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ABSTRACT 

 

Colorectal carcinoma (CRC) results from the accumulation of genetic mutations and alterations 

in signaling pathways. KRAS is mutated in 40% of CRC cases and is involved in increased 

tumor cells proliferation and survival. Although KRAS mutations are a dominant event in CRC 

tumorigenesis, increased wild-type KRAS expression has a similar effect on accelerated tumor 

growth. In this study, we investigated the KRAS status in correlation with clinicopathological 

features in sporadic CRC and more importantly the role of let-7a-5p and miR-544a-3p in the 

regulation of wild-type KRAS protein expression in the tumor center (T1) and invasive tumor 

front (T2).  

Analysis showed that 39.1% of tumor samples had KRAS mutations. In wild-type KRAS 

tumors, 62.0% were positive for KRAS protein expression and there was a higher percentage 

of KRAS positive tumor cells and a higher intensity of immunohistochemical reaction in T2 

than in T1 samples. This could not be attributed to differences in KRAS mRNA levels, 

suggesting regulation via miR-544a-3p expression which was significantly decreased in T2 

samples. Furthermore, we demonstrated that tumor samples carrying the KRAS-LCS6 variant 

allele had significantly higher protein expression of the wild-type KRAS. 

Our results suggest the role of the KRAS-LCS6 polymorphism and miR-544a-3p expression in 

the regulation of wild-type KRAS protein expression in sporadic CRC. 
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INTRODUCTION 

Colorectal carcinoma (CRC) is the third most commonly diagnosed cancer worldwide [1], and 

although advances have been made in the development and use of antitumor therapies [2], the 

mortality rate remains high [3]. KRAS is one of the early and key players in CRC tumorigenesis 

involved in the increased proliferation of tumor cells. Although KRAS mutations, most 

commonly located in codon 12 or 13 [4], are considered the dominant event in CRC 

tumorigenesis, it has been shown that overexpression of the wild-type (WT) KRAS in both 

cancer cell lines and patient tumors can also induce tumor initiation, progression, and 

maintenance [5-7]. However, a comprehensive review of the literature reveals that few studies 

have addressed KRAS protein regulation, particularly in relation to wild-type KRAS CRC. 

Increasing interest in non-coding RNAs revealed that KRAS protein expression and their 

activity can be modulated by short regulatory microRNA (miRNA) molecules [8]. As with 

most protein-coding genes, the KRAS sequence contains binding sites for several different 

miRNAs  that can have a strong regulatory effect on KRAS expression [8-10]. One of the first 

miRNAs shown to affect KRAS expression in vivo was let-7a [11]. In CRC, let-7a is one of the 

most frequently downregulated miRNAs. In vitro data showed that decreased let-7a expression 

induced higher KRAS expression and increased growth and proliferation in human colon 

cancer cells [8]. In addition to let-7a, there are over 300 other miRNAs with predicted binding 

sites in the KRAS 3’-UTR whose functional roles have not been thoroughly investigated. 

Although there is no clear consensus on the criteria that should be used to determine miRNAs 

that bind in the 3`UTR of target gene, we used three bioinformatics algorithms TargetScan 

(http://www.targetscan.org) Ensembl (http://www.ensembl.org) and miRBase (http:// 

http://www.mirbase.org/). From the results obtained, we decided to investigate microRNA-

544a-3p (miR-544a-3p), whose role in tumorigenesis of gliomas [12], and gastric [13] and 

ovarian cancer [14] has been demonstrated by previously published data. 

Single-nucleotide polymorphisms (SNP) in miRNA recognition sites in the 3′-UTRs of mRNA 

have recently attracted attention because they can affect the binding efficiency of their target 

mRNA and thus regulate protein expression [15-17]. A functional SNP KRAS-LCS6 

(rs61764370 T/G) in the let-7a-5p binding site within the KRAS 3’-UTR has been described 

and associated with better prognosis and response to anti-EGFR-based therapy in CRC [16, 18-

20]. Using the PolymiRTS database (http://compbio.uthsc.edu/miRSNP), we identified another 

less studied SNP KRAS rs10771184 A/T in the miR-544a-3p binding site that was associated 

http://www.mirbase.org/
http://compbio.uthsc.edu/miRSNP
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with increasedsurvival in ovarian cancer [14]. However, the data regarding the role of miRNAs 

let-7a and miR-544a-3p and their binding sites in CRC is still controversial due to lack of 

reproducibility of the findings [21-23].  

