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Abstract

We construct a class of topological field theories with Wess-Zumino term in space-
time dimensions ≥ 2 whose target space has a geometrical structure that suitably gen-
eralizes Poisson or twisted Poisson manifolds. Assuming a field content comprising
a set of scalar fields accompanied by gauge fields of degree (1, p − 1, p) we determine
a generic Wess-Zumino topological field theory in p+ 1 dimensions with background
data consisting of a Poisson 2-vector, a (p + 1)-vector R and a (p + 2)-form H sat-
isfying a specific geometrical condition that defines a H-twisted R-Poisson structure
of order p+1. For this class of theories we demonstrate how a target space covariant
formulation can be found by means of an auxiliary connection without torsion. Fur-
thermore, we study admissible deformations of the generic class in special spacetime
dimensions and find that they exist in dimensions 2, 3 and 4. The two-dimensional
deformed field theory includes the twisted Poisson sigma model, whereas in three
dimensions we find a more general structure that we call bi-twisted R-Poisson. This
extends the twisted R-Poisson structure of order 3 by a non-closed 3-form and gives
rise to a topological field theory whose covariant formulation requires a connection
with torsion and includes a twisted Poisson sigma model in three dimensions as a
special case. The relation of the corresponding structures to differential graded Q-
manifolds based on the degree shifted cotangent bundle T ∗[p]T ∗[1]M is discussed, as
well as the obstruction to them being QP-manifolds due to the Wess-Zumino term.
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1 Introduction

Topological field theories play an instrumental role in a variety of physical problems in
diverse spacetime dimensions. In two dimensions, the A/B-models define topological string
theory [1, 2]. In three dimensions, Chern-Simons theory is directly related to general rel-
ativity [3], among other applications. In four dimensions, topological Yang-Mills theory
is related to the QCD theta angle and to the physics of axions. In a different direction,
topological field theories can describe topological states in quantum matter, for example
different types of insulators and (super)conductors in dimensions 3 to 5 [4–6], and they
famously serve as effective field theories capturing the response of such systems to pertur-
bations [7].

The A-model can be alternatively viewed as the Poisson sigma model after suitable gauge
fixing. The Poisson sigma model is a two-dimensional topological field theory with target
space being a Poisson manifold [8, 9], originally introduced to account for gravity in 1+1
dimensions as a gauge theory. From a more modern point of view, it is the first instance in a
tower of topological field theories of any dimension that can be described within the general
framework of the AKSZ construction [10,11], which was developed as a universal geometric
framework of the Batalin-Vilkovisky (BV) quantization of gauge theories. Interestingly,
the next instance in this tower is a three-dimensional topological field theory, the Courant
sigma model, which is an essential generalization of Chern-Simons theory [12–14] with an
underlying structure of an exact Courant algebroid [15, 16].

Such topological field theories can be extended by Wess-Zumino terms [17]. Typically these
are topological terms supported on a spacetime of one dimension higher, whose boundary
is the spacetime where the theory is defined, subject to conditions that ensure that the
quantum theory is well-defined. When one introduces a Wess-Zumino term in the Poisson
sigma model the resulting theory (called the H-twisted Poisson sigma model) is associated
to a target space whose geometry departs from Poisson [18]. In other words the 2-vector
structure Π of the target space does not satisfy [Π,Π] = 0 with respect to the Schouten-
Nijenhuis bracket of multivector fields, but instead the right hand side is controlled by the
closed 3-form H that corresponds to the Wess-Zumino term. Such a structure is dubbed
twisted Poisson in [19] and the corresponding manifold a twisted Poisson manifold. It is
interesting to note that for this model the AKSZ construction cannot be applied directly,
essentially because the 3-form obstructs the assignment of a compatible QP structure on
the (graded) target space, which is one of the starting points of the method. The BV
action of the H-twisted Poisson sigma model was found recently by a direct, traditional
BV method [20]. For the Courant sigma model, a Wess-Zumino term corresponding to
a closed 4-form was introduced in [21], albeit in a spirit rather orthogonal to the two-
dimensional, Poisson counterpart. The underlying structure of the target space in that
case was found to be that of a Courant algebroid twisted by a 4-form. Moreover, a more
general approach to topological field theories with Wess-Zumino term in the framework of
a generalization of the AKSZ construction was presented in [22].

Our goal in this paper is to construct and study topological field theories with Wess-Zumino
term and an underlying Poisson or twisted Poisson structure suitably embedded in a more
general structure that can include higher vector fields in a dimension-independent fashion.
Our motivation for this is twofold. First, we would like to answer the question: given
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a Poisson or twisted Poisson manifold as a target space, which topological field theories

in spacetime dimension ≥ 2 exist such that their gauge symmetry is compatible with the

structure on the manifold? In other words we will be looking for topological field theories in
any spacetime dimension with gauge symmetries such that their classical action functional
is gauge invariant provided that the target space is equipped with some structure that
contains a Poisson or twisted Poisson 2-vector. We emphasize that once we depart from
the well-known case of two dimensions, the theories we construct may naturally contain
an additional higher multivector field of definite degree p + 1 and moreover they can be
equipped with a Wess-Zumino term corresponding to a (p+2)-form for (p+1)-dimensional
spacetimes. This directly leads to the second motivation, since in three dimensions such a
3-vector field, usually denoted as R, can appear in the Courant sigma model [12–14]. From
a physics standpoint, it has been argued to give rise to the so-called genuinely nongeometric
R-flux backgrounds in string theory, see [23–28] for this worldvolume perspective. Since
(type II) string theory contains higher differential forms apart from the NSNS 3-form H ,
one can ask whether higher multivector fields aside the 3-vector R play a similar role. Here,
such (p+ 1)-vector fields will be built in the theories we will consider.

We answer the above questions by considering a class of topological field theories in any
dimension ≥ 2 with a field content comprising suitable spacetime scalar fields, 1-forms,
(p−1)-forms and p-forms. The background data that acquire a geometric interpretation in
the target space of fields are a 2-vector Π, a (p+ 1)-vector R and a closed (p+ 2)-form H
that gives rise to the Wess-Zumino term. In the general case, we will show that this class of
topological field theories correspond to a target space geometry that is endowed with what
we call a twisted R-Poisson structure. Specifically, we define a twisted R-Poisson manifold
(M,Π, R,H) of order p + 1 such that along with dH = 0, Π is a (genuine, not twisted)
Poisson structure and in addition the condition

[Π, R] = (−1)p+2〈⊗p+2Π, Hp+2〉 , (1.1)

is satisfied. For vanishing H and p = 2 one obtains the models of [25–28], which we
here generalize both in presence of Wess-Zumino term and in higher dimensions. What is
more, the above models suffered from the presence of a non-tensorial quantity appearing
in the action functional. Here, inspired by the treatment of the twisted Poisson sigma
model in [20], we perform a detailed target space covariantization of the general class of
theories we consider, including the action functional, the field equations and the gauge
transformations, which requires the introduction of a connection without torsion on the
target. Thus, this class of topological field theories can be thought as a generalization of
the Poisson sigma model in higher dimensions.1

One can immediately notice that twisted Poisson structures are not a special case of twisted
R-Poisson structures for p = 1. Since twisted Poisson sigma models exist, the question of
how they fit in our approach and whether they generalize to higher dimensions naturally
arises. We answer this by exploring deformations of the general topological field theories we
constructed. It is shown that there exists only a small number of such deformations with
our choice of field content and moreover they only appear in special number of dimensions,

1We note that Nambu structures is a generalization of Poisson structures in a different sense, since here
we retain Poisson but generalize the topological field theory. Nambu sigma models were considered in [29].
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namely 2, 3 and 4. We perform a detailed analysis of the corresponding “islands” of theories
in these dimensions. In particular, in two dimensions the twisted Poisson sigma model is
recovered, along with a cousin theory that involves two independent 2-vector fields on the
target and corresponds to a twisted R-Poisson manifold of order 2. In three dimensions,
we find that apart from the already covered case of twisted R-Poisson structure of order
3, which involves a Poisson 2-vector, there exists an extension to a theory with a twisted
Poisson 2-vector. This is twisted by a 3-form, which in this case is not the Wess-Zumino
term, since the latter is a 4-form. We call the corresponding structure a bi-twisted R-Poisson
one, since both Π and R are twisted in a certain sense by different degree differential forms.
Specifically, the structure is (M,Π, R, S,H), where S is a 3-form such that dS = −H and

1

2
[Π,Π] = R + 〈Π⊗Π⊗ Π, S〉 . (1.2)

One can now immediately see that for H = 0 and R = 0, one obtains a twisted Poisson
structure in the ordinary sense, albeit in a three-dimensional topological field theory. Thus,
the three-dimensional case contains examples of theories with an underlying (i) twisted
Poisson or (ii) twisted R-Poisson, or (iii) bi-twisted R-Poisson structure on the target space.
In the last two cases, a central role is played by the Wess-Zumino term, thus realizing
and extending the approach of [21]. In addition, we discuss the target space covariant
formulation of these theories, in particular for the bi-twisted case where a connection with
torsion is necessary.

We accompany our analysis with discussions of the structures we uncover in terms of graded
geometry. Specifically, we describe (bi-)twisted R-Poisson manifolds as differential graded
supermanifolds, namely as Q-manifolds, and determine the (co)homological vector field
that defines them. The graded target space turns out to be the degree shifted cotangent
bundle T ∗[p]T ∗[1]M for any p ≥ 1. Being cotangent bundles, such target spaces naturally
carry a symplectic (P-)structure too. However, in presence of the (p+ 2)-form H , the two
structures are not compatible and the graded manifold fails to be symplectic, i.e. a QP-
manifold, and it becomes one only when H vanishes. In the latter case, one may employ
the AKSZ construction to determine the BV action of the models. However, this is not
the case in general, for the same reason as for the twisted Poisson sigma model in two
dimensions [20]. We nod at the construction of the BV action in the conclusions section,
where we mention the challenges and the differences to the more tractable two-dimensional
case.

The rest of the paper is organized as follows. In Section 2 we introduce the general case of
topological field theories with twisted R-Poisson structure. First, we start with a brief reca-
pitulation of the twisted Poisson sigma model in two dimensions in Section 2.1, highlighting
the features that will be kept or lost in higher dimensions. Section 2.2 contains the topo-
logical field theories induced by twisted R-Poisson structures in dimensions p+ 1 ≥ 2 in a
non manifestly target space covariant formulation that requires to restrict on a local patch,
along with their gauge symmetries and field equations. In Section 3 we covariantize the
gauge transformations, field equations and the action functional of the theories by means of
a connection without torsion on the target space, thus providing a solid basis of the models
beyond local coordinate patches. Section 4 contains a discussion of the target space as a
Q-manifold and its P-structure. In Section 5 we discuss special cases and examples. In
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particular, we first classify the possible deformations that are allowed by the field content
of the theories we study in special spacetime dimensions (Section 5.1). In Section 5.2 we
discuss examples in 2, 3 and 4 dimensions. In the two-dimensional case we emphasize how
the distinct structures of twisted Poisson and twisted R-Poisson come together in our ap-
proach. In the three-dimensional case, we perform a more in-depth analysis, since there are
three distinct structures that can be realized, namely twisted R-Poisson, twisted Poisson
and bi-twisted R-Poisson. Since the latter is the most general one, we present it in detail
and find its target space covariant formulation and its Q-structure. In four dimensions, we
mainly discuss the twisted R-Poisson case and briefly comment on the single admissible
deformation and its consequences. Finally, Section 6 contains our conclusions and outlook
to further work.

2 TFTs with WZ term & twisted R-Poisson structure

2.1 The Wess-Zumino Poisson Sigma Model in 2D

We begin our analysis with the H-twisted Poisson Sigma Model (HPSM), which is a topo-
logical field theory with Wess-Zumino term in two dimensions and a target space equipped
with a twisted Poisson structure. Although none of the material regarding the HPSM is
new, in the discussion that follows we offer a perspective to the model which is close to the
spirit of the higher-dimensional topological field theories discussed in the rest of this paper.
Moreover, this discussion will help us introduce some notation and conventions useful for
the rest of the analysis.

The field content of the HPSM comprises a set of scalar fields X i, the components of a
map X : Σ2 → M from a two-dimensional spacetime Σ2 to a smooth manifold M , the
target space, and a set of spacetime 1-forms A ∈ Ω1(Σ2, X

∗T ∗M) with values in the pull-
back bundle of the cotangent bundle of M by X . It will often prove useful to introduce
local coordinates, respectively local bases, for manifolds and vector bundles that will be
encountered, although in the end we will always present the basis-independent results. To
this end, we introduce local coordinates (σa), α = 0, 1 for Σ2 and (xi), i = 1, . . . , dimM
for M . The spacetime scalars X i = X i(σα) are simply the pull-backs of the latter by the
map X , i.e. X i = X∗(xi), as usual. Regarding the 1-forms, we introduce a local basis ei

of the pull-back bundle X∗T ∗M given some basis e
i of T ∗M , in which case we can write

A = Ai⊗ e
i. Note that Ai are spacetime 1-forms and therefore may be expanded in turn as

Ai = Aiα(σ)dσ
α, although we will mostly be working already in a coordinate-independent

formalism with respect to spacetime.

