
black hole horizons.

(c) Frobenius approach [80, 81, 83], in which we are re-
lying on some additional geometric conditions. As-
sume that the spacetime is stationary and axially
symmetric, with associated Killing vector fields, re-
spectfully ka and ma, which commute, [k,m]a = 0,
and satisfy Frobenius condition [93]

k ∧m ∧ dk = 0 = k ∧m ∧ dm . (31)

Furthermore, spacetime contains Killing horizon
H [χ], generated by the Killing vector field ξa =

χa := ka + ΩHm
a, where constant ΩH is the so-

called “horizon angular velocity”. Since ka and ma

are tangent to H [χ] and χa is normal to H [χ], it
follows [94] that

kak
a +ΩH kbm

b H
= 0 , (32)

kam
a +ΩH mbm

b H
= 0 , (33)

(kak
a)(mam

a)
H
= (kam

a)2 . (34)

Finally, we assume that electromagnetic field in-
herits both symmetries, £kF = 0 and £mF = 0.
Applying the identity

iX£Y − iY £X = iX iY d− diXiY + i[X,Y ] , (35)

with Xa = ka and Y a = ma on F and ⋆Z it follows
that Fabk

amb and ⋆Zabk
amb are constant. Thus,

on any connected domain of the spacetime contain-
ing the points where either ka or ma vanish (an
example for the latter is the rotation axis), these
constants are zero and, consequently, on each non-
degenerate point of such a domain ⋆F abk

amb = 0.
These two conditions may be rephrased as

k ∧m ∧ ⋆F = 0 and k ∧m ∧ F = 0 . (36)

Contraction with imik lead us to (30) on each non-
degenerate point of the horizon where mam

a 6= 0.
Special points on the horizon where mam

a = 0 are
usually just measure zero sets at which the rotation
axis is intersecting the horizon, so that constancy
of a potential over the whole horizon follows from
continuity of the potential.

In order to repeat the strategy from (c) to a static, not
necessarily axially symmetric, spacetime with associated
hypersurface orthogonal3 Killing vector field ka (satisfy-
ing k∧dk = 0) and Killing horizon H [k], we would need
relations of the form k ∧ ⋆F = 0 and k ∧ Z = 0. These,
however, do not necessarily hold under given assump-
tions, as we may have dyonic solutions. Instead, we may
treat some special subcases, defined by the additional as-
sumptions.

(e1) “Purely electric case” in a sense that B = 0. Then
(28) implies that E is again null on the horizon
H [k], which is enough to finalize the proof as in
the approach (a) above.

(e2) “Purely electric case” in a sense that H = 0, that
is, k ∧ Z = 0. Here k ∧H = 0 implies LG k ∧ E+
LF k ∧ B = 0 and contraction of k ∧ Z = 0 with

ka implies LF k ∧ E − LG k ∧ B
H
= 0. Given that

(LF)
2 + (LG)

2 6= 0, we may deduce (30).

3 We note in passing that on any open set which is devoid of de-
generate points and on which ka is hypersurface orthogonal and
timelike, the NLE field cannot be null; proof is essentially same
as in [91].
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(m1) “Purely magnetic case” in a sense that E = 0.
Then (28) implies that B is again null on the hori-
zon H [k], which is enough to finalize the proof as
in the approach (a) above.

(m2) “Purely magnetic case” in a sense that D = 0, that
is, k∧ ⋆Z = 0. Here k∧D = 0 implies LF k∧E−
LG k ∧B = 0 and contraction of k ∧ ⋆Z = 0 with

ka implies LG k ∧ E + LF k ∧ B
H
= 0. Given that

(LF)
2 + (LG)

2 6= 0, we may deduce (30).

Note that for the test electromagnetic fields, weak in
a sense that associated energy-momentum tensor in the
gravitational field equation may be neglected, approach
(a) is useless, but any of the other methods may suffice.

V. THE FIRST LAW

The first law of black hole mechanics essentially cap-
tures energy conservation for slightly perturbed black
holes. Following the nomenclature from [95], approaches
to derivation of this law may be classified as follows:

(1) Equilibrium state version, in which we are compar-
ing two “nearby” stationary black hole configura-
tions, with two varieties:

(1a) Original, somewhat cumbersome procedure
[1], in which one takes variation of the
Bardeen–Carter–Hawking mass formula, and

(1b) Covariant phase space formalism [6, 96–98];

(2) Physical process version, in which we look at phys-
ical, quasistatic process of matter infalling into a
black hole [70].

Generalization of the first law of black hole mechanics
in the F-class NLE theories was recently presented in [67],
using approach (1a). Our aim is to extend this result for
rotating black holes in the FG-class NLE theories, using
rigorous approaches (1b) and (2).

The basic assumption at the foundation of the first law
is that the spacetime is a solution of gNLE equations with
stationary axially symmetric, asymptotically flat metric
gab and a symmetry inheriting electromagnetic field F.
Corresponding Killing vector fields are ka = (∂/∂t)a,
timelike at infinity, and axial ma = (∂/∂ϕ)a, with com-
pact orbits. As above, we assume that ka and ma com-
mute, [k,m]a = 0, and satisfy Frobenius conditions (31).
Both the equilibrium state and the physical process ver-
sions of the first law inspect Cauchy surfaces intersecting
the black holes. More concretely, in the former case, the
spacetime contains a bifurcate Killing horizon H [χ], a
pair of null hypersurfaces generated by the null Killing
vector field χa = ka + ΩHm

a with constant ΩH and sur-
face gravity κ, which intersect in the so-called bifurcation
surface B, a smooth, compact, embedded 2-surface. The
Killing vector field χa vanishes on B. Derivation of the

equilibrium state version of the first law is built on a
spacelike Cauchy surface Σ ⊆ M , smoothly embedded
in M with nowhere vanishing normal, whose boundary
∂Σ consists of an asymptotically flat end and bifurcation
surface B = Σ∩H [χ]. On the other hand, in the physical
process version of the first law, we only need a portion of
the Killing horizon (cut by two Cauchy surfaces), which
does not need to be of the bifurcate type (accordingly,
none of the Cauchy surface does not have to end in bi-
furcation surface).

For any smooth closed 2-surface S, we define the Ko-
mar mass MS and the Komar angular momentum JS [99]
with integrals

MS := − 1

8π

∮

S

⋆dk and JS :=
1

16π

∮

S

⋆dm .

(37)
More concretely, if S is a “sphere at infinity” S∞, that
is a limit of these integrals evaluated on sphere of radius
r as r → ∞, we use simple symbols M := MS∞

and
J := JS∞

. In our geometric setting, ADM definitions of
mass and angular momentum [71, 94] coincide with M
and J . Furthermore, we define the electric charge QS

and the magnetic charge PS with integrals [94]

QS :=
1

4π

∮

S

⋆Z and PS :=
1

4π

∮

S

F . (38)

Again, as above, we use simple symbols Q := QS∞
and

P := PS∞
for charges evaluated at infinity. It is impor-

tant to note that, given that gauge 1-form A is glob-
ally well defined, Stokes’ theorem implies PS = 0. Thus,
the magnetic charge comes with a topologically nontriv-
ial electromagnetic field, treatment of which demands the
fibre bundle tools.