The aim of the current study was to investigate the correlation between KRAS mutation status 

and clinicopathological features, focusing on sporadic wild-type KRAS colon tumors stratified 

by KRAS protein expression. In addition, we aimed to analyze let-7a-5p and miR-544a-3p 

expression as well as rs61764370 (T/G) and rs10771184 (A/T) variants and their role on KRAS 

protein expression in wild-type KRAS CRC. KRAS signaling pathway plays a role in the tumor 

cells invasiveness of and there is increasing evidence that epithelial-to-mesenchymal transition 

can be regulated by miRNAs [24-26]. Therefore, we decided to investigate the role of miR-

544a-3p and let-7a-5p in the regulation of KRAS protein expression in the tumor center (T1) 

and invasive tumor front (T2) to improve our understanding of miRNA biology in CRC. 
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MATERIALS AND METHODS 

Patients and Samples 

This study included 110 patients with sporadic colon adenocarcinoma with negative family 

history for hereditary cancer. Tumor and adjacent normal colon tissue were obtained from the 

Clinical Hospital Merkur. The study included 66 male and 44 female patients with a mean age 

of 64.8 years (age range 35 and 91 years). 

All specimens, tumor- and adjacent histologically normal colonic mucosal tissue (15 cm from 

the tumor), were obtained by routine clinical procedures, and the diagnosis was confirmed 

histopathologically. None of the patients underwent preoperative radiation or chemotherapy. 

The freshly resected specimens were frozen in liquid nitrogen and stored in Human Tumor 

Bank[27] at -80°C for DNA and RNA extraction. Additional tumor and normal mucosa 

samples from patients included in the study were fixed in formalin and immersed in paraffin. 

Sections were 3μm thick and mounted on silanized glass slides for immunohistochemistry. In 

this study, two samples were obtained from each tumor, one tumor center (T1) and one invasive 

tumor front (T2). Prior to inclusion in the study, each slide was verified by a pathologist (A.Š.). 

All slides were examined with routine hematoxylin and eosin staining. Information on patients` 

age and sex, tumor size, differentiation, Dukes’ stage, tumor budding, and location was 

collected. 

The study was approved by the Ethics Committee of Clinical Hospital Merkur, Zagreb (on May 

24, 2016, UR. BR. 03/1-4723), and was conducted according to the ethical standards of 

Helsinki Declaration. Written informed consent was obtained from all patients included in the 

study. 

 

Detection of KRAS Mutations  

DNA was extracted from two fresh frozen samples from each colon adenocarcinoma, tumor 

center (T1) and invasive tumor front sample (T2). DNA extraction of frozen tissue was 

performed by proteinase K digestion and phenol-chloroform extraction. KRAS mutation status 

of the tumors was determined by genotyping codons 12 and 13 using the PCR-RFLP method, 

as previously described [28]. 
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Immunohistochemistry 

Formalin-fixed paraffin-embedded (FFPE) tissue sections from sporadic colon 

adenocarcinomas were stained for KRAS protein with a rabbit polyclonal antibody 

(HPA049830) (Sigma-Aldrich, Germany). Negative controls were performed by omitting the 

primary antibody. After deparaffinization in xylene, slides were rehydrated in ethanol and 

washed in phosphate-buffered saline. Antigen retrieval was performed by microwave heating 

in citrate buffer (10mM Citric Acid, 0.05% Tween 20, pH 6.0). Endogenous peroxidase activity 

was quenched by incubation in methanol containing 3% hydrogen peroxide (Sigma-Aldrich, 

Germany) for 15 min. Nonspecific binding was blocked by applying DAKO Protein Block 

Serum-Free (DAKO, Denmark) in a humidified chamber for 10 min at room temperature. 

Slides were blotted, and primary mouse monoclonal antibody at a concentration of 5 μg/ml was 

applied for 1 h at room temperature. The slides were then washed three times in phosphate-

buffered saline. The DAKO EnVisionTM + System, HRP (DAB) (DAKO, Denmark) was used 

to visualize positive reactions according to the manufacturer’s instructions. Slides were 

counterstained with hematoxylin, dehydrated, and mounted in Entellan (Sigma-Aldrich, 

Germany). Each slide was independently scored by two observers (A.Š. and S.K.) as positive 

(if more than 10% of the cells showed positive staining) or negative for KRAS in the entire 

tumor area. 