With the above field content, one may write down a two-dimensional topological field theory
with classical action functional

SHPSM =

∫

Σ2

(
Ai ∧ dX i +

1

2
(X∗Πij)Ai ∧Aj

)
+

∫

Σ3

X∗H , (2.1)

where d is the two-dimensional exterior derivative and Σ3 is an open membrane whose
boundary is Σ2. Clearly the background field X∗Πij ≡ Πij(X) is antisymmetric and there-
fore it geometrically corresponds to the pull-back by the map X of the components of a
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2-vector Π ∈
∧2(TM). We avoid introducing different notation for the 2-vector and its

pull-back, and similarly for other structures to be encountered below, to avoid clutter; the
nature of each quantity of that sort should be clear from context and in any case we will be
mostly referring to pull-back objects unless otherwise stated. The second ingredient is the
Wess-Zumino term, supported on the membrane Σ3. This is the pull-back of a closed 3-form
H on M , hence dH = 0, and does not depend on the membrane as long as H defines an
integer cohomology class, in which case the above action makes sense as a two-dimensional
topological field theory and its path integral is not ambiguous [17].

The target space of the theory is a twisted Poisson manifold (M,Π, H), namely M is
equipped with an antisymmetric 2-vector Π and a 3-form H such that

1

2
[Π,Π] = 〈⊗3Π, H〉, (2.2)

where the bracket on the left hand side is the Schouten-Nijenhuis bracket of multivector
fields and the contractions among the three appearances of the 2-vector and the 3-form on
the right hand side are in the odd order of indices in local coordinates, here the first, third
and fifth index in ⊗3Π. The angle brackets denote the canonical inner product between
sections of the tangent and cotangent bundles of M . The field theory given by (2.1) arises
as the one which is invariant under a gauge symmetry that corresponds to Σ2-dependent
deformations along the leaves of the foliation of M generated by the above twisted Poisson
structure. In other words, including local transformations of the 1-forms, SHPSM is a gauge
invariant functional under the following set of gauge transformations

δX i = Πjiǫj , (2.3)

δAi = dǫi + ∂iΠ
jkAjǫk +

1

2
ΠjkHijl(dX

l − ΠlmAm)ǫk , (2.4)

where ǫi = ǫi(σ
α) is the Σ2-dependent scalar gauge parameter. We note that for H = 0

this results in the ordinary Poisson sigma model, where Π is a Poisson structure and the
transformation of the 1-form Ai is akin to ordinary nonlinear gauge theory.

Having introduced the HPSM we briefly discuss two further issues that will be important
in later sections. First, note that the classical field equations stemming from the action
functional SHPSM as Euler-Lagrange equations are

F i := dX i +ΠijAj = 0 , (2.5)

Gi := dAi +
1

2
∂iΠ

jkAj ∧Ak +
1

2
HijkdX

j ∧ dXk = 0 . (2.6)

In physics terminology, we refer to F i andGi as the field strengths ofX i and Ai respectively.
It is then simple to confirm that due to the basic structural equation (2.2), both field
equations transform covariantly under gauge transformations. With the above definition
of the field strength F i of X i, which may be written in a basis-independent way as F =
dX +Π(·, A), it is obvious that SHPSM may be rewritten as

SHPSM =

∫

Σ2

(
Ai ∧ F

i −
1

2
Πij(X)Ai ∧ Aj

)
+

∫

Σ3

X∗H . (2.7)
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Although this rewriting of the HPSM action in terms of the lowest degree field strength
looks like a triviality, a similar, non-trivial rewriting will turn out to be instrumental
in establishing target space covariance for topological field theories having an underlying
Poisson structure in general dimensions. For the case at hand, this rewriting is of course
not important and we state it here as a simple observation to be appreciated later on.

Second, one would like to have a theory in terms of basis-independent tensorial quantities
in target space. For the action itself, this is simple in the present case [20]. Indeed, first
recall that dX is a linear map from TPΣ2 to TX(P )M for every P ∈ Σ2 and therefore the
spacetime 2-form A ∧ dX is well defined through

(A ∧ dX)(v1, v2) = A(v1)(dX(v2))−A(v2)(dX(v1)) , (2.8)

for vector fields v1, v2 in TΣ2 [30]. Then the inherently target space covariant form of the
HPSM action functional is [20]

SHPSM =

∫

Σ2

(
〈A, dX〉+

1

2
(Π ◦X)(A,A)

)
+

∫

Σ3

X∗H , (2.9)

where the angles denote the natural inner product of the pullback bundles associated to
TM and T ∗M , and the composition Π ◦ X gives (Π ◦ X)(A,A) = (X∗Πij)Ai ∧ Aj. As
discussed in [30], one can define the spacetime 2-form ΠX(A ∧A) through

ΠX(A ∧ A)(v1, v2) = (Π ◦X)(A(v1), A(v2)) (2.10)

in which case (Π ◦X)(A ∧ A) = 1
2
Πij

XAi ∧ Aj . Hereby we follow the former notation. We
also note in advance that the simplicity of passing to the target space covariant form of
the action in the present case is lost in the more general topological field theories to be
discussed below and one should reside in the alternative expressions that correspond to
(2.7) in those cases, as explained in detail in the ensuing.

Besides the action, one should also address target space covariance for expressions like the
field equation (2.6) and the gauge transformation (2.4) of the 1-form. Here we simply state
the corresponding results from [20] without providing many details, since we will have to
address the same issues for the topological field theories constructed below where we will
be more thorough. To this end, Ikeda and Strobl [20] introduce a connection ∇ on TM ,
which has coefficients Γk

ij in a holonomic frame, that is ∇∂i = Γk
ijdx

j ⊗ ∂k—recall that (xi)
are local coordinates onM . In the twisted case, this is a connection with torsion, the latter
being controlled by the 3-form H , in particular Γk

ij = Γ̊k
ij−

1
2
ΠklHijl with Γ̊k

ij the coefficients

of an arbitrary connection ∇̊ without torsion. Moreover, it naturally induces a connection
on T ∗M and in the holonomic frame ∇dxi = −Γi

jkdx
j ⊗ dxk. Then, denoting by δ∇ the

corresponding transformation with the auxiliary connection ∇, it turns out that the gauge
transformation of the X∗T ∗M-valued 1-form A is

δ∇A = Dǫ− (T ◦X)(A, ǫ) , (2.11)

where D is the exterior covariant derivative on differential forms induced by ∇ and T
is the torsion of the T ∗M-covariant derivative T ∗M∇ee

′ := ∇Π(e)e
′, with e, e′ ∈ Ω1(M).

This vector bundle torsion, not to be confused with the torsion of ∇ that was mentioned
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before, turns out to be independent of H and specifically it is the opposite of the covariant
derivative of the twisted Poisson 2-vector with respect to ∇̊, namely T = −∇̊Π. Thus,
note that H resides only in the first term of the right-hand side in (2.11). Finally, with
regard to the field equation for A, one should define a target space covariant field strength.
The connection introduced above serves this purpose too. Indeed, the general form of the
covariant field strength is found to be

G = DA−
1

2
(T ◦X)(A,A) . (2.12)

We will revisit these statements in a more general context in Section 2.2. Note that the
above obviously continue to hold in case H = 0, namely for the (untwisted) PSM, in which
case Π is an ordinary Poisson 2-vector and ∇ = ∇̊.

2.2 WZ-TFTs with twisted R-Poisson structure in any dimension

Our purpose now is to examine what is in a certain sense the analogue of the (H)PSM
in dimensions greater than 2. In other words, we are looking for topological field theories
defined on (p+1)-dimensional spacetime Σp+1, corresponding to sigma models associated to
a map X : Σp+1 → M from a p-brane to a target space with suitable structure that includes
a Poisson or twisted Poisson 2-vector. The (H)PSM in two dimensions is a special model
where p = 1, essentially p denoting the degree of the highest form in the field content of
the theory.2 For the theories we study, we consider a Wess-Zumino term on a (p+2)-brane
whose boundary is Σp+1. Naturally, this corresponds to a closed (p + 2)-form Hp+2, such
that dHp+2 = 0. In the following we will simply denote this as H without a subscript, its
degree being obvious from the context. One of the main questions we address first is which
structural identity replaces the twisted Poisson one, namely (2.2), and consequently what
is the structure of the target space M .

Let us begin with the field content of the theories we are going to construct. First, this
includes the usual spacetime scalar fields corresponding to the components (X i) of the
sigma model map X : Σp+1 → M , being dimM in number. In addition we consider the
following three sets of spacetime differential forms:

• A ∈ Ω1(Σp+1, X
∗T ∗M). These are 1-forms in spacetime Σp+1 that take values in the

pull-back of the cotangent bundle T ∗M by X . Introducing local coordinates (σα), α =
0, . . . , p on Σp+1 and a basis ei on X∗T ∗M , we may write A = Aiα(σ) dσ

α ⊗ ei.

• Y ∈ Ωp−1(Σp+1, X
∗TM). These are (p − 1)-forms in Σp+1 taking values in the pull-

back of the tangent bundle TM by X , thus Y = Y i
α1...αp−1

(σ)dσα1 ∧ . . .∧ dσαp−1 ⊗ ei,

where ei is the basis of X∗TM dual to ei.

2To avoid confusion, the class of Wess-Zumino twisted field theories we consider in this section will not
contain the HPSM as a special case per se, rather they are inspired by it. The HPSM will be included
through the special class of deformed models described in Section 4. Nevertheless, although the p = 1 case
does not result in the HPSM, it yields a theory of two target space 2-vectors coupled in a specific way.
We discuss this example in Section 4 and clarify there how the HPSM becomes a member of this class of
theories upon deformation.
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• Z ∈ Ωp(Σp+1, X
∗T ∗M). There are p-forms in Σp+1 with values in the pullback of

T ∗M , like A.

In the rest of this section we work directly in a coordinate-independent formalism for
spacetime, albeit in local bases for the target space and its (co)tangent bundles. Therefore,
initially we study the formulation of the theories in a local patch of M and leave the study
of the global structure for Section 3. Thus the field content we consider is (X i, Ai, Y

i, Zi)
of form degrees (0, 1, p− 1, p) respectively.3

One may directly construct a general candidate topological field theory with the above
field content simply by combining the form degrees of the fields above and identifying
the admissible terms. These are terms that exist in any dimension of Σ; certainly it can
happen that for special number of dimensions there exist additional possibilities. We refer to
these extra admissible terms as deformations and classify them for the given field content
in Section 4. In the general case (without additional deformations), the corresponding
classical action functional for p > 0 is

S(p+1) =

∫

Σp+1

(
Zi ∧ dX i −Ai ∧ dY i +Πij(X)Zi ∧ Aj +

1

2
Qij

k (X) Y k ∧ Ai ∧ Aj +

+
1

(p+ 1)!
Ri1...ip+1(X)Ai1 ∧ · · · ∧ Aip+1

)
+

∫

Σp+2

X∗H . (2.13)

As before, d is the exterior derivative on Σp+1 and H is a closed (p + 2)-form on M . The
closedness of the (p+2)-form ensures that the variation of the Wess-Zumino term drops to
the boundary and hence it contributes to the field equations through the map X and not
through its extension that defines the higher-dimensional term in the action. Moreover, as
in the HPSM, there are additional conditions that ensure that the quantum theory of the
model is well-defined [31]. Existence of the extension to Σp+2 that defines the term requires
that the homology class [X(Σp+1)] ∈ Hp+1(M) vanishes. Independence on the choice of Σ3

requires that H defines an integer cohomology class, specifically [H ]/2π ∈ Hp+2(M,Z).

In the action functional (2.13) we also encounter three X-dependent coefficients, one for
each of the possible terms that involve the differential forms of the field content. At
this stage we make the following assumptions. First, Ri1...ip+1 evidently corresponds to
the pullback of the components of an antisymmetric (p + 1)-vector R ∈ Γ(

∧p+1 TM) on
M . The Schouten-Nijenhuis bracket [R,R] is an antisymmetric (2p + 1)-vector on M .
Certainly, if dimM < 2p+1 then [R,R] = 0, a condition referred to as generalised Poisson
in [32]. However, for dimM ≥ 2p+ 1 we note that it is not a necessary condition for what
follows, since the Schouten-Nijenhuis bracket of R with itself will not appear in the analysis
and hence we may allow it to be an arbitrary (2p + 1)-vector. Furthermore, with regard
to S(p+1) we assume that Πij are the components of a (untwisted) Poisson 2-vector and
therefore satisfy [Π,Π] = 0, a condition that can be eventually relaxed only in special cases
(including p = 1, as expected, but also p = 2.)