A. Covariant phase space scrutinized

Before we outline the general scheme of covariant phase
space formalism, we have to address one of the crucial
questions for black hole mechanics with NLE fields, the
role of Lagrangian (coupling) parameters. Suppose that
NLE Lagrangian is defined with a finite number of real
parameters, {β1, . . . , βn}. Given that we treat these pa-
rameters as constants which are not varied, the result will
be the first law which in general is not consistent with the
generalized Smarr formula. Since the Smarr formula in
the presence of NLE fields may be derived [65] completely
independently of the first law, this tension must be re-
solved. One of the evident options is to extend the phase
space with Lagrangian parameters, so that we consider
them constant within fixed spacetime (i.e. ∇aβi = 0),
but analyse variations which comprise changes of pa-
rameters4. Hence, in variational procedure, the NLE

4 The authors in [100] even proposed a criterion for distinction
between “physical” and “redundant” Lagrangian parameters.
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Lagrangian is formally treated as a function of electro-
magnetic invariants and parameters, L (F,G; {βi}). Such
framework is closely related to the treatment of cosmo-
logical constant Λ in black hole thermodynamics, leading
to its identification with the pressure in V dp term [101–
105].

The other possible alternative is to consider even more
general framework, in which Lagrangian parameters are
spacetime-dependent functions [106]. However, note
that, using (10) with identities (A12) and (A13), we have
covariant divergence

4π∇aT
a
b = ∇a (Z

acFbc + L δab)

= (∇aZ
ac)Fbc + Zac(dF )abc +

n∑

i=1

Lβi
∇bβi ,

(39)

which for nonconstant parameters βi will not necessarily
vanish on-shell. This indicates that one needs to com-
plete such theory with additional equations for parame-
ters, but we will not pursue such generalizations here.

We now turn to application of the covariant phase
space formalism under the assumptions given above. In
this subsection, for simplicity, we shall denote all dynami-
cal fields (first of all, spacetime metric gab and gauge field
A) collectively by φ, with all indices suppressed. Simi-
larly, the index of coupling parameters βi will be sup-
pressed in arguments, but we shall keep them in sums
involving variations δβi. Within the variational proce-
dure, we assume that the action of the “variation oper-
ator” δ on fields φ and parameters βi is defined [71, 96]
as

δφ(x) :=
∂φ(x;λ)

∂λ

∣∣∣
λ=0

and δβi :=
∂βi(λ)

∂λ

∣∣∣
λ=0

, (40)

where φ(x;λ) and βi(λ) are smooth 1-parameter configu-
rations of fields and coupling parameters. One must bear
in mind that variations of the metric and its inverse are
related by

δgab = −gacgbd δg
cd , (41)

while the variation of the volume form may be decom-
posed as

δǫ = −1

2
ǫ gab δg

ab . (42)

Variation of the Lagrangian 4-form consists of the fol-
lowing terms [97]:

δL[φ;β] = E[φ;β] δφ+Λi[φ;β] δβi +dΘ[φ, δφ;β] . (43)

Field equations are contained in the 4-form E, indexed 4-
formΛi is the variation of the Lagrangian with respect to
coupling parameter βi, while the boundary terms are col-
lected in the 3-form Θ. Next, we introduce the Noether
current 3-form

Jξ := Θ[φ,£ξφ;β]− iξL[φ;β] , (44)

defined with respect to an arbitrary fixed vector field ξa,
which will later be promoted to a Killing vector field.
Now, as

dJξ = −E[φ;β]£ξφ−Λi[φ;β]£ξβi (45)

and £ξβi = 0, the Noether 3-form is closed on-shell,
dJξ ≈ 0, and at least locally exists [107] a 2-form Qξ,
such that Jξ ≈ dQξ. In other words, as will be explicitly
shown below, we may write

Jξ = iξC+ dQξ , (46)

where C is a 4-form, which vanishes on-shell, C ≈ 0.
As our focus is mainly on theories with the Lagrangian
which is a sum of the gravitational and electromagnetic
parts, it follows that the 3-form Θ and the 2-form Qξ

split accordingly,

Θ = Θ(g) +Θ(em) and Qξ = Q
(g)

ξ +Q
(em)

ξ .

The symplectic current 3-form is defined with respect to
two variations δ1 and δ2,

ω[φ, δ1φ, δ2φ;β] := δ1Θ[φ, δ2φ;β]−δ2Θ[φ, δ1φ;β] , (47)

and the presymplectic form is obtained by integrating
symplectic current 3-form over a spacelike Cauchy surface
Σ

ΩΣ[φ, δ1φ, δ2φ;β] :=

∫

Σ

ω[φ, δ1φ, δ2φ;β] . (48)

A tacit assumption here is that volume form (orientation)
on Σ is given by pullback of iñǫ, where ñ

a is a unit, future
directed timelike normal on Σ. Taking into account that
δξa = 0, variation of the Noether current (46) gives δJξ =
iξδC+ dδQξ, while variation of (44) leads to

δJξ = −iξE[φ;β]δφ + ω[φ, δφ,£ξφ;β]+

+ diξΘ[φ, δφ;β] − iξΛ
i[φ;β] δβi , (49)

so that

ω[φ, δφ,£ξφ;β] = iξ(E δφ+ δC)+

+ d(δQξ − iξΘ[φ, δφ;β]) + iξΛ
i[φ;β] δβi . (50)

Immediately, using Stokes’ theorem (B1), we have

ΩΣ[φ, δφ,£ξφ;β] =

∫

Σ

iξ(E δφ+ δC)+

+

∫

∂Σ

(δQξ − iξΘ[φ, δφ;β]) −Ki
ξ(β) δβi , (51)

where we have introduced auxiliary functions Ki
ξ,

Ki
ξ(β) := −

∫

Σ

iξΛ
i[φ;β] . (52)

As the top compactly supported de Rham cohomol-
ogy group for smooth oriented (compact and noncom-
pact) manifolds with nonempty boundary is trivial (see
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e.g. Theorems 8.3.10 and 8.4.8 in [108]), we know that
pullback of the iξΛ

i to Σ is globally exact at least for
compactly supported fields, and in this case and we can
rewrite, via Stokes’ theorem (B1), Ki

ξ as an integral over
∂Σ. On the other hand, for noncompact Σ with fields
which decay at infinity, but are not necessarily compactly
supported, the problem of rewriting of Ki

ξ as a boundary
integral depends on further details of the theory.

In order to connect this procedure with Hamil-
tonian mechanics5, encapsulated in relation δHξ =
ΩΣ[φ, δφ,£ξφ;β], one has to prove the existence of
Hamiltonian Hξ, conjugate to ξa on Σ. Given that φ
is a solution of field equations (thus E = 0) and δφ is a
solution of linearized equations (thus δC = 0), the first
integral on the right-hand side of (51) will be zero. Thus,
the question is whether remaining terms can be written
on-shell as a variation of something.
In the absence of contribution from parameters,

Ki
ξ δβi, Hamiltonian exists [109] if and only if

∫

∂Σ

iξω[φ, δ1φ, δ2φ] = 0 (53)

for any two variations δ1 and δ2. More concretely, it is
known [97] that Einstein–Hilbert gravitational contribu-
tion to iξΘ term may be written as a variation, with the
help of a 3-form b such that

∫

∂Σ

iξΘ
(g) = δ

∫

∂Σ

iξb . (54)

As will be demonstrated in the following subsection, elec-
tromagnetic contribution to iξΘ term will vanish due to
boundary conditions and gauge choices. Finally, we have
to address integrability of the term Ki

ξ δβi. As local con-

dition ∂βi
Kj

ξ = ∂βj
Ki

ξ is satisfied under mild smooth-

ness assumptions, we know that Iξ(β) exists, such that
δIξ = Ki

ξ δβi. In the simplest case, with a single coupling

parameter (n = 1), Iξ is simply a primitive function of
Kξ.