The relative intensity of cell immunostaining assessed semiquantitatively to indicate no 

staining (0), weak staining (1), moderate staining (2), or strong staining (3). 

 

SNP Genotyping 

Two SNPs in miRNA-binding sites within the 3’UTR of the KRAS gene, which were predicted 

to affect the binding of let-7a-5p and miR-544a-3p were analyzed. KRAS-LCS6 T/G 

(rs61764370) genotyping was performed by PCR-RFLP analysis[29]. For PCR amplification, 

forward primer 5'-TTA GGA GAG ACG GGG TTT CA-3' and reverse primer 5'-AAA TGA 

GTT CTG CAA AAC AGG-3' were used. For restriction fragment length polymorphism 

analysis, 5µl of PCR products were digested overnight with restriction enzyme TfiI (New 

England Biolabs) at 37ºC. Allelic discrimination was performed by 10% non-denaturing 

polyacrylamide gel electrophoresis. Gels were stained with silver. 

The SNP in the binding site for miR-544a-3p, KRAS rs10771184 A/T was analyzed using 

Custom Taqman® SNP Genotyping Assay (Applied Biosystems) according to the 

manufacturer’s protocol. 
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For quality control, 15% of randomly selected samples were analyzed a second time, and no 

discrepancies were detected. Control samples covering three possible SNP genotypes and no 

template control were run in parallel with the tested samples in each experiment. 

 

mRNA and miRNA Expression Analysis 

Snap-frozen fresh samples of colon adenocarcinoma and adjacent normal tissue samples were 

used for total RNA extraction with Trizol according to the manufacturer's protocol. RNA 

samples were subjected to quantification and quality control and 50 samples with the highest 

quality were selected for mRNA and miRNA analysis. Reverse transcription was performed 

using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) for both mRNA 

and miRNA expression detection according to the manufacturer's protocols. Random hexamers 

were used for mRNA conversion and analysis, whereas specific primers were used for let-7a-

5p, miR-544a-3p, and RNU48 analyzes (000377, 002265, and 001006, respectively; Applied 

Biosystems) according to the manufacturer's protocol.  

Predeveloped Taqman® Gene Expression Assay was used for KRAS mRNA expression 

quantification (Hs00364284_g1, Applied Biosystems), and ACTB (Hs01060665_g1, Applied 

Biosystems) as an endogenous control. Taqman® MicroRNA assays were used for let-7a-5p 

and miR-544a-3p (000377 and 002265, respectively; Applied Biosystems) quantification and 

RNU48 (001006, Applied Biosystems) as an endogenous control. The results of mRNA and 

miRNA expression were calculated using the comparative Ct method[30]. 

 

Statistical Analysis 

Statistical analyzes were performed using the GraphPad Prism statistical package (GraphPad 

Software). For continuous data, normality test was performed before analysis[31]. One-way 

analysis of variance (ANOVA) with Bonferroni correction was used to compare the percentage 

of immunohistochemically positive KRAS cells and mRNA and miRNA expression between 

N, T1 and T2 groups. For KRAS mutation status or IHC analysis and further correlation with 

clinicopathological features, a contingency table with Fisher’s exact test was used to calculate 

statistical significance. Student`s t-test was used to compare mRNA and miRNA expression 

between T1 and T2 groups. Data are presented as mean ± s.e.m or box-and-whisker plots (5-

95 percentiles). Values of ∗p<0.05, ∗∗p<0.01, and ∗∗∗p<0.001 were considered statistically 

significant.   
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RESULTS 

KRAS Mutations 

One hundred and ten samples of sporadic colon adenocarcinomas were analyzed for mutations 

in codons 12 and 13. Two samples from each tumor were analyzed, the tumor center (T1) and 

the invasive tumor front (T2). Analysis showed that 43 (39.1%) tumors were positive for KRAS 

mutations. KRAS codon 12 mutation was detected in 39 (90.7%) and KRAS codon 13 mutation 

in 4 (9.3%) tumors. Each tumor was either negative or positive for KRAS mutation in both 

tumor samples (T1 and T2) analyzed. The results of KRAS mutation detection were correlated 

with the clinicopathological characteristics of the patients and tumors. There was no 

statistically significant difference between wild-type and mutation-positive KRAS tumors by 

clinicopathological characteristics, except for from tumor budding (p=0.038) (Table 1). 