Finally, the remaining coefficients are taken to be Qij
k = −∂kΠ

ij , namely the structure
functions appearing already in the transformation of the gauge field Ai of the HPSM in its

3Certainly this brings to mind the coordinate structure of a class of Q(P) manifolds; indeed, we will
discuss this aspect in Section 3 too.
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non-covariant formulation. One can immediately complain that with this choice we have
introduced a non-tensorial object in the action functional and that S(p+1) makes sense only
in a coordinate patch but not in general. However, we will prove in Section 3 that this
is not the case and that when subtle points regarding target space covariance are taken
care of, this action makes sense and a manifestly covariant formulation for it follows. Note
that on the one hand these are precisely the same issues one encounters for the (H)PSM,
where as we already discussed the field equations and the transformation rules obtained
at face value in its original formulation are not manifestly covariant. On the other hand,
the situation in the present case is even more complicated, since non manifestly covariant
terms appear already at the level of the action. All these issues are resolved by introducing
an auxiliary connection in the target space as we will discuss extensively in Section 3.

What remains unspecified is the Schouten-Nijenhuis bracket [Π, R], which is an antisym-
metric (p + 2)-vector. Indeed, this is the main interesting aspect that the non manifestly
covariant formulation directly uncovers. Studying the gauge symmetries of the model, we
will see that the structural condition relating the three structures Π, R and H is (1.1),
which we reproduce here:

[Π, R] = (−1)p+2〈⊗p+2Π, Hp+2〉 , (2.14)

where for this crucial equation we reinstated the degree ofH for clarity and the contractions
of the p+2 copies of Π with the (p+2)-form on the right hand side are over the odd-order
factors of the even degree (2p + 4)-tensor ⊗p+2Π. (If one wishes to get rid of the sign on
the right hand side, the opposite convention can be used, but we avoid this to be aligned
with the convention used already in the case of twisted Poisson structures.) To summarize
the structure of the target space, we employ the following definition.

Definition 2.15 A twisted R-Poisson manifold of order p+1 is a quadruple (M,Π, R,H)
consisting of a smooth manifold M equipped with a Poisson structure Π, an antisymmetric

multivector R of degree p+ 1 and a closed (p+ 2)-form H such that Eq. (2.14) holds.

We note that “twisted” in this definition refers to the bracket [Π, R], whereas at this
stage the bracket [Π,Π] remains untwisted. Moreover, in case H = 0 one may refer to
the corresponding structure simply as R-Poisson structure of order p + 1. Thus in this
subsection we consider that the target space for the class of topological field theories given
by the action functional S(p+1) is a twisted R-Poisson manifold of order p + 1. Note that
in the way we formulate this definition, a twisted Poisson manifold is not a twisted R-
Poisson manifold of order 2. One may unify these structures by considering a more general
definition, however this is not particularly useful for our purposes and therefore we refrain
from introducing terminology which is unnecessary for the present paper. Instead we will
see how the twisted Poisson structure can play a role in this context in Section 4, where
we will present the necessary definition. From the point of view of the present discussion,
the structure we consider is closer to ordinary, untwisted Poisson manifolds since it reduces
to them when H = 0 = R. However, it still contains a flavour of twisted structures in the
sense of (2.14).

Returning to the action S(p+1), we are ready to discuss its gauge symmetries. For this
purpose, we introduce a Σp+1-dependent gauge parameter for each differential form field
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in the theory, specifically (ǫi, χ
i, ψi) of form degrees (0, p− 2, p− 1) respectively. Consider

now the following set of gauge transformations, where for simplicity we have neglected the
wedge products between consecutive forms,4

δX i = Πjiǫj , (2.16)

δAi = dǫi + ∂iΠ
jkAjǫk , (2.17)

δY i = (−1)p−1dχi +Πji ψj − ∂jΠ
ik
(
χjAk + Y jǫk

)
+

1

(p− 1)!
Riji1...ip−1Ai1 . . . Aip−1

ǫj ,

(2.18)

δZi = (−1)pdψi + ∂iΠ
jk (Zjǫk + ψjAk)− ∂i∂jΠ

kl

(
Y jAkǫl −

1

2
AkAlχ

j

)
+

+
(−1)p

p!
∂iR

ji1...ipAi1 . . . Aipǫj −
1

(p+ 1)!
ΠkjHijl1...lpΩ

l1...lpǫk , (2.19)

where the Ω in the last term of the gauge transformation of the highest degree form Zi is
given by the formula

Ωl1...lp =

p+1∑

r=1

(−1)r
r−1∏

s=1

dX ls

p∏

t=r

ΠltmtAmt
. (2.20)

For the reader’s convenience, let us expand this expression to make the structure of the
terms in the finite sum more transparent, showing the first two and last two of them:

Ωl1...lp = (−1)p+1dX l1 . . .dX lp + (−1)pΠlpmpdX l1 . . . dX lp−1Amp
+ . . . +

+Πl2m2 . . .ΠlpmpdX l1Am2
. . . Amp

− Πl1m1 . . .ΠlpmpAm1
. . . Amp

. (2.21)

This rather complicated structure of the last term in the gauge transformation of Zi is
tailored so that the action functional S(p+1) is gauge invariant and it is the higher analogue of
the last term in the right hand side of (2.4) of the HPSM. Indeed, the following proposition
holds.

Proposition 2.22 The classical action functional S(p+1) given in (2.13) on a spacetime

Σp+1 without boundary is invariant under the gauge transformations (2.16)-(2.19) if and

only if the target space M is a twisted R-Poisson manifold of order p+1 and Ωl1...lp is given

as in Eq. (2.20).

The proof follows by direct calculations and by taking into account definition 2.15. For
orientation, let us describe some basic aspects of this calculation. In the gauge transformed
action δS(p+1) one directly identifies a variety of different potentially “dangerous” (i.e. non-
vanishing) terms, corresponding to possible ways to form a (p+1)-form with the given field
content such that each term contains a single gauge parameter ǫi, χ

i or ψi, and a host of total

4We note that these transformations are valid also for p = 1, with the understanding that Y i is a host
of scalar fields too, and the parameter χi does not exist in that case. Moreover, in this special case one
can consider a more general form of these transformations.

11



derivative terms which do not play a role in the classical action since we work on a spacetime
without boundary. Schematically, neglecting indices and denoting repeated fields as powers,
the combinations ǫZdX,ψAdX, ǫY AdX,χA2dX, ǫApdX,ψdA, ǫAdY, χAdA, ǫAp−1dA and
ǫY dA cancel directly. In particular one finds

δS(p+1) =

∫

Σp+1

{
ǫkZi ∧ Aj

(
3!Π[kl∂lΠ

ij]
)
+ ψk ∧Ai ∧Aj

(
1

2
3!Π[kl∂lΠ

ji]

)
+

+

(
ǫkY

l ∧ Ai ∧ Aj +
1

2
χl ∧ Ai ∧ Aj ∧Ak

)(
1

2
∂l
(
3!Π[jm∂mΠ

ik]
))

+

+ ǫkAk1 ∧ . . . ∧Akp+1

(
1

p!
Πik1∂iR

kk2...kp+1 −
1

(p+ 1)!
Πik∂iR

k1...kp+1+

+
1

p!
Rik2...kp+1∂iΠ

k1k −
1

2(p− 1)!
Rikk1...kp−1∂iΠ

kpkp+1

)
+

+
1

(p+ 1)!
ǫkΠ

kjHjk1...kpi

(
dXk1 ∧ . . . ∧ dXkp − (−1)p+1Ωk1...kp

)
∧ dX i+

+
(−1)p

(p+ 1)!
ǫkΠ

kjHjk1...kpiΩ
k1...kp ∧ ΠimAm

}
, (2.23)

where antisymmetrizations are taken with weight one and underlined indices do not partic-
ipate in them. We now immediately observe that the first two lines in (2.23) vanish if and
only if Π is a Poisson 2-vector, which is one of the assumptions in definition 2.15. Indeed,
recall that the Schouten-Nijenhuis bracket in a coordinate basis takes the form

[Π,Π] = Πil∂lΠ
jk∂i ∧ ∂j ∧ ∂k . (2.24)

Focusing on the two last lines of (2.23), it is straightforward to see that with Ω given as
(2.20) there is a single term that does not cancel and it is of the form ǫAp+1, namely it is
added in the remaining term appearing in the third and fourth lines. This is the term that
contains p + 2 appearances of Π contracted with each of the indices of the (p + 2)-form
H . What remains is to recognize that these remaining terms imply the condition (2.14) of
Definition 2.15. To see this, recall the definition of the Schouten-Nijenhuis bracket which
renders the space of antisymmetric multivectors a Gerstenhaber algebra,

[v1 . . . vp, u1 . . . uq] =
∑

i,j

(−1)i+j [vi, uj]v1 . . . vi−1vi+1 . . . vpu1 . . . uj−1uj+1 . . . uq , (2.25)

where all v and u are vector fields, [vi, uj] denotes their ordinary Lie bracket of which
the Schouten-Nijenhuis bracket is an extension and the wedge product is implicit in this
formula. In a coordinate basis we expand the 2-vector and the (p + 1)-vector as Π =
1
2
Πij∂i ∧ ∂j and R = 1

(p+1)!
Rk1...kp+1∂k1 ∧ . . .∧ ∂kp+1

respectively, in which case applying the
above formula one finds

[Π, R] =
1

(p+ 2)!

(
(p + 2)Πk1i∂iR

k2...kp +
(p+ 1)(p+ 2)

2
Rk1ik2...kp−2∂iΠ

kp−1kp

)
∂k1 . . . ∂kp+1

.

(2.26)
It is now a simple matter to see that the remaining terms cancel if and only if the condition
(2.14) is satisfied, which concludes the proof of the proposition.
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Remark 2.27 A corollary of Proposition 2.22 is that for p > 1 and in the special case

when the Wess-Zumino term and the (p + 1)-vector R vanish, the target space has the

structure of a Poisson manifold. The corresponding topological field theories can therefore

be called Poisson sigma models in dimensions ≥ 3, generalizing the standard Poisson sigma

model in 2 dimensions.

We conclude the analysis in this section with the classical equations of motion for the
(p + 1)-dimensional topological field theory with action functional S(p+1). Variation with
respect to each of the four fields yields

F i := dX i +ΠijAj = 0 , (2.28)

Gi := dAi +
1

2
∂iΠ

jkAj ∧ Ak = 0 , (2.29)

F i := dY i + (−1)pΠijZj + ∂kΠ
ijAj ∧ Y

k −
1

p!
Rij1...jpAj1 ∧ . . . ∧Ajp = 0 , (2.30)

Gi := (−1)p+1dZi + ∂iΠ
jk Zj ∧ Ak −

1

2
∂i∂jΠ

kl Y j ∧ Ak ∧Al +

+
1

(p+ 1)!
∂iR

j1...jp+1Aj1 ∧ . . . ∧ Ajp+1
+

1

(p+ 1)!
Hij1...jp+1

dXj1 ∧ . . . ∧ dXjp+1 = 0 .

(2.31)

Evidently, target space covariance is not manifest either in the field equations or in the
gauge transformations, much like the HPSM. One difference to the HPSM though is that
not even the action itself manifests target space covariance in the form presented so far,
since it involves an explicit partial derivative of the Poisson tensor. All these issues are
carefully treated in the coming section.

3 The target space covariant formulation

A firm geometric basis for the topological field theories introduced in Section 2.2 requires
a target space covariant formulation. This means that we would like to determine the
basis independent expressions for the equations of motion, the gauge transformation rules
and the action functional itself. This is the purpose of the present section. We note that
spacetime covariance is already manifest.