Now we specialize to a geometric setting described
in the introduction of Sec. 5. First, we assume that
ξa is a Killing vector field and all dynamical fields
inherit corresponding symmetry, £ξφ = 0, so that6

5 Let us do a brief recap of Hamiltonian mechanics: building el-
ements consist of a phase space manifold with local canonical
coordinates sµ = (q1, . . . , p1, . . . ), symplectic (closed, nondegen-
erate) 2-form ω and correspondence between a function f and
tangent vector Xf via df = −iXf

ω, that is,

Xf =
∂f

∂pi

∂

∂qi
−

∂f

∂qi
∂

∂pi
.

Dynamics is defined by Hamiltonian scalar H, ḟ = XH (f) and
variation δH = (∇µH)δsµ = ωµνδsµṡν .

6 In a more general context, this implication demands a care-
ful justification [97], but here it will be immediately clear that

ΩΣ[φ, δφ,£ξφ;β] = 0. Then (51) decomposes on-shell
as

δ

∮

S∞

(Qξ − iξb)− δ

∮

B

(Qξ − iξb)−Ki
ξ δβi ≈ 0 . (55)

Second, we assume that ξa = χa = ka +ΩHm
a and iden-

tify various contributions to boundary integrals.

The gravitational part of the Lagrangian 4-form (2)
is conventional Einstein–Hilbert term, whose variational
properties are well known [6, 71],

1

16π
δ(Rǫ) =

1

16π
Gab δg

abǫ+ dΘ(g) , Θ(g) :=
1

16π
⋆v

(56)
where v is an auxiliary 1-form defined by

va := ∇bδgab − gcd∇aδgcd , (57)

and

Q
(g)

ξ = − 1

16π
⋆dξ . (58)

Gravitational contributions to (55) give us [97] mass and
angular momentum of the black hole spacetime, defined
respectfully by

M =

∮

S∞

(Q(g)

k − ikb) and J = −
∮

S∞

Q(g)

m .

(59)
The absence of the imb term in the integral for the angu-
lar momentum (pullback of imb to any sphere to which
ma is tangent vanishes) is reflected in different normaliza-
tion of Komar mass and angular momentum [97]. Grav-
itational contribution at horizon produces the entropy
term [6]

δ

∮

B

Q
(g)

ξ =
κ

8π
δA , (60)

where A is the area of the bifurcation surface B. Alto-
gether, the interim form of the first law we have obtained
reads

δM−ΩH δJ+δ

∮

S∞

Q(em)

χ =
κ

8π
δA+δ

∮

B

Q(em)

χ +Ki
χ δβi .

(61)

B. Equilibrium state first law

Now we turn to the NLE contributions to the first
law of black hole mechanics. Variation of the NLE La-
grangian,

δ(L ǫ) = LF δF ǫ+LG δG ǫ+L δǫ+

n∑

i=1

Lβi
δβi ǫ (62)

symplectic current 3-form ω[φ, δφ,£ξφ; β], constructed from
the Einstein–Hilbert gravitational 3-form Θ

(g) and NLE 3-form
Θ

(em), vanishes for Killing vector field ξa and symmetry inher-
iting electromagnetic fields.
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may be conveniently written as

δ(L ǫ) = LF δ(Fǫ) + LG δ(Gǫ) + πTδǫ+
n∑

i=1

Lβi
δβi ǫ .

(63)
The first term in (63) is, up to factor LF, just the stan-
dard Maxwellian contribution

LF δ(Fǫ) = 8πLFT
(Max)

ab δgabǫ− 4LF∇aF
abδAbǫ+

+ 4LF∇a(F b
a δAb)ǫ . (64)

Combination of the first term in (64) and the third term
in (63) gives us the NLE energy-momentum tensor

8πLFT
(Max)

ab δgabǫ+ πT δǫ = −2πTabδg
abǫ . (65)

Also, since

− LF∇aF
abδAb + LF∇a(F

abδAb) =

= −∇a(LFF
ab)δAb +∇a(LFF

b
a δAb) , (66)

the sum of the first and the third terms in (63) gives us

LF δ(Fǫ) + πTδǫ = −2πTabδg
abǫ−

− 4∇a(LFF
ab)δAbǫ+ 4∇a(LFF

b
a δAb)ǫ . (67)

The second term in (63) may be written, using (A8), as

LGδ(Gǫ) = 4LG

(
∇a((⋆F

ab) δAb)− (∇a⋆F
ab)δAb

)
ǫ

= 4
(
∇a(LG (⋆F b

a ) δAb)−∇a(LG ⋆Fab)δAb

)
ǫ .

(68)

Altogether, we have obtained a sought form of the vari-
ation of the Lagrangian 4-form,

1

4π
δ(L ǫ) =

1

16π

(
− 8πTab δg

ab + 4(∇aZ
ab)δAb+

+ 4
∑

i

Lβi
δβi

)
ǫ+ dΘ(em) (69)

with

Θ(em) :=
1

16π
⋆w , wa = −4Z b

a δAb . (70)

Auxiliary 1-form w may be also written as w =
−4 ⋆(⋆Z ∧ δA). Here we can see [98] that for the elec-
tromagnetic field F of class O(r−2) and perturbation δA
of class O(r−1) as r → ∞, the 3-form Θ(em) does not
contribute to the integral at S∞.

Let us turn to Noether current 3-form

16πJξ = ⋆(v +w)− (R+ 4L ) ⋆ξ . (71)

Using the identity

∇b∇bξa −∇a∇bξb = R(ξ)a − (⋆d⋆dξ)a (72)

we see that auxiliary 1-form v for δ = £ξ is equal to

∇b£ξgab − gcd∇a£ξgcd = 2R(ξ)a − (⋆d⋆dξ)a . (73)

For the NLE 1-form w, we have to find objects contain-
ing contraction Z b

a £ξAb. As the Lie derivative £ξA is
contained in the electric 1-form defined with respect to
the vector field ξa,

E = −iξF = −iξdA = −£ξA+ diξA (74)

our focus is on the contraction iEZ. Here we need one
auxiliary identity,

iE ⋆F =
1

4
G ξ , (75)

following directly from (A6), so that

4iEZ = −16 (LF iEF+ LG iE⋆F) = 16πT(ξ)− 4L ξ .
(76)

On the other hand,

4iEZ = −4⋆(⋆Z ∧E)

= 4⋆(⋆Z ∧£ξA)− 4⋆(⋆Z ∧ diξA)

= −w − 4⋆d((iξA)⋆Z) + 4(iξA)⋆d⋆Z (77)

which leads to

w − 4L ξ = −16πT(ξ)− 4⋆d((iξA)⋆Z) + 4(iξA) ⋆d⋆Z .
(78)

As the variational procedure introduces electromagnetic
field via gauge 1-form A, we must establish the rela-
tion between A and scalar potential. Supposing that the
electromagnetic field inherits the symmetry, £ξF = 0,
and F = dA0 for some initial gauge choice of gauge
1-form A0, we still might have a technical problem as
£ξA0 6= 0. Then, as d£ξA0 = £ξF = 0, we know that
£ξA0 is a closed form and on a simply connected do-
main there is a function α, such that £ξA0 = dα. Thus,
choosing a gauge function λ defined by £ξλ = −α, we
have A = A0 + dλ, for which £ξA = 0. Even after
this gauge fixing, we still have a remaining symmetry-
consistent gauge freedom, as for any function µ such that
£ξµ = 0, we have £ξ(A+ dµ) = 0. Furthermore,

d(Φ + iξA) = −E+ (£ξ − iξd)A = 0 (79)

proves that Φ and −iξA differ by a constant, say Φ =
−iξA+Φ0 for some Φ0 ∈ R. This allows us to write

Jξ =
1

8π
⋆(G(ξ)− 8πT(ξ))−Φ− Φ0

4π
d⋆Z+d(Q(g)

ξ +Q
(em)

ξ )

(80)
with

Q
(g)

ξ = − 1

16π
⋆dξ and Q

(em)

ξ =
1

4π
(Φ−Φ0) ⋆Z . (81)

The 4-form C is given by

Cabcd =
1

8π
(G e

a − 8πT e
a − 2Aa∇rZ

re)ǫebcd . (82)
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Again, this confirms that dJξ ≈ 0 and Jξ ≈ dQξ.