 

KRAS Protein Expression 

Sixty-five samples of sporadic colon adenocarcinomas (50 samples negative, and 15 samples 

positive for KRAS mutations) were analyzed by immunohistochemistry for the expression of 

KRAS protein. From each patient, we analyzed the adjacent normal tissue (N), tumor center 

(T1), and invasive tumor front (T2). The staining pattern observed was identical in all tumors 

and was visualized by membranous and/or cytoplasmic staining of tumor cells (Figure 1). All 

tumors with more than 10% positive tumor cells were classified as KRAS positive. 

For wild-type KRAS tumors, 19 (38.0%) samples were negative and 31 (62.0%) were positive 

for KRAS protein expression. KRAS-protein expression was higher in both percentage of 

positive tumor cells (p=0,04) (Figure 2A) and intensity (p=0,03) (Table 2) in T2 samples 

compared to N. There was also a statistically significant difference between T1 and T2 in the 

percentage of positive tumor cells (p=0,04) (Figure 2A) and in the intensity of the 

immunohistochemical reaction to KRAS protein (p=0,03; Table 2). In addition, negative, or 

weak KRAS protein expression was also found in adjacent normal tissue (Figure 2A, Table 2).  

KRAS protein expression was detected in all tumors that were positive for KRAS mutations. 

These tumors had an overall higher percentage of KRAS positive cells and 

immunohistochemical intensity than tumors negative for KRAS mutations. There was no 

statistically significant difference between N, T1 and T2 samples in the percentage of positive 

tumor cells (Figure 2B). The KRAS protein expression was higher in T2 compared to N in 
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immunohistochemical intensity (p=0.003; Table 2). Moderate KRAS protein expression was 

also found in adjacent normal tissue (Figure 2B, Table 2). 

The results of KRAS protein expression analysis in wild-type KRAS tumors correlated with the 

clinicopathological characteristics of the patients and tumors showed no statistical significance 

(Table 3). 

 

KRAS mRNA, let-7a-5p, and mir-544a-3p miRNA Expression 

Because possible base pairing between KRAS mRNA and miR-544a-3p and let-7a-5p was 

predicted using IntaRNA 2.0 software (Figure 3), we examined KRAS mRNA, miR-544a-3p, 

and let-7a-5p expression in fifty samples of wild-type KRAS colon adenocarcinoma (T1 and 

T2) and adjacent normal tissue. The analysis showed no statistically significant difference in 

KRAS mRNA or let-7a-5p miRNA expression between adjacent normal and tumor tissues (T1 

and T2) (p=0.98; p=0.52, respectively) (Figure 4A and 4B). However, the expression of miR-

544a-3p was significantly decreased in the invasive tumor front compared to that in the 

corresponding adjacent normal tissue (p=0.02, Figure 4C). 

 

Correlation of mRNA and miRNAs Expression with KRAS Protein Expression 

We also examined the correlation between KRAS protein expression and KRAS mRNA, let-

7a-5p and miR-544a-3p expression in wild-type KRAS tumor tissues. There was no difference 

between KRAS mRNA or let-7a-5p expression and KRAS protein expression (p=0.32; p=0.92, 

respectively; Figure 5A and 5B). Nevertheless, miR-544a-3p expression was significantly 

lower in T2 than in T1 only in tumors that expressed KRAS protein by immunohistochemistry 

(p=0.04) (Figure 5C).  

 

SNPs in miRNA Binding Sites  

All wild-type KRAS samples were genotyped for two SNP sites within 3’UTR of the KRAS 

gene, KRAS-LCS6 T/G (rs61764370) polymorphism in the let-7a-5p binding site and KRAS 

rs10771184 A/T polymorphism in the miR-544a-3p binding site.  