In order to achieve the above goals, we introduce an auxiliary connection ∇̊ on the tangent
bundle TM . This is an arbitrary connection without torsion, the latter property denoted
by a ring over nabla to avoid confusion with the connection ∇ with torsion introduced
for the HPSM. As before, the connection coefficients in a holonomic frame are denoted
as Γ̊k

ij, namely ∇̊∂i = Γ̊k
ijdx

j ⊗ ∂k, where we recall that (xi) are local coordinates on
M . We also recall that the induced connection of the cotangent bundle T ∗M acts as
∇̊dxi = −Γ̊i

kjdx
j ⊗ dxk. Since ∇̊ is torsionless, the corresponding connection coefficients

are symmetric, namely Γ̊k
ij = Γ̊k

ji.
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Let us now begin examining the covariant form of the field equations given in (2.28)-(2.31).
The first one is already covariant as it stands and it may be written in a basis independent
form as

F = dX +Π(A) = 0 , (3.1)

where the contraction in the second term is in the second slot as can be seen via (2.28).
In all following formulas, composition with the map X is understood for target space
quantities. As already mentioned in the two-dimensional case, dX is a linear map from
TPΣp+1 to TX(P )M for every point P ∈ Σp+1. Next, we examine the second classical field
equation (2.29) focusing on determining the target space covariant field strength of the field
A ∈ Ω1(Σp+1, X

∗T ∗M). Using the fact that in local coordinates

∇̊kΠ
ij = ∂kΠ

ij + Γ̊i
klΠ

lj + Γ̊j
klΠ

il , (3.2)

after a little algebra we obtain

Gi = D̊Ai +
1

2
∇̊iΠ

jkAj ∧Ak − Γ̊k
ijAk ∧ F

j , (3.3)

where D̊ is the exterior covariant derivative on forms, induced by the connection ∇̊.
Presently, D̊Ai = dAi − Γ̊k

ijdX
j ∧ Ak. We observe that the last term on the right hand

side is proportional to the first field equation and therefore we are prompted to define
G∇̊

i := Gi + Γ̊k
ijAk ∧ F

j. Thus, the corresponding tensor in coordinate independent terms
is given as

G∇̊ = D̊A−
1

2
T (A,A) , (3.4)

where we recall that T = −∇̊Π. Then the field equation is equivalent to G∇̊ = 0.

The covariantization of the remaining two equations of motion is somewhat more demand-
ing. We continue with the third equation (2.30), determining the target space covariant
field strength for the field Y ∈ Ωp−1(Σp+1, X

∗TM). Using that D̊Y i = dY i + Γ̊i
jkdX

j ∧ Y k,
we obtain the intermediate result

F i = D̊Y i + ∇̊kΠ
ijAj ∧ Y

k + (−1)pΠij(Zj + Γ̊l
jkY

k ∧Al) −

−
1

p!
Rij1...jpAj1 ∧ . . . ∧ Ajp + (−1)pΓ̊i

jkY
k ∧ F j . (3.5)

We observe that the last term on the right hand side is once more proportional to F i. More-
over, due to the above result, we are prompted to make a field redefinition and introduce
the quantity

Z∇̊
i = Zi + Γ̊k

ijY
j ∧Ak . (3.6)

In the same spirit as in the previous case, we now define (F ∇̊)i := F i+(−1)p−1Γ̊i
jkY

k ∧F j .
The final form of the covariant field strength for Y is therefore

F ∇̊ = D̊Y − T (A, Y ) + (−1)pΠ(Z∇̊)−
1

p!
R(A, . . . , A) , (3.7)

where the contractions are inferred from the corresponding local coordinate expression,
in particular for the expressions that this might appear ambiguous the rule is T (A, Y ) =

T ij
k Aj ∧ Y

k ⊗ ek and Π(Z∇̊) = ΠijZ∇̊
j ⊗ ei.
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Similar algebraic manipulations apply for the last equation of motion (2.31). However, one
should pay special attention to its final term involving H and p+1 appearances of dX i. The
strategy is to turn each one of them into F i, eventually leading to a term proportional to the
field equation F i = 0 and a term with p + 1 appearances of Ai which should be collected
with the penultimate term in Gi. Moreover, similarly to the previous cases, the strictly
lower-degree field strengths appear on the right hand side of the intermediate result, which
in this case means all three field strengths F,G and G, suggesting the following definition

G∇̊
i := Gi − Γ̊k

ijAk ∧ F j + Γ̊k
ijY

j ∧Gk −Mil ∧ F
l , (3.8)

where we have defined the following shorthand notation for the p-form Mil that multiplies
the field strength F :

Mil := ∂lΓ̊
j
ikY

k ∧ Aj − Γ̊k
ilZ

∇̊
k −

1

(p+ 1)!
Hilj1...jpΩ

j1...jp , (3.9)

with Ω given in (2.20). Then we find the following final result for the covariant tensor,

G∇̊ = (−1)p+1D̊Z∇̊ − T (Z∇̊, A) +
1

2

(
∇̊T + 2Alt(ιρR̊)

)
(Y,A,A) +

+
1

(p+ 1)!
(∇̊R + T )(A, . . . , A) , (3.10)

where Alt denotes antisymmetrization over TM ⊗ TM and ρ is the vector field of the
foliation generated by the Poisson structure Π. Once again, the contraction rules are
inferred from the local coordinate result. In this expression, R̊ is the Riemann curvature
tensor of the connection ∇̊, reading in components as

R̊k
lij = ∂iΓ̊

k
lj − ∂jΓ̊

k
li + Γ̊m

lj Γ̊
k
mi − Γ̊m

li Γ̊
k
mj , (3.11)

in terms of the connection coefficients, as usual. Furthermore, the tensor T ∈ Γ(T ∗M ⊗∧p+1 TM) is given by
T := 〈⊗p+1Π, Hp+2〉 . (3.12)

The corresponding field equation accompanying the previous ones is then G∇̊ = 0. This
completes the covariant formulation of all four equations of motion for the topological field
theories we consider.

Equipped with the above results, it is a simple matter to express the action functional
(2.13) in a basis independent form, getting rid of the disturbing explicit partial derivative
the appears in its fourth term. Certainly there are more than one ways to do that, reflecting
essentially the analogy with the HPSM, where we argued that the trivial rewriting as (2.1)
or alternatively (2.7) at the expense of a sign change in the second term involving the
2-vector has an interesting counterpart for the higher-dimensional topological field theories
studied here. Considering this, the fully covariant formulation of the action functional
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(2.13) may be expressed in the following two ways:

S(p+1) =

∫

Σp+1

(
〈Z∇̊, F 〉 − 〈Y,G∇̊〉+

1

(p+ 1)!
(R ◦X)(A, . . . , A)

)
+

∫

Σp+2

X∗H (3.13)

=

∫

Σp+1

(
〈Z∇̊, dX〉 − 〈A,F ∇̊〉+

1

2
(∇̊Π ◦X)(Y,A,A)−

−
p

(p+ 1)!
(R ◦X)(A, . . . , A)

)
+

∫

Σp+2

X∗H . (3.14)

It is observed that the lower version contains explicitly the covariant derivative of the
Poisson tensor Π and the field strength of the field Y . On the other hand, in the upper
version Π is completely absorbed in the field strengths of X and A and its covariant
derivative does not appear. In any case, the two versions are equal.

Now that we have found the fully covariant form of the action and the field equations, we
turn to the gauge transformations. The one for the scalar fields X i does not require any
special treatment since it is given by δ∇̊(X) = δX = Π(ǫ), where we denoted the covariant

transformation rule by δ∇̊, which in the present case is identical to the one presented before.
This is no longer the case for the rest of the gauge transformations. Starting with (2.17),
some simple algebra leads to the intermediate result

δAi − Γ̊k
ijǫkF

j + Γ̊j
ilΠ

lkAjǫk = D̊ǫi + ∇̊iΠ
jkAjǫk . (3.15)

We observe that the right hand side involves only covariant quantities and therefore one
should interpret the left hand side appropriately as a covariant transformation rule δ∇̊A.
Recall now that A ∈ Ω1(Σp+1, X

∗T ∗M) and choose a basis ei of X∗T ∗M , in which case

one may write A = Ai ⊗ ei. The frame itself changes according to δ∇̊ei = −Γ̊i
jkδX

jek and
applying the Leibniz rule one finds

δ∇̊A = δ∇̊Ai ⊗ ei + Ai ⊗ δ∇̊ei = (δ∇̊Ai + Γ̊j
ilΠ

lkAjǫk)⊗ ei . (3.16)

This indicates that the covariant gauge transformation for the components Ai should be
promoted to δ∇̊Ai = δAi − Γ̊k

ijǫkF
j, in which case one concludes that

δ∇̊A = D̊ǫ− T (A, ǫ) , (3.17)

this being the desired covariant result. An equivalent way of obtaining this already appears
in [20] in the context of the HPSM.

Next, we should find the covariant counterpart for the gauge transformation (2.19) of the
field Y ∈ Ωp−1(Σp+1, X

∗TM). We follow the same strategy as in the previous case, namely

we first promote the exterior derivative d on the gauge parameter to the covariant one D̊
and express the partial derivative acting on the Poisson tensor in terms of the covariant
one with respect to the connection ∇̊. This leads to the intermediate result

δY i − Γ̊i
jkχ

j ∧ F k − Γ̊i
jkΠ

klY jǫl = (−1)p−1D̊χi +Πjiψ∇̊
j − ∇̊jΠ

ik(χj ∧ Ak + Y jǫk) +

+
1

(p− 1)!
Rijk1...kp−1Ak1 ∧ . . . ∧Akp−1

ǫj , (3.18)
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where we have redefined the (p− 1)-form gauge parameter ψi to ψ
∇̊
i := ψi − Γ̊k

ij(χ
j ∧Ak +

Y jǫk), in accord with the field redefinition from the field Zi to the new field Z∇̊
i . Once more

we observe that the right hand side is a covariant expression and therefore it should be
interpreted as the covariant gauge transformation δ∇̊Y . This turns out to be the case when
we introduce a dual basis ei of X

∗TM and write Y = Y i ⊗ ei. The dual basis transforms
as δ∇̊ei = Γ̊k

ijδX
jek and therefore using the Leibniz rule one finds

δ∇̊Y = δ∇̊Y i ⊗ ei + Y i ⊗ δ∇̊ei = (δ∇̊Y i + Γ̊i
jkΠ

lkY jǫl)⊗ ei . (3.19)

This means that the gauge transformation δY i for the components Y i should be promoted to
δ∇̊Y i = δY i−Γ̊i

jkχ
j∧F k, in which case the final form of the covariant gauge transformation

for the full field Y is given as

δ∇̊Y = (−1)p−1D̊χ+Π(ψ∇̊) + T [(χ,A) + (Y, ǫ)] +
1

(p− 1)!
R(ǫ, A, . . . , A) . (3.20)

Finally, we should determine the covariant form of the fourth gauge transformation (2.19).
From the previous discussion, it should be clear that we are looking for the transformation
of the redefined field Z∇̊ ∈ Ωp(Σp+1, X

∗T ∗M) in terms of the redefined (p− 1)-form gauge

parameter ψ∇̊, since this is the one that appears in all target space covariant formulas
until now. The strategy to find δ∇̊Z∇̊ follows the same steps as previously, albeit with
significantly more complicated algebraic manipulations due. After a calculation, one ends
up with the following intermediate formula

δZ∇̊
i + Γ̊j

ilΠ
lkZ∇̊

j ǫk − Γ̊k
ijχ

j ∧Gk − (−1)pΓ̊k
ijF

jǫk − (−1)pF j ∧Nij =

= (−1)pD̊ψ∇̊
i + ∇̊iΠ

jkψ∇̊
j ∧Ak + ∇̊iΠ

jkZ∇̊
j ǫk +

+
(−1)p

p!

(
∇̊iR

jl1...lp + T
jl1...lp
i

)
Al1 ∧ . . . ∧ Alpǫj −

−
(
∇̊i∇̊lΠ

mk + 2Πj[mR̊
k]
lij

)(
Y l ∧Amǫk −

1

2
χl ∧Am ∧ Ak

)
, (3.21)

where we observe that the left hand side contains all lower-degree field strengths and
moreover we have defined a shorthand notation for the spacetime (p−1)-form that multiples
the field strength F :

Nij := Γ̊k
ijψ

∇̊
k +

(
∂jΓ̊

m
il + Γ̊k

ijΓ̊
m
kl

)
(χl ∧Am + Y lǫm) +

1

(p+ 1)!
ΠmmpǫmHijm1...mp

Ω̃m1...mp−1 ,

(3.22)

with Ω̃ being a7 (p−1)-form given by the formula (note that this is different from Ω defined
in a similar way through (2.20))

Ω̃m1...mp−1 :=

p−1∑

r=0

(−1)r(p− r)
r∏

s=1

dXms

p−1∏

t=r+1

ΠmtltAlt . (3.23)

It is immediately observed that the above manipulation has led to a covariant expression
on the right hand side, which should be identified as δ∇̊Z∇̊. Since in the basis ei of the
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pull-back bundle X∗T ∗M , we find that δ∇̊Z∇̊ = (δ∇̊Z∇̊
i − Γ̊k

ijδX
jZ̊k) ⊗ ei. This leads to

the improved covariant transformation rule

δ∇̊Z∇̊
i = δZ∇̊

i − Γ̊k
ijχ

j ∧Gk − (−1)pΓ̊k
ijF

jǫk − (−1)pF j ∧Nij . (3.24)

Finally, the resulting covariant gauge transformation for the field Z∇̊ is

δ∇̊Z∇̊ = (−1)pD̊ψ∇̊ − T [(ψ∇̊, A) + (Z∇̊, ǫ)] +
(−1)p

p!
(∇̊R + T )(ǫ, A, . . . , A)

+
(
∇̊T + 2Alt(ιρR̊)

)
[(Y,A, ǫ)−

1

2
(χ,A,A)] . (3.25)

Summarizing the discussion on the target space covariant form of the gauge transformation
rules of the fields and of the corresponding field strengths that define the classical equations
of motion for the topological field theories given by the action functional S(p+1), we collect
our results in Table 1.