Before we evaluate remaining terms for the first law
(61), it is convenient to make a gauge choice. If we
take A such that iξA will give nonvanishing contribu-
tion at bifurcation surface, we are tacitly using gauge
field which is divergent there. Take for a simple exam-
ple nonextremal Reissner–Norström black hole solution.
Using tortoise radial coordinate dr∗ = dr/f(r), we can
introduce Eddington–Finkelstein coordinates u = t − r∗
and v = t+r∗, and then Kruskal coordinates U = −e−κu

and V = eκv. The Killing horizon is generated by the
Killing vector field k = κ (V ∂V − U∂U ) and the conven-
tional gauge field (vanishing at infinity) is

A = −Q

r
dt = − Q

2κr

(
1

V
dV − 1

U
dU

)
. (83)

However, in this gauge A is divergent at the bifurcation
surface (U, V ) = (0, 0). On the other hand, we can choose
different gauge,

A′ = − Q

2κ

(
1

r
− 1

r+

)(
1

V
dV − 1

U
dU

)
, (84)

where r+ is the radius of the outer horizon, to obtain reg-
ular A on the horizon. Likewise, we shall pursue here an
alternative gauge choice, in which A is finite and smooth
at H [χ] and Φ vanishes at infinity7. Thus, iξA|B = 0, so
that −iξA = Φ − ΦH (i.e. Φ0 = ΦH) and iξA|∞ = ΦH.
With this choice, the Q(em)

ξ term drops at the bifurcation
surface, but makes contribution at infinity,

δ

∮

S∞

Q
(em)

ξ = −ΦH δQ . (85)

Thus, (61) lead to the final form of the first law of black
hole mechanics,

δM =
κ

8π
δA+ΩH δJ +ΦHδQ+Ki

χ δβi (86)

with

Ki
χ := − 1

4π

∫

Σ

Lβi
⋆χ . (87)

An important lesson here is that Ki
χ appears as a ther-

modynamic variable conjugate to βi. In Sec. VI we shall
demonstrate that this form of the first law is consistent
with the generalized Smarr formula.

The first law obtained in (86) does not contain the
ΨH δP term, which is occasionally included for general-
ity. The formal reason for its absence is that the gauge
field A is tacitly assumed to be globally well defined and

7 We note in passing that there is also an alternative procedure
[110] with a Cauchy surface Σ which does not intersects the hori-
zon H[ξ] at the bifurcation surface, but we shall not utilize it
here.

the whole procedure of the covariant phase space formal-
ism should be carefully reexamined to adopt it for solu-
tions with magnetic charge. The only reference, known
to us, which has addressed this problem [111], takes into
account contributions on the edges of the local spacetime
patches with a well-defined gauge field. These issues are
seemingly absent in the approach (1a) to the first law,
rendering ΨH δP term [67, 94], but it is not clear if any
of the aforementioned formal issues have been just swept
under the rug. From another point of view [98], the mag-
netic charge P is a topological charge and it should not
vary under perturbations, nor contribute to the first law.

Some of the earlier analyses of the first law of black
hole thermodynamics in the presence of NLE fields pro-
pose the form of the law with a suspicious absence of
the Ki

ξ δβi term. For example, Herdeiro and Radu [112]
looked at nonrotating, dyonic black holes in theory with
the NLE Lagrangian L = L (Max) +αG2 and derived the
first law in the form δM = κδA/(8π) + ΦH δQ+ ΨH δP .
However, this result has to be taken with a grain of salt,
as the variation “δ” used here keeps the product αP 2

fixed. Similarly, one could write the restricted first law

δ̂M = κδ̂A/(8π) for perturbations with uncharged, non-

rotating matter and the corresponding variation δ̂.

Following the recent development of the black hole
thermodynamics with the cosmological constant [101–
103], one is inclined to interpret the black hole mass
M in the first law (86) as a generalized “enthalpy”, re-
lated to the internal energy E via Legendre transforma-
tion M = E+Ki

χ βi, so that

δE =
κ

8π
δA+ΩH δJ +ΦH δQ+ βi δK

i
χ . (88)

It is not quite clear what is the proper, general interpre-
tation of the quantity Ki

ξ. Given that the Lagrangian
is written such that the coupling parameter βi has the
same physical dimension as F1/2 (e.g. β = b in Born–
Infeld and β = m2

e/α in Euler–Heisenberg theory), that
is dimension of the electric field, associated Ki

ξ may be
interpreted, based on dimensional argument, as a “NLE
vacuum polarization” (this was remarked in [55] for the
Born–Infeld theory).

Let us now turn to different approach to the first law
of black hole mechanics, the physical process version.

C. Physical process first law

Instead of looking at stationary black hole configura-
tions which are “nearby” in some abstract phase space,
here we want to describe physical process in which a
(possibly charged) matter is thrown into a black hole.
Geometric setting is the same as above, except that the
Killing horizonH [ξ] no longer needs to be of the bifurcate
type. Suppose that Σ0 and Σ1 are, respectfully, initial
and final smooth, spacelike, asymptotically flat Cauchy
surfaces, both of which terminate on the horizon H [ξ],
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Σ0

Σ1

H

FIG. 1. Spacetime diagram of infalling matter, denoted by
gray area.

as sketched in the Fig. 1. For convenience, the portion
of the horizon between Σ0 ∩ H [ξ] and Σ1 ∩ H [ξ] may
be denoted by H. We start from an initial stationary
black hole, then perturb it by throwing a small amount
of charged matter, and wait until it eventually settles to
a final stationary state. Formally, the charged matter is
described by fields with compact support which intersects
Σ0 and H [ξ], but is disjoint from Σ0∩H [ξ] (matter is ini-
tially away from the black hole) and Σ1 (after the process
is over and matter has fallen into the black hole, there is
no remaining matter on the final Cauchy hypersurface).
In addition, we assume that the outward pointing vec-
tor field na and the corresponding induced orientation ǫ̂

have been introduced on each of these hypersurfaces, as
described in Appendix B.
Sources are now described by the electromagnetic 4-

current ja and the total energy-momentum tensor T (tot)

ab ,
which is a sum of the electromagnetic contribution Tab

and the nonelectromagnetic contribution T̃ab. This gen-
eralizes the gNLE field equations to

Gab − 8πTab = 8πT̃ab , ∇bZ
ab = 4πja . (89)

We assume that (gab,A) is a solution of the source-
free gNLE equations (3)-(5), while the perturbations
(δgab, δA) are solutions of the linearized equations with

sources δT̃ab and δja,

δ(Gab − 8πTab) = 8πδT̃ab , δ(∇bZ
ab) = 4πδja . (90)