10 
 

The genotype distribution of KRAS-LCS6 T/G polymorphism in wild-type KRAS CRC was as 

follows: wild-type homozygous genotype TT was detected in 44 (88%), heterozygous genotype 

TG in 5 (10%), and variant homozygous genotype GG in 1 (2.0%) sample. The distribution of 

KRAS rs10771184 A/T polymorphism genotypes in wild-type KRAS was as follows: wild-type 

homozygous genotype AA was detected in 12 (24%), heterozygous genotype AT in 26 (52%), 

and variant homozygous genotype TT in 12 (24.0%) samples. 

The genotype frequencies of both SNPs analyzed in 50 sporadic wild-type KRAS colon 

adenocarcinomas and stratified by KRAS protein status are shown in Table 4. The results 

showed no statistically significant association between KRAS rs10771184 A/T polymorphism 

and KRAS protein expression. However, a statistically significant association between KRAS 

protein expression and KRAS-LCS6 T/G polymorphism was found. All tumor samples of 

variant allele carriers (TG and GG) were positive to KRAS protein and variant allele G was 

only present in KRAS protein-positive tumors (p=0.04, p=0.03 respectively). 
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DISCUSSION 

Colorectal adenocarcinoma is a result of molecular genetic alterations in many oncogenes and 

tumor suppressor genes[32]. Activating KRAS mutations that drive cell proliferation, 

migration and invasion occur in approximately 50% of colorectal carcinomas [33, 34]. 

Although the mutation in KRAS is an early and dominant event, amplification and 

overexpression of KRAS, leading to activation of the KRAS/MAPK pathway, can also be 

observed in colorectal cancer patients [35]. Considering that KRAS mutations have been 

thoroughly investigated in CRC [36-38], we focused our study on patients negative for the most 

common KRAS activating mutations and showed that wild-type KRAS protein expression 

could be regulated via miR-544a-3p expression and let-7a-5p KRAS-LCS6 T/G polymorphism.  

We analyzed associations between KRAS mutation status and clinicopathological features in 

110 sporadic colorectal tumors. The incidence of codon 12 and codon 13 mutations in KRAS 

was 40% and is comparable to the previously published study by Liu et al.[39], in which 

approximately 40% of CRC had KRAS exon 2 mutation[40]. In our study, we found that 

tumors with KRAS mutations correlated with higher tumor budding, an independent prognostic 

marker for lymph node metastasis and survival for CRC [41-43], a phenomenon also observed 

by other groups [44, 45]. However, unlike others [46, 47], we found no correlation with other 

clinicopathological characteristics such as age, sex, tumor size or left/right side location, 

histological grade, or Dukes` stage. This discrepancy could be partially explained by the fact 

that we did not address KRAS mutation subtypes due to the limited number of patients with 

codon 13 mutation. Patients with BRAF mutation-positive tumors were also excluded from our 

study to obtain a more accurate correlation between clinicopathological features and wild-type 

CRC. 

KRAS mutation status is an important pharmacogenetic marker for response to anti-epidermal 

growth factor receptor (EGFR) antibody therapy in CRC patients[48]. However, little attention 

has been paid to the function and regulation of wild-type KRAS in the context of CRC. 

Therefore, we performed an immunohistochemical analysis of KRAS protein levels in KRAS- 

mutated and wild-type tumors, assuming that KRAS-mutated tumors would have 

overexpression of KRAS protein. Indeed, in samples in which KRAS was mutated, there was a 

higher percentage of KRAS positive cells and a higher staining intensity, which is in agreement 

with the results of other authors who described KRAS protein overexpression in CRCs positive 

for KRAS mutations [49, 50]. Regarding the protein expression of the wild-type KRAS, we 

detected a high KRAS expression in some samples, while it was completely absent in others. 
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Similar results were also observed in another study trying to see if immunohistochemistry 

correlated with mutation status[50]. The relationship between KRAS positive or negative 

immunohistochemical expression and tclinicopathological features in wild-type KRAS tumors 

showed no significant correlation. And because only few studies have addressed wild-type 

KRAS immunohistochemical protein expression, especially in colorectal carcinoma, our 

results are hardly comparable with others. However, it is important to emphasize that we found 

for the first time that the invasive tumor front had higher KRAS protein expression than the 

corresponding tumor center in wild-type KRAS tumor samples. Nevertheless, this could not be 

attributed to differences in KRAS mRNA levels, suggesting other posttranscriptional 

mechanisms. 