4 The Q-manifold picture

Having established the existence of topological field theories with twisted R-Poisson struc-
ture and their fully covariant formulation, we would now like to understand the structure
of the target space as a graded supermanifold, i.e. as a supermanifold endowed with an
additional Z-grading in its algebra of functions. A Q-manifold—or differential graded (dg)
manifold—is a graded supermanifold equipped with a (co)homological vector field Q of
degree 1, (co)homological meaning that it squares to zero, namely Q2 = 0. It is well-known
that algebroid structures find a realization in terms of Q-manifolds. In the simplest case, a
Lie algebroid (E, [·, ·]E, ρ : E → TM) over M , consisting of a vector bundle E

π
→M , a Lie

algebra bracket on its sections and a smooth (anchor) map from E to the tangent bundle
which generates a homomorphism of bundles, may be completely characterised as follows.
Consider the parity-reversed vector bundle E[1], which may be described by means of local
coordinates xi and ξa of degree zero (“bosonic”) and one (“fermionic”) respectively, the
index a being with respect to a basis ea of the dual vector bundle E∗. Equip E[1] with the
following degree-1 vector field

QE = ρia(x)ξ
a∂xi −

1

2
Ca

bc(x)ξ
bξc∂ξa , (4.1)

where ∂xi := ∂/∂xi and ∂ξa := ∂/∂ξa. Then, as first shown by Vaintrob [37], Q2
E = 0

results in the defining properties of a Lie algebroid provided we make the identifications
ρ(ea) = ρia(x)∂xi for the anchor and [ea, eb]E = Cc

ab(x)ec for the Lie bracket in a local basis
ea of E. We note that in this graded picture, signs follow the degree of the respective
coordinates, specifically for any two coordinates of definite degree

ξη = (−1)|ξ|η|ηξ . (4.2)

This is also used below, where more degrees appear, other than just 0 and 1.

18



Field Φ
Gauge transformation δ∇̊Φ

∈

Field strength F
∇̊

X
Π(ǫ)

C∞(Σ)
dX +Π(A)

A
D̊ǫ− T (A, ǫ)

Ω1(Σ, X∗T ∗M)

D̊A− 1
2
T (A,A)

Y
(−1)p−1D̊χ+Π(ψ∇̊) + T [(χ,A) + (Y, ǫ)] + 1

(p−1)!
R(ǫ, A, . . . , A)

Ωp−1(Σ, X∗TM)

D̊Y − T (A, Y ) + (−1)pΠ(Z∇̊)− 1
p!
R(A, . . . , A)

Z∇̊

(−1)pD̊ψ∇̊ − T [(ψ∇̊, A) + (Z∇̊, ǫ)] + (−1)p

p!
(∇̊R + T )(ǫ, A, . . . , A)

+
(
∇̊T + 2Alt(ιρR̊)

)
[(Y,A, ǫ)− 1

2
(χ,A,A)]

Ωp(Σ, X∗T ∗M)

(−1)p+1D̊Z∇̊ − T (Z∇̊, A) + 1
2

(
∇̊T + 2Alt(ιρR̊)

)
(Y,A,A)+

+ 1
(p+1)!

(∇̊R + T )(A, . . . , A)

Table 1: Covariant gauge transformations and field strengths F∇̊ = (F ∇̊, G∇̊,F ∇̊,G∇̊) for

the collection of fields Φ = (X,A, Y, Z∇̊) on Σ ≡ Σp+1. We have defined T = −∇̊Π.
Composition of all geometric background data with the basic map X : Σp+1 → M is
understood in all formulas, for instance Π(A) is (Π ◦X)(A) etc.
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Recognizing that a twisted Poisson structure (M,Π, H) induces a Lie algebroid structure on
the cotangent bundle T ∗M , one may use the above construction to show that the associated
Q-manifold is (T ∗[1]M,QT ∗M). The graded cotangent bundle is equipped with coordinates
xi and ξi and the desired homological vector field is

QT ∗M = Πij(x)ξi∂xj −
1

2
(∂iΠ

jk +ΠjlΠkmHilm)ξjξk∂ξi . (4.3)

The correspondence is that QT ∗M is homological if and only if the 2-vector Π satisfies the
defining condition (2.2) of a twisted Poisson structure [20]. We note in passing that a more
covariant version of (4.3) is

QT ∗M = Πijξi(∂xj + Γl
kjξl∂ξk)−

1

2
∇̊iΠ

jkξjξk∂ξi , (4.4)

where the components of the 3-form H appear only in the supercovariant derivative of the
first term through the coefficients of the connection ∇.

A natural question then is what is the Q-manifold associated to the twisted R-Poisson
structure underlying the topological field theories discussed before? To answer this question,
we first should determine the corresponding graded manifold.5 The strategy is to follow
the field content of the theory. Indeed, the HPSM contained the fields X i and Ai, which
may be seen as pull-backs of the coordinates xi and ξi of T

∗[1]M by means of two maps X
and A. The former map is simply the base sigma model map X : Σ2 → M . On the other
hand, one may now consider the spacetime itself as a graded manifold T [1]Σ2, in which
case the second map is6 A : T [1]Σ2 → T ∗[1]M . Then we recognize that

X i = X∗(xi) and Ai = A∗(ξi) . (4.5)

In other words, as long as we know the field content of our theory, we can associate it
to a graded manifold accordingly. Let us now return to the general case, namely the one
with field content (X i, Ai, Y

i, Zi) of form degrees (0, 1, p − 1, p) respectively. The above
discussion suggests that we should introduce four sets of coordinates with corresponding
degrees on the graded target space, which we denote as (xi, ai, y

i, zi) to be aligned with the
notation of the fields in the theory. In which graded manifold can these coordinates arise in
a local patch? The rather obvious answer is that the graded target space should be taken
to be

M = T ∗[p]T ∗[1]M . (4.6)

Note that utilizing the isomorphism of the tangent and cotangent bundles on M one may
relate M to the graded manifold T ∗[p]T [1]M , which is more often encountered in the
literature. However, although for p = 2 the field content remains essentially the same, for
p > 2 one should note that while for M the “middle” fields A and Y , which are of different
degree, take values in T ∗M and TM respectively, for T ∗[p]T [1]M the bundles where they
take values are exchanged. For this reason, the type of topological field theories we present
here truly require the above choice of M in order to be realised. This was also discussed

5In the rest of this section, the word manifold is taken to mean supermanifold.
6As in the case of X , we take the liberty of denoting this map with the same symbol as the field

A ∈ Ω1(Σ2, X
∗T ∗M), as long as no confusion arises.
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in a special four-dimensional case in [33]. The fields of the theory are now obtained as
pull-backs of the four types of graded coordinates according to

X i = X∗(xi) , Ai = A∗(ai) , Y i = Y ∗(yi) and Zi = Z∗(zi) , (4.7)

where the maps X,A, Y and Z (once more, not to be confused with the corresponding
fields) are the components of a “big map”

Φ : T [1]Σp+1 → M . (4.8)

This is the augmented sigma model map which may be used when one addresses the AKSZ
construction of the models considered here. For the purposes of the present section, we
proceed with the discussion of the Q-structure on the graded manifold M. Based on the
above discussion, we propose the following:

Proposition 4.9 The pair (T ∗[p]T ∗[1]M,Q) with the degree-1 vector field given by

Q = Πjiaj∂xi −
1

2
∂iΠ

jkajak∂ai +

(
(−1)pΠjizj − ∂jΠ

ikaky
j +

1

p!
Rij1...jpaj1 . . . ajp

)
∂yi +

+

(
∂iΠ

jkakzj −
(−1)p

2
∂i∂jΠ

klyjakal +
(−1)p

(p+ 1)!
f
k1...kp+1

i ak1 . . . akp+1

)
∂zi , (4.10)

where f
k1...kp+1

i = ∂iR
k1...kp+1+

∏p+1
r=1 Π

krlrHil1...lp+1
is a Q-manifold if and only if (M,Π, R,H)

is a twisted R-Poisson manifold of order p+ 1.

To prove the above assertion, it is enough to show that the conditions stemming from
Q2 = 0 are the same as the conditions for a twisted R-Poisson structure of order p + 1,
namely that Π is a Poisson 2-vector and along with the (p+1)-vector R and the (p+2)-form
H they satisfy the fundamental property (2.14). This can be shown by direct calculation
of the involved quantities and indeed one easily finds

Q2xi = 0 ⇔ [Π,Π] = 0 . (4.11)

Moreover, Q2Ai = 1
2
∂i(Π

lj∂lΠ
km)ajakam, which is an identity as long as Π is Poisson.

Crucially, having established that Π is Poisson, we find by direct calculation that

Q2Y i = 0 ⇔ [Π, R] = (−1)p+2〈⊗p+2Π, Hp+2〉 (4.12)

The remaining condition Q2Zi is then identically satisfied.

We close this section with a brief discussion on the symplectic structure of the above
Q-manifolds. Recall that a differential graded symplectic manifold of degree n, or QPn
manifold in short, is a Q manifold with a compatible symplectic (P ) structure of degree n.
Compatibility is expressed through the condition

LQω = 0 , (4.13)

where ω is the symplectic form that defines the P structure on the graded supermanifold.
QP manifolds are instrumental in the AKSZ construction of topological field theories [11].
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On the other hand, twists such as the ones discussed in the present paper obstruct QP -
ness, specifically the compatibility between the Q and P structures. Therefore, the AKSZ
construction is not directly applicable to such twisted topological field theories, which
explains why the BV-BRST action for the twisted Poisson sigma model in two dimensions
was only found recently [20], although the one of the ordinary PSM can be found in a
straightforward way using AKSZ. This is also the reason that we will not introduce a
Hamiltonian function Θ, which in the compatible case controls the odd vector field Q
via Q = {Θ, ·}, the bracket being the graded Poisson one defined through the graded
symplectic structure ω. In that case, the odd vector field is homological if and only if the
Maurer-Cartan equation {Θ,Θ} = 0 holds.

In this paper, we are not going to discuss the BV action of the higher-dimensional twisted
field theories described here, since this requires a special treatment due to the much higher
complexity than the two-dimensional case. In any case, since the QP structure is ob-
structed as a general rule for models with Wess-Zumino term, QP does not play an equally
fundamental role in that case. Nevertheless, it is worth discussing the QP structure of the
untwisted models, since this can be used to apply the AKSZ construction to them. First,
for the ordinary Poisson structure with homological vector field given in (4.3) with H = 0,
the canonical symplectic form is of degree 1 and reads in Darboux coordinates as

ω = dxi ∧ dξi , (4.14)

where we use the typewriter font d for the differential on M , not to be confused with the
one on Σ denoted as d. Since dω = 0, it is simple to see that (4.13) is satisfied (for H = 0.)
In addition, a Hamiltonian is the degree-2 homological function Θ = 1

2
Πijξiξj and indeed

one may easily find that {Θ, ·} is equal to the odd vector field (4.3), or equivalently (4.4).

Similarly, consider the Q manifold of Proposition (4.9) with homological vector field given
by (4.10) and assume further that Hp+2 = 0. This brings us to the case of an untwisted
R-Poisson structure. The canonical symplectic form is now of degree p and it reads as

ω = dxi ∧ dzi + dai ∧ dyi , (4.15)

in terms of the coordinates introduced above. Once more, dω = 0 and a straightforward
calculation establishes that the compatibility condition (4.13) is satisfied for Hp+2 = 0.
Therefore we conclude that the triple (T ∗[p]T ∗[1]M,ω,Q) with P and Q structures given
by (4.15) and (4.10) respectively is a QP manifold of degree p if and only if (M,Π, R) is a
(untwisted) R-Poisson manifold of order p+ 1.