Luckily, we do not need to start from scratch, as the
expressions for generic variations were prepared within
the covariant phase space formalism above. Taking into
account that

δ(Aa∇rZ
re) = (δAa)∇rZ

re +Aaδ∇rZ
re =

= 0− 4πAaδj
e (91)

we see that the variation of the auxiliary 4-form8 C (82)
does not vanish on-shell but

δCabcd ≈
(
δT̃ e

a +Aaδj
e
)
ǫebcd . (92)

8 The 4-form C in [70] is written as Ca, but “a” is the last index,
Cbcda.

Now, using (59) and assumption that field perturbations
vanish at Σ0 ∩H [χ], Eq. (51) for the Killing vector field
ξa = χa leads to an on-shell relation

δM − ΩH δJ −Ki
χ δβi = −

∫

(Σ0,−ǫ̂)

⋆αχ . (93)

Here we have introduced an auxiliary 1-form αξ, defined
by

αξ := ⋆(iξδC) = δT̃(ξ) + (iξA) δj (94)

for any Killing vector field ξa. Note that the orientation
of the hypersurface Σ0, emphasized in (93), is opposite
of the induced Stokes’ orientation ǫ̂. The symmetry in-
heritance of all fields and perturbations leads to the con-
servation of αξ in a sense that

d⋆αξ = diξδC = (£ξ − iξd)δC = 0 . (95)

For simplicity, we may suppress the additional index on
α in what follows. Using the Stokes’ theorem (B6) on
four-dimensional submanifold bounded by hypersurfaces
Σ0 and Σ1, horizon portion H, and some timelike hy-

persurface S on which perturbations δT̃ab and δja vanish
(far away from the black hole), we have

0 =

∫

(Σ0,ǫ̂)

(ñaαa)ǫ̂+

∫

(H,ǫ̂)

(−ℓaαa)ǫ̂ . (96)

As we shall deal with the Raychaudhuri equation, a con-
venient choice for the null vector field ℓa is ℓa = ζa, a
vector field tangent to the affinely parametrized null gen-
erators of the unperturbed Killing horizon H [ξ]. Taking
into account all these remarks, we may “shift” the inte-
gral in (93) from Σ0 to the black hole horizon,

−
∫

(Σ0,−inǫ)

⋆α = −
∫

(Σ0,−inǫ)

(−naαa)(inǫ) =

=

∫

(H,inǫ)

(ζaαa)(inǫ) , (97)

where we have, for simplicity, left out the pullback sym-
bols. In other words, with assumed induced orientation
of the horizon, we have

δM − ΩH δJ −Ki
χ δβi =

∫

H

ζaαa ǫ̂ . (98)

There are two contributions to this integral, electromag-
netic and nonelectromagnetic. For the evaluation of the
former one, we use the gauge choice in which both Φ and
A are zero at infinity, so that Φ0 = 0 and −iξA = ΦH on
the horizon. For the causal, future directed δja, we have
ζaδja ≤ 0 on the horizon, corresponding to the positive
amount of the infalling charge, δQ ≥ 0 (and vice versa
for the negatively charged infalling matter). This gives
us

δM −ΩH δJ −ΦH δQ−Ki
χ δβi =

∫

H

ζaχb(δT̃ab) ǫ̂ . (99)
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It remains to be shown that the right-hand side is the
area term in the first law.

The Raychaudhuri equation for the null congruence9

ζa = χa/(κV ), with the corresponding affine parameter
V ,

dθ

dV
= −1

2
θ2 − σabσ

ab −Rabζ
aζb , (100)

in combination with vanishing of the expansion (θ = 0)
and shear (σab = 0) for the stationary background, and
Einstein field equation, reduces to

dθ

dV
= −8π

(
Tab + T̃ab

)
ζaζb . (101)

In order to extract the change in area of the black hole
horizon, we need to look at the perturbed Raychaudhuri
equation. Diffeomorphism freedom allows us to make
the gauge choice such that null generators of the unper-
turbed and perturbed black hole horizons coincide, which
amounts to δζa ∼ ζa on the horizon. Thus, using the fact
[71] that Rabζ

aζb|H = 0, the perturbed Raychaudhuri
equation [70] is

dδθ

dV
= −8π

(
δTab + δT̃ab

)
ζaζb

∣∣
H

. (102)

The first term on the right-hand side consists of

δTabζ
aζb = −4(δLF)T

(Max)

ab ζaζb−

− 4LF δT (Max)

ab ζaζb +
1

4
δ(Tgab)ζ

aζb . (103)

Using the fact that ζa is null both in the unperturbed
and perturbed spacetimes, the last term is immediately
zero on the horizon, while

4πT (Max)

ab ζaζb|H = (κV )−2EaE
a|H = 0 (104)

4πδT (Max)

ab ζaζb|H = (κV )−2δ(EaEa)|H = 0 (105)

due to fact, established for the zeroth law, that the elec-
tric field Ea is null on the horizon. The remaining per-
turbed Raychaudhuri equation (102) may be put in the
following form

κV
dδθ

dV
= −8πζaχbδT̃ab

∣∣
H

. (106)

Integral of the left-hand side along the horizon portion
H leads [95] to the change in area δA,

∫

H

ζaχb(δT̃ab) ǫ̂ =
κ

8π
δA . (107)

Putting all this together, we have obtained the physical
process first law if the black hole mechanics,

δM =
κ

8π
δA+ΩH δJ +ΦH δQ+Ki

χ δβi , (108)

consistent with (86).

9 For the extremal Killing horizon H[χ], with κ = 0, the
Killing vector field χa is automatically tangent to the affinely
parametrized null geodesic generators of the horizon, thus ζa =
χa.

VI. REMARKS ON THE GENERALIZED
SMARR FORMULA

The problem of generalization of the Smarr formula
for rotating (stationary axially symmetric) black holes in
the FG-class NLE theories has been recently solved [65],
with an interim result of the form

M =
κ

4π
A+2ΩHJ+ΦHQH+ΨHPH+

1

2

∫

Σ

T ⋆χ . (109)

This relation follows directly from the Bardeen–Carter–
Hawking mass formula and is in principle independent
of the first law. The additional last term on the right-
hand side is clearly absent in the Maxwell’s electrody-
namics, for which T = 0, but does not vanish in general
NLE theory. Furthermore, as was observed in [65], if
the NLE Lagrangian is of the form L = σ−1f(σF, σG),
with some parameter σ and a real function f , then the
trace of the energy-momentum tensor may be written as
T = (−σ/π) ∂σL , allowing us to write the additional
NLE term, at least formally, as a product of a conjugate
pair of thermodynamic variables.

Nevertheless, once the first law is obtained, we may
deduce the Smarr formula using a particular choice of
perturbation, that is a path through the phase space of
solutions defined by the carefully chosen scaling of fields
[113]. This approach has been used by Zhang and Gao
[67] for the F-class NLE theories, along a bit of mean-
dering procedure as they derive the first law by variation
of the mass formula, approach (1a) mentioned in Sec. V.
We shall rederive the Smarr formula from the first law
(86) in order to check the consistency of the complete
procedure.

A. Smarr formula from the first law

Let (gab,A) be an initial solution of the gNLE field
equations. Our first aim is to find a family of rescaled
field configurations (λ2gab, λ

νA) with a real parameter λ
and a real constant ν chosen such that rescaled fields are
again solutions. Of course, there is no a priori guarantee
that such simple construction is possible, but we shall
prove that this is indeed the case. Also, note that the
Smarr formula is sometimes obtained via Euler’s theo-
rem for homogeneous functions [93], under the assump-
tion that the black hole mass M(A, J,Q, . . . ) is a dif-
ferentiable homogeneous function of degree 1. Eulerian
approach was, in fact, used in the original Smarr’s deriva-
tion [114] for the Kerr–Newman black hole. However, any
generalization in this approach demands a careful justifi-
cation of the homogeneity of the black hole mass function
for a theory under consideration, as it does not hold in
general [115].