Since the discovery of miRNA, its involvement in gene regulation of various pathological 

processes, such as cancer development, has been recognized [51, 52]. The existence and 

oncogenic or tumor suppressive effects of these non–protein coding RNAs have also been 

recognized in colorectal carcinoma [53, 54]. In our study, we focused on one of the first 

miRNAs discovered, that was shown to negatively regulate KRAS in CRC, let-7a-5p. Although 

let-7a-5p has been shown to be reduced in CRC, we did not obtain these results either in the 

tumor center or at the invasive tumor front, suggesting that it does not play a role in wild-type 

KRAS protein expression. In our study, we also included the much less studied potential KRAS-

regulating miRNA, miR-544a-3p. Its role in cancer has been established, but not in the context 

of KRAS. Here, we show that decreased levels of miR-544a-3p at the invasive tumor front, in 

comparison to tumor center and adjacent normal colon tissue, correlate with higher KRAS 

protein expression compared to the tumor center and adjacent normal intestinal tissue. 

Moreover, we demonstrate significantly lower miR-544a-3p expression specifically in wild-

type KRAS T2 tumor specimens showing positive immunohistochemical KRAS protein 

expression. Since the reduced expression of miR-544a-3p correlates with higher KRAS 

expression, we hypothesize that it may have a role in wild-type KRAS protein regulation and 

that these changes likely represent a mechanism for strengthening the already activated RAS 

signaling. 

Genomic profiling allowed us to identify and increase the importance of SNPs in miRNA 

activity. The whole concept of miRNA-mRNA interaction and regulation of target protein 

expression is based on specific sequence complementarity. Therefore, it is susceptible to 

disruption by sequence changes such as SNPs[55]. In the last decade, many studies have been 

published analyzing the prognostic and predictive roles of KRAS SNPs rs10771184 and 
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rs61764370 in miRNA binding sites of the KRAS gene. And while several studies emphasized 

the potential role of these SNPs as molecular biomarkers in various tumors for disease 

susceptibility[56, 57], prognosis[18, 58], survival[59, 60], and prediction of drug response [61], 

others found no correlation[62, 63]. However, to the best of our knowledge, we are the first 

study to publish an association between these two polymorphisms and KRAS protein 

expression. We found that tumor samples carrying the KRAS-LCS6 variant allele express 

KRAS protein, suggesting that the variant allele G may alter the binding of let-7a-5p to the 

KRAS mRNA, resulting in the increase of KRAS protein. This is consistent with previously 

published results that there is higher KRAS mRNA expression in colorectal cancer cells 

transfected with the full-length KRAS 3′UTR variant G allele[29]. In the same way we also 

investigated the role of KRAS SNP rs10771184 A>T in the miR-544a-3p binding site, but we 

found no association between KRAS protein expression and the presence of a variant T allele. 

In this study, we recognized the importance of KRAS-LCS6 polymorphism in let-7a-5p binding 

site and miR-544a-3p on the regulation of KRAS protein; however, there are still some 

limitations of our study. First, the relatively small number of patients and second, the lack of 

in vitro cell-based analysis of the effect of miRNAs and polymorphisms in their binding sites 

on KRAS protein expression. Therefore, future studies are needed to confirm our results and 

to identify possible mechanisms of action of let-7a-5p and miR-544a-3p on KRAS protein 

expression in CRC. In addition, the expression levels of miRNAs should be examined on a 

larger number of samples to draw more reliable conclusions. 

 

CONCLUSIONS 

In conclusion, our results suggest the role of KRAS-LCS6 polymorphism and miR-544a-

3p in tumorigenesis from sporadic CRC negative to KRAS mutation. Our study showed that 

tumor samples carrying the KRAS-LCS6 variant allele have significantly higher protein 

expression of KRAS suggesting that the SNP in the let-7a-5p binding region of the KRAS gene 

is associated with higher KRAS protein levels in wild-type KRAS tumors. Furthermore, our 

results suggest that miR-544a-3p has a tumor-suppressive effect and is a potential regulator of 

wild-type KRAS protein expression in the invasive tumor front which may be associated with 

the progression of this malignant tumor. It is expected that further studies will provide new 

insights into miR-544a-3p as a potential prognostic marker in colon adenocarcinoma. 
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FIGURES: 

 

Figure 1. Immunohistochemical expression of KRAS protein in colorectal cancer. 