In the general case, where Hp+2 6= 0, the compatibility condition is not satisfied. One could
address this issue in the context of twisted QP manifolds, introduced in [22]. Furthermore,
twisted Poisson structures may be also understood in the context of L∞ algebras and
homotopy Poisson structures, as in [35] and [36]. It would be interesting to adopt this
perspective also for the twisted R-Poisson structures studied here. As already mentioned,
such QP structures are mainly useful in finding the BV action of the associated topological
field theories and the situation becomes more complicated when a vanilla QP structure is
not available. A more direct route to determine the BV action is then necessary, which will
be applied in [38], and therefore we are not going to discuss twisted QP structures further.
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5 Deformations, bi-twisted R-Poisson structures and

examples

In previous sections, we assumed from the beginning that Π is a Poisson 2-vector and
therefore that the target space is equipped with a twisted R-Poisson structure. We would
now like to ask whether there exist topological field theories other than the two-dimensional
HPSM where the target space is equipped with a twisted Poisson structure instead, in
presence of the multivector R and the Wess-Zumino term H . One might think that since
Π ceases to be a Poisson 2-vector its Schouten-Nijenhuis bracket with itself should be
controlled by the available (p + 2)-form H . Although this is what happens in the HPSM,
it is not a general feature and it is not what we study here.7 Instead we determine possible
additional terms that can be included in the action functional S(p+1) with the given field
content in special dimensions. This will reveal how the HPSM itself is obtained in our
approach but also that a three-dimensional topological field theory with twisted Poisson
structure exists too, with further accompanying structures that we identify.

5.1 Special cases and deformations

The approach we followed in defining the topological field theories given by S(p+1) was very
general, nevertheless one can identify two shortcomings. The first is that as it stands, the
HPSM is not included in these theories. The second is that there may exist special cases
where with the given field content one can construct more general topological field theories
than the ones we presented. In this section we address both above issues and show how
they can be rectified.

Recall that the field content of the theories comprises differential forms (X,A, Y, Z) on
Σp+1 of degrees (0, 1, p− 1, p). Focusing on the last three, we have included in S(p+1) three
terms, which are of the form ZA, Y A2 and Ap+1, where the superscripts in this notation
denote powers. These are the only three terms of degree p + 1 that exist for every p.
However, for specific values of p this may not be the case. Let us determine which are these
specific values. First, one may ask which terms involving only one of the fields A, Y or Z
are admissible. Starting with the p-form Z, suppose we wish to write a term of type Zq.
Since this should be a (p+1)-form on spacetime, pq = p+1 should hold. This means that
p = 1/(q − 1) and of course p ∈ Z. The only possibility is evidently q = 2, in which case
p = 1. Therefore, one may include a Z2 term in the two-dimensional theory only. As we
will see below, this accounts precisely for the HPSM. Similarly, in order to have a Y q term,
the condition is p = (q − 1)/(q + 1) ∈ Z for q > 1. The only solutions are p = 3 for q = 2
and p = 2 for q = 3, since any other q does not result in an integer p. Since the Aq term is
already accounted for in the general theory, this completes this part of the analysis.

Next, we ask whether further terms involving exactly two fields are admissible. Studying
the possibility of type ZqY r it quickly becomes clear that there are two options: a term
ZY in three dimensions (p = 2) and a term Z2Y in two dimensions (p = 1). In the latter

7In fact, it appears impossible to construct such field theories other than the HPSM with the given field
content that we assume in this paper, although we will not provide a proof of this negative statement here.
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dimΣp+1 Admissible deformations

2 f ij(X, Y )Zi ∧ Zj, f ij(Y )Ai ∧ Aj

3 fijk(X)Y i ∧ Y j ∧ Y k, f i
j(X)Zi ∧ Y

j, fk
ij(X)Y i ∧ Y j ∧Ak

4 fij(X)Y i ∧ Y j

Table 2: Admissible deformations of the general action functional S(p+1) for special values
of p. All deformations appear with a suitable function of the scalar fields of the theory,
which we denote collectively by f (each being a different function). We observe that special
cases appear only in low dimensions ≤ 4.

case, Y is a scalar and essentially this is already considered above, therefore we discard it.
Moreover, terms of type ZqAr are not admissible, save for the generic one considered in
previous sections. The last option is Y qAr, which yields two possibilities, namely a term
Y 2A in three dimensions and a term Y qA2 in two dimensions. Once more, the latter can
be neglected, since it is already considered as long as the corresponding Rij is a function
of both X and Y which are the scalar fields in the two dimensional version of the theory.
Finally, one can easily find that there is no admissible ZqY rAs term for non-vanishing
powers. All terms uncovered here may be thought of as deformations of the general model
given by S(p+1), giving rise to special topological field theories that extend the general one in
specific dimensions. This is discussed in the ensuing. The above discussion is summarized
in Table 2 for readability.

5.2 Examples and islands of (bi-)twisted R-Poisson TFTs

We are now in position to discuss examples of topological field theories of the kind intro-
duced in Section 2 and also beyond these, in the sense of Section 5.1. We focus on two,
three and four dimensions. Rather than simply reiterating the general case given by S(p+1),
which exists in any dimension of Σp+1, we highlight the more general theories that include
the admissible deformations classified in Table 2, which only exist in low dimensions. This
will allow us to define not only theories with twisted R-Poisson structure but also “islands”
of theories such as ones with bi-twisted R-Poisson one, as defined below.

Much like in Section 2, we begin our analysis in local coordinates for simplicity; the up-
grade to a coordinate and bases-independent formulation will quickly follow. The set up is
essentially the same as before, in that we formally consider again the action (2.13), albeit
with the difference that the function Qij

k is not taken to be the partial derivative of the
2-vector components any longer.
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5.2.1 Twisted R-Poisson 2D TFT and the HPSM

First we discuss the two-dimensional examples, including the admissible deformations. For
clarity, we work in terms of local coordinates in the target space; the corresponding covari-
ant expressions can be found by the method demonstrated in Section 2.2. The full action
functional including the deformations with suitable background functions becomes

S
(2)
+ = S(2) + S

(2)
def

=

∫

Σ2

(
Zi ∧ dX i −Ai ∧ dY i + f ij

1 (X, Y )Zi ∧ Aj +
1

2
f ij
2 (X, Y )Ai ∧ Aj +

+
1

2
f ij
3 (X, Y )Zi ∧ Zj

)
+

∫

Σ3

H3(X, Y ) . (5.1)

Note that for this case, since p = 1, the field content comprises two sets of scalar fields
X i and Y i and two spacetime 1-forms Ai and Zi. We have thus allowed dependence of
all background data on both scalar fields, including the 3-form H3. We have modified the
notation with respect to previous sections in order to be able to discuss different limits in
a proper way, thus we introduced the background data fs, s = 1, 2, 3.

First let us see how this model can be related to the HPSM of Section 2.1. This is achieved
by choosing f1 = 0 = f2 and f3 = X∗Π, Π being an H-twisted Poisson 2-vector, and with
Wess-Zumino term depending only on X , namely being X∗H3. Then one can immediately
see that

S
(2)
+ [X, Y,A, Z]|f1=f2=0,f3=Π = SHPSM[X,Z] + SBF[Y,A] , (5.2)

namely we obtain the HPSM trivially coupled to an Abelian BF theory in two dimensions.
The gauge transformations are the usual ones of the corresponding theories. This is then
how the HPSM is included as a special case of the class of topological field theories we
consider.

Clearly, S
(2)
+ is more general and it includes a twisted R-Poisson structure of order 2, which

as we have already discussed is distinct from a twisted Poisson structure. This is obtained
by the choice f3 = 0, f1(X, Y ) = X∗Π with Π being a Poisson bivector on M (thus
depending only of X) and f ij

2 = −∂kΠ
ijY k + Rij(X), where Rij is a bivector satisfying

(2.14) for p = 1. The resulting theory is the one obtained from (2.13), respectively (3.13)
in covariant form, for p = 1 with the associated gauge transformation, field equations and
covariant formulation. Therefore,

S
(2)
+ [X, Y,A, Z]|

f3=0,f1=Π,f
ij
2
=Rij−∂kΠijY k = S(2)[X, Y,A, Z] . (5.3)

As a final simple example, we note that choosing f1 = 0, f2 = Y ∗(Π̃) and f3 = X∗(Π) with

H(X, Y ) = X∗H + Y ∗H̃ , for two closed 3-forms H and H̃ and two H− and H̃−twisted

Poisson bivectors Π and Π̃, one obtains the action for two (uncoupled) HPSMs, i.e.

S
(2)
+ [X, Y,A, Z]|f1=0 = SHPSM[X,Z]− SHPSM[Y,A] . (5.4)

These belong to a class of models where the target space is essentially doubled. The real-
ization of the target space in terms of Q-manifolds is that of the double (degree-shifted)
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cotangent bundle T ∗[1]T ∗[1]M . It is worth mentioning that doubled sigma models in two
dimensions have found applications in the context of string theory backgrounds with mani-
fest T-duality, see e.g. [34]. We will not explore this connection further in the present paper
though, since it deserves a separate analysis.

5.2.2 Bi-twisted R-Poisson 3D TFT and twisted Courant sigma models

Moving on to three dimensions and returning to the target space covariant formulation, we
consider examples of S(3) as given in (3.13) for p = 2 and deformed by the corresponding
admissible terms from Table 2. Thus we are led to the action functional

S
(3)
+ =

∫

Σ3

(
〈Z∇̊, F 〉 − 〈Y,G∇̊〉+

1

3!
R(A,A,A)

)
+

∫

Σ4

X∗H4 + S
(3)
def . (5.5)

Note that we have switched to the notation where the composition of all background data
with the base map X is implicit. Moreover, R is now a 3-vector on M and Π is a 2-vector,
not necessarily Poisson. In the absence of Sdef this is simply S(3) with its associated twisted
R-Poisson structure of order 3, in which case Π is Poisson. A less general version of such
cases in three dimensions was considered in [25–28]. Specifically, in these references (i) only
a non covariant formulation was found and thus the theories were defined only in a local
patch, (ii) the Wess-Zumino term due to H4 was absent and (iii) due to the absence of H4,
the R-Poisson structure was untwisted, namely [Π, R] = 0. Presently, we go beyond all
above restrictions, and in addition to that we eventually allow Π to be a twisted Poisson
bivector too. Hence, let us examine what happens when the deformation is included. First
of all, based on the discussion of Section 4, the most general deformation action8 is

S
(3)
def =

∫

Σ3

(
〈Z∇̊, Y 〉+

1

2
f(Y, Y, A) +

1

3!
S(Y, Y, Y )

)
, (5.6)

where f ∈ Γ(TM ⊗
∧2 T ∗M) and S ∈ Γ(

∧3 T ∗M). That these deformations exist in three
dimensions should not come as a surprise. Indeed, the most general AKSZ topological field
theory in three dimensions is the Courant sigma model and (5.5) is of this type for H4 = 0.
This may be seen by realizing that the fields A and Y are both spacetime 1-forms for p = 2
and therefore they may be combined into 1-field A ∈ Ω1(Σ3, X

∗(TM ⊕ T ∗M)). Then the
full action may be written in the form

S
(3)
+ =

∫

Σ3

(
〈Z∇̊, dX + Y 〉 − 〈A,F ∇̊〉+

1

3!
T̂ (A,A,A)

)
+

∫

Σ4

X∗H4 , (5.7)

where we made use of the second expression in (3.13) and the tensor T̂ is an element of
Γ(⊗3(TM ⊕ T ∗M)). We note that this target space covariant formulation of the Courant
sigma model does not appear in the original publications [12–14], this being another side
result of our approach. What is more, we have introduced an additional four-dimensional
Wess-Zumino term in the theory. A similar term was considered in a different context
in [21].

8To be precise, one may allow for an arbitrary function in front of the first term, however we consider
this to be the identity here.
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Let us now examine this model in more detail. First, we note that for vanishing Π, f, R and
H4 one obtains directly the sigma model corresponding9 to the standard Courant algebroid
with 3-form twist, namely to the quadruple (E, [·, ·]E, 〈·, ·〉, ρ0 : E → TM) with E being
the extended vector bundle TM ⊕ T ∗M , the bracket on sections v⊕ η, v′ ⊕ η′,∈ Γ(E) with
v, v′ ∈ Γ(TM) and η, η′ ∈ Γ(T ∗M) being

[v ⊕ η, v′ ⊕ η′]E = [v, v′]⊕ (Lvη
′ − ιv′dη − ιvιv′S) , (5.8)

the canonical non-degenerate inner product being

〈v ⊕ η, v′ ⊕ η′〉 =
1

2
(ιvη

′ + ιv′η) , (5.9)

and the anchor map ρ : TM ⊕ T ∗M → TM given as

ρ0 = id⊕ 0 . (5.10)

This is certainly the simplest possibility, however it is not the only one and in particular
it is rather orthogonal to the spirit of the present paper. Here we are more interested in
examples where the assumptions of vanishing Π, f, R and H4 are relaxed and we would like
to determine the underlying structure on the target space in terms of suitably (bi-)twisted
R-Poisson structures. In particular, we employ the following definition

Definition 5.11 A bi-twisted R-Poisson manifold is a quintuple (M,Π, R, S,H) consisting
of a smooth manifold M equipped with an antisymmetric bivector Π, an antisymmetric 3-

vector R, a 3-form S and a 4-form H such that

1

2
[Π,Π] = R + 〈Π⊗ Π⊗ Π, S〉 , (5.12)

dS = −H . (5.13)

By the second condition, H is not only closed but also exact.