Let us now carefully examine the scaling of all ob-
jects appearing in our analysis of the spacetime. Metric
rescaling gab → λ2gab immediately implies corresponding
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Scaling exponent

−2 gab, R, F, G

−1 κ, ΩH

0 Ra
bcd, Rab, Gab, E, B, Φ, Ψ

1 M , k, A, F, ⋆F, Q, P

2 gab, m, A, J

4 ǫ

TABLE I. A summary of scaling exponents for various fields
and charges.

rescaling for the inverse metric, gab → λ−2gab, volume
form, ǫ → λ4ǫ, area of the black hole horizon, A → λ2A,
as well as the Riemann tensor and its contractions,

Ra
bcd → Ra

bcd , Rab → Rab , R → λ−2R , Gab → Gab

Killing vector ka is normalized at infinity via gabk
akb =

−1, so that ka → λ−1ka and k → λk. Killing vector ma

is normalized along its closed orbits C,
∮

C

1

mama
m = 2π (110)

so that ma → ma and m → λ2m. In order to
have consistent combination χa = ka + ΩHm

a, we need
ΩH → λ−1ΩH. Also, using the geodesic equation for
the Killing vector field ξa generating the Killing hori-
zon, ξb∇bξ

a = κξa, we have κ → λ−1κ for the surface
gravity κ. Consequently, via Komar integrals (37), we
know that M → λM and J → λ2J .

Now we turn to the gauge sector. Given that the gauge
field scales as A → λνA and using the metric scaling de-
scribed above, we immediately have F → λνF, ⋆F →
λν⋆F, as well as F → λ2(ν−2)F and G → λ2(ν−2)G. For
the electric and magnetic 1-forms defined with respect
to the Killing vector field χa, we have E → λν−1E and
B → λν−1B, so that the associated scalar potentials scale
as Φ → λν−1Φ and Ψ → λν−1Ψ. Einstein’s field equa-
tion Gab = 8πTab implies that the energy-momentum
tensor should be scale invariant, Tab → Tab, and from
(10), we see that one consistent choice is L → λ−2L .
By demanding that this scaling is universal, that is valid
for all electromagnetic Lagrangians, basic Maxwell’s case
implies ν = 1. This choice tacitly implies that coupling
parameters in a NLE Lagrangian will have some specific
scaling, say βi → λbiβi for some real exponents bi. For
example, we have b → λ−1b in the Born–Infeld theory
and α → λα in the Euler–Heisenberg theory. Conse-
quently, from (38), we have Q → λQ and P → λP , while
(87) leads to Ki → λ1−biKi. All definite scaling expo-
nents deduced above are collected in Table I. We stress
that these are not some necessary scaling transforma-
tions, rather a consistent (and convenient) choice which
allows us to apply the first law of black hole mechanics.

All quantities varied in the first law of black hole me-
chanics are functions of the parameter λ of the form

Q(λ) = λq
Q(1) , (111)

with some scaling exponent q. Hence, we have

δQ =
dQ(λ)

dλ

∣∣∣
λ=1

= qQ , (112)

where we have used abbreviation Q = Q(1) for the ini-
tial, unperturbed quantity. Putting all this together we
can recover the generalized Smarr formula

M =
κ

4π
A+ 2ΩHJ +ΦHQ +

∑

i

biK
i
χβi . (113)

Again, as was remarked under Eq. (86), the absence of
the ΨHP term in this procedure is a consequence of its
absence in our form of the first law. On the other hand,
direct derivation of the generalized Smarr formula [65],
being independent of the first law, evades these obstacles
and contains the magnetic potential-charge term.

The authors in [67] argue that the Smarr formula ob-
tained via scaling argument is of greater generality since
it may treat the NLE Lagrangians with multiple coupling
parameters. However, the only such example known to
us is the ABG Lagrangian (C4) and even here, as was al-
ready remarked in [65], one might write the Lagrangian
in a form L = µ̃α−1f(αF), with µ̃ = µ/g and α = g2.
Then, as the parameters scale as µ → λµ and g → λg,
the parameter µ̃ is scale invariant, implying that ABG
case is still covered by the procedure presented in [65].
Even more generally, one might argue that any physically
sensible NLE theory should in some weak field limit be
of the form

L = −1

4
F+σ

(
c20F

2 + 2c11FG+ c02G
2
)
+O(σ2) (114)

with dominant Maxwell’s term and expansion in some
coupling parameter σ (dimensionless constants cij are ir-
relevant here). Then, a simple algebraic manipulation,

L =
1

σ

(
− 1

4
(σF) + c20(σF)

2+

+ 2c11(σF)(σG) + c02(σG)
2 +O(σ3)

)
(115)

brings such Lagrangian in a form which was discussed in
[65]. Note that in this case the scaling of the coupling
parameter is σ → λ2σ.

B. Linearity of the Smarr formula

Finally, we turn to the question about the (non-
)linearity of the Smarr formula: for which NLE theories
the generalized Smarr formula may be brought to the
form

c1M = c2κA+ c3ΩHJ + c4ΦHQ+

+ c5ΨHP + c6ΦHP + c7ΨHQ (116)

with some real constants {c1, . . . , c7}? A systematic ap-
proach to the problem is to look into terms which would,
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upon integration of the 3-form T ⋆χ over Σ, produce such
products of potentials and charges,

d(Φ ⋆Z) = −E ∧ ⋆Z =
1

2
⋆R(χ) + (2πT − L ) ⋆χ (117)

d(ΨF) = −H ∧ F =
1

2
⋆R(χ) + L ⋆χ (118)

d(ΦF) =
1

2
iχ(F ∧ F) = −1

4
G ⋆χ (119)

d(Ψ ⋆Z) = −1

2
iχ(⋆Z ∧ ⋆Z) =

= 4
(
2LFLGF + (L 2

G − L
2
F)G

)
⋆χ (120)

These equations deserve a brief explanation. The first
is obtained from the Einstein field equation, energy-
momentum tensor in the form (10) and identity ⋆iEZ =
−E ∧ ⋆Z. The second is obtained by combining the first
one with contraction of (A9) with the Killing vector field
χa. The remaining two equations are obtained by con-
tractions of (A8) and (A11) with χa.
Upon inspection, it is suggestive, although we do not

have a watertight argument, that a necessary condition
for the linearity of the Smarr formula is

L = a(LFF+LGG)+ b
(
2LFLGF + (L 2

G − L
2
F)G

)
+ cG
(121)

for some real constants a, b, and c. Namely, this allows
one to turn a linear combination of ⋆R(χ) and T ⋆χ into
a linear combination of terms d(Φ ⋆Z), d(ΨF), d(ΦF),
and d(Ψ ⋆Z), with cancellation of the remaining terms.
As the term G is nondynamical, we can dispose of it and
set c = 0. The remaining condition may be interpreted
as a nonlinear partial differential equation for the La-
grangian (as a function of two variables, F and G), but
unfortunately we do not know its complete, general so-
lution.