Representative images of KRAS protein expression in adjacent normal tissue (N), tumor center 

(T1), and invasive tumor front (T2) in KRAS wild-type (KRASwt) tumor samples either 

expressing KRAS protein (IHC+) or not (IHC-) as well as KRAS protein expression in KRAS-

mutated tumor (KRASmut) samples. N, T1, and T2 samples were all taken from the same 

individual (magnification, x400).   
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Figure 2. Quantitative assessment of KRAS positive cells in colorectal cancer. Percentage 

of immunohistochemically positive KRAS cells in (A) KRASwt and (B) KRASmut samples from 

adjacent normal tissue (N), tumor center (T1), and invasive tumor front (T2). All data are 

presented as means ± SEM and were analyzed by one-way ANOVA followed by Bonferroni’s 

test (p*< 0.05). 

 

 

Figure 3. MicroRNAs and the sequence of the KRAS mRNA 3′-UTR. Schematic 

representation of miR-544a-3p and let-7a-5p predicted binding sites in KRAS 3′-UTR (marked 

red) as well as the location of the rs61764370 and rs10771184 polymorphisms (marked blue) 

in the 3′-UTR of KRAS 
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Figure 4. Expression of KRAS mRNA, let-7a-5p, and miR-544a-3p miRNA in KRAS wild-

type colorectal cancer. Box plots show the expression of (A) KRAS mRNA, (B) let-7a and 

(C) miR-544a-3p in samples of adjacent normal tissue (N), tumor center (T1), and invasive 

tumor front (T2) of KRAS wild-type tumors. Data are presented as box and whisker plots (5-95 

percentiles) and were analyzed by one-way ANOVA, followed by the Bonferroni’s test (p*< 

0.05). 

 

 

Figure 5. Differences in the expression of KRAS mRNA, let-7a and miR-544a-3p miRNA 

in KRAS protein-positive or protein-negative KRAS wild-type colorectal cancer. Box plots 

show the expression of (A) KRAS mRNA, (B) let-7a and, (C) miR-544a-3p in tumor center 

(T1) and invasive tumor front (T2) samples of KRAS wild-type colon carcinoma either 

expressing KRAS protein (IHC+) or not (IHC-). Data are presented as box and whisker plots 

(5-95 percentiles) and were analyzed using Student's t-test (p*< 0.05). 
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Table 1. Clinicopathological characteristics of 110 patients with sporadic adenocarcinoma 

stratified by KRAS mutation status 

Characteristic KRAS codon 12 or 13 mutation p 

 
Negative (%) 

67 (60.9) 

Positive (%) 

43 (39.1) 
 

Age 

< 70 years 

≥ 70 years 

 

47 (63.5) 

20 (55.6) 

 

27 (36.5) 

16 (44.4) 

0.422 

Gender 

Male 

Female 

 

38 (57.6) 

29 (65.9) 

 

28 (42.4) 

15 (34.1) 

0.380 

Tumor size 

 ≤ 5 cm 

 > 5 cm 

 

36 (55.4) 

31 (68.9) 

 

29 (44.6) 

14 (31.1) 

0.154 

Histological grade 

Well (1) 

Moderate (2) 

Poor (3) 

 

24 (55.8) 

36 (66.7) 

7 (53.8) 

19 (44.1) 

18 (33.3) 

6 (46.2) 

0.474 

Dukes’ stage 

A 

B 

C 

D 

 

4 (57.1) 

20 (74.1) 

29 (60.4) 

14 (50.0) 

 

3 (42.9) 

7 (25.9) 

19 (39.6) 

14 (50.0) 

0.332 

Tumor location 

Right-side 

Left-side 

 

16 (51.6) 

51 (64.6) 

 

15 (48.4) 

28 (35.4) 

0.211 

Tumor budding 

Low (1) 

Moderate (2) 

High (3) 

 

37 (68.5) 

17 (68.0) 

13 (41.9) 

 

17 (31.5) 

8 (32.0) 

18 (58.1) 