We observe that for R = 0 = H , this definition reduces to the one of a S-twisted Poisson
manifold with a closed 3-form S. In general though, R and H are not zero and therefore S
is not closed. In fact, (5.12) may be viewed as a definition of R in terms of Π and S; when
it is zero, the structure is twisted Poisson. Moreover, it is useful to note that due to the
fact that the Schouten-Nijenhuis bracket satisfies the Jacobi identity

[[u, v], w] = [u, [v, w]]− (−1)(|u|−1)(|v|−1)[v, [u, w]] , (5.14)

where |u| denotes the degree of the multivector field u, it trivially follows that

[Π, [Π,Π]] = 0 , (5.15)

for an arbitrary bivector Π. In the standard twisted Poisson case, this has the immediate
consequence that

[Π, 〈Π⊗Π⊗Π, S〉] = 0 , (5.16)

9This correspondence is established in [14] and we will not revisit it here.
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which is in fact equivalent to the closure of the 3-form S. In the bi-twisted R-Poisson
case though, this ceases to be true. Instead the 3-form S is not closed and taking the
Schouten-Nijenhuis bracket of Eq. (5.12) with Π leads to the identity

[Π, R] = 〈Π⊗ Π⊗ Π⊗Π, H〉+
1

4
Alt 〈Π⊗Π⊗R, S〉 , (5.17)

where Alt denotes antisymmetrization in the fourfold tensor product of T ∗M . This identity
is useful in establishing gauge invariance of the corresponding topological field theory that
we discuss below.

These structures are associated to non-standard twisted Courant algebroids, already de-
scribed in [15], namely choosing a more general anchor

ρ = (λ id)⊕ Π , (5.18)

with Π an antisymmetric bivector. We introduced the real parameter λ to account for two
separate cases obtained for λ = 0 and λ = 1. The former case essentially corresponds to
switching off the first term in the deformation action (5.6). We will mostly be interested in
the latter case though, since this can give rise to more general structures than the twisted
R-Poisson one that has already been covered in detail earlier. Therefore, we set λ = 1 from
now on. Note that for non-standard Courant algebroids, the generalization of the bracket
was also already found in [15] (in its antisymmetrized form) to be

[v ⊕ η, v′ ⊕ η′]E = ([v, v′] + Lηv
′ − ιη′v)⊕ ([η, η′] + Lvη

′ − ιv′dη − ιvιv′S) , (5.19)

where [η, η′] denotes a suitable bracket of 1-forms, typically the Koszul-Schouten bracket.

We now momentarily switch to the local coordinate formulation for clarity. Consider the
action functional

S
(3)
+ =

∫

Σ3

(
Zi ∧ (dX i +ΠijAj + Y i)− Ai ∧ dY i −

1

2

(
∂kΠ

ij − ΠilΠjmSlmk

)
Y k ∧Ai ∧Aj

−
1

2
ΠklSijlY

i ∧ Y j ∧ Ak +
1

3!
RijkAi ∧ Aj ∧ Ak +

1

3!
SijkY

i ∧ Y j ∧ Y k

)
+

∫

Σ4

X∗H4 .

(5.20)

Note that the background data depend precisely on the components of Π, R, S and H .
Next we introduce the following set of gauge transformations (neglecting wedge products
between differential forms,)

δ+X i = δX i + χi , (5.21)

δ+Ai = δAi + ψi + SijkY
jχk +ΠklSlij(Y

jǫk + χjAk) + ΠjlΠkmSmliAjǫk , (5.22)

δ+Y i = δY i +ΠilΠkmSlmj(χ
jAk + Y jǫk) + ΠilSljkχ

jY k , (5.23)

δ+Zi = δZi|Ω→0 + ∂i(Π
kmΠlnSjmn)(Y

jAkǫl −
1

2
AkAlχ

j)−
1

2
∂iSjklY

jY kχl −

− ∂i(Π
jmSmkl)(Y

kAjχ
l +

1

2
Y kY lǫj) +

1

3!
Hijkl(Π

mjǫm + χj)Ωkl
+ , (5.24)
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where δ(. . . ) are the transformations of the undeformed theory given in (2.16)-(2.19) for
p = 2 and the quantity Ωkl

+ is given by

Ωkl
+ = dXk ∧ dX l − dXk ∧ (Y l +ΠlmAm) + (Y k +ΠkmAm) ∧ (Y l +ΠlnAn) , (5.25)

essentially generalizing the Ωkl that appeared in the undeformed case. A calculation along
the same lines as described in Section 2.2 establishes the following statement, once one
takes into account Definition 5.11 and the identity (5.17).

Proposition 5.26 The classical action functional S
(3)
+ given in (5.20) on a 3-dimensional

spacetime Σ3 without boundary with Wess-Zumino term supported on a four-dimensional

manifold Σ4 such that ∂Σ4 = Σ3 is invariant under the gauge transformations (5.21)-(5.24)
if and only if the target space M is a bi-twisted R-Poisson manifold and Ωkl

+ is given as in

Eq. (5.25).

Remark 5.27 A special case is obtained if we set R = 0 and H4 = 0. Then S is a closed 3-

form and Π is an S-twisted Poisson structure. This is then a 3-dimensional topological field

theory with twisted Poisson structure. It shares the same structure as the 2-dimensional

HPSM but on the other hand they differ in that there is now no Wess-Zumino term sup-

ported in a higher-dimensional bulk.

Remark 5.28 To avoid confusion, we note that absence of S does not imply that H = 0.
This is clear from the fact that we have already constructed S(p+1) where this is the case, but

it is somewhat obscured by definition 5.11, where the last equation seems to imply it. This

is however not true, since in the spirit of (5.18) we could think of the deformation action

accompanied by the real parameter λ, which we set to one above, namely S
(3)
+ = S(3)+λSdef.

Then λ = 0 results in a twisted R-Poisson structure as in Proposition 2.22 for p = 2,
whereas λ = 1 results in a bi-twisted R-Poisson structure as in Proposition 5.26. This

is how twisted and bi-twisted R-Poisson structures and their associated topological field

theories are unified in a single picture.

5.2.3 The covariant form of the bi-twisted R-Poisson TFT and its Q-structure

To complete the discussion on the topological field theory induced by a bi-twisted R-Poisson
structure, we now discuss its target space covariant formulation. Unlike the undeformed
model, which corresponds to S = 0 and its covariance is attained by means of the connection
∇̊ without torsion, the case we discuss here requires a new connection to be covariantized.
In particular, similarly to the HPSM, we introduce a torsional connection ∇ on TM with
connection coefficients10

Γi
jk = Γ̊i

jk +
1

2
ΠilSljk . (5.29)

10Note that in our conventions for the three-dimensional theory this connection differs by a sign in its
torsional part in comparison to the one used in [20] and mentioned in Section 2.1.
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This connection acts in an obvious way on a coordinate basis of TM and induces one on
T ∗M in a straightforward way. The same holds for the corresponding induced covariant dif-
ferential on forms, which we now denote by D. The coefficients Γi

jk are no longer symmetric
in their lower indices and the antisymmetric part is precisely the torsion of ∇,

Θi
jk = Γi

jk − Γi
kj = ΠilSljk . (5.30)

In geometric terms, this expression may be written as

Θ = 〈Π, S〉 , (5.31)

with Θ being as usual a vector-valued 2-form, namely a section of TM ⊗ Ω2(M).

Equipped with the above connection, we can directly covariantize all expressions of Section
5.2.2, namely the action functional, the field equations obtained from it and the gauge
transformations. The approach is the same as the one we followed in the general case in
section 2.2 and therefore we will be somewhat brief here, highlighting the differences due to
the torsion. We focus on the field equations of the action (5.20), denoting the corresponding
field strengths by a hat to avoid confusion with the undeformed theory. They read as

F̂ i = F i + Y i = 0 , (5.32)

Ĝi = Gi − Zi −
1

2
ΠklΠjmSlmiAk ∧ Aj +ΠklSijlY

j ∧ Ak −
1

2
SijkY

j ∧ Y k = 0 ,(5.33)

F̂ i = F i − ΠilΠjmSlmkAj ∧ Y
k +

1

2
ΠilSjklY

j ∧ Y k = 0 , (5.34)

Ĝi = Gi +
1

2
∂i(Π

jlΠkmSlmn)Y
n ∧Aj ∧ Ak −

−
1

2
∂i(Π

klSjml)Y
j ∧ Y m ∧ Ak +

1

3!
∂iSjklY

j ∧ Y k ∧ Y l , (5.35)

where the unhatted ones are given in (2.28)-(2.31) for p = 2. The first equation is simple,
since it is already covariant, and it may be written as

F̂ = F + Y . (5.36)

The second one contains no partial derivatives and therefore its covariantization is also
direct. Specifically, recalling the form of Gi from Eq. (3.3), it is just a matter of using
the new connection ∇. Using that DAi = dAi − Γk

ijdX
j ∧Ak and redefining the field Z to

Z∇
i = Zi + Γk

ijY
j ∧Ak, one finds

Ĝi = DAi +
1

2
∇̊iΠ

jkAj ∧Ak −Z∇
i −Γk

ijAk ∧ F̂
j −ΠklSimlAk ∧Y

m−
1

2
SijkY

j ∧Y k . (5.37)

Recalling the definition (5.31), that T = −∇̊Π (which does not change due to the torsion

of the connection ∇) and defining the covariant field strength Ĝ∇
i = Gi + Γk

ijAk ∧ F̂
j, the

final fully covariant result is

Ĝ∇ = DA− Z∇ −
1

2
T (A,A)−Θ(A, Y )−

1

2
S(Y, Y ) . (5.38)
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We emphasize that this (and the following) covariant expression is not unique, a typical
feature of torsional geometries. Indeed, torsion terms can be absorbed in the definition
of connection coefficients and in particular note that Γi

jk of (5.29) and the alternative

connection with coefficients Γ̊i
jk −

1
2
ΠilSljk differ precisely by the torsion.

Next we turn to the field strength of the field Y , and we again observe that there are no
additional partial derivatives in the field equation (5.34). A similar manipulation in this

case indicates the definition (F̂∇)i = F̂ i−Γi
jkY

k ∧ F̂ j , in which case the covariant tensor is

F̂∇ = DY +Π(Z∇)− T (A, Y ) +
1

2
R(A,A) + Θ(Y, Y )− 2〈Π,Θ(Y,A)〉 . (5.39)

The covariantization of the final field strength is slightly more demanding due to the ap-
pearance of new terms with partial derivatives. It is a straightforward exercise to show
that

Ĝi = −DZ∇
i + (T km

i +ΠlkΘm
il )Z

∇
m ∧ Ak +

1

3!
(∇iR

jkl + T jkl
i )Aj ∧ Ak ∧Al +

+
1

3!
(∇iSjkl +Hijkl)Y

j ∧ Y k ∧ Y l −
1

2
(Rl

ijk +∇iΘ
l
jk − ΠmlHijkm)Y

j ∧ Y k ∧ Al +

+

(
1

2
∇iT

kn
q − Πln(Rk

qli + ∇̊lΘ
k
iq −

1

2
Θm

iqΘ
k
lm +Θk

imΘ
m
lq −

1

2
ΠmkHiqml) + Θn

lqT
kl
i

)
×

×Ak ∧ An ∧ Y
q + Γk

ijAk ∧ F̂ j − Γj
ikY

k ∧ Ĝj + Uij ∧ F̂
j , (5.40)

where

Uij = −Γk
ijZ

∇
k +(∂jΓ

k
il−

1

2
ΠnkHilnj)Y

l∧Ak+
1

3
HilmjY

m∧Y l−
1

3!
HijlmΩ

lm+
1

3!
HiljmF̂

m∧Y l

(5.41)
is an auxiliary 2-form that we will not attempt to simplify since it does not play any further
role in the analysis. Here we have defined the curvature R of the connection ∇, which in
components and with respect to the curvature of the torsionless one ∇̊ and the torsion Θ
takes the form

Rk
ipq = R̊k

ipq + ∇̊[pΘ
k
iq] +

1

2
Θk

m[pΘ
m
iq] . (5.42)

Moreover, T ∈ Γ(T ∗M ⊗
∧3 TM) is in the present case given in components by

T jkl
i = ΠjmΠknΠlpHmnpi . (5.43)

Note also that the covariant derivative on R with respect to the connection with torsion
and similarly the one on Θ itself are given as

∇iR
jkl = ∇̊iR

jkl +
3

2
Θj

imR
klm , (5.44)

∇iΘ
k
pq = ∇̊iΘ

k
pq +

1

2
Θk

ilΘ
l
pq −Θl

i[pΘ
k
lq] . (5.45)

The target space covariant field strength is then defined through Ĝ∇
i := Ĝi − Γk

ijAk ∧ F̂ j +

Γj
ikY

k ∧ Ĝj − Uij ∧ F̂
j, which is now given only in terms of tensorial quantities and gives

rise to the field equation Ĝ∇ = 0.
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Aside the field equations, a similar approach gives the covariant form of the gauge transfor-
mations, which we do not record here. Finally, the classical action functional in covariant
form reads as

S
(3)
+ =

∫

Σ3

(
〈Z∇ −

1

2
Θ(Y,A), F̂ 〉 − 〈Y,G∇̊〉+

1

3!
R(A,A,A) +

1

3!
S(Y, Y, Y )−

(5.46)

−
1

2
Θ(Y, Y, A)−

1

2
Alt(ιρΘ)(Y,A,A)

)
+

∫

Σ4

X∗H4 . (5.47)

Certainly there are more than one ways to express this action functional in such a target
space covariant form by reshuffling torsion terms.