One possible simplification may be obtained if we re-
strict the analysis to NLE theories which are invariant
with respect to electromagnetic duality rotation, defined
by F → F cosα + ⋆Z sinα and Z → Z cosα + ⋆F sinα
with a real angle α. It is known [116] that a neces-
sary and sufficient condition for such invariance to hold
is that difference ⋆ZabZ

ab − G be constant for any field
configuration, which translates into constancy of com-
bination 2LFLGF + (L 2

G − L 2
F)G + (G/16). This, in

turn, implies that the linearity of the Smarr formula in
any duality invariant NLE theory simplifies to the linear,
b = 0 = c case. Characteristics of the partial differ-
ential equation L = a(LFF + LGG) in the F-G plane,

defined by the system (Ḟ, Ġ) = (F,G), are nothing but
lines through the origin. The partial differential equa-
tion is reduced, along a characteristic, to the ordinary
differential equation aL̇ − L = 0. Hence, on a domain
where F 6= 0, we can write the general solution in a form
L = F1/a f(G/F), while on a domain where G 6= 0 in
a form L = G1/a g(F/G), with some differentiable real
functions f and g. A prominent class of examples are
all NLE theories with traceless energy-momentum ten-
sor, solutions of the (a, b, c) = (1, 0, 0) case, a member of

which is recently introduced ModMax theory [117–119].
Also, for constant f and a = 1/s, we have the power-
Maxwell class of NLE theories (linearity of the corre-
sponding Smarr formula has been already confirmed in
[65]).

Another pragmatic approach is to insist that the NLE
Lagrangian should behave close to the Maxwell’s in a
weak field limit. More precisely, let us assume that La-
grangian L is defined on an open subset O ⊆ R

2, such
that (a) (0, 0) ∈ O, (b) L : O → R is a C2 function,
and (c) LF(0, 0) = −1/4 and LG(0, 0) = 0. Then partial
derivatives of (121) with respect to F and G imply

− 1

4
= LF(0, 0) = −1

4
a and 0 = LG(0, 0) = − 1

16
b ,

so that (a, b) = (1, 0), leading us back to the linear case
of the partial differential equation (121). Furthermore,
let V ⊆ O be an open set star-shaped with respect to
the origin (for all x ∈ V the line segment from the origin
to x is contained in V ), in which we analyse problem
along the lines defined by G = pF, with a real parameter
p. If the solution is written in a form L = Ff(G/F),
then along these lines we have LF = f(p) − pf ′(p) and
LG = f ′(p), while conditions (b) and (c) above imply
that f(p) = −1/4 for any p ∈ R. Have we used the other
form of the solution, L = G g(F/G), and lines defined
by F = pG, analogous reasoning would lead us to the
equivalent conclusion that g(p) = −p/4 for any p ∈ R.
In other words, given that (121) is indeed a necessary
condition for the linearity of the Smarr formula (which
yet has to be proven rigorously), the only NLE theory
with the Maxwellian weak field limit and linear Smarr
formula is the Maxwell’s electrodynamics itself, at least
on some neighbourhood of the origin of F-G plane.

VII. DISCUSSION

The elaborate web of connections between gravita-
tional theories and thermodynamics needs to be tested
against all physically motivated modifications of the clas-
sical Einstein–Maxwell theory, hoping that this might
lead us to some novel insights about the microscopic pic-
ture of the spacetime. The main goal of this paper was to
complete the basic architecture of the black hole thermo-
dynamics in the presence of NLE fields, above all the first
law of black hole mechanics, along with all the auxiliary
results that such relation rests upon.

To this end, building on some earlier hints and ideas
[55, 63–65, 67, 105], we have extended the covariant phase
space approach to the first law of black hole mechanics,
both the equilibrium and the physical process versions,
in spacetimes with NLE fields. Just as the cosmological
constant enters the black hole thermodynamic relations
in pair with the conjugate volume, the major novelty here
is the introduction of conjugate pairs (βi,K

i
ξ) of NLE La-

grangian parameters βi and “NLE vacuum polarization”
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Ki
ξ among the thermodynamic variables. Also, we have

completed several versions of the proof of the zeroth law
of black hole electrodynamics, constancy of the scalar po-
tentials on the horizon, which is an essential ingredient
for the other laws. This has allowed us to generalize the
first law for rotating black holes in FG-class of NLE the-
ories, which can now be applied to theories with QED
corrections of the Maxwell’s electrodynamic Lagrangian.
Furthermore, in order to prove the consistency of results
obtained here with the NLE Smarr formula [65], we have
derived the Smarr formula from the first law, using the
so-called scaling approach. Finally, we have presented an
argument that the linear form of the Smarr formula in
FG-class of NLE theories appears only in Maxwell’s the-
ory or NLE theories which do not possess a Maxwellian
weak field limit.

Some of the generalizations that wait ahead are pretty
much straightforward. For example, inclusion of the cos-
mological constant, with the additional V dΛ term in
the first law, can be achieved according to an estab-
lished procedure [101–104]. Extensions of the first law
for gravitational theories beyond the canonical general
relativity, as long as the electromagnetic field is min-
imally coupled to gravitation, are in principle covered
by the covariant phase space formalism procedures [6–
8, 97], although a concrete evaluation of the corrections
may be a formidable task. Nontrivial contributions to
the gravitational Einstein–Hilbert action can appear, for
instance, due to quantization (in a sense of an effective
theory) [120–122] or quantum gravity (via spectral triple)
[123, 124]. One line of future developments are gener-
alizations for the lower and higher dimensional space-
times, with caveat that invariant G has to be excluded or
replaced with something else, as F and its Hodge dual
⋆F have equal orders only in four spacetime dimensions.
Considerably bigger challenge is to generalize all these re-
sults for NLE Lagrangians which also include terms with
covariant derivatives of the 2-form F, as well as nonmini-
mal coupling to gravitation and other matter fields. Such
corrections to the Maxwell’s Lagrangian could be pro-
duced via generalized uncertainty principle [125] or in-
duced from the noncommutative field theories [126–129].

There is yet another intriguing relation which should
be fully resolved and better understood. Namely, it has
been recently observed [130, 131] that field redefinitions
admit establishment of mapping (“frame change”) be-
tween the (a) so-called Eddington-inspired Born–Infeld
gravitational theory [132]

L
(EiBI) =

1

κ2ε

√
| det(gµν + εRµν)| (122)

coupled to Maxwell’s electromagnetism, and (b)
Einstein–Hilbert gravitational theory coupled to Born–
Infeld nonlinear electromagnetism, with Lagrangian
L (BI). The question is whether it is possible to im-
plement this correspondence directly to the first law
of black hole thermodynamics, that is, can we relate
∂L (EiBI)/∂Rabcd in the Wald’s entropy formula [6, 97]

and ∂L (BI)/∂b in the NLE term b δK, given that the for-
mer appears in an integral over a 2-surface, while the
latter is part of the integral over the hypersurface. A
hope that such relation is feasible comes from the fact
that field redefinition [131] comprises parameter corre-
spondence of the form b2 = −1/(2εκ2). We leave this
inquiry for the future work.

It remains to be seen if extension of the phase space
and additional variations of the Lagrangian parameters
in the first law are a mere algebraic, bookkeeping device,
or an important hint for understanding of the thermody-
namic features of the spacetime.