0.038 
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Table 2. KRAS immunohistochemical expression intensity in N, T1, and T2 samples from 

wild-type or mutated KRAS tumors 

     KRAS immunohistochemical score (+)   

KRAS status 0 1 2 3 p 

Wild-type 

   N 

   T1 

   T2 

 

10 (55.6) 

27 (64.3) 

17 (40.5) 

 

6 (33.3) 

5 (11.9) 

8 (19.0) 

 

2 (11.1) 

9 (21.4) 

16 (38.1) 

 

0 (0) 

1 (2.4) 

1 (2.4) 

 

 

a0,818 

b0,039 

 

 

 
c0,030 

Mutated 

   N 

   T1 

   T2 

 

1 (6.7) 

0 (0) 

0 (0) 

 

8 (53.3) 

6 (40.0) 

3 (20.0) 

 

5 (33.3) 

5 (33.3) 

 7 (46.7) 

 

1 (6.7) 

4 (26.7) 

5 (33.3) 

 

 

d0,776 

e0,003 

 

 

 

f0,076 

p values were obtained by Fisher’s exact test. N, adjacent normal tissue; T1 tumor 

center; T2 invasive tumor front; KRAS, v-Ki-ras2-Kirsten rat sarcoma viral oncogene 

homolog; letter marks the difference between aKRASwt N and T1, bKRASwt N and T2, 
cKRASwt T1 and T2; dKRASmut N and T1, eKRASmut N and T2, fKRASmut T1 and T2 
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Table 3. Clinicopathological characteristics of 50 patients with wild-type KRAS sporadic 

colon cancer stratified by KRAS protein expression 

Characteristic KRAS protein p 

 
Negative (%) 

19 (38.0) 

Positive (%) 

31 (62.0) 
 

Age 

< 70 years 

≥ 70 years 

 

15 (40.5) 

4 (30.8) 

 

22 (59.5) 

9 (69.2) 

0.532 

Gender 

Male 

Female 

 

10 (34.5) 

9 (42.9) 

 

19 (65.5) 

12 (57.1) 

0.546 

Tumor size 

 ≤ 5 cm 

 > 5 cm 

 

13 (43.3) 

6 (30.0) 

 

17 (56.7) 

14 (70.0) 

0.341 

Histological grade 

Well (1) 

Moderate (2) 

Poor (3) 

 

9 (45.0) 

9 (33.3) 

1 (33.3) 

11 (55.0) 

18 (66.7) 

2 (66.7) 

0.707 

Dukes’ stage 

A 

B 

C 

D 

 

2 (50.0) 

2 (13.3) 

11 (50.0) 

4 (44.4) 

 

2 (50.0) 

13 (86.7) 

11 (50.0) 

5 (55.6) 

0.131 

Tumor location 

Right-side 

Left-side 

 

3 (37.5) 

16 (38.1) 

 

5 (62.5) 

26 (61.9) 

0.974 
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Table 4. Wild-type KRAS sporadic colon cancer tumors stratified by KRAS protein 

expression and KRAS polymorphisms in miRNA binding sites 

 

KRAS polymorphism (miRNA) 

Genotypes/Alleles 

KRAS protein p 

Negative (%) 

19 (38.0) 

Positive (%) 

31 (62.0) 
 

KRAS rs61764370 T/G, LCS6 (let-7a-5p) 

TT 

TG 

GG 

19 (100.0) 

0 (0.0) 

0 (0.0) 

25 (80.6) 

5 (16.1) 

1 (3.3) 

0.123 

 

 

TT 

TG + GG 

19 (100.0) 

0 (0.0) 

25 (80.6) 

6 (19.4) 
0.040 

T 

G 

38 (100.0) 

0 (0.0) 

55 (88.7) 

7 (11.3) 
0.031 

KRAS rs10771184 A/T (miR-544a-3p) 

AA 

AT 

TT 

3 (15.8) 

13 (68.4) 

3 (15.8) 

9 (29.0) 

13 (42.0) 

9 (29.0) 

0.190 

AA 

AT + TT 

3 (15.8) 

16 (84.2) 

9 (29.0) 

22 (71.0) 
0.287 

A 

T 

19 (50.0) 

19 (50.0) 

31 (50.0) 

31 (50.0) 
1.00 

 