To conclude this example, we present the associated Q-manifold. The homological vector
field in this case becomes

Q+ = Q− yi∂xi +

(
Zi +

1

2
ΠjmΘk

miakaj −Θk
ijy

jak +
1

2
Sijky

jyk
)
∂ai +

+

(
ΠjmΘi

mkajy
k −

1

2
Θi

jky
jyk

)
∂yi −

−

(
1

2
∂i(Π

kmΘj
mn)y

najak +
1

2
∂iΘ

k
mly

jymak −
1

3!
∂iSjkly

jykyl
)
∂zi , (5.48)

where Q is given as in (4.10) for p = 2. The correspondence now is that (T ∗[2]T ∗[1]M,Q+)
is a Q-manifold if and only if (M,Π, R, S,H) is a bi-twisted R-Poisson manifold.

5.2.4 Twisted Tetravector-Poisson 4D TFT

As a final example, let us consider the four-dimensional case, which is obtained for p = 3.
Such examples were considered first in [39] from the point of view of QP structures of degree
3 and homotopy algebroids. Employing the AKSZ construction, the authors constructed
examples of four-dimensional topological field theories. In a similar spirit, yet another
example of this kind was found in [33] with an underlying Poisson structure and a 4-
vector R satisfying [Π, R] = 0. Here we are interested in cases that go beyond both above
approaches, in that we do not have a vanilla QP structure due to the twist by a 5-form
H , and for the same reason [Π, R] 6= 0. As a byproduct of the example presented below,
in absence of the 5-form we also find the covariant version of the model presented in [33],
which was only defined in a local coordinate patch.

The example is a simple application of what we have constructed in sections 2 and 3.
The target space graded manifold is T ∗[3]T ∗[2]M and the fields of the theory are the
scalars, X∗T ∗M-valued 1-forms, X∗TM-valued 2-forms and X∗T ∗M-valued 3-forms. The
background fields are the Poisson structure Π, a tetravector R and a 5-form H , giving in a
local coordinate patch the action functional

S(4) =

∫

Σ4

(
Zi ∧ dX i −Ai ∧ dY i +Πij(X)Zi ∧ Aj −

1

2
∂kΠ

ij Y k ∧ Ai ∧ Aj +

+
1

4!
Rijkl(X)Ai ∧Aj ∧ Ak ∧Al

)
+

∫

Σ5

1

5!
Hijklm(X)dX ijklm , (5.49)
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where dX ijklm ≡ dX i ∧ dXj ∧ dXk ∧ dX l ∧ dXm. For H = 0 this is precisely the theory
considered in section 4.3 of [33]. From Proposition 2.22 we know that this theory is induced
by a twisted R-Poisson structure of order 4, also for H 6= 0. This means that

[Π, R] = −〈⊗5Π, H〉 , (5.50)

or in local coordinates

5Π[ji∂iR
klmn] + 10R[jikl∂iΠ

mn] = −Πjj′Πkk′Πll′Πmm′

Πnn′

Hj′k′l′m′n′ . (5.51)

What is more, apart from the generalisation due to the inclusion of the Wess-Zumino term,
our analysis in Section 3 has now produced the target space covariant form of the action
(5.49). Indeed, this is simply given by (3.13) or (3.14) for p = 3.

Finally, recall that four is the maximum dimension of Σ such that a deformation is admis-
sible with the given field content. Presently there exists only a single possible deformation
term, which is

S
(4)
def =

∫

Σ4

1

2
gij(X)Y i ∧ Y j . (5.52)

We denoted the background field by gij since it is a symmetric tensor, reminiscent of a
metric. This is an interesting term in itself. For a Lie-algebra valued 2-form field strength
in four dimensions F = (F a), the index a being a Lie algebra one, there exists a theta term

Sθ =
θ

32π2

∫
δab F

a ∧ F b . (5.53)

This is the second Lorentz and gauge invariant quadratic term in four dimensions aside
the kinetic term and it is the backbone of topological Yang-Mills theory and also the QCD
CP-violating theta term. One should note that such a term also exists in the Abelian
theory, with certain physical applications such as in the effective field theory of topological
insulators [5] and topological superconductors [6]. The deformation (5.52) is of this nature,
at least if one thinks of Y i as an exact (p−1)-form, and it corresponds to a generalised theta
term in presence of multiple fields, and therefore it is not surprising that it comes with a
symmetric background field (see also [40] for further explanations on this point.) However,
in the spirit of the present paper we would like to think of this term as accompanying the
theory given by the action functional (5.49), and also of Y i as a gauge field rather than a
field strength. In such a case, one should determine the modified transformation rules and
the underlying structure that yields this functional gauge invariant. For H = 0, this is a
special case of [39] and one can quickly see that a necessary condition is

Πijgjk = 0 . (5.54)

This does not change in presence of H . This condition is rather strong and it only allows
degenerate cases. Therefore we will not examine such deformed models in four dimensions
further.

33



6 Discussion and Conclusions

We presented a large class of topological field theories with Wess-Zumino term, induced
by a twisted R-Poisson structure and extensions thereof. These models can be thought as
generalizations of the two-dimensional Poisson and twisted Poisson sigma models in any
dimension. Indeed, a twisted R-Poisson structure includes a Poisson 2-vector accompanied
by a (p+ 1)-vector R and a closed (p+ 2)-form that satisfy the structural condition (1.1).
The topological field theories we constructed are gauge theories whose gauge structure is
compatible with a target space being a twisted R-Poisson manifold. We determined the
action functional, gauge transformations and field equations of these theories in a local
patch and then we carefully extended them in a target space covariant formulation by
means of an auxiliary connection. In addition, we showed that the structure of the target
space as a differential graded manifold is T ∗[p]T ∗[1]M and determined the corresponding
homological vector field and symplectic structure.

Studying possible deformations of the general case, we classified the admissible ones which
exist only in dimensions 2, 3 and 4 under the assumed field content. Subsequently, we inves-
tigated islands of theories in these special dimensions that are induced by the deformations.
Notably, we found a three-dimensional theory induced by a twisted Poisson structure that
extends the two-dimensional one. The three-dimensional models with twisted Poisson and
twisted R-Poisson structure can be elegantly combined in a more general setting, controlled
by a bi-twisted R-Poisson structure that includes the other two as special cases. The latter
contains an additional non-closed 3-form S aside the 2- and 3-vectors and 4-form of the
R-Poisson case, and is defined through the structural condition (1.2), where the 2-vector
departs from being Poisson in a general way, its Schouten-Nijenhuis bracket with itself
receiving contributions from both the 3-vector R and the 3-form S. For this case, we also
presented the target space covariant formulation, this time using an auxiliary connection
with torsion, and the corresponding differential graded supermanifold picture.

One of the basic questions that arises regards the BV action of the topological field theories
we presented here. For the case that the Wess-Zumino term is absent this can be done using
the AKSZ construction. However, the situation is more complicated in presence of the
(p + 2)-form H . Already in the two-dimensional case of the twisted Poisson sigma model,
the authors of [20] demonstrated that a naive generalization of AKSZ does not yield the
correct BV action. The underlying reason is that the Q and P structures in the twisted
case are not compatible and therefore the target graded manifold is not QP. Instead they
followed a direct approach and they found the BV action constructively. This amounts to
defining the BRST operator and introducing a ghost for the single scalar gauge parameter
of the theory. Recognizing that the BRST operator on the 1-form field does not square
to zero but instead it is proportional to the field equation for it, necessitates the use of
antifields. A careful analysis then shows that the BV action contains three contributions
with 0, 1 and 2 antifields respectively. Notably, the contribution with 2 antifields turns out
very simple, consisting of a single term with the same coefficient as the one appearing in
the action of the square of the BRST operator on the 1-form. Yet, it is precisely due to this
term that the classical master equation for the model is satisfied, or alternatively, that the
classical master equation for the naive generalization of AKSZ is violated when the twist
in non-vanishing (see Appendix B of [20]).
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The above statements persist in the theories we constructed here too and therefore one
should follow the standard field antifield formalism to determine the BV action. However,
the situation is significantly more complicated than the two-dimensional case. This comes
about because the gauge parameters are now higher degree differential forms. Consequently,
unlike the twisted Poisson sigma model, one must introduce a tower of ghosts for ghosts
both for the ghost from the (p − 2)-form gauge parameter χ and for the one from the
(p − 1)-form gauge parameter ψ. As usual, this is simply due to the fact that the gauge
parameters are not independent, since there exist classes of parameters for which the gauge
transformations vanish. In other words, the twisted Poisson sigma model is a theory with a
gauge algebra that closes only on-shell yet it is an irreducible theory, whereas the cases we
studied apart from having an open gauge algebra they also correspond to reducible theories
of many stages, as typical for theories that contain fields of form degree higher than 1 [41].
In relation to this, one can notice that the BRST operator does not square to zero not
only for a single field of the theory but for several of them (all of A, Y and Z) and what
is more the same holds for some of the ghosts and all ghosts for ghosts (unlike the twisted
Poisson sigma model where the action on the single ghost is zero and there are no ghosts
for ghosts). This by no means implies that in our case the situation is intractable, on the
contrary this direct approach is expected to work. However, because of the complexity and
subtle points we mentioned here, it requires a separate treatment and we plan to report on
this in a forthcoming publication [38].

Besides the BV action, it would be interesting to investigate the relation of the (bi-)twisted
R-Poisson topological field theories to constructions in terms of L∞ algebras, for example
within the higher gauge theory approach of [42]. Interestingly, a direct construction of
membrane sigma models in terms of L∞ algebras was recently discussed in [43] and also
extended to curved L∞ algebras [44]. From a different point of view, it would also be
desirable to understand twisted R-Poisson structures in the context of P∞ (homotopy
Poisson) structures described in [45] (see also [46] for recent applications of this idea).

Finally, one should keep in mind that in this paper we fixed the field content of the theories
from the beginning, essentially motivated by the structures we were aiming at utilizing and
the specific questions we posed in the introduction. Other field contents can yield interesting
and useful topological field theories too with target space graded supermanifolds other than
T ∗[p]T ∗[1]M . For instance one could consider cases with target space being the differential
graded symplectic manifold T ∗[p]

(∧p−1) [p− 1]T [1]M considered in [47] in the context of
Nambu structures and AKSZ constructions for p-branes. Note, however, that [47] shows
that Nambu structures cannot be twisted in the same sense as Poisson, due to the additional
algebraic condition satisfied by a Nambu structure aside the differential one. Nevertheless,
such approaches in general dimensions, including the one we employed in this paper, can
be useful in the study of branes. String and M theory contain a variety of them, often with
unconventional properties and geometry, for example the so-called exotic states listed in
the review [48], which can couple to potentials of high vector degree, typically mixed with
form degrees as well [49], generating corresponding Wess-Zumino terms [50, 51]. Higher
(yet ordinary) brane Wess-Zumino terms were also studied from the differential graded
symplectic manifold viewpoint in [52, 53].
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