Appendix A: Important identities

Here we collect several basic definitions and identities
with differential forms, used throughout the paper. Sup-
pose that ω is a p-form on a smooth Lorentzian four-
dimensional manifold. Then the Hodge dual, contraction
with vectorXa and exterior derivative d are, respectively,
defined as

(⋆ω)ap+1...a4 =
1

p!
ωa1...ap

ǫa1...ap
ap+1...a4

(A1)

(iXω)a1...ap−1 = Xbωba1...ap−1 (A2)

(dω)a1...ap+1 = (p+ 1)∇[a1
ωa2...ap+1] (A3)

Hodge dual twice applied is identity up to sign, ⋆⋆ω =
(−1)p(4−p)+1ω (plus for odd p and minus for even p). We
immediately have ⋆1 = ǫ and ⋆ǫ = −1. Particularly use-
ful operation is the so-called “flipping over the Hodge”,

iX⋆ω = ⋆(ω ∧X) (A4)

whereX is the associated 1-form,Xa = gabX
b. Note that

iXǫ = ⋆X. For any 1-form α, we have ⋆d⋆α = −∇aαa

and d⋆α = (∇aαa)ǫ.

For any 2-form F, we have two essential identities

FacF
c
b − ⋆Fac⋆F

c
b = −1

2
Fgab , (A5)

Fac ⋆F
c
b = ⋆F ac F

c
b = −1

4
Ggab . (A6)

Furthermore, using the identity 2α ∧ ⋆β = (αabβ
ab)ǫ,

valid for any 2-forms α and β, it is straightforward to
derive the following identities

F ∧ ⋆F =
1

2
F ǫ (A7)

F ∧ F = −1

2
G ǫ (A8)

F ∧ ⋆Z = −2(FLF + GLG) ǫ (A9)

F ∧ Z = −2(FLG − GLF) ǫ (A10)

⋆Z ∧ ⋆Z = 8
(
(L 2

F − L
2
G )G− 2LFLGF

)
ǫ (A11)
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Finally, taking into account ⋆Fab∇cFab = F ab∇c ⋆Fab

and assuming that dF = 0, we have

F ac∇aFbc =
1

4
∇bF (A12)

and

⋆F ac∇aFbc = F ac∇a⋆F bc =
1

4
∇bG . (A13)

Appendix B: Stokes’ theorem on Lorentzian
manifolds

Suppose that M is an orientable smooth m-manifold
with boundary ∂M and inclusion ı : ∂M →֒ M . An ori-
entation on M is fixed by choice of a nowhere vanishing
m-form ǫ, while corresponding induced (Stokes) orienta-
tion on the boundary is defined as ǫ̂ = ı∗(iNǫ), with the
outward pointing nonvanishing vector field Na on ∂M .
For any smooth, compactly supported (m−1)-form α on
M , the Stokes’ theorem [93] states that

∫

(M ,ǫ)

dα =

∫

(∂M ,ǫ̂)

ı∗α , (B1)

where we have, for clarity, emphasized orientations for
both the manifold and its boundary. Although the
Stokes’ theorem does not rely on any additional structure
on the manifold, such as metric or connection, it admits
some practical corollaries on (pseudo)-Riemannian man-
ifolds. Suppose that M is a smooth Lorentzian manifold
and N ⊆ M its embedded compact m-dimensional sub-
manifold with boundary ∂N , inclusion  : ∂N →֒ N

and an outward pointing, nonvanishing vector field na

on ∂N . The corresponding induced orientation on the
boundary ∂N is ǫ̂ = ∗(inǫ). Then for any smooth vec-
tor field va on N , the Stokes’ theorem implies
∫

(N ,ǫ)

(∇av
a) ǫ =

∫

(N ,ǫ)

divǫ =

∫

(∂N ,ǫ̂)

∗(ivǫ) . (B2)

Let us, for concreteness, assume that the boundary of N

consists of two spacelike hypersurfaces Σ and Σ′, timelike
hypersurface S, and a null hypersurface (portion of a
black hole horizon) H ,

∂N = Σ ∪ Σ′ ∪ S ∪H ,

as sketched in Fig. 2. For each part of the boundary, it
is convenient to have a corresponding decomposition of
the volume form ǫ:

(i) The non-null part of the boundary. We assume
that na is normalized such that nana = ±1. Also,
following the convection in [71], we introduce the
auxiliary vector field ña := (nbnb)n

a, so that ña is
outward pointing for spacelike na and inward point-
ing for timelike na. Then n ∧ inǫ = fǫ for some
function f and contraction with na leads to the de-
composition

ǫ = (nana)n ∧ inǫ = ñ ∧ inǫ . (B3)

N

Σ

Σ′

H S

ℓn

n

n

n

FIG. 2. Submanifold N with four parts of the boundary
(spacelike hypersurfaces Σ and Σ′, timelike hypersurface S,
null hypersurface H) and corresponding outward pointing
vector field na.

(ii) The null part of the boundary generated by the
future directed vector field ℓa. For the outward
pointing vector field, we take a future directed null
vector field na on H , normalized such that naℓa =
−1. Then ℓ ∧ inǫ = fǫ for some function f and
contraction with na leads to the decomposition

ǫ = −ℓ ∧ inǫ . (B4)

These decompositions imply

∗(ivǫ) =

{
(ñav

a)ǫ̂ on non-null part of ∂N

−(ℓav
a)ǫ̂ on null part of ∂N

(B5)

so that
∫

N

(∇av
a) ǫ =

∫

Σ

(ñav
a)ǫ̂+

∫

Σ′

(ñav
a)ǫ̂+

+

∫

S

(ñav
a)ǫ̂+

∫

H

(−ℓav
a)ǫ̂ , (B6)

where each component of the boundary ∂N is oriented
with the corresponding induced Stokes’ orientation ǫ̂. It
is understood that choice of the vector field ℓa comes
with ambiguity, ℓa → ℓ′a = λℓa, for some positive real
function λ, leading to redefinitions n′a = λ−1na and ǫ̂′ =
∗(in′ǫ), but the integrand above remains unchanged, as
ℓav

a ǫ̂ = ℓ′av
a ǫ̂′.

Appendix C: A sample of NLE Lagrangians

A comprehensive list of all NLE Lagrangians proposed
in the literature would be enormous and not quite en-
lightening. Therefore, we single out just a several most
significant ones.

• Born–Infeld [9, 10],

L
(BI) = b2

(
1−

√
1 +

F

2b2
− G2

16b4

)
, (C1)
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with the real parameter b > 0, corresponding to
the strength of the maximal field. Experimental
constraints [16, 18] for the parameter b give us b &
104 (GeV)2. Born–Infeld Lagrangian is sometimes
truncated, for F ≫ (G/b)2, to

L
(tBI) = b2

(
1−

√
1 +

F

2b2

)
. (C2)

• Euler–Heisenberg [14] (see also [133]), in weak field
expansion

L
(EH) = −1

4
F +

α2

360m4
e

(
4F2 + 7G2

)
+O(α3) , (C3)

where α is the fine-structure constant and me is the
mass of the electron.

• Ayón-Beato–Garćıa [38, 39],

L
(ABG) =

3µ

g3

(
g
√
2F

2 + g
√
2F

)5
2

. (C4)

It is important to stress that coupling parameters
µ and g are only a posteriori identified as mass and
magnetic charge for some specific solution, such as
the Bardeen black hole.

• Power-Maxwell [44, 45],

L
(pM) = CFs , (C5)

with some real constants C 6= 0 and s 6= 0.

• ModMax theory [117, 134],

L
(MM) =

1

4

(
−F cosh γ +

√
F2 + G2 sinh γ

)
, (C6)

defined with one real parameter γ, is a unique class
of NLE theories which is both conformally invariant
(it has vanishing energy-momentum tensor) and in-
variant with respect to electromagnetic duality ro-
tations [116].
